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In this paper, we present an improved parametrization of the elastic scattering of spin-0 particles, which
is based on a dispersive representation for the inverse scattering amplitude. Besides being based on well-
known general principles, the requirement that the inverse amplitude should satisfy the dispersion relation
significantly constrains its possible forms and have not been incorporated in the existing parametrizations
so far. While the right-hand cut of the inverse scattering amplitude is controlled by unitarity, the
contribution from the left-hand cut, which comes from the crossing symmetry, is commonly ignored or
incorporated improperly. The latter is parametrized using the expansion in a suitably constructed conformal
variable, which accounts for its analytic structure. The correct implementations of the Adler zero and
threshold factors for angular momentum J > 0 are discussed in detail as well. The amplitudes are written in
a compact analytic form and provide a useful tool to analyze current and future lattice data in the elastic
region improving upon the commonly used Breit-Wigner or K-matrix approaches.
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I. INTRODUCTION

Over the last decade there is a renewed interest in the
hadron spectroscopy, motivated by recent discoveries of
unexpected exotic hadron resonances [1–3]. At the same
time, there is a significant progress in lattice QCD studies of
excited hadrons [4], which has a great potential for deter-
mining the properties of the poorly known hadronic states.
The determination of resonance parameters requires the

search for poles in the complex plane. This is particularly
important when there is an interplay between several
inelastic channels or when the pole is very deep in the
complex plane. The fundamental S-matrix constraints, such
as unitarity, analyticity, and crossing symmetry, signifi-
cantly constrain the possible form of the amplitude both on
the real axis and in the complex plane [5–7]. Unfortunately,
in the experimental and lattice analyses, it is a common
practice to ignore most of the S-matrix constraints and rely
on the different variants of Breit-Wigner or K-matrix
parametrizations due to their simplicity [8–14]. Both
methods often ignore the existence of the left-hand cut
and lead to spurious poles in the complex plane. In
addition, for a reaction involving Goldstone bosons, the

Adler zero constraint is typically ignored or implemented
purely phenomenologically (see, e.g., parametrizations
suggested in [15–17]). As a result, the systematic uncer-
tainties of these approaches are large [18].
The most rigorous way of implementing all S-matrix

constraints is to write a fixed-t dispersion relation for the
invariant amplitude Tðs; t; uÞ, which after projection onto
partial waves leads to the set of Roy or Roy-Steiner
equations [19]. In this way, the left-hand cut is treated
exactly. In practical applications, however, the rigorous
implementation of these equations is almost impossible,
since it requires experimental knowledge of all partial
waves with different isospins in the direct and crossed
channels (including the high-energy region). Therefore, the
current precision studies of ππ [20–22] and πK [23,24]
scattering are based on a finite truncation, which, in turn,
limits the results to the given kinematic region.
Furthermore, applying Roy-like equations for coupled-
channel cases is relatively complicated and has not been
achieved in the literature so far. In [25] we used a
complementary approach, which is based on solving the
partial-wave (p.w.) dispersion relations. In this method,
different partial waves with different isospins are fully
decoupled, at the expense of the crossing symmetry
constraint not being incorporated exactly. The benefit of
this approach is that it can be applied to any hadronic
reaction, for which the data exist (experimental or lattice),
and can be straightforwardly extended to the coupled-
channel systems. For instance, one of the central results
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of [25] is the isoscalar coupled-channel fππ; KK̄g Omnès
matrix. It does not have left-hand cuts and therefore serves
as the crucial input for the vast production/decay reactions
involving the same final states (see, e.g., [26,27]).
The solution of the p.w. dispersion relation is not available

in an analytic form and requires an extra computational cost
(especially using the bootstrap technique to estimate the
errors), thus complicating its implementation in fits to lattice
data. However, since some of the resonances are connected
almost exclusively to the elastic channels (especially in the
lattice calculations with unphysically large masses for light
quarks), it is not always necessary to solve the dispersive
integral equation for the direct amplitude. In this work we
exploit the idea ofwriting a dispersion relation for the inverse
amplitude and parametrizing the left-hand cut contribution in
the physical region by the conformal mapping expansion,
which respects its analytical structure. The possible Adler
zero of the amplitude is included as an additive pole term in
the inverse amplitude. In the derivation of the dispersive
parametrization for the higher partial waves, we implement
the angular momentum barrier factor as a relevant kinematic
constraint. Even though the proposed parametrizations may
look similar to the Kmatrix with a Chew-Mandelstam phase
space [8,28], or the conformal map parametrizations
from [17,18,29], we will show that it goes beyond those.
The requirement that the inverse amplitude satisfies the
dispersion relation significantly constrains the possible
forms of the parametrization. Moreover, we discuss in detail
the equivalence of the p.w. dispersion relations for the direct
and inverse amplitudes for elastic scattering. We also show
that the commonly used modified inverse amplitude method
(mIAM) [30–33], which satisfies the p.w. dispersion relation
for the inverse amplitude, is a special case of the proposed
parametrizations.
The paper is organized as follows. We describe the

formalism of the dispersive parametrization of the inverse
amplitude in Sec. II, deriving master formulae for the most
relevant cases of elastic scattering. In Sec. III we concep-
tually compare our approach to the commonly used existing
methods. In Sec. IV the Alder zero input is discussed.
Finally, in Sec. V we show some numerical test cases, with
the emphasis on the recent lattice data on the S-wave
isoscalar ππ → ππ scattering (mπ ¼ 239 MeV1) from the
HadSpec collaboration [8].

