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In earlier work, we set up an effective potential approach at zero temperature for the Gribov-Zwanziger
model that takes into account not only the restriction to the first Gribov region as a way to deal with the
gauge fixing ambiguity, but also the effect of dynamical dimension-two vacuum condensates. Here, we
investigate the model at finite temperature in presence of a background gauge field that allows access to the
Polyakov loop expectation value and the Yang-Mills (de)confinement phase structure. This necessitates
paying attention to Becchi-Rouet-Stora-Tyutin and background gauge invariance of the whole construct.
We employ two such methods as proposed elsewhere in literature: one based on using an appropriate
dressed, Becchi-Rouet-Stora-Tyutin invariant, gluon field by the authors and one based on a Wilson-loop
dressed Gribov-Zwanziger auxiliary field sector by Kroff and Reinosa. The latter approach outperforms the
former in estimating the critical temperature for N ¼ 2, 3 as well as correctly predicting the order of the
transition for both cases.
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I. INTRODUCTION

It is well accepted from nonperturbative Monte Carlo
lattice simulations that SUðNÞ Yang-Mills gauge theories
in the absence of fundamental matter fields undergo a
deconfining phase transition at a certain critical temper-
ature [1,2]. This transition corresponds to the breaking of a
global ZN center symmetry when the Euclidean temporal
direction is compactified on a circle, with a circumference
proportional to the inverse temperature [3,4]. The vacuum
expectation value of the Polyakov loop [5] serves as an
order parameter for this symmetry and has as such inspired
an ongoing research activity into its dynamics, see for
example [6–10].
Even in the presence of dynamical quark degrees of

freedom (which explicitly break the center symmetry) the
Polyakov loop remains the best observable to capture the
crossover transition, see Ref. [11,12] for ruling lattice QCD
estimates. Since the transition temperature is of the order of

the scale at which these gauge theories (which include
QCD) become strongly coupled, it is a highly challenging
endeavor to get reliable estimates for the Polyakov loop
correlators, including its vacuum expectation value, ana-
lytically. This is further complicated by the nonlocal nature
of the loop. These features highlight the sheer importance
of lattice gauge theories to allow for a fully nonperturbative
computational framework. Nonetheless, analytical takes
are still desirable to offer a complementary view at the same
physics, in particular as lattice simulations do also face
difficulties when the physically relevant small quark mass
limit must be taken, next to the issue of potentially
catastrophic sign oscillations at finite density [13,14].
Over the last two decades, a tremendous effort has been

put into the development and application of functional
methods to QCD, including the respective hierarchies of
Dyson-Schwinger and functional renormalization group
equations [15–33] as well as variational approaches based
on the Hamiltonian formulation or on N-particle-irreduc-
ible effective actions [34–40] or alternatives [41]. These
methods are quite successful in describing the vacuum
properties of the theory as well as various aspects at finite
temperature and/or density. They all rely, in one way or
another, on the decoupling behavior of gluons in the
Landau gauge as dictated by results from lattice simula-
tions [42–49]. More recently, a more phenomenological
approach has been put forward based on the Curci-Ferrari
model [10,50–54].
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One particular way to deal with nonperturbative physics
at the level of elementary degrees of freedom is by dealing
with the Gribov issue [55,56]: the fact that there is no
unique way of selecting one representative configuration of
a given gauge orbit in covariant gauges [57]. As there is
also no rigorous way to deal properly with the existence of
gauge copy modes in the continuum path integral quan-
tization procedure, in this paper we will use a well-tested
formalism available to partially deal with the issue, which is
known as the Gribov-Zwanziger (GZ) formalism: an
approximate restriction of the path integral to a smaller
subdomain of gauge fields [55,58,59] for which at least the
infinitesimal gauge copies are dealt with. Its effectiveness is
usually tested by looking at the ghost propagator, whose
expectation value relates to the inverse of the Faddeev-
Popov operator, and the latter should be positive when the
infinitesimal copies are excluded. The positiveness of the
ghost propagator is the standard way of checking, a pos-
teriori, whether gauge copies are in some way taken into
account, and also when approaches other than the GZ
formalism are considered.
This approach was first proposed for the Landau and the

Coulomb gauges. It long suffered from a serious drawback:
its concrete implementation seemed to be inconsistent with
BRST (Becchi-Rouet-Stora-Tyutin) invariance [60–62] of
the gauge-fixed theory, which clouded its interpretation as a
gauge (fixed) theory. Only more recently did we realize
how to overcome this complication to get a BRST-invariant
restriction of the gauge path integral. As a bonus, the
method also allowed the generalization of the Gribov-
Zwanziger approach to the linear covariant gauges,
amongst others [63–66].
Another issue with the original Gribov-Zwanziger

approach was that some of its major leading-order pre-
dictions did not match the corresponding lattice output. In
the case of the Landau gauge, the Gribov-Zwanziger
formalism by itself predicts, at tree level, a gluon propa-
gator vanishing at momentum p ¼ 0, next to, more
importantly, a ghost propagator with a stronger than
1=p2 singularity for p → 0. Although the latter fit well
in the Kugo-Ojima confinement criterion [67], it was at
odds with large volume lattice simulations [68,69]. By now,
several analytical takes exist on this, all compatible,
qualitatively and/or quantitatively, with lattice data, not
only for elementary propagators but also for verti-
ces [23,24,31,33,41,50,51,56,63–66,70–108].
In the Gribov-Zwanziger formalism in particular, the

situation can be remedied by incorporating the effects of
certain mass dimension-two condensates, the importance of
which was already stressed before in papers like [109–113].
For the Gribov-Zwanziger formalism, this idea was first put
on the table in [70,71] with the condensate hφ̄φ − ω̄ωi (the
fields here are Gribov localizing ghosts, see Sec. II). Later,
a self-consistent computational scheme was constructed
in [76] based on the effective action formalism for local

composite operators developed in [112,114], the renorm-
alization of which was proven in [115]. This construction is
more natural with condensates like hφ̄φi, hφ̄ φ̄i, and hφφi.
As the most promising candidate for a full description of
the vacuum in this so-called refined Gribov-Zwanziger
approach, the condensate hφ̄φi was considered in [116] at
zero temperature; this paper was meant as a jumping board
for the present one. In the present work we consider both
this last condensate and hφ̄φ − ω̄ωi.
In [117], the authors found that introducing a gluon

background field into the Gribov-Zwanziger formalism
(which is necessary to compute the vacuum expectation
value of the Polyakov loop) is not as straightforward as one
may naively be led to believe. A correct formalism was
proposed in [117], with a competing formalism later
proposed by Kroff and Reinosa in [118]. In the present
work, we again consider both these formalisms.
The structure of the paper is as follows. In Sec. II, we

briefly sketch the original Gribov-Zwanziger approach at
zero temperature in the Landau gauge, followed by a short
reminder how to make this BRST invariant in Sec. III.
Section IV deals with adding an appropriate background
gauge to couple the Polyakov loop to the model and we
summarize several approaches to do this in a BRST and
background invariant fashion. In Sec. V, the addition
of the dimension-two condensates is done, followed by
preparatory computations at zero temperature in Sec. VI,
needed to come to our finite temperature predictions
in Sec. VII. We end with conclusions in Sec. VIII.
Several technical results are relegated to a series of the
Appendices, including a constructive proof of a statement
made in [118].

II. A BRIEF OVERVIEW OF THE GRIBOV-
ZWANZIGER FORMALISM

Let us start by giving a short overview of the Gribov-
Zwanziger framework [55,58,59,119]. As already men-
tioned in the Introduction, the basic Gribov-Zwanziger
action arises from the restriction of the domain of
integration in the Euclidean functional integral to the
Gribov region Ω, which is defined as the set of all gauge
field configurations fulfilling the Landau gauge, ∂μAa

μ ¼ 0,
and for which the Faddeev-Popov operator Mab ¼
−∂μð∂μδab − gfabcAc

μÞ is strictly positive, namely

Ω ¼ fAa
μ; ∂μAa

μ ¼ 0;Mab ¼ −∂μð∂μδab − gfabcAc
μÞ > 0g:

The boundary ∂Ω of the region Ω is the (first) Gribov
horizon.
One starts with the Faddeev-Popov action in the Landau

gauge

SFP ¼ SYM þ SLg; ð1aÞ
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where SYM and SLg denote, respectively, the Yang-Mills
and the Landau gauge-fixing terms, namely

SYM ¼ 1

4

Z
ddx Fa

μνFa
μν; ð1bÞ

SLg ¼
Z

ddxðba∂μAa
μ þ c̄a∂μDab

μ cbÞ; ð1cÞ

where ðc̄a; caÞ are the Faddeev-Popov ghosts, ba is the
Lagrange multiplier implementing the Landau gauge,
Dab

μ ¼ ðδab∂μ − gfabcAc
μÞ is the covariant derivative in

the adjoint representation of SUðNÞ, and Fa
μν denotes the

field strength:

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν: ð1dÞ

Following [55,58,59,119], the restriction of the domain of
integration in the path integral is achieved by adding an
additional term HðAÞ, called the horizon term, to the
Faddeev-Popov action SFP. This HðAÞ is given by the
following nonlocal expression:

HðA; γÞ ¼ g2
Z

ddxddy fabcAb
μðxÞ½M−1ðγÞ�adðx; yÞ

× fdecAe
μðyÞ; ð2Þ

where M−1 stands for the inverse of the Faddeev-Popov
operator. The partition function can then be written
as [55,58,59,119]