II. FORMALISM

A. Unitarity

The s-channel partial-wave decomposition for 2 → 2
process is given by

Tðs; tÞ ¼ 16πN
X∞
J¼0

ð2J þ 1ÞtJðsÞPJðcos θÞ; ð1Þ

where θ is the c.m. scattering angle. For the scattering of
identical particles N ¼ 2, while N ¼ 1 otherwise. This
factor is useful to ensure the same unitarity condition for
the identical and nonidentical two-particle scattering,
which in the elastic approximation is given by

ImtJðsÞ ¼ ρðsÞjtJðsÞj2θðs − sthÞ;
Im½tJðsÞ�−1 ¼ −ρðsÞθðs − sthÞ; ð2Þ

where sth ¼ ðm1 þm2Þ2 is the threshold. The phase space
factor ρðsÞ is given by

ρðsÞ ¼ 2pðsÞffiffiffi
s

p ; ð3Þ

where pðsÞ is the c.m. three-momentum of the system

pðsÞ ¼ λ1=2ðs;m2
1; m

2
2Þ

2
ffiffiffi
s

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −m2

−Þðs −m2þÞ
4s

r
; ð4Þ

with λ being the Källén function and m� ¼ m1 �m2. At
low energy, the effective range expansion for partial waves
is conventionally defined as

2ffiffiffiffiffi
sth

p RetJðsÞ ≃ p2JðsÞ ðaJ þ bJp2ðsÞ þ � � �Þ; ð5Þ

where aJ and bJ denote the scattering length and the slope
parameter, respectively. At high energy, the unitarity
condition (2) guarantees that the partial-wave amplitudes
at infinity approach at most constants

−
1

2ρðsÞ ≤ RetJðsÞ ≤
1

2ρðsÞ ; 0 ≤ ImtJðsÞ ≤
1

ρðsÞ ð6Þ

and, in accordance with that, we assume throughout this
work that

tJðs → �∞Þ → const: ð7Þ

B. S-wave scattering

We start with an investigation of the S-wave (J ¼ 0)
scattering of spinless particles, since in this case we do not
need to worry about angular momentum barrier factors. In
view of the maximal analyticity assumption [34,35], the
partial-wave amplitude satisfies, according to Eq. (7), the
once-subtracted dispersion relation

t0ðsÞ ¼ t0ðsMÞ þ
s − sM

π

Z
L;R

ds0

s0 − sM

Imt0ðs0Þ
s0 − s

þ s − sM
sB − sM

g2B
sB − s

: ð8Þ

The symbols L and R denote integrals over left- and right-
hand cuts, respectively. The choice of the subtraction point

1The estimate of the pion mass on this lattice was improved
in [10] resulting in a slight change from the initially reported
value of 236 to 239 MeV.
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at s ¼ sM in general is irrelevant and will be discussed later.
For completeness, we admitted in Eq. (8) a possible bound
state at s ¼ sB with the coupling gB, which we will drop
later on for simplicity. Using the unitarity relation (2) on the
right-hand cut, Eq. (8) simplifies to

t0ðsÞ ¼ UðsÞ þ s − sM
π

Z
∞

sth

ds0

s0 − sM

ρðs0Þjt0ðs0Þj2
s0 − s

; ð9Þ

where we combined the subtraction constant together with
the left-hand cut contributions into the function UðsÞ,

UðsÞ≡ t0ðsMÞ þ
s − sM

π

Z
L

ds0

s0 − sM

Imt0ðs0Þ
s0 − s

: ð10Þ

The solution to (9) can be written using the N=D
ansatz [36]

t0ðsÞ ¼
NðsÞ
DðsÞ ; ð11Þ

where the contributions of left- and right-hand cuts are
separated into NðsÞ and DðsÞ functions, respectively. This
ansatz implies a set of linear integral equations [37,38]. The
possible zero of the amplitude, t0ðsAÞ ¼ 0 (which in the
case of the ππ and πK scattering corresponds to the Adler
zero), can be incorporated either as a zero of NðsÞ or as a
pole in DðsÞ. In the former case, the easiest is to choose
sM ¼ sA, leading to

DðsÞ¼ 1−
s− sA
π

Z
∞

sth

ds0

s0− sA

Nðs0Þρðs0Þ
s0− s

;

NðsÞ¼UðsÞþ s− sA
π

Z
∞

sth

ds0

s0− sA

Nðs0Þρðs0ÞðUðs0Þ−UðsÞÞ
s0− s

;

ð12Þ

where UðsAÞ ¼ 0 from (10). On another side, the set of
integral equations with the so-called Castillejo-Dalitz-
Dyson pole [39] at sA has the following form (for any
sM ≠ sA):

DðsÞ¼ 1−
s− sM
π

Z
∞

sth

ds0

s0− sM

Nðs0Þρðs0Þ
s0− s

þðs− sMÞ
g1

s− sA
;

NðsÞ¼UðsÞþ s− sM
π

Z
∞

sth

ds0

s0− sM

Nðs0Þρðs0ÞðUðs0Þ−UðsÞÞ
s0− s

þðs− sMÞ
g1ðUðsÞ−UðsAÞÞ

s− sA
: ð13Þ

Using a toy model, both (12) and (13) have been checked
numerically to give the same solution that satisfies the
initial p.w. dispersion relation (9) with the constraint
t0ðsAÞ ¼ 0. Even though the realization through the
Castillejo-Dalitz-Dyson pole looks more complicated, it

allows us to obtain a simple analytical formula under the
assumption that UðsÞ ≈ U0 ¼ const. In this case Eq. (13)
reduces to

½t0ðsÞ�−1 ≈
1

U0

þ s − sM
π

Z
∞

sth

ds0

s0 − sM

−ρðs0Þ
s0 − s

þ ðs − sMÞ
g1=U0

s − sA
: ð14Þ

For the more complicated form of the left-hand cut, one
needs to solve an integral equation numerically using the
matrix inversion method, which requires significant com-
putation time in the case of bootstrap fits.
Alternative to the conventional p.w. dispersion relation,

for the elastic scattering one can write a partial wave
dispersion relation for the inverse amplitude

½t0ðsÞ�−1 ¼ ½t0ðs̃MÞ�−1 þ
s − s̃M

π

Z
L;R

ds0

s0 − s̃M

Im½t0ðs0Þ�−1
s0 − s

þ s − s̃M
sA − s̃M

gA
s − sA

; ð15Þ

where we allowed for the pole contribution at s ¼ sA,
which corresponds to the Adler zero in ππ and πK
scattering. The integral over the right-hand cut can be
fixed again from unitarity in Eq. (2), leading to the
following integral equation

½t0ðsÞ�−1 ¼ ½t0ðs̃MÞ�−1 þ
s − s̃M

π

Z
L

ds0

s0 − s̃M

Im½t0ðs0Þ�−1
s0 − s

þ s − s̃M
π

Z
∞

sth

ds0

s0 − s̃M

−ρðs0Þ
s0 − s

þ s − s̃M
sA − s̃M

gA
s − sA

:

ð16Þ

We emphasize that Eqs. (16) and (8) are equivalent: t0ðsÞ
and ½t0ðsÞ�−1 have the same analytic structure, except for
the possible presence of the poles (or zeros) in t0ðsÞ and
½t0ðsÞ�−1. It could be a pole in t0ðsÞ that correspond to the
bound state and therefore ½t0ðsBÞ�−1 ¼ 0. Another possibil-
ity is a pole in ½t0ðsÞ�−1 that corresponds to the Adler zero,
t0ðsAÞ ¼ 0. The constraints of t0ðsAÞ¼0 and ½t0ðsBÞ�−1 ¼ 0
can be easily incorporated in Eqs. (8) and (16) by choosing
sM ¼ sA and s̃M ¼ sB, respectively. We checked numeri-
cally for the elastic isoscalar ππ S-wave scattering that
Eqs. (8) and (16) are consistent with each other using a toy
model for the left-hand cut discontinuity in Eq. (8).
In a general scattering problem, little is known about the

left-hand cuts, except their analytic structure in the complex
plane. The progress has been made in [40]. It relies on the
consideration of an analytic continuation of the left-hand
cut contributions to the physical region, employing a series
expansion in terms of a suitably constructed conformal
mapping variable ωðsÞ. The latter is chosen such that it
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maps the left-hand cut plane onto the unit circle [41]. For
the most typical cases the exact forms of ωðsÞ will be given
in Sec. II E. In [25] the function UðsÞ of Eq. (9) was
expanded in the conformal mapping series. Here we
suggest to apply the conformal mapping expansion to
the first two terms of Eq. (16), which leads to the following
parametrization of the inverse of t0ðsÞ,

½t0ðsÞ�−1≃
X∞
n¼0

Cnω
nðsÞþRðs; s̃MÞþ

s− s̃M
sA− s̃M

gA
s− sA

; ð17Þ

where the analytical expression of

Rðs; s̃MÞ≡ s − s̃M
π

Z
∞

sth

ds0

s0 − s̃M

−ρðs0Þ
s0 − s

; ð18Þ

is given in Appendix A. The unknown coefficients Cn, gA,
and sA can be adjusted to reproduce the experimental or
lattice data or fixed from the effective field theory by
imposing some matching condition. Note that when the
conformal series is truncated to a single dominant term,
Eq. (17) coincides with Eq. (14), which was derived from
the N=D ansatz.
The advantage of (16) compared to (9) in the elastic

approximation is twofold. First of all, when in both
dispersion representations the left-hand cut is approximated
by the conformal expansion, Eq. (16) becomes much
simpler than Eq. (9), because one does not need to solve
numerically the integral equation. Second, as it will be
shown below, it is easy to extend the formalism to J ≠ 0.
However, the dispersion relation for the inverse amplitude
has a clear limitation: it cannot be extended to the coupled-
channel case [42,43]. Due to the matrix inversion, there
would be a mixture of the left-hand cuts of all involved
channels, which can also affect the physical region where
one has an overlapping cut structure. The typical example is
the coupled-channel fππ; KK̄g scattering [44], in which the
left-hand cut of KK̄ → KK̄ starts at 4ðm2

K −m2
πÞ and the

matrix inversion will therefore produce a spurious contri-
bution to the ππ → ππ unitarity cut. In contrast, the
overlapping of the left- and right-hand cuts in KK̄ →
KK̄ does not jeopardize the N=D framework, since it
happens in the nonphysical region [see Ref. [25] for more
details and its application to f0ð980Þ].

C. J ≠ 0, m1 =m2 scattering

For the case of scattering with J ≠ 0 one needs to take
into account the angular momentum barrier factor, which
implies that around the threshold the amplitude should
behave as

tJðsÞ ∼ pðsÞ2J ∼m1¼m2 ðs − sthÞJ: ð19Þ

This is implemented by writing a J þ 1 subtracted
dispersion relation for the ratio

fJðsÞ≡ ðs − sthÞJ
tJðsÞ

; ð20Þ

which is free from kinematic constraints. It leads to

fJðsÞ ¼
XJ
i¼0

1

i!
fðiÞJ ðsthÞðs − sthÞi

þ ðs − sthÞJþ1

π

Z
L;R

ds0

ðs0 − sthÞJþ1

ImfJðs0Þ
s0 − s

; ð21Þ

where no Adler-related pole was added since there is no
known reaction where the amplitude has an extra zero in
addition to the one at s ¼ sth given in Eq. (19). Note, that
here we subtracted the dispersion relation at the threshold.
It allows us to bring the integral over the right-hand cut into
the form of Eq. (18). Indeed, reexpressing fJðsÞ in terms of
tJðsÞ and applying the unitarity relation (2), we obtain

½tJðsÞ�−1 ¼
1

ðs − sthÞJ
XJ
i¼0

1

i!
fðiÞJ ðsthÞðs − sthÞi

þ s − sth
π

Z
L

ds0

s0 − sth

Im½tJðs0Þ�−1
s0 − s

þ s − sth
π

Z
∞

sth

ds0

s0 − sth

−ρðs0Þ
s0 − s

: ð22Þ

Since fðiÞJ ðsthÞ are in general unknown constants, one can
write a general parametrization

½tJðsÞ�−1 ≃
1

ðs − sthÞJ
XJ−1
i¼0

1

i!
fðiÞJ ðsthÞðs − sthÞi

þ
X∞
n¼0

Cnω
nðsÞ þ Rðs; sthÞ; ð23Þ

where, as before, the contribution from the left-hand cut
together with the constant term was expanded in a suitably
constructed conformal mapping series. For instance, for
J ¼ 1 it corresponds to

½t1ðsÞ�−1 ≃
a

s − sth
þ
X∞
n¼0

Cnω
nðsÞ þ Rðs; sthÞ; ð24Þ

and similar for J ¼ 2

½t2ðsÞ�−1 ≃
a

ðs − sthÞ2
þ b
s − sth

þ
X∞
n¼0

Cnω
nðsÞ þ Rðs; sthÞ:

ð25Þ
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The parameters a, b, and Cn will be fitted to the data
in Sec. V.

D. J ≠ 0, m1 ≠ m2 scattering

In case of nonequal masses we propose to write a
dispersive representation for the amplitude

gJðsÞ≡ pðsÞ2J
tJðsÞ

; ð26Þ

which is free from any kinematic constraints. For simplic-
ity, we limit ourselves here to the J ¼ 1 case (with an
example in mind of πK or πD scattering), leaving the
general result to B. For J ¼ 1 we write a twice-subtracted
dispersion relation for g1ðsÞ in the following form

g1ðsÞ¼aþbs

þðs−m2
−Þðs−m2þÞ
π

Z
L;R

ds0

ðs0−m2
−Þðs0−m2þÞ

Img1ðs0Þ
s0−s

;

where m� ¼ m1 �m2. Reexpressing g1ðsÞ in terms of
t1ðsÞ we obtain

½t1ðsÞ�−1¼
aþbs
p2ðsÞ þ

s
π

Z
L

ds0

s0
Im½t1ðs0Þ�−1

s0−s
þ s
π

Z
∞

sth

ds0

s0
−ρðs0Þ
s0−s

;

≃
aþbs
p2ðsÞ þ

X∞
n¼1

CnðωnðsÞ−ωnð0ÞÞþRðs;0Þ: ð27Þ

Note that for m1 ¼ m2, Eq. (27) reduces to Eq. (24) with
the proper redefinition of the unknown parameters. The
analytical expression for Rðs; 0Þ is given in Eq. (A4).

E. Conformal mapping variables ωðsÞ
The form of ωðsÞ depends on the cut structure of the

reaction. Since it is impossible to write a dispersive
representation for the inverse amplitude in the coupled-
channel case, we do not include in ωðsÞ possible inelastic
cuts, as it was proposed in [17,18,29]. Any parametrization
for the inverse amplitude which includes an inelasticity
cannot be justified from the dispersion relation. As we
already pointed out at the end of Sec. II B, the correct way
of implementing inelastic cuts is through the coupled-
channel dispersion relation for the direct amplitude [25] or
by considering Roy-like equations [20–24]. Therefore ωðsÞ
is solely specified by the position of the closest left-hand
cut branching point (sL) and an expansion point (sE),
around which the series is expanded, ωðsEÞ ¼ 0. The
latter typically is chosen in the middle between the thresh-
old and the energy of the last data point that is fitted to
the data,

ffiffiffiffiffi
sE

p ¼ 1

2
ð ffiffiffiffiffi

sth
p þ ffiffiffiffiffiffiffiffiffi

smax
p Þ: ð28Þ

This particular choice guarantees a fast convergence of the
conformal expansion in that region. To access some of the
systematic uncertainties, the value of sE can be varied
around its central value (28).
Since for the scattering of the particles with m1 ¼ m2 ¼

m the left-hand cut lies on the real axis, −∞ < s < sL, one
can use a simple function

ωðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s − sL

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sE − sL

p
ffiffiffiffiffiffiffiffiffiffiffiffi
s − sL

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sE − sL

p ;

sL ¼ 4m2 − tx; ð29Þ
where tx is the lowest threshold in the crossed t or u
channels. For instance for ππ → ππ or DD̄ → DD̄ scatter-
ing tx ¼ 4m2

π .
For the case when m2 > m1 (e.g., πK → πK or πD →

πD scattering), the left-hand cut structure is a bit more
complicated (see Fig. 1). In addition to the left-hand cut
lying on the real axis −∞ < s < ðm2 −m1Þ2, there is a
circular cut at jsj ¼ m2

2 −m2
1. The conformal map that

meets these requirements is defined as

ωðsÞ ¼ −
ð ffiffiffi

s
p

− ffiffiffiffiffi
sE

p Þð ffiffiffi
s

p ffiffiffiffiffi
sE

p þ sLÞ
ð ffiffiffi

s
p þ ffiffiffiffiffi

sE
p Þð ffiffiffi

s
p ffiffiffiffiffi

sE
p − sLÞ

;

sL ¼ m2
2 −m2

1: ð30Þ
We note that for the forms of ωðsÞ, given in Eqs. (29) and
(30), the conformal series, being truncated at any finite
order, is bounded asymptotically. This is consistent with the
assigned asymptotic behavior.

III. COMPARISON TO OTHER
PARAMETRIZATIONS

Before applying dispersively justified representations to
the physical cases, it is instructive to compare Eqs. (17),
(24), (25), (27) with the commonly used parametrizations.

FIG. 1. Left-hand cut singularities (solid black curves) in the
complex s plane for the case when m1 ¼ m2 (upper plane) and
m2 > m1 (lower plane). In the plot, we schematically show the
position of the closest left-hand cut singularity (sL), threshold
(sth), and the expansion point (sE). Dashed lines determine the
specific form of the conformal map and subsequently the domain
of convergence of the conformal expansion.
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A. K-matrix approach

The K-matrix approach can be written in a general
form as

½tJðsÞ�−1 ¼
1

pðsÞ2J K
−1ðsÞ þ IðsÞ; ð31Þ

where ImIðsÞ ¼ −ρðsÞ. The standard K-matrix implemen-
tations correspond to [45]

KðsÞ ¼ g2

m2 − s
þ
X
n

γn sn; ð32Þ

with IðsÞ being the conventional phase space IðsÞ ¼
−iρðsÞ or its Chew-Mandelstam [36] version, IðsÞ ¼
IðsMÞ þ Rðs; sMÞ. The possible Adler zero is typically
added by weighting KðsÞ by a factor ðs − sAÞ [8],

KðsÞ ¼ ðs − sAÞ
�

g2

m2 − s
þ
X
n

γnsn
�
: ð33Þ

The attempt of adding the left-hand cut contribution was
made in [16], using the conformal mapping expansion. The
suggested parametrization for the case with Adler zero was
written as

K−1ðsÞ ¼ m2
π

s − sA

�
2sA

mπ
ffiffiffi
s

p þ
X∞
n¼0

Cnω
nðsÞ

�
ð34Þ

or in an alternative form as [17,18]

K−1ðsÞ ¼ m2
π

s − sA

�X∞
n¼0

Cnω
nðsÞ

�
: ð35Þ

First of all, we emphasize that all the parametrizations
with conventional phase space are at best limited to the
physical region only. Below threshold, they have unphys-
ical left-hand singularities and cannot be connected to the
dispersion relation. The nonanalytic behavior of ρðsÞ below
the two-particle threshold also often causes spurious poles
in the complex plane. The attempt of fixing this problem by
adding an additional

ffiffiffi
s

p
term in Eq. (34) only place this

parametrization further away from the dispersive construc-
tion. In the parametrizations with Chew-Mandelstam phase
space, the subtraction point sM and the constant IðsMÞ are
typically freely chosen. However, in some cases it can
essentially affect the structure of the left-hand cut contri-
bution. For instance, for J ¼ 1 and m1 ≠ m2 the particular
form of Chew-Mandelstam phase space with sM ¼ 0 is
connected to the particular form of the left-hand cut
contribution [see Eq. (27)].
The commonly used K-matrix implementations given by