ZGZ ¼
Z
Ω
½DADcDc̄Db�e−SFP

¼
Z

½DADcDc̄Db�e−ðSFPþγ4HðA;γÞ−dVγ4ðN2−1ÞÞ; ð3Þ

where V is the Euclidean space-time volume. The param-
eter γ has the dimension of a mass and is known as the
Gribov parameter. It is not a free parameter of the theory.
It is a dynamical quantity, being determined in a self-
consistent way through a gap equation called the horizon
condition [55,58,59,119], given by

hHðA; γÞiGZ ¼ dVðN2 − 1Þ; ð4Þ

where the notation h� � �iGZ means that the vacuum expect-
ation value is to be evaluated with the measure defined in
Eq. (3). An equivalent all-order proof of Eq. (4) can be
given within the original Gribov no-pole condition frame-
work [55] by looking at the exact ghost propagator in an
external gauge field [120].
Although the horizon termHðA; γÞ in Eq. (2) is nonlocal,

it can be cast in local form by means of the introduction
of a set of auxiliary fields ðω̄ab

μ ;ωab
μ ; φ̄ab

μ ;φab
μ Þ, where

ðφ̄ab
μ ;φab

μ Þ are a pair of bosonic fields and ðω̄ab
μ ;ωab

μ Þ are
anticommuting. It is not difficult to show that the partition
function ZGZ in Eq. (3) can be rewritten as [58,59,119]

ZGZ ¼
Z

½DΦ�e−SGZ½Φ�; ð5Þ

whereΦ accounts for the quantizing fields, A, c̄, c, b, ω̄, ω,
φ̄, and φ, while SGZ½Φ� is the Yang-Mills action plus gauge
fixing and Gribov-Zwanziger terms in its localized version,

SGZ ¼ SYM þ Sgf þ S0 þ Sγ; ð6aÞ

with

S0 ¼
Z

ddxðφ̄ac
μ ð−∂νDab

ν Þφbc
μ − ω̄ac

μ ð−∂νDab
ν Þωbc

μ Þ; ð6bÞ

Sγ ¼ γ2g
Z

ddxfabcAa
μðφbc

μ þ φ̄bc
μ Þ − dγ4VðN2 − 1Þ: ð6cÞ

It can be seen from (3) that the horizon condition (4) takes
the simpler form

∂Ev

∂γ2
¼ 0; ð7Þ

which is called the gap equation. The quantity EvðγÞ is the
vacuum energy defined by

e−VEv ¼ ZGZ: ð8Þ

The local action SGZ in Eq. (6a) is known as the Gribov-
Zwanziger action. It has been shown to be renormalizable
to all orders [58,59,70,71,76,119,121,122]. There are
several issues with this action, though:
(1) Its BRST invariance is softly broken. This has found

a solution in [65] through the Ah formalism; this is
reviewed in Sec. III.

(2) The propagators of both gluons and ghosts are not in
agreement with the lattice. This is remedied in the
refined Gribov-Zwanziger formalism, which adds
local composite operators (LCOs). This is reviewed
in Sec. V.

III. BRST-INVARIANT GLUON FIELD Ah

For a BRST-invariant formalism, it turns out to be most
straightforward to introduce BRST-invariant projections of
the gluon fields. This section gives a quick overview of the
construction, which will be generalized in the following
sections.
We start from the Yang-Mills action in a linear covariant

gauge and in d Euclidean space dimensions:

SLC ¼ SYM þ Sα; ð9aÞ
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where Sα is now the gauge-fixing term in the linear
covariant gauges:

Sα ¼
Z

ddx

�
α

2
baba þ iba∂μAa

μ þ c̄a∂μDab
μ cb

�
; ð9bÞ

with α as the gauge parameter. As we are eventually
interested in imposing the Gribov restriction and introduc-
ing the dimension-two gluon condensate hA2

μi while pre-
serving BRST invariance, we need a BRST invariant
version of the Aa

μ field. In order to construct this, we insert
the following unity into the path integral [123,124]:

1 ¼ N
Z

½DξDτDη̄Dη�e−Sh ; ð10aÞ

Sh ¼
Z

ddxðiτa∂μðAhÞaμ þ η̄a∂μðDhÞabμ ηbÞ; ð10bÞ

where N is a normalization and ðDhÞabμ is the covariant
derivative containing only the composite field ðAhÞaμ.
This local but nonpolynomial composite field object is
defined as

ðAhÞμ ¼ h†Aμhþ i
g
h†∂μh; ð10cÞ

h ¼ eigξ ¼ eigξ
aTa

; ð10dÞ

where the Ta are the generators of the gauge group SUðNÞ.
The ξa are similar to Stueckelberg fields, while ηa and η̄a

are additional (Grassmannian) ghost and antighost fields.
They serve to account for the Jacobian arising from the
functional integration over τa to give a Dirac delta func-
tional of the type δð∂μðAhÞaμÞ. That Jacobian is similar to the
one of the Faddeev-Popov operator, and is supposed to be
positive, which amounts to removing a large class of
infinitesimal Gribov copies, see Ref. [63]. In mere pertur-
bation theory, this is not the case, but the restriction to the
Gribov region to be discussed will be sufficient to ensure it
dynamically [55,58].
Expanding (10c), one finds an infinite series of local

terms:

ðAhÞaμ¼Aa
μ−∂μξ

a−gfabcAb
μξ

c−
g
2
fabcξb∂μξcþ���: ð11Þ

The unity (10a) can be used to stay within a local setup for
an on-shell nonlocal quantity ðAhÞaμ that can be added to
the action. Notice that the multiplier τa implements
∂μðAhÞaμ ¼ 0 which, when solved iteratively for ξa

ξ� ¼
1

∂
2
∂μAμ þ ig

1

∂
2

�
∂μAμ;

1

∂
2
∂νAν

�
þ � � � ; ð12aÞ

gives the (transversal) on-shell expression

ðAhÞμ¼
�
δμν−

∂μ∂ν

∂
2

��
Aνþig

�
Aν;

1

∂
2
∂λAλ

�
þ���

�
; ð12bÞ

clearly showing the nonlocalities in terms of the inverse
Laplacian. One can see that Ah → A when Aa

μ is in the
Landau gauge ∂μAa

μ ¼ 0. We refer to, e.g., [10,63,123–126]
for more details. It can be shown that Ah is gauge invariant
order per order, which is sufficient to establish BRST
invariance. We will have nothing to say about large gauge
transformations.
Mark that ðAhÞaμ is formally the value of Aa

μ that
(absolutely) minimizes the functionalZ

ddxAa
μAa

μ ð13Þ

under (infinitesimal) gauge transformations δAa
μ ¼ Dab

μ ωb,
see, e.g., [63,125,126]. As such,Z

ddxðAhÞaμðAhÞaμ ¼ min
gauge orbit

Z
ddxAa

μAa
μ: ð14Þ

In practice, we are only (locally) minimizing the functional
via a power series expansion (11) coming from infinitesi-
mal gauge variations around the original gauge field Aa

μ,
whereas the extremum being a minimum is accounted for if
the Faddeev-Popov operator (second order variation that is)
is positive. This is discussed in [63].
This field Ah can be used to construct a BRST-invariant

modification of the Gribov-Zwanziger formalism. To do so,
one replaces S0 in (6b) with

S0h ¼
Z

ddxðφ̄ac
μ ð−∂νðDhÞabν Þφbc

μ − ω̄ac
μ ð−∂νðDhÞabν Þωbc

μ Þ;

ð15aÞ

where Dh is the covariant derivative with Ah instead of A,
and one replaces Sγ in (6c) with

Sγh ¼ γ2g
Z

ddx fabcðAhÞaμðφbc
μ þ φ̄bc

μ Þ − dγ4VðN2 − 1Þ:

ð15bÞ
The action SGZh¼SYMþSαþShþS0hþSγh enjoys the fol-
lowing exact BRST invariance, sSGZh ¼ 0 and s2 ¼ 0 [63]:

sAa
μ ¼ −Dab

μ cb; sca ¼ g
2
fabccbcc;

sc̄a ¼ iba; sba ¼ 0;

sφab
μ ¼ 0; sωab

μ ¼ 0;

sω̄ab
μ ¼ 0; sφ̄ab

μ ¼ 0;

sεa ¼ 0; sðAhÞaμ ¼ 0;

shij ¼ −igcaðTaÞikhkj: ð16Þ
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IV. INCLUDING THE POLYAKOV LOOP

Our aim is to investigate the confinement/deconfinement
phase transition of Yang-Mills theory. The standard way to
achieve this goal is by probing the Polyakov loop order
parameter,

P ¼ 1

N
trhPeig

R
β

0
dt A0ðt;xÞi; ð17Þ

where P denotes path ordering, needed in the non-Abelian
case to ensure the gauge invariance of P. In analytical
studies of the phase transition involving the Polyakov loop,
one usually imposes the so-called Polyakov gauge on
the gauge field, in which case the time-component A0

becomes diagonal and independent of (imaginary) time:
hAμðxÞi ¼ hA0iδμ0, with hA0i belonging to the Cartan
subalgebra of the gauge group. In the SU(2) case for
instance, the Cartan subalgebra is one-dimensional and
can be chosen to be generated by T3 ≡ σ3=2, so that
hAa