Eqs. (32), (33) at best assume that the left-hand cut
contribution can be approximated by a constant. The
inclusion of the left-hand cuts in Eqs. (34), (35) is a step
forward, however its implementation is nondispersive for

two main reasons. First, the left-hand cut contribution in
Eqs. (34), (35) is multiplied by the pole contribution from
the Adler zero. The correct implementation of the analytic
properties, in turn, requires additive contribution from the
left-hand cut and the pole due to Adler zero as derived in
Eqs. (16), (22), (27). Second, the proposed form of ωðsÞ
in [16–18] accounts not only for the left-hand cut, but also
for the inelastic cuts. This more general form of ωðsÞ can
only help with an effective description around the inelastic
threshold. It does not improve the validity of the para-
metrization in the complex plane, since both on the left-
hand and inelastic cuts the conformal mapping expansion
does not converge by construction, i.e., ωðsÞ ¼ 1. As
emphasized before, it is not possible to write a dispersion
relation for the inverse amplitude in the coupled-channel
case and therefore the inclusion of the contribution from the
inelastic cuts into ωðsÞ does not have a firm dispersive
ground.

B. mIAM and IAM

Finally, let us compare Eqs. (16) and (22) with the IAM
(mIAM) [30,46]. The latter is a widely used way of
unitarizing χPT (see, e.g., Refs. [31–33,43,47]). For the
elastic S-wave scattering it has the following form:

tmIAM
0 ðsÞ¼ ½tLO0 ðsÞ�2

tLO0 ðsÞ− ½tNLO0 ðsÞ− tLO0 ðsÞ�þAmIAMðsÞ ; ð36Þ

where tLO0 and tNLO0 are leading order (LO) and next-to-
leading order (NLO) S-wave scattering amplitudes in χPT,
respectively. Note, that Eq. (36) can be naively derived in the
physical region by performingNLO expansion of Re½tðsÞ�−1
and plugging it into ½tðsÞ�−1 ¼ Re½tðsÞ�−1 − iρðsÞ relation.
On the other hand, it has been shown in Ref. [30] that
Eq. (36) can be justified by writing the p.w. dispersion
relation for the inverse amplitude and approximating the
subtraction constants and the left-hand cut discontinuity by
its chiral expansion. TheAmIAMðsÞ term in needed to remove
a spurious pole on the real axis below threshold and at the
same time incorporate correctly the Adler zero.
By taking LO and NLO SU(2) χPT amplitudes from [48]

with low energy constants from [49] for the isoscalar
S-wave ππ scattering we have checked that mIAM given
in Eq. (36) indeed satisfies the dispersion relation for the
inverse amplitude (16)

½tmIAM
0 ðsÞ�−1 ¼ ½tmIAM

0 ðs̃MÞ�−1 þ
s − s̃M
sA − s̃M

gA
s − sA

þ s − s̃M
π

Z
L;R

ds0

s0 − s̃M

Im½tmIAM
0 ðs0Þ�−1
s0 − s

;

gA ¼
�
dtmIAM

0 ðsÞ
ds

����
s¼sA

�−1
: ð37Þ
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This implies that mIAM is a specific case of the proposed
parametrization given in Eq. (17). We have checked that for
fixed sA, gA to the mIAM and by adjusting just one leading
term in the conformal expansion C0 ¼ tmIAM

0 ðs̃M ¼ sthÞ we
can reproduce the results of the mIAM in the physical
region and in the complex plane around σ=f0ð500Þ
resonance with ∼5% accuracy.
Note that it is not guaranteed by the dispersion con-

struction [see, e.g., Eqs. (16) or (37)] that the inverse
amplitude would not turn zero somewhere in the complex
plane leading to unphysical poles of the amplitude itself.
That is exactly what happens with mIAM, which does not
satisfy the dispersion relation for the direct amplitude (9)
due to two spurious poles on the first Riemann sheet at
s ¼ −0.87� 0.49i GeV2. These spurious poles are an
artifact of a specific model for the left-hand cuts. In
general, the mIAM, or the more general parametrization
given in Eq. (17), is not meant to be applied in the
unphysical region of the first Riemann sheet. What is more
important is that there are no spurious poles on the second
Riemann sheet, where the σ=f0ð500Þ pole resides.
For the P-wave ππ scattering, we checked that tIAM1 ðsÞ

given by [46]

tIAM1 ðsÞ ¼ ½tLO1 ðsÞ�2
tLO1 ðsÞ − ½tNLO1 ðsÞ − tLO1 ðsÞ� ; ð38Þ

satisfies the p.w. dispersion relations for the inverse
amplitude given by Eq. (22), i.e.,

½tIAM1 ðsÞ�−1 ¼ fIAM1 ðsthÞ
s − sth

þ ½fIAM1 ðsthÞ�0

þ s − sth
π

Z
L;R

ds0

s0 − sth

Im½tIAM1 ðs0Þ�−1
s0 − s

;

fIAM1 ðsÞ≡ s − sth
tIAM1 ðsÞ : ð39Þ

Here, similarly to the S wave, one can adjust the parameters
of the conformal expansion in Eq. (24) such that Eq. (24)
reproduces IAM almost exactly. We have also checked that
in P-wave IAM does not have any spurious poles.
The main difference between the proposed dispersive

inverse amplitudes given in Eqs. (17), (24), (25), (27) and
mIAM (IAM) is that the former can be applied to any
elastic scattering, and it is not limited to the Lagrangian-
based resummation scheme [50]. The unknown parameters
in Eqs. (17), (24), (25), (27) can be fixed directly from the
experimental or lattice data (some numerical examples will
be shown below). The only required input for the ππ and
πK scattering is the Adler zero position, since it lies in the
unphysical region and typically can not be constrained well
by the data. On another side, the unknown parameters in
Eqs. (17), (24), (25), (27) can be estimated from χPT (an
example is shown at the end of Sec. V), which allows to

connect continuously the results with different quark
masses, similar to mIAM.

IV. ADLER ZERO

For the S-wave ππ and πK scattering one has to account
for an Adler zero of the amplitude required by chiral
symmetry. Its position typically lies very close to the left-
hand cut and cannot be determined precisely from the fit to
data in the physical region. Around the Adler zero the chiral
perturbation theory (χPT) converges relatively fast. For the
physical pion mass the higher-order corrections shifts the
LO results

sI¼0
A ¼m2

π

2
; sI¼2

A ¼ 2m2
π; sI¼3=2

A ¼m2
πþm2

K;

sI¼1=2
A ¼ 1

5

�
m2

πþm2
Kþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm2

K −m2
πÞ2þm2

πm2
K

q �
: ð40Þ

only slightly. For larger than physical pion mass values the
position of the Adler zero becomes more sensitive to the
input from the LECs, which enters at higher orders. As an
example, in Fig. 2 we show the isoscalar Adler zero
position as a function of the pion mass up to NLO order.
The maximalmπ is considered to be ∼300 MeV, which lies
well within the χPT range of applicability. The LECs were
taken from [49] and assumed to be uncorrelated. This
assumption is rather strong and effectively includes an
uncertainty related to the truncation error of the chiral
expansion.
Since the lattice data do not provide enough information

to control the amplitude around the Adler zero, it is
important to implement this chiral constraint in the fits.
As it will be shown in the next section, for mπ ¼ 239 MeV

FIG. 2. Adler zero position sA as a function of the pion mass for
the S-wave isoscalar ππ scattering. In the plot we used SU(2) χPT
p.w. amplitudes at LO and NLO from [48] (expressed in terms of
the pion decay constant in the chiral limit) and low-energy
constants (LECs) lr1 ¼ −4.03ð63Þ × 10−3, lr2 ¼ 1.87ð21Þ × 10−3,
lr3 ¼ 0.8ð3.8Þ × 10−3, lr4 ¼ 6.2ð1.3Þ × 10−3 from [49].

ANALYTICAL DISPERSIVE PARAMETRIZATION FOR ELASTIC … PHYS. REV. D 107, 074021 (2023)

074021-7



the error on the f0ð500Þ pole parameters due the Adler zero
position is suppressed compared to the statistical error from
the lattice data [8]. For pion masses sufficiently larger than
300 MeV, the Adler zero constraint may be less accurate.
In this case, a reasonable strategy is to perform the fit both
with and without the Adler zero constraint.

V. NUMERICAL EXAMPLES

In this section, we present some test fits to the well-
established ππ and πK scattering with J ¼ 0, 1, 2 in the low
energy region. Here we do not attempt to provide a detailed
analysis of experimental data. Instead, we opt for fitting the
result of the Roy (Roy-Steiner) analyses [20,24], as the best
representation of the data. The goal is to show that the
proposed dispersive parametrizations are suitable to the
search for poles in the complex plane and can describe
both: wide tetraquark states [like σ=f0ð500Þ] and relatively
narrow quark-antiquark states [like the ρð770Þ or f2ð1270Þ
mesons]. For simplicity, we present our numerical test
results using the LO input (40).
As one can see in Table I and Fig. 3, an accurate

description of the Roy (Roy-Steiner) pseudodata is
achieved with at most three parameters. We also observed,
that adding more terms in the conformal expansion,
one can systematically improve the fits. Note that by fitting
the Roy (Roy-Steiner) results, which are smooth func-
tions, the χ2=d:o:f: loses its statistical meaning and can
be <1.
As an example, we also perform a numerical comparison

between Eq. (17) and the most advanced analytical

σ=f0ð500Þ parametrization given by Eqs. (7), (10), (12),
and (14) of Ref. [18]. That parametrization corresponds to
Eqs. (31), (35) with IðsÞ ¼ Rðs; 0Þ and the conformal
variable,

ωðsÞ ¼
ffiffiffi
s

p
− α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

K − s
p

ffiffiffi
s

p þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

K − s
p ; ð41Þ

with the typical choice of α ¼ 1.0 [18]. The variation of α
around 1.0 or replacing Eq. (41) by (29), leads to the very
compatible results. The two parameter fit to Roy solution
up to s1=2max ¼ 700 MeV gives χ2=d:o:f ¼ 1.7,2 and the pole
position at ffiffiffiffiffispp ¼ 448ð7Þ − i205ð4Þ MeV. In order to
improve the obtained width of σ=f0ð500Þ, one needs to
add a third parameter. This is clearly not as good as
the fit given in Table I, which produces a pole position atffiffiffiffiffispp ¼ 468ð8Þ − i239ð4Þ MeV, i.e., much closer to the
Roy solution with just two parameters. Another useful
comparison of Eq. (17) and Eqs. (31), (35), (41) is the
employment of them as the unitarization method
of χPT. By constraining two unknown parameters in
Eqs. (31), (35), and (41) and Eq. (17) from the χPT
threshold parameters a0;NNLO ¼ 0.220ð5Þ and b0;NNLO¼
0.276ð6Þ [22] one obtains ffiffiffiffiffispp ¼389ð15Þ−i262ð13ÞMeV
and ffiffiffiffiffispp ¼426ð29Þ−i263ð22ÞMeV, respectively. Clearly,

TABLE I. Fit parameters entering Eqs. (17), (24), (25), (27) which were adjusted to reproduce available pseudodata from the Roy-like
analyses [20,24] or lattice data [8,10]. In Eq. (17), the Adler position sA is fixed from the LO χPT [given in Eq. (40)], while the
subtraction constant is chosen to be at threshold, s̃M ¼ sth. In the right columns we collect pole positions found on the second Riemann
sheet and compare them with the Roy-like extractions [5,20,24]. See text for more details.