0i ¼ δa3hA3
0i≡ δa3hA0i. More details on Polyakov

gauge can be found in [6,127,128]. Besides the trivial
simplification of the Polyakov loop, when imposing the
Polyakov gauge, it turns out that the quantity hA0i becomes
a good alternative choice for the order parameter instead of
P, see Ref. [127] for an argument using Jensen’s inequality
for convex functions, see also [129–131]. For other argu-
ments based on the use of Weyl chambers and within other
gauges (see below), see Refs. [52,132,133].
As explained in [127,129,134], in the SU(2) case at

leading order we then simply find, using the properties of
the Pauli matrices,

P ¼ cos
hri
2

; ð18Þ

where we defined

r ¼ gβA0; ð19Þ

with β as the inverse temperature. This way, r ¼ π
corresponds to the “unbroken symmetry phase” (confined
or disordered phase), equivalent to hPi ¼ 0; while r ≠ π
(modulo 2π) corresponds to the “broken symmetry phase”
(deconfined or ordered phase), equivalent to hPi ≠ 0. Since
P ∝ e−F=T with T the temperature and F the free energy of
a heavy quark, it is clear that in the unbroken phase (where
the center symmetry is manifest: hPi ¼ 0), an infinite
amount of energy would be required to free a quark. The
broken/restored symmetry referred to is the ZN center
symmetry of a pure gauge theory (no dynamical matter in
the fundamental representation). With a slight abuse of
language, we will refer to the quantity r as the Polyakov
loop hereafter.
It is however a highly nontrivial job to actually com-

pute r. An interesting way around was worked out

in [127,129,134], where it was shown that similar consid-
erations apply in Landau-DeWitt gauges, a generalization of
the Landau gauge in the presence of a background. The
background needs to be seen as a field of gauge-fixing
parameters and, as such, can be chosen at will a priori.
However, specific choices turn out to be computationally
more tractable while allowing one to unveil more easily the
center-symmetry breaking mechanism. For the particular
choice of self-consistent backgrounds that are designed to
coincidewith the thermal gluon average at each temperature,
it could be shown that the background becomes an order
parameter for center symmetry as it derives from a center-
symmetric background effective potential. An important
assumption for this procedure to work is the underlying
BRST invariance of the action, see Refs. [10,134]).
In the presence of a gluon background field, the total

gluon field is split into the background and the quantum
fluctuations. We use the notation

aaμ ¼ Āa
μ þ Aa

μ; ð20Þ

where aaμ is the full gluon field, Āa
μ is the background

(which will correspond to the Polyakov loop), and Aa
μ are

the quantum fluctuations around the background.
Furthermore will write D̄ab

μ ¼ δab∂μ − gfabcĀc
μ for the

covariant derivative using only the background field Ā.
The gauge is fixed by replacing SLg in (1c) by

SLdW ¼
Z

ddxðbaD̄ab
μ ðĀb

μ þ Ab
μÞ

þ c̄aD̄ab
μ ðD̄bc

μ − gfbcdAd
μÞccÞ: ð21Þ

Two ways to add a background field to the Gribov-
Zwanziger formalism have appeared in the literature:
one that introduces a gauge-invariant background field
ðĀhÞaμ [117,135], and one that ensures background gauge
invariance by introducing nonlocal Wilson lines in the
action [118]. We give a short review of both approaches in
the subsections below.

A. Āh approach

In the Āh approach, the action is Sh ¼ SYM þ SLdW þ
S0LdWh þ SγLdWh þ SLdWh with

S0LdWh ¼
Z

ddxðφ̄ad
μ ðD̄hÞabμ ðDhÞbcμ φcd

μ

− ω̄ad
μ ðD̄hÞabμ ðDhÞbcμ ωcd

μ Þ; ð22aÞ

SγLdWh ¼ γ2g
Z

ddxfabc½ðahÞaμ − ðĀhÞaμ�ðφbc
μ þ φ̄bc

μ Þ

− dVðN2 − 1Þγ4; ð22bÞ
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SLdWh ¼
Z

ddxðiτaðD̄hÞabμ ððahÞbμ − ðĀhÞbμÞ

þ η̄aðD̄hÞabμ ðDhÞbcμ ηcÞ: ð22cÞ

In these expressions, ah is a transversal projection of the
gluon field, ðDhÞabμ ¼ δab∂μ − gfabcðahÞcμ is the covariant
derivative using this ah field, and D̄h is the covariant
derivative containing Āh, the background in the minimal
Landau gauge [i.e., in the absolute minimum of (23)1].
Notice that, when coupling the gauge transformed gauge
field ah to the localizing auxiliary fields ðφ̄;φÞ, we used
ah − Āh. This is because we are only interested in imposing
the Gribov condition on the quantum fields, which are the
fields we integrate over. This way the series of ah − Āh

starts at first order in the quantum gauge fields. For the
rationale hereof, see Ref. [117]. Furthermore, mark that this
approach applies the Gribov construction to the operator
−ðD̄hÞabμ ðDhÞbcμ . The proof that this is sufficient is analo-
gous to the one given in [117] and is for our case worked
out in Appendix A.
Let us start with the background and put it in the minimal

Landau gauge. This means we minimize

Z
ddx Āa

μĀa
μ ð23Þ

over the gauge orbit. If [for SU(2)] we start from a constant
Ā3
0 ¼ rT=g, then this means we need to bring r to a

value −2π < r < 2π. The case for more that two colors
is analogous.
The quantum fields are to be put in the Landau back-

ground gauge. To construct ðAhÞaμ, we will use the back-
ground in its minimal Landau gauge form ðĀhÞaμ, such that
we will require ðD̄hÞabμ ðabμ − ðĀhÞbμÞ ¼ 0. This can be
obtained from the minimization of

Z
ddxðaaμ − ðĀhÞaμÞðaaμ − ðĀhÞaμÞ: ð24Þ

This corresponds to the recipe used in [117], with the
important remark that for this paper we still worked at
T ¼ 0 with constant background fields Āh in mind,
effectively leading to Āh ¼ 0. At T > 0 and for the type
of background gauge fields that interests us here, this is no
longer true.
In [135], the case was made to keep working with ah

coming from minimizing
R
a2, as this leads to both BRST

and background gauge invariance of the Gribov-Zwanziger

action. This is true, but a price is paid: the classical
(background) sector enters the Gribov construction, not
only the quantum fields. It is not yet clear how the approach
outlined in [135] would deal with the terms that are linear in
the quantum fields and which will enter the effective action
due to this setup. We will therefore not consider the
framework of [135] for what follows.
To minimize (24), let us work in a series in the

quantum field. Starting from aaμ we can perform a gauge
transform

aμ → h†aμhþ i
g
h†∂μh; ð25Þ

where aμ ¼ aaμτa=2. Expand the matrix of the gauge
transform as h ¼ h0 þ h1 þ � � �, where h0 is the gauge
transform matrix bringing Āa

μ to ðĀhÞaμ, h1 is first order in
the quantum fields, and so on. Going to first order in the
quantum fields, we have that

ahμ − Āh
μ ¼ h†0Aμh0 þ

i
g
D̄h

μðh†0h1Þ þ � � � : ð26Þ

Applying the gauge condition yields

i
g
h†0h1 ¼ −

1

D̄2
h

D̄h
μðh†0Aμh0Þ þ � � � ; ð27Þ

and some more algebra gives

ahμ − Āh
μ ¼

�
δμν − D̄h

μ
1

D̄2
h

D̄h
ν

�
ðh†0Aνh0Þ þ � � � : ð28Þ

We thus see that ah is attained by first gauge transforming
Aa
μ using the adjoint of the gauge transform that set the

background Āa
μ equal to its lowest value, after which a

certain projection operator must be applied.
Let us now look at what the result (28) entails for

the physics of the theory. We can always do a background
gauge transformation on Āμ, Aμ, c̄, c, and b using the
gaugematrixh0. Thiswill have the effect that all background
gauge fields Āμ in the parts SYM and SLdW become Āh

μ;
the parts S0LdWh, SγLdWh, and Sh remain unchanged as the
gluon fields there appear in invariant combinations.
Finally, once we have imposed the Landau-DeWitt gauge
through SLdW [see Ref. (21)], the projection operator
in (28) will simplify to a unit operator and we have
that ahμ − Āh

μ → Aμ þ � � �.
It remains to discuss the BRST and background gauge

invariance of (28), order per order in the quantum fields.
Intuitively, it is clear that we will find a BRST invariant ah,
since it corresponds to the minimum along the gauge orbit
and BRST transformations correspond to local gauge

1Mark that any Āa
μ ¼ δμ0δ

airT=g for i in the Casimir obeys the
Landau gauge ∂μĀa

μ ¼ 0, but this is not the minimal Landau
gauge aimed for.
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transformations. To be more concrete, in the current case
we have the following BRST symmetry generated by the
operator s:

sĀa
μ ¼ 0; sAa

μ ¼ −Dab
μ cb;

sca ¼ 1

2
gfabccbcc; sc̄a ¼ −iba; ð29Þ

and all other transformations zero.2 This transformation
gives, to leading order in the quantum fields

sðh†0Aμh0Þ ¼ −h†0ðDμcÞh0 ¼ −h†0ðD̄μcÞh0 þ � � �
¼ −D̄h

μðh†0ch0Þ; ð30Þ

such that (28) is indeed invariant.
Showing background gauge invariance is straightfor-

ward: transforming the background with some adjoint
matrix U needs to be undone by h0 → U†h0 so as to keep
ðĀhÞaμ at its minimal value. This then requires a gauge
transform with U on Aa

μ, ca, c̄a, ba, τa, ηa, and η̄a

transforming as matter fields (Φ → U†ΦU) while the
Gribov ghosts φab

μ , φ̄ab
μ , ωab

μ , and ω̄ab
μ remain invariant.

One easily verifies that this then leaves the action invariant.

B. Kroff-Reinosa approach

In the Kroff-Reinosa (KR) approach, the action is
Sh ¼ SYM þ SLdW þ S0KR þ SγKR with

S0KR ¼
Z

ddxð ˆ̄φae
μ Dab

ν Dbc
ν φ̂ce

μ − ˆ̄ωae
μ Dab

ν Dbc
ν ω̂ce

μ Þ; ð31aÞ

SγKR ¼ γ2g
Z

ddxfabc½aaμ − Āa
μ�ðφbc

μ þ φ̄bc
μ Þ

− dVðN2 − 1Þγ4: ð31bÞ

The hatted quantities here are defined as

Φ̂ab
μ ðxÞ ¼ Φac

μ ðxÞðPeig
R
C
dx0νĀe

νðx0ÞTeÞcb; ð31cÞ

for Φ equal to φ or ω, and the Hermitian adjoint hereof for
φ̄ and ω̄. The path C connects the point x to some arbitrary
and constant point x0, which (for the constant backgrounds
we consider) does not influence the dynamics in any
way [118]. Under gauge transformations of the back-
ground, the hatted quantities transform as matter fields
with only one index, as the path-ordered exponential

in (31c) absorbs the background gauge transformation of
the second index. This ensures the background invariance
of the action.
In practice, the effect of the Wilson line in (31c) is rather

technical to work out, but when the dust settles and one
integrates out the ðφ̄;φÞ fields, one obtains the gluon
propagator term

2g2ðN2 − 1Þγ4δμν
�

1

−D̄2

�
ab
; ð32Þ

as was used in [137]. The structure constants that usually
flank the inverse Faddeev-Popov operator in this term are
absent, which greatly simplifies the computations.
Kroff and Reinosa also proposed to introduce color-

dependent Gribov parameters:

ðγ0Pab þ γchðδab − PabÞÞAb
μ; ð33Þ

where Pab is a projection operator on the “neutral” sub-
space of color space (in the terminology of [118]), see
Appendix B for the explicit construction of this nontrivial
operator, which we did not find in [118]. We will not
consider the nondegenerate case, where there are N2 − 1
different Gribov parameters, but only the partially degen-
erate case, where all the Gribov parameters in the “charged”
subspace are taken equal and denoted γch.
In [118], the authors note the loss of BRST invariance.