Fit parameters Pole position

gA a b C0 C1 χ2=d:o:f
ffiffiffiffiffispp , MeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sRoy−likep

q
, MeV

ππ → ππ
ðJ ¼ 0; I ¼ 0Þ, Exp 0.44 � � � � � � 4.86 � � � 0.4 468 − i239 457þ14

−13 − i279þ11
−7

ðJ ¼ 0; I ¼ 0Þ, Lattice 0.56 � � � � � � 1.37 � � � 0.8 560 − i169 � � �
mπ ¼ 239 MeV
ðJ ¼ 0; I ¼ 2Þ, Exp −0.84 � � � � � � −23.98 � � � 0.0 � � � � � �
ðJ ¼ 1; I ¼ 1Þ, Exp � � � 2.30 � � � −5.42 � � � 3.0 758 − i73 763.7þ1.7

−1.5 − i73.2þ1.0
−1.1

� � � 1.92 � � � −4.26 −4.44 0.9 762 − i71
ðJ ¼ 2; I ¼ 0Þ, Exp � � � 0.04 10.01 −7.87 � � � 1.1 1261 − i94 1267.3þ0.9

−0.9 − i87ð9Þ
πK → πK
ðJ ¼ 0; I ¼ 1=2Þ, Exp 0.44 � � � � � � 2.30 � � � 2.1 707 − i246 648ð7Þ − i280ð16Þ

0.22 � � � � � � 1.48 1.54 0.0 684 − i312
ðJ ¼ 0; I ¼ 1=2Þ, Lattice 0.63 � � � � � � 1.53 � � � 0.4 764 − i278 � � �
mπ ¼ 239 MeV
ðJ ¼ 0; I ¼ 3=2Þ, Exp −0.86 � � � � � � −7.86 � � � 0.5 � � � � � �
ðJ ¼ 1; I ¼ 1=2Þ, Exp � � � 0.86 −1.05 � � � � � � 0.7 889 − i27 890ð2Þ − i25.6ð1.2Þ

2The fit of Eqs. (35), (41) to the Roy-like solution up to s1=2max ¼
800 MeV gives χ2=d:o:f: ¼ 4.0 compared to χ2=d:o:f: ¼ 1.5
using Eq. (17).
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the dispersive parametrization (17) produces the results
closer to the Roy-like analysis.
For the description of the lattice data of S-wave isoscalar

ππ → ππ (mπ ¼ 239 MeV) scattering [8] HadSpec col-
laboration used eight different parametrizations, leading
to the wide spread of the σ=f0ð500Þ pole position,ffiffiffiffiffispp ¼ 550…780 − ið115…285Þ MeV. We would like to
emphasize that, out of all applied parametrizations, only the
“fit 3a” [which corresponds to Eqs. (31), (33) with γn ¼ 0

and IðsÞ ¼ −Re½Rðm2; sthÞ� þ Rðs; sthÞ] can be cast into
the dispersive form for the inverse amplitude with the
conformal series truncated at nmax ¼ 0. However, it trans-
lates one to one only under an assumption that g2 andm2 in
Eq. (33) can also take on negative values. It can also be
reinforced by the fact that in order to reproduce χPT
threshold parameters for the physical pion mass a0;NNLO ¼
0.220 and b0;NNLO ¼ 0.276, one needs to use g2 ¼ −3.78
and m2 ¼ −1.47. In turn, for mπ ¼ 239 MeV the “fit 3a”
from HadSpec and Eq. (17) truncated at nmax ¼ 0 coincide,
leading to a significant reduction of the spread of the
σ=f0ð500Þ pole position. When more precise data will be
available, the extension of “fit 3a” dispersively goes with
additional parameters related to the left-hand cuts Cn in
Eqs. (17), (29), rather than polynomial γn terms in Eq. (33).

In Table I we reproduced the results of “fit 3a” close
enough, given the fact that we performed a simple fit to
p cot δ instead of the energy levels. The former is suffi-
cient for our following discussion related to the chiral
extrapolation.
As a first step, we quantify the uncertainty due to the

Adler zero position. At NLO using LECs from [49] we
obtain (see Fig. 2)

sI¼0
A;NLOðmπ ¼ 239 MeVÞ ¼ 0.023ð10Þ GeV2; ð42Þ

which is a very conservative estimate, since the LECs were
assumed to be uncorrelated. The propagation of Eq. (42)
into the pole position gives ffiffiffiffiffispp ¼561ð4Þ−i171ð7ÞMeV.
In case when both the uncertainties of lattice data and Adler
zero input are taken into account, one gets

ffiffiffiffiffi
sp

p ¼ 559þ48
−53 − i168þ20

−17 MeV; ð43Þ

where the error corresponds to 1σ confidence level pro-
vided by the bootstrap analysis. We have also checked that
exactly the same result is achieved when only the uncer-
tainty of lattice data is accounted for while the Adler zero is
fixed to its central NLO position. This points out that the

FIG. 3. Results of the fits (δIJ) to the pseudodata from the Roy-like analyses (left and central panels) [20,24] and lattice data (right
panels) [8,10]. In all cases (except δ00 and δ

2
0 and fits to lattice data) the last fitted data point is around ∼1 GeV, which corresponds to the

validity of Roy-like solution. In the case of δ00, however, we limited the fit till 700 MeV, since above the effect of the f0ð980Þ becomes

important. For δ20 we took s1=2max ¼ 1.42 GeV, which correspond to the highest point where the set of forward dispersion relations was
applied [20,24].
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current lattice data completely dominate the uncertainty,
and the final result is not very sensitive to the exact position
of the Adler zero in Eq. (42).
Next, we compare the values of the fitted parameters to

lattice data [8]

gA ¼ 0.58ð10Þ; C0 ¼ 1.36ð26Þ; ð44Þ

with the corresponding estimations from NLO χPT
(mπ ¼ 239 MeV)

gA;NLO ¼
�
dtNLO0 ðsÞ

ds

����
s¼sA

�−1
¼ 0.45ð3Þ;

C0;NLO ¼ ½tNLO0 ðsthÞ�−1 ¼ 1.42ð6Þ: ð45Þ

As one can see, the fitted parameters are consistent with
χPT extrapolation. Unfortunately, currently the error bars
of the lattice data are too large to impose some constraints
on the LECs. However, more data is expected in the near
future with the improved precision. In addition, the existing
lattice data for the P wave [51,52] (calculated also at the
physical pion mass [53,54]) can help to constraint LECs
even at the two loop level, as has been demonstrated in [48].
We emphasize that in the proposed dispersive parametriza-
tions, we are free to choose where to do the matching to
χPT. The natural choice is around the Adler zero and/or the
threshold. Once the matching is done, the proposed para-
metrization can be used to predict the pion mass depend-
ence and the obtained LECs will correspond exactly to the
ones in perturbative χPT calculations, as opposed to mIAM
(IAM). We have checked that Eq. (17), truncated to the
leading term in the conformal expansion with parameters
fixed from NLO χPT [see left-hand side of Eq. (45)],
produces the same qualitative behaviour of the f0ð500Þ
pole as in mIAM [31]. With increasing pion mass values the
imaginary part of the pole decreases, and then f0ð500Þ
becomes a virtual bound state.