As we already stressed the importance of this BRST
invariance to ensure that a physical (background) effective
potential can be computed [10,134], let us spend a few
words here to show that the Kroff-Reinosa construction can
be recast in a BRST-invariant formulation. On shell and in
the Landau-DeWitt gauge, this will effectively collapse
back to (31a), a posteriori granting credit to the approach
of [118]. The construction again relies on the definition of a
BRST-invariant Ah field. However, given that the Kroff-
Reinosa setup is already manifestly invariant under
gauge transformations of the background, the h0 used in
the previous subsection is spurious. [Remember that, in the
Kroff-Reinosa setup, the auxiliary fields transforms in the
biadjoint. So using the construct (28) is not an option here,
since it does not transform under background transforma-
tions.] This means we need an approach similar to the one
used in [10].
As such, we minimizeZ

ddxðaaμ − Āa
μÞ2 ¼

Z
ddxðAa

μÞ2 ð34Þ

under infinitesimal gauge transformations δaaμ ¼ δAa
μ ¼

Dab
μ ωb to find a field ðAhÞaμ (and the background does

not transform, see Refs. [138,139] for more details). Then
in S0KR we make the replacement DD → DhDh, where
ðDhÞabμ is the covariant derivative containing Āa

μ þ ðAhÞaμ.

2In [136], a nonzero transformation of the background gauge
field sĀμ ¼ Ωμ with Ωμ an auxiliary background ghost field was
used, but this is not necessary for our purposes here. It merely
served to simplify the algebraic discussion and proof of renor-
malizability of [136]. The physical case is recovered when
Ωa

μ → 0, such that ðahÞaμ is invariant.
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This makes this part of the action BRST invariant. The part
SγKR already transforms correctly.

V. BRST-INVARIANT CONDENSATES

This section presents a short review of the LCO
formalism as proposed in [112] modified in the presence
of a background field and the Gribov horizon.

A. Dimension-two gluon condensate

A BRST analysis [10] (for BRST in the background
gauge, see for example [136,140]) shows that, for the
LCO formalism to stay renormalizable, the dimension-two
operator

ðahμ − Āh
μÞ2 ð35Þ

should be used. First, the source terms

Z
ddx

�
1

2
Jðahμ − Āh

μÞ2 −
1

2
ζJ2

�
ð36Þ

are added to the action with J the source used to couple the
operator to the theory. The term in J2 is necessary here for
renormalizability of the generating functional of connected
diagrams WðJÞ and, subsequently, of the associated gen-
erating functional of 1PI diagrams Γ, known as the effective
action. Here ζ is a new coupling constant whose determi-
nation we will discuss later. In the physical vacuum,
corresponding to J → 0, it should decouple again, at least
if we were to do the computations exactly. At (any) finite
order, ζ will be explicitly present, even in physical
observables, making it necessary to choose it as wisely
as possibly. Notice that ζ is not a gauge parameter as it in
fact couples to the BRST invariant quantity J2. Indeed, in a
BRST invariant theory, we expect the gauge parameter to
explicitly cancel order per order from physical observables,
a fact guaranteed by, e.g., the Nielsen identities [141],
which are in themselves a consequence of BRST invari-
ance [142]. Thanks to ζ, the Lagrangian remains multipli-
catively renormalizable (see Ref. [10]).
To actually compute the effective potential, it is compu-

tationally simplest to rely on Jackiw’s background field
method [143]. Before integrating over any fluctuating
quantum fields, a Legendre transform is performed, so
that formally σ ¼ 1

2
ðahμ − Āh

μÞ2 − ζJ. Plugging this into the
Legendre transformation between Γ andW, we find that we
could just as well have started from the original path
integral with the following unity inserted into it3:

1 ¼ N
Z

½Dσ�e−
1
2

R
ddxðσþ 1

2
ffiffi
ζ

p ðahμ−Āh
μÞ2Þ2

; ð37Þ

with N as an irrelevant constant. This is equivalent
to a Hubbard-Stratonovich transformation, see for in-
stance [112,124], and it also evades the interpretational
issues for the energy when higher-than-linear terms in the
sources are present. Of course, if we could integrate the
path integral exactly, then this unity would not change a
thing. The situation only gets interesting if the perturbative
dynamics of the theory assign a nonvanishing vacuum
expectation value to σ. As such, this σ field allows us to
include potential nonperturbative information through its
vacuum expectation value. In the case without a back-
ground, σ does indeed condense and a vacuumwith hσi ≠ 0
is preferred.
For the record, BRST invariance is ensured if we assign

sσ ¼ −sð1
2
ðahμ − Āh

μÞ2Þ, which implies off shell that sσ ¼ 0

thanks to the BRST invariance of ahμ − Āh
μ.

It is evident that ζ can be interpreted as a genuine new
coupling constant. Therefore, we now have two coupling
constants, g2 and ζ, with g2 running as usual: that is,
independently of ζ. This makes our situation suitable for
the Zimmermann reduction of couplings program [144],
see also [145] for a recent overview. In this program, one
coupling (ζ in our case) is reexpressed as a series in the
other (here g2), so that the running of ζ controlled by ζðg2Þ
is then automatically satisfied, see also [124]. More
specifically, ζðg2Þ is determined such that the generating
functional of connected Green functions, WðJÞ, obeys a
standard, linear renormalization group equation [112].
This selects one consistent coupling ζðg2Þ from a whole

space of allowed couplings, and it is also the unique choice
compatible with multiplicative renormalizability [112].
Given that ζ should, in principle, not affect physics, we
can safely rely here on this special choice, already made
earlier in, e.g., [112]. This choice seems also to be a natural
one from the point of view of the loop expansion of the
background potential to be used below. In the MS scheme,
one finds [112,146]

ζ ¼ N2 − 1

g2N

�
9

13
þ g2N
16π2

161

52
þOðg4Þ

�
; ð38aÞ

Zζ ¼ 1 −
g2N
16π2

13

3ϵ
þOðg2Þ; ð38bÞ

ZJ ¼ 1 −
Ng2

16π2
35

6ϵ
þOðg2Þ; ð38cÞ

where Zζ, ZJ are the renormalization factors of ζJ2, J,
respectively.

B. Refined Gribov-Zwanziger action

In [70,71,76], it was noticed that the Gribov-Zwanziger
formalism in Landau gauge is disturbed by nonperturbative
dynamical instabilities caused by the formation of3We normalize σ like in [76].
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dimension-two condensates, hAa
μAa

μi, hφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ i,
and/or hφ̄ab

μ φab
μ i, which are energetically favored. Similar

features were later noticed in the maximal Abelian gauge
Gribov-Zwanziger formulation [101,147]. This led to the
refined Gribov-Zwanziger formalism that explicitly takes
the effects of these condensates into account.
The construction for the localizing-ghost condensates is

analogous to that for the dimension-two gluon condensate.
For the couplings and renormalization factors involved, we
refer to the literature, see, e.g., [10,112,116] and references
therein.
The original proposal for the refinement to the Gribov-

Zwanziger formalism [71] used the symmetric condensate
hφ̄ab

μ φab
μ − ω̄ab

μ ωab
μ i. This condensate has the advantage that

it is immediately finite and strictly speaking no source-
squared term [in the vein of the last term of (36)] is
necessary. As a result, however, the gap equation for the
condensate has no nonperturbative solutions. The Hubbard-
Stratonovich transformation becomes useless here and as a
result, there is no “classical” quadratic part for the potential
for the condensate. We will circumvent this issue in the
following section.
Using instead the philosophy of the approach starting

from the analogon of (37) does not run into this problem,
though, at the cost of introducing one truly new free
coupling. In the following, we will call this approach the
“symmetric” case.
Later approaches [76] focused on the condensate

hφ̄ab
μ φab

μ i. The T ¼ 0 case was fully explored in [116],
which can be immediately used as the starting point for the
study of the Polyakov loop. In the following, this approach
will be called the “φ̄φ” case.

VI. ZERO TEMPERATURE JUMPING BOARD

A. Relevant parts of action

To compute the effective action at first order in the
quantum corrections, we need the background part
(classical part) and the quadratic terms of the action (of
which we will need the trace logarithm to compute the first-
order quantum corrections).
The first term of the semiclassical perturbation series

consists of the background terms. We only consider back-
grounds with Fa

μν ¼ 0, such that these background terms
will only come from the LCO parts and from the Gribov-
Zwanziger action. First we review some of the relevant
formulas, which can be found in the literature.
From the Gribov-Zwanziger action we get, with the Z

factors restored and in the more general renormalization
scheme of [116],

−dVðN2−1ÞZ2
γ γ

4; Zγ ¼ 1þb0
2

Ng2

ð4πÞ2þ
3

8

Ng2

ð4πÞ2
2

ϵ
: ð39Þ

In d ¼ 4 − ϵ, this gives

−4VðN2−1Þ
�
1−

3

8

Ng2

ð4πÞ2þb0
Ng2

ð4πÞ2þ
3

4

Ng2

ð4πÞ2
2

ϵ

�
γ4: ð40Þ

To this we add the LCO part. The “usual” LCO part is

SLCO¼
Z

d4x

�
1

2
σ2þ 1

2
ffiffiffi
ζ

p σðahμ− Āh
μÞ2þ

1

8ζ
ððahμ− Āh

μÞ2Þ2
�
:

ð41Þ

To add the φ̄φ condensate, we need instead

SA2þφ̄φ ¼
Z

d4x

�
1

2
σ21 −

1

2
σ22 þ

1

2
ffiffiffi
ζ

p σ1ðahμ − Āh
μÞ2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ

−2αζ þ χ2

s
σ2ðφ̄φ −

χ

2ζ
ðahμ − Āh

μÞ2Þ

þ 1

8ζ
ððahμ − Āh

μÞ2Þ2

−
1

2

ζ

−2αζ þ χ2
ðφ̄φ −

χ

2ζ
ðahμ − Āh

μÞ2Þ2
�
: ð42Þ

The background part with the renormalization factors
restored is just

Z
d4x

�
1

2Zζ
σ21 −

1

2Zα
σ22

�
; Z−1

ζ ¼ 1þ 13

6

Ng2

ð4πÞ2
2

ϵ
;

Z−1
α ¼ 1 −

35

12

Ng2

ð4πÞ2
2

ϵ
: ð43Þ

In the symmetric case we can just generalize the normal
LCO case (because there is no mixing):

Ssym ¼
Z

d4x

�
1

2
σ21þ

1

2
ffiffiffi
ζ

p σ1ðahμ− Āh
μÞ2þ

1

8ζ
ððahμ− Āh

μÞ2Þ2
�

þ
Z

d4x

�
1

2
σ22−

1ffiffiffi
β

p σ2ðφ̄φ− ω̄ωÞþ 1

2β
ðφ̄φ− ω̄ωÞ2

�
:

ð44Þ

Here, β is a new (free) coupling constant that will require
determination. This β cannot be fixed from renormaliza-
tion-group requirements as is the case with ζ, this due to the
aforementioned lack of quadratic divergences after intro-
ducing the symmetric condensate. This means β is a
nonrunning parameter that can be freely chosen; we
determine a value for it in Appendix C.
The background part with the Z factors restored is just

Z
d4x

�
1

2Zζ
σ21 þ

1

2
σ22

�
; Z−1

ζ ¼ 1þ 13

6

Ng2

ð4πÞ2
2

ϵ
: ð45Þ

We can now write down the background and quadratic
parts for the cases we consider in this paper. At zero
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temperature, the gluon background field does not yet need
to be included.
The full background part (classical part) in the φ̄φ

case is

Z
d4x

�
−
2ðN2−1Þ

Ng2

�
1−

3

8

Ng2

ð4πÞ2þb0
Ng2

ð4πÞ2þ
3

4

Ng2

ð4πÞ2
2

ϵ

�
λ4

þ 9

26

N2−1

Ng2

�
1þ13

6

Ng2

ð4πÞ2
2

ϵ

�
m4

−
24

35

ðN2−1Þ2
Ng2

�
1−

35

12

Ng2

ð4πÞ2
2

ϵ

�
M4

�
; ð46aÞ

where we defined

λ4 ¼ 2Ng2γ4; ð46bÞ

m2 ¼ 1ffiffiffi
ζ

p
����
leading

σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13

9

Ng2

N2 − 1

s
σ1;

M2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ

−2αζ þ χ2

s ����
leading

σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35

48

Ng2

ðN2 − 1Þ2

s
σ2: ð46cÞ

The quadratic part of the action is

Z
ddx

�
1

2
Aa
μ

�
−δμν∂2 þ

�
1 −

1

ξ

�
∂μ∂ν

�
Aa
ν

þ c̄a∂2ca þUab
μ ∂

2Uab
μ þ Vab

μ ∂
2Vab

μ − ω̄ab
μ ∂

2ωab
μ

− 2γ2gfabcAa
μUbc

μ þm2

2
A2 −M2ðU2 þ V2Þ

�
; ð47aÞ

where

Uab
μ ¼ 1

2
ðφab

μ þ φ̄ab
μ Þ; Vab

μ ¼ i
2
ðφab

μ − φ̄ab
μ Þ: ð47bÞ

The full background part (classical part) in the sym-
metric case is

Z
d4x

�
−
2ðN2−1Þ

Ng2

�
1−

3

8

Ng2

ð4πÞ2þb0
Ng2

ð4πÞ2þ
3

4

Ng2

ð4πÞ2
2

ϵ

�
λ4

þ 9

26

N2−1

Ng2

�
1þ13

6

Ng2

ð4πÞ2
2

ϵ

�
m4þβ

2
M4

�
; ð48aÞ

where

λ4 ¼ 2Ng2γ4; m2 ¼ 1ffiffiffi
ζ

p
����
leading

σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13

9

Ng2

N2 − 1

s
σ1;

M2 ¼ 1ffiffiffi
β

p σ2: ð48bÞ

The quadratic part of the action is

Z
ddx

�
1

2
Aa
μ

�
−δμν∂2 þ

�
1 −

1

ξ

�
∂μ∂ν

�
Aa
ν þ c̄a∂2ca

þ Uab
μ ∂

2Uab
μ þ Vab

μ ∂
2Vab

μ − ω̄ab
μ ∂

2ωab
μ − 2γ2gfabcAa

μUbc
μ

þm2

2
A2 −M2ðU2 þ V2 − ω̄ωÞ

�
; ð49aÞ

where

Uab
μ ¼ 1

2
ðφab

μ þ φ̄ab
μ Þ; Vab

μ ¼ i
2
ðφab

μ − φ̄ab
μ Þ: ð49bÞ

B. Effective actions at zero temperature

The logarithmic trace of the operators is

1

2
tr ln

� δabðδμνðp2 þm2Þ − ð1 − 1
ξÞpμpνÞ −2γ2gfaefδμν

−2γ2gfbcdδμν −2δceδdfδμνðp2 þM2Þ

�

− ðN2 − 1Þtr lnðp2Þ þ d
2
ðN2 − 1Þ2tr lnðp2 þM2Þ − dðN2 − 1Þ2tr lnðp2 þ sM2Þ

¼ 1

2
ðN2 − 1Þðd − 1Þtr ln

�
p2 þm2 þ λ4

p2 þM2

�
−
1

2
ðN2 − 1Þtr lnðp2Þ þ dðN2 − 1Þ2tr ln p2 þM2

p2 þ sM2
; ð50Þ

where we took the limit ξ → 0, and s ¼ 0 for the φ̄φ
approach and s ¼ 1 for the symmetric approach. The first
tr ln can be rewritten as

1

2
ðN2 − 1Þðd − 1Þðtr lnðp2 þ zþÞ
þ tr lnðp2 þ z−Þ − tr lnðp2 þM2ÞÞ; ð51Þ

where

z� ¼ 1

2

�
m2 þM2 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

q 	
: ð52Þ

Computing the trace in d ¼ 4 − ϵ dimensions gives
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−
3

4ð4πÞ2 ðN
2 − 1Þ

�
ðz2þ þ z2− −M4Þ

�
2

ϵ
þ 5

6

�

− z2þ ln
zþ
μ̄2

− z2− ln
z−
μ̄2

þM4 ln
M2

μ̄2

�
: ð53Þ

Given

z2þ þ z2− −M4 ¼ m4 − 2λ4; ð54aÞ

zþz− ¼ m2M2 þ λ4; ð54bÞ

z2þ − z2− ¼ iðm2 þM2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

q
; ð54cÞ

z2þ ln
zþ
μ̄2

þ z2− ln
z−
μ̄2

¼ z2þ þ z2−
2

ln
zþz−
μ̄4

þ z2þ − z2−
2

ln
zþ
z−

;

ð54dÞ

ln
zþ
z−

¼ 2i arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

p
m2 þM2

; ð54eÞ

we get the following for the trace:

−
3

4ð4πÞ2 ðN
2 − 1Þ

�
ðm4 − 2λ4Þ

�
2

ϵ
þ 5

6

�
−
1

2
ðm4 þM4 − 2λ4Þ lnm

2M2 þ λ4

μ̄4

þ ðm2 þM2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

q
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

p
m2 þM2

þM4 ln
M2

μ̄2

�

¼ −
3

4ð4πÞ2 ðN
2 − 1Þ

�
ðm4 − 2λ4Þ

�
2

ϵ
þ 5

6
−
1

2
ln
m2M2 þ λ4

μ̄4

�

þ ðm2 þM2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

q
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

p
m2 þM2

−
1

2
M4 ln

m2M2 þ λ4

M4

�
: ð55Þ

The last tr ln is

dðN2 − 1Þ2tr ln p2 þM2

p2 þ sM2
¼ ð1 − sÞdðN2 − 1Þ2tr lnðp2 þM2Þ ¼ −

2M4

ð4πÞ2 ð1 − sÞðN2 − 1Þ2
�
2

ϵ
þ 1 − ln

M2

μ̄2

�
: ð56Þ

In the φ̄φ approach we have

Γφ̄φðm2;M2; λ4Þ ¼ −
2ðN2 − 1Þ

Ng2

�
1 −

3

8

Ng2

ð4πÞ2 þ b0
Ng2

ð4πÞ2
�
λ4 þ 9

26

N2 − 1

Ng2
m4 −

24

35

ðN2 − 1Þ2
Ng2

M4

−
3

4ð4πÞ2 ðN
2 − 1Þ

�
ðm4 − 2λ4Þ

�
5

6
−
1

2
ln
m2M2 þ λ4

μ̄4

�

þðm2 þM2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

q
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

p
m2 þM2

−
1

2
M4 ln

m2M2 þ λ4

M4

�

−
2M4

ð4πÞ2 ðN
2 − 1Þ2

�
1 − ln

M2

μ̄2

�
: ð57Þ

In the symmetric approach we get instead

Γsymðm2;M2; λ4Þ ¼ −
2ðN2 − 1Þ

Ng2

�
1 −

3

8

Ng2

ð4πÞ2 þ b0
Ng2

ð4πÞ2
�
λ4 þ 9

26

N2 − 1

Ng2
m4 þ β

2
M4

−
3

4ð4πÞ2 ðN
2 − 1Þ

�
ðm4 − 2λ4Þ

�
5

6
−
1

2
ln
m2M2 þ λ4

μ̄4

�

þðm2 þM2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

q
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

p
m2 þM2

−
1

2
M4 ln

m2M2 þ λ4

M4

�
: ð58Þ
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In order to determine the free parameters (b0, μ̄2, g2, β)
and the zero-temperature condensates (m2

0, M
2
0, λ

4
0), we

have the following constraints:
(1) Gribov gap equation ∂Γ

∂λ4
ðm2

0;M
2
0; λ

4
0Þ ¼ 0,

(2) LCO gap equation for A2 condensate
∂Γ
∂m2 ðm2

0;M
2
0; λ

4
0Þ ¼ 0,

(3) LCO gap equation for Gribov ghost condensate
∂Γ
∂M2 ðm2

0;M
2
0; λ

4
0Þ ¼ 0,

(4) Renormalization group ð4πÞ2
Ng2 ¼ 11

3
ln μ̄2

Λ2

MS

, with

ΛMS ¼ 0.224 GeV in SU(3) and 0.331 GeV in

SU(2) [148,149], and
(5) Two pole masses: x0 ¼ 1

2
ðm2 þM2Þ, y0 ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

p
.

In the φ̄φ approach this gives six constraints for six
degrees of freedom. In the symmetric approach there is
one more free parameter (β), leaving us with the freedom to
choose μ̄2 to one of the scales in the logarithms. These
scales are not too different from one another; we choose
μ̄2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2M2 þ λ4

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
.

The gluon propagator has poles at the values
p2
�¼x0�iy0; in SU(3) we have [150] x0 ¼ 0.261 GeV2

and y0 ¼ 0.465 GeV2, and in SU(2) we have [151] x0 ¼
0.29 GeV2 and y0 ¼ 0.66 GeV2.
In the φ̄φ approach we find [116] for SU(3): b0 ¼ −3.42,

μ̄ ¼ 0.31 GeV; and for SU(2): b0 ¼ −1.6, μ̄ ¼ 0.37 GeV.
The symmetric approach is worked out in Appendix C.

VII. FINITE TEMPERATURE

To reduce clutter in the subsequent subsections, let us
introduce the following shorthands:

P2
κ ¼ ð2πnþ κrÞ2T2 þ p⃗2; ð59aÞ

IðΔ; r; TÞ ¼ T
Z

d3p
ð2πÞ3 lnð1 − 2e−

ffiffiffiffiffiffiffiffiffi
p⃗2þΔ

p
=T cos r

þ e−2
ffiffiffiffiffiffiffiffiffi
p⃗2þΔ

p
=TÞ; ð59bÞ

IðΔ; 0; TÞ ¼ 2T
Z

d3p
ð2πÞ3 ln ð1 − e−

ffiffiffiffiffiffiffiffiffi
p⃗2þΔ

p
=TÞ: ð59cÞ

A. Trace logarithms

With a constant background ðĀa
μÞh ¼ δa3δμ0rT=g

(−2π < r < 2π) in SU(2), we have that

D̄κ
μ ¼ ∂μ þ iκrTδμ0; ð60Þ

where we used the conventions in Appendix D 1. As such
the eigenvalues of −D̄2

h are P
2
κ . In SU(2), the last two tr lns

in (50) thus give the finite-temperature correction

�
−
1

2
− 12ð1− sÞ

�
ðIð0; r;TÞ þ Ið0;0; TÞ þ Ið0;−r;TÞÞ

þ 12ð1− sÞðIðM2; r; TÞ þ IðM2;0; TÞ þ IðM2;−r;TÞÞ

¼
�
−
1

2
− 12ð1− sÞ

��
2Ið0; r; TÞ− π2T2

45

�
þ 12ð1− sÞð2IðM2; r; TÞ þ IðM2;0; TÞÞ; ð61Þ

where we used the symmetry of IðΔ; r; TÞ under
r → −r.
In SU(3), charge conjugation invariance implies [118] it

is enough to consider the background ðĀa
μÞh ¼ δa3δμ0rT=g

(−2π < r < 2π). With the conventions in Appendix D 2,
D̄h

μ evaluates to

v3;8∶ ∂μ; ð62aÞ

v�1 ∶∂μ � irTδμ0; ð62bÞ

v�2 ∶∂μ �
i
2
rTδμ0; ð62cÞ

v�3 ∶∂μ ∓ i
2
rTδμ0: ð62dÞ

This allows us to compute the finite-temperature cor-
rection to the last two tr lns in (50) in SU(3):

�
−
1

2
− 32ð1 − sÞ

��
2Ið0; 0; TÞ þ Ið0; r; TÞ þ Ið0;−r; TÞ þ 2I

�
0;
r
2
; T

�
þ 2I

�
0;−

r
2
; T

��

þ 32ð1 − sÞ
�
2IðM2; 0; TÞ þ IðM2; r; TÞ þ IðM2;−r; TÞ þ 2I

�
M2;

r
2
; T

�
þ 2I

�
M2;−

r
2
; T

��

¼ 2

�
−
1

2
− 32ð1 − sÞ

��
−
π2T2

45
þ Ið0; r; TÞ þ 2I

�
0;
r
2
; T

��

þ 64ð1 − sÞ
�
IðM2; 0; TÞ þ IðM2; r; TÞ þ 2I

�
M2;

r
2
; T

��
: ð63Þ
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The gluon trace logarithm [the first trace in the last line
of (50)] is more complicated. In the Āh approach, the
Gribov term is, at finite temperature, replaced with

δμνδ
ab λ4

p2 þM2
→ δμν

λ4

N
face

�
1

P2 þM2

�
cd
fdbe: ð64Þ

To evaluate this, we use (D6) for SU(2) and (D12) for
SU(3).
In SU(2), the eigenvalues of the quadratic gluon operator

[the analogon of the first term of the last line of (50)] are

P2
� þm2 þ λ4

2

�
1

P2
� þM2

þ 1

P2
0 þM2

�
; and

P2
0 þm2 þ λ4

2

�
1

P2
þ1 þM2

þ 1

P2
−1 þM2

�
: ð65Þ

For the trace logarithm, this gives d−1
2

times

ln

�
ðP2

� þm2ÞðP2
� þM2ÞðP2

0 þM2Þ

þ λ4

2
ðP2

� þM2 þ P2
0 þM2Þ

�

þ ln

�
ðP2

0 þm2ÞðP2
þ1 þM2ÞðP2

−1 þM2Þ

þ λ4

2
ðP2

þ1 þM2 þ P2
−1 þM2Þ

�
− 2 lnðP2

0 þM2Þ − 2 lnðP2
� þM2Þ; ð66Þ

where the indices “�” need to be summed over. The terms
on the last line give (after multiplication with d−1

2
and taking

the trace)

−9trT¼0 lnð−∂2þM2Þ−6IðM2;r;TÞ−3IðM2;0;TÞ: ð67Þ

What is left are three sixth-order polynomials in n.4 In order
to deal with them, we use (E4). This is straightforward to
implement numerically, but does considerably slow down
the computations.
In SU(3), the eigenvalues of the gluon propagator are

v3∶ P2
0þm2þλ4

3

�
1

P2
þ1þM2

þ 1

P2
−1þM2

þ1

2

1

P2
þ1=2þM2

þ1

2

1

P2
−1=2þM2

�
; ð68aÞ

v8∶ P2
0 þm2 þ λ4

2

�
1

P2
þ1=2 þM2

þ 1

P2
−1=2 þM2

�
; ð68bÞ

v�1 ∶P2
�1þm2þλ4

3

�
1

P2
0þM2

þ 1

P2
�1þM2

þ 1

P2
�1=2þM2

�
;

ð68cÞ

v�2 ; v
∓
3 ∶ P2

�1=2 þm2 þ λ4

3

�
1

P2
0 þM2

þ 1

2

1

P2
�1 þM2

þ 1

P2
�1=2 þM2

þ 1

2

1

P2∓1=2 þM2

�
: ð68dÞ

The trace logarithm now gives polynomials up to tenth
order, for which we again use (E4), and the denominators
lead to the subtraction

−
d − 1

2

�
6tr lnðP2

0 þM2Þ þ 4tr lnðP2
�1 þM2Þ

þ 7tr ln
�
P2
�1

2

þM2
		

¼ −42trT¼0 lnð−∂2 þM2Þ − 9IðM2; 0; TÞ

− 12IðM2; r; TÞ − 21I

�
M2;

r
2
; T

�
: ð69Þ

In the Kroff-Reinosa approach, the Gribov term is, at
finite temperature, replaced with

δμνδ
ab λ4

p2 þM2
→ δμνδ

ab λ4

P2 þM2
: ð70Þ

This gives the following instead: For SU(2) d−1
2

times

ln

�
P2
� þm2 þ λ4

P2
� þM2

�
þ ln

�
P2
0 þm2 þ λ4

P2
0 þM2

�
;

ð71Þ

and for SU(3) d−1
2

times

2 ln

�
P2
0 þm2 þ λ4

P2
0 þM2

�
þ ln

�
P2
� þm2 þ λ4

P2
� þM2

�

þ 2 ln

�
P2
�1

2

þm2 þ λ4

P2
�1

2

þM2

�
: ð72Þ

To compute this, we see that

4The second one, from the r ¼ 0 state, is actually a third-order
polynomial in n2, which can be factored, but handling this one
numerically as well saves handwork and does not waste relatively
that much more time doing numerics.
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tr ln

�
P2
r þm2 þ λ4

P2
r þM2

�
¼ tr lnðP2

r þ zþÞ þ tr lnðP2
r þ z−Þ − tr lnðP2

r þM2Þ;

¼ trT¼0 ln

�
p2 þm2 þ λ4

p2 þM2

�
þ Iðzþ; r; TÞ þ Iðz−; r; TÞ − IðM2; r; TÞ; ð73aÞ

where

z� ¼ 1

2

�
m2 þM2 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

q 	
: ð73bÞ

B. Extremization

Once we have computed the effective action, we solve
the gap equation to find the Gribov parameter λ and
minimize with respect to the condensates. The Gribov
gap equation corresponds to finding a maximum, which
means the final solution will be a saddle point in the four-
dimensional space of the parameters. This complicates
numerical minimization.
In order to find this saddle point, we found it most

straightforward to use iteration. Starting from seed values
for the parameters (obtained from extrapolating from
previous data obtained at, for example, lower temperature),
we first maximize with respect to the Gribov parameter,
then minimize with respect to the other parameters,
maximize with respect to the Gribov parameter again,
etc. until successive steps do not lead to significant changes
any longer. Then we move on to the next value of the
temperature.
This iteration is sometimes unstable, and may diverge.

We found this can be cured by “damping” the change in
the Gribov parameter λ in successive steps. If λ2o is the
previous value (of the square) and λ2n the newly obtained
one, we use

aλ2o þ λ2n
aþ 1

ð74Þ

for the next value of λ2. Taking a ¼ 1 often leads to fast
convergence for low temperatures. In the deconfined
phases, taking a ¼ 10 or some such generally ensures
convergence.

C. Results in φ̄φ case

With the φ̄φ approach in SU(2) with the Polyakov loop
in the Āh approach we still did not find any phase transition
even at T ¼ 1.3 GeV [see Fig. 1(c)],5 while λ goes to zero

around 0.32 GeV [see Fig. 1(a)]. In the KR approach the
same happens: λ goes to zero around 0.34 GeV [see
Fig. 2(a)], while the Polyakov loop still signals confine-
ment around T ¼ 1.3 GeV [see Fig. 2(c)].
This shows that the Gribov parameter is not really an

order parameter for confinement in this case. The discrep-
ancy is due to the difference in mass between φ and ω:
these fields are supposed to have their determinants cancel,
which does not happen here. If these determinants were to
cancel, λ → 0would bring us back to the Curci-Ferrari-type
model considered in [10], where confinement is recovered
for T ¼ 0.32 GeV. Without this cancellation of the two
determinants, M2 increases without bound [see Figs. 1(b)
and 2(b)] (while m2 shows only a modest increase) and this
seems to drive r to π.
To conclude, it appears that the φ̄φ case is flawed and

does not describe the physics well. Due to these short-
comings, we did not bother to investigate the (more
involved) SU(3) theory.

D. Results in symmetric case: Āh approach

In the Āh approach for the symmetric case, the deter-
minants of the φ and ω propagators cancel, such that r is
not constant anymore. It turns out, however, that r starts
increasing in value the moment temperature is switched on,
see Figs. 3(a) and 4(b). A value of r higher than its
confining value (called “overconfining” in the following)
suggests the Polyakov loop itself is negative, or the quark
free energy has an imaginary part.
For SU(2), this overconfining minimum persist for all the

temperature values we investigated. For T > 0.40 GeV, we
found a second “normal” deconfining solution. However,
the energy in this minimum remains higher than the energy
in the overconfining minimum, and the situation shows no
signs of improving with increasing temperature, see
Fig. 3(b). Given the difficulty of finding this deconfining
minimum, we cannot rule out the existence of additional
minima. The second-order phase transition one expects in
SU(2), where the confining minimum spontaneously
“rolls” into the deconfining minimum, certainly does not
happen though.
For SU(3) as well, the Polyakov loop does not remain in

its symmetric point r ¼ 4π=3 already at low temperatures,
see Fig. 4(b). Instead it goes up to 5.58 at T ¼ 0.335 GeV.
This time we do find a transition at Tc ¼ 0.335 GeV, see
Fig. 4(c), and r is good and well below 4π=3 after the
transition, signaling deconfinement. The Gribov parameter

5In the φ̄φ approach, the renormalization scale μ̄ is usually
held fixed to its zero temperature value. For temperatures higher
than this value, we took μ̄ ¼ T instead, but keeping μ̄ fixed did
not give qualitatively different results.
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FIG. 1. Some of the results obtained in the Āh approach for the φ̄φ case in SU(2). As the numerics are quite heavy, we did the
computation for a smaller selection of temperatures. Panel (a) shows the Gribov parameter λ, which goes to zero at T ≈ 0.32 GeV. Not
shown is the Polyakov loop r, which is equal to π throughout. Panel (b) shows how the hφ̄φi condensate (proportional to the mass
parameter M2) starts a rapid increase after λ has gone to zero. (Points for temperatures beyond 0.50 GeV fall outside the plot.) Also not
shown ism, which does not vary all that much in the temperature range shown. Panel (c) finally shows the potential of the Polyakov loop
r (keeping the other parameters fixed to the values they have in the minimum of the potential) for T ¼ 1.3 GeV, showing clearly that
r ¼ π is still the minimum.

(a) (b) (c)

FIG. 2. Some of the results obtained in the KR approach for the φ̄φ case in SU(2). Panel (a) shows the Gribov parameter λ, which goes
to zero at T ≈ 0.34 GeV. Not shown is the Polyakov loop r, which is equal to π throughout. Panel (b) shows how the hφ̄φi condensate
(proportional to the mass parameterM2) starts a rapid increase after λ has gone to zero. Also not shown ism, which does not vary all that
much in the temperature range shown. Panel (c) finally shows the potential of the Polyakov loop r (keeping the other parameters fixed to
the values they have in the minimum of the potential) for T ¼ 1.3 GeV, showing clearly that r ¼ π is still the minimum.

(a) (b)

FIG. 3. Some of the results obtained in the Āh approach for the symmetric case in SU(2) for the two minima we found: the
“overconfining”minimum (r > π) in a full line and the deconfining minimum in a dashed line. Not shown are Gribov parameter and the
dimension-two condensates, which do not vary much and also do not differ much between the two vacua. Panel (a) shows the Polyakov
loop r as a function of temperature. Already at very small temperature, r > π, which implies the quark free energy has an imaginary part.
Panel (b) shows the energy in the minima. The “overconfining” vacuum is preferred for the entire temperature range.
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λ goes up when going through the transition, as seen in
Fig. 4(a).
We can conclude that the Āh approach also has some

flaws, indicated by the Polyakov loop r increasing in value
rather than staying constant during what we would expect
to be the confining phase. Furthermore we did not find any
deconfined phase for SU(2) in the temperature range we
investigated (until T ¼ 0.46 GeV), and the trends in the
vacuum energies do not suggest a deconfined phase will
soon be found for higher temperatures. Finally, the tran-
sition we did find for SU(3) is at a temperature much higher
than found in other works. A lattice computation (see
Table 6 in [1], taking for the string tension a typical value offfiffiffi
σ

p ¼ 0.44 GeV, see Ref. [152] for more details) gives
Tc ¼ 0.28 GeV; other approaches usually find even lower
values, see Table 6.1 in [133] for a selection.
One might speculate that the fact the above results are

deviating so from what is expected, is related to the

observation made in [118]: in principle, when we go on
shell in the h sector via the τ equation of motion, the h field
must evidently be periodic, but up to a ZN twist. As of now,
we have not been able to find a way to deal with the twisted
sectors in the path integral, and we must restrict ourselves
to a fixed twist sector.

E. Results in symmetric case: KR approach

In the KR approach, the results are better. We find a
second-order phase transition at Tc ¼ 0.34 GeV for SU(2),
see Fig. 5(b). This is not too far from the lattice result in
Table 6 in [1]: 0.31 GeV. For SU(3), we found the transition
at Tc ¼ 0.310 GeV [see Fig. 6(b)] and of first order [see
Fig. 6(b)], again not too far from the lattice result of
0.28 GeV [1]. The Gribov parameter λ again goes up
when going through the SU(3) transition, as seen in
Fig. 6(a). In Fig. 7, we show the gluon propagator dressing

(a) (b) (c)

FIG. 4. Some of the results obtained in the Āh approach for the symmetric case in SU(3) for the two minima we found: the
“overconfining” minimum (r > 4π=3 ¼ 4.19) with dots and the deconfining minimum in plus signs. Again the numerics are quite
heavy, so we did the computation for a smaller selection of temperatures. Panel (a) shows the Gribov parameter, which jumps to higher
values when entering the deconfined phase. Not shown are the dimension-two condensates, which do not vary much and also do not
differ much between the two vacua. Panel (b) shows the Polyakov loop r as a function of temperature. Already at very small
temperatures, r > 4π=3, which implies the quark free energy has an imaginary part. Panel (c) shows the energy in the minima with inset
enlarged on the transition.

(a) (b)

FIG. 5. Some of the results obtained in the KR approach for the symmetric case in SU(2). Not shown are the dimension-two
condensates, which do not vary much and also do not change much through the transition. Panel (a) shows the Gribov parameter λ and
(b) shows the Polyakov loop r as a function of temperature. The second-order transition at Tc ¼ 0.34 GeV is clear in the
sudden drop in r.
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function6 at vanishing Matsubara frequency n as a function
of the spatial momentum jp⃗j for various temperatures. The
gluon propagator seems to behave quite smoothly when
increasing the temperature and when going through the
transition; a similar behavior was found in [153] also. The
gluon propagator at leading order is impacted only by
changes in the condensates and the Gribov parameter, and
these are modest.
The existence and orders of the transitions are in line

with expectations, now. The transition temperatures are still
on the high side, however. We tried playing with the scale
parameter μ̄, but the results seem quite stable. We took μ̄2

equal to the value of m2 at zero temperature (for which the
computations in Appendix C needed to be redone), which
gave a smaller value of μ̄2 and thus a higher value of the
coupling constant g2. We found a transition temperature of
Tc ¼ 0.35 GeV for SU(2): barely higher. With a higher

coupling constant one could expect the finite-temperature
corrections (which are all of first order in the coupling) to
become more important, thus speeding up the transition.
But changing μ̄2 also modifies all the other zero-
temperature parameters that enter the theory, and this
seems to undo the effect.
In [118], Kroff and Reinosa also consider the introduc-

tion of different Gribov parameters in different color
directions. In their paper, they find that doing so has a
noteworthy impact on the transition temperature. We
therefore also considered what they call the “partially
degenerate” approach, where a “neutral” Gribov parameter
γ0 is coupled to the gluon fields in the Casimir and a
“charged” one γch is coupled to the other modes. For SU(2)
the transition temperature comes down with about a fifth to
Tc ¼ 0.27 GeV (see Fig. 8), while for SU(3) the temper-
ature of the (first-order) phase transition is between
T ¼ 0.264 and 0.284 GeV (see Fig. 9). Probably related
to the flatness of the potential, we are unable to find a
numerically more precise estimate of the transition temper-
ature for SU(3).

(a) (b)

FIG. 7. Gluon propagator dressing function Δ at Matsubara frequency n ¼ 0 as a function of the spatial momentum jp⃗j for various
temperatures for SU(2) (a) and SU(3) (b).

(a) (b) (c)

FIG. 6. Some of the results obtained in the KR approach for the symmetric case in SU(3) for the two minima we found: the confining
minimum (r ¼ 4π=3 ¼ 4.19) in a full line and the deconfining minimum in a dashed line. The deconfining minimum is very shallow
right above the transition temperature, making the numerics very unstable. (Minimization often ends up in the confining minimum.) This
has resulted in a small gap in the data. Not shown are the dimension-two condensates, which do not vary much and also do not change
much through the transition. Panel (a) shows the Gribov parameter λ and (b) shows the Polyakov loop r as a function of temperature.
Panel (c) shows the vacuum energy. Extrapolating the vacuum energy of the deconfined minimum gives a first-order transition
temperature at Tc ¼ 0.310 GeV.

6At leading order, there is no difference yet between longi-
tudinal and transverse propagators.
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VIII. CONCLUSIONS

In this paper we studied the refined Gribov-Zwanziger
action for SU(2) and SU(3) gauge theories with the
Polyakov loop coupled to it via the background field
formalism. Doing so, we were able to compute the finite-
temperature value of the Polyakov loop, the Gribov param-
eter, and the values of the dimension-two condensates
simultaneously at the leading one-loop approximation.
We used several approaches. First there are two candidates

for the Gribov auxiliary fields condensate that have been
investigated in the past: hφ̄φ − ω̄ωi and hφ̄φi [70,71,76].
The second one has enjoyed relatively more attention up to
now, but from our results it turns out that only the first one
(the more symmetric one) leads to phenomenologically
acceptable results at finite temperature, where the second
one does not.We furthermore used two different proposals to
add a gluon background field to the Gribov formalism. The
one proposed by the authors in [117] turns out to have issues,
whereas the one proposed by Kroff and Reinosa [118] gives
the best results.

The invariant field and KR approach are two, not
necessarily equivalent,7 ways of partially dealing with
the Gribov ambiguity at finite temperature. Both proposals
share three important features: they are background gauge
invariant, BRST invariant and reduce to the standard
Gribov-Zwanziger action in Landau gauge at zero temper-
ature. Notice that, to embed the KR approach in a BRST
invariant formalism, BRST invariant (dressed) fields are
also necessary, as discussed in the text.
A priori, we do not have a criterion to prefer one or

another. One could resort to the demand that the setup
should be renormalizable as well to allow controllable
computations, but as all proposals reduce to a renormaliz-
able model at vanishing temperature, this does not add any
extra information.

(a) (b)

FIG. 8. Some of the results obtained in the KR approach for the symmetric case in SU(2) for the partially degenerate approach to color-
dependent Gribov parameters. Not shown are the dimension-two condensates, which do not vary much and also do not change much
through the transition. Panel (a) shows the Gribov parameters λ0 (upper line) and λch (lower line) and (b) shows the Polyakov loop r as a
function of temperature. The second-order transition is now at Tc ¼ 0.27 GeV.

(a) (b) (c)

FIG. 9. Some of the results obtained in the KR approach for the symmetric case in SU(3) for the partially degenerate approach to color-
dependent Gribov parameters. Not shown are the dimension-two condensates, which do not vary much and also do not change much
through the transition. We did not manage to find solutions between T ¼ 0.264 and 0.284 GeV, due to the potential being nearly flat. As
a result, we could only determine that the temperature of the (first-order) phase transition must be somewhere within that range. Panel
(a) shows the Gribov parameters λ0 (upper line) and λch (lower line) and (b) shows the Polyakov loop r as a function of temperature.
Panel (c) shows the value of the effective potential.

7We are unaware of any mapping, at the level of the path
integral, that would match both partition functions, thereby
ensuring at least formal equivalence.
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We can thus only use our (leading order) current results,
in which case the non-KR approach results in an imaginary
Polyakov loop, an unphysical finding in the current setup.
Indeed, although the heavy quark potential is known to
develop a complex piece [154], one does not expect this to
show up in the pure gauge case for which the quarks are
purely external (infinite mass).
From the point of view of physics, we found a second-

order deconfinement phase transition for SU(2) and a first-
order transition for SU(3), provided we used the symmetric
condensate hφ̄φ − ω̄ωi and theKroff-Reinosa approach. Just
as in [137], theGribovmass is nonzero at temperatures above
Tc, indicating that the gluon propagator still violates pos-
itivity and as such it rather describes a quasiparticle than a
“free” observable particle; see also [33,155] for more on this.
Several improvements on the current setup can be

proposed. First, one would expect the condensates to
develop electric-magnetic asymmetries at finite temper-
ature in the vein of [156,157]. This markedly complicates
the computations, and previous work has shown that the
results are not greatly impacted [10]. Another possibility is,
naturally, to go to two-loop order. The Kroff–Reinosa
approach is computationally the most elegant and simplest
one, and luckily it turned out to be the best one phenom-
enologically as well. This allows one to hope that a two-
loop computation would be tractable, although the two-
loop generalization of [118] without any extra condensates
is also still lacking. It would also be interesting to test in
practice the argument in [118] that the KR model is
renormalizable to two-loop order as well. A full BRST
based analysis of this feature to all orders looks too
ambitious given the presence of the nonlocal dressing
factors as in (31c). Furthermore, it remains an open
question how to split the path integration over the various
twisted sectors when the auxiliary Stueckelberg-like h field
is brought on shell.
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APPENDIX A: PROOF OF SUFFICIENCY OF
GRIBOV CONSTRUCTION APPLIED TO − D̄h

μDh
μ

In this section, we prove that the modification of the
Gribov-Zwanziger action as given in (22a) is sufficient to
remove infinitesimal Gribov copies in the Landau-DeWitt
gauge with background Āμ.
The Faddeev-Popov operator in the Landau background

gauge is −D̄ab
μ Dbc

μ . As shown in [117], however, basing the
Gribov construction on this operator leads to a breaking of
background gauge symmetry δĀa

μ ¼ D̄ab
μ βb with βa the

gauge parameter. In [117], the operator −∂μðDhÞabμ was

proposed. In the case at hand, however, we have a nonzero
ðĀhÞaμ, such that we need to use −ðD̄hÞabμ ðDhÞbcμ . [In this
operator, the first covariant derivative contains the trans-
formed background ðĀhÞaμ, the second one contains the full
field ðahÞaμ.]
Let us now prove that this is correct. To do so, let us use a

shorthand notation from here on to avoid clutter of color
and Lorentz indices, writing −D̄hDh and D ¼ ∂þ a etc.
We want to prove that restricting the path integral to
configurations with −D̄hDh > 0 actually excludes (almost)
all Gribov copies related to the zero modes of the Faddeev-
Popov operator −D̄D. Given a configuration in the per-
missible space −D̄hDh > 0, assume the exists a zero mode
ξ of −D̄D:

−D̄Dξ ¼ 0: ðA1Þ

To prove that this implies ξ ¼ 0, we will assume ξ can be
written as a series in the background ξ ¼ P∞

n¼0 Ā
nξn½A�.

We can rewrite the equation for ξ as

−D̄hDhξþ ĀhDhξ − ĀDξþ ∂ððah − aÞξÞ ¼ 0: ðA2Þ

Due to the assumed invertibility of −D̄hDh, this means that

ξ ¼ 1

−D̄hDh ð−ĀhDhξþ ĀDξ − ∂ððah − aÞξÞÞ: ðA3Þ

In the limit Ā → 0, we have that Āh → 0, such that
Āh ¼ OðĀÞ. Furthermore in the same limit the gauge
condition for ah becomes identical to that for a, such that
also ah − a → 0. This means that the lowest-order term on
the right-hand side of (A3) is of at least one order in Ā
higher than ξ, which can never be equal to ξ except if ξ ¼ 0.
This concludes the proof that restricting the path integral to
configurations with −D̄hDh > 0 actually excludes all
Gribov copies related to the zero modes of the Faddeev-
Popov operator −D̄D that are expressible as a Taylor series
in the background field, i.e., that are continuous deforma-
tions around the zero background (standard Landau gauge).
This completes our proof.

APPENDIX B: THE PROJECTION
OPERATOR IN EQ. (33)

We want to construct [in the notations of [118], see
Eq. (26)] a background-gauge invariant equivalent to
γ2κfκληAκ

μðφλη
μ þ φ̄λη

μ Þ. Under background gauge transforma-
tions, one has

δĀa
μ