VI. CONCLUSION AND OUTLOOK

In this work, we presented improved parametrizations
for elastic p.w. amplitudes, see Eqs. (17), (24), (25), (27),
which are based on dispersive representations for the
inverse amplitudes. In this approach unitarity and
analyticity constraints are implemented exactly. The con-
tributions from the left-hand cuts were accounted for in a
model-independent way using the expansion in a conformal
variable, which maps the left-hand cut plane onto the unit
circle. For the S-wave scattering special attention was paid
to the possible Adler zero contribution. For the higher
partial waves we implemented carefully the angular
momentum barrier factors. We also compared our approach
with the mIAM (IAM) and argued that both for the S and P
waves the constructed parametrizations can be understood

as a more general method, where one is not assuming a
particular Lagrangian-based form for the left-hand cuts and
subtraction constants. The latter is useful for lattice
calculation with the relatively large mπ or scattering of
πK, πD, KD, etc.
We applied the new parametrizations to the well-studied

test cases of ππ and πK scattering with J ¼ 0, 1, 2, showing
that at most three parameters are needed to reproduce very
precise Roy/Roy-Steiner pseudodata in the physical region.
The obtained pole positions lie fairly close to the exact
solutions.
The main motivation for developing these amplitudes,

which we call dispersive inverse amplitudes, is their
application to the upcoming lattice data in ππ, πK, πD,
and KD channels. In addition, these parametrizations can
be beneficial for the fits to data constrained by Roy-like
equations or forward dispersion relations [5,17,20,55].
However, the framework is general and not specific to
the particular reactions, thus laying the groundwork for
analyses of any lattice or experimental data in the elastic
region.
The proposed dispersive amplitudes are written in

compact analytical forms, which are well suited for direct
numerical implementations. A Mathematica file with these
formulas is provided as Supplemental Material [56].
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APPENDIX A: ANALYTIC FORM OF Rðs; s̃MÞ
Here we collect the analytic expressions for

Rðs; s̃MÞ≡ s − s̃M
π

Z
∞

sth

ds0

s0 − s̃M

−ρðs0Þ
s0 − s

: ðA1Þ

For s̃M ¼ sth it holds [28] (see also [57])

Rðs; sthÞ ¼
ρðsÞ
π

log

�
ξðsÞ þ ρðsÞ
ξðsÞ − ρðsÞ

	
−
ξðsÞ
π

m2 −m1

m2 þm1

log
m2

m1

;

ξðsÞ≡ 1 −
sth
s
;

¼m1¼m2 −
ρðsÞ
π

log

�
ρðsÞ − 1

ρðsÞ þ 1

	
; ðA2Þ
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while for any s̃M < sth it is given by

Rðs; s̃MÞ ¼ Rðs; sthÞ − Rðs̃M; sthÞ: ðA3Þ

Note that for s̃M ¼ 0, the function Rðs; 0Þ is nothing else,
but the well-known one-loop function [43]

Rðs; 0Þ ¼ Rðs; sthÞ − Rð0; sthÞ;

¼ Rðs; sthÞ −
1

π

�
1þ 2m1m2

m2
2 −m2

1

log
m2

m1

�
;

¼ −16πJ̄ðsÞ: ðA4Þ

The numerical implementation of Eq. (A2) has to be
performed with an extra care, since it has to give the
correct result not only in the physical region (see Fig. 4),
but also in the complex plane. In the Supplemental
Material [56] we provide the results for Rðs; s̃MÞ in
Mathematica.

APPENDIX B: J ≠ 0, m1 ≠ m2 SCATTERING

In this appendix, we show the general derivation of
the dispersive inverse amplitudes for J ≠ 0, m1 ≠ m2. We
propose towrite a J þ 1 subtracted spectral representation for

gJðsÞ≡ pðsÞ2J
tJðsÞ

; ðB1Þ

which is free from any kinematic constraints. It holds

gJðsÞ ¼ PJðsÞ þ
QJþ1ðsÞ

π

Z
L;R

ds0

QJþ1ðs0Þ
ImgJðs0Þ
s0 − s

; ðB2Þ

where PJðsÞ is a polynomial of degree J and QJþ1ðsÞ is
defined as

QJþ1ðsÞ≡ ðs − sM1
Þðs − sM2

Þ…ðs − sMJþ1
Þ: ðB3Þ

The choice of the subtraction points sMi
is in general arbitrary.

However, it is useful to choose sMi
in such a way, that the

integral over the right-hand cut can be written in terms of
Rðs; s̃MÞ given in Eq. (A1) (which is known analytically).
Therefore, for the case of m1 ¼ m2 it is useful to put all
subtraction points at the threshold sMi

¼ sth, thus reproduc-
ing Eq. (22). On another side, for J ¼ 1 and m1 ≠ m2, it is
useful to choose sM1

¼ m2
− and sM2

¼ m2þ, which leads to
Eq. (27). For J > 1 and m1 ≠ m2 it is unfortunately impos-
sible to express the answer in terms of Rðs; s̃MÞ. For
simplicity, let us choose sMi

at the same point sM

½tJðsÞ�−1¼
1

p2JðsÞ
�XJ

i¼0

1

i!
gðiÞJ ðsMÞðs− sMÞi

þðs− sMÞJþ1

π

Z
L;R

ds0

s0− sM

Im½tJðsÞ�−1
s0− s

p2Jðs0Þ
ðs0− sMÞJ

�

ðB4Þ

and approximate (as described before) the contribution from
the left-hand cut together with the constant term in a suitably
constructed conformal mapping series. It holds

½tJðsÞ�−1¼
1

p2JðsÞ
�XJ−1

i¼0

aiðs− sMÞi

þðs− sMÞJ

X∞

n¼0

Cnω
nðsÞþRJðs;sMÞ

��
; ðB5Þ

where

RJðs; sMÞ≡ s − sM
π

Z
∞

sth

ds0

s0 − sM

−ρðs0Þ
s0 − s

p2Jðs0Þ
ðs0 − sMÞJ

: ðB6Þ

In Eq. (B5), the constants ai and Cn are unknown.

FIG. 4. Real and imaginary parts of Rðs; sthÞ for ππ → ππ and
πK → πK scattering.
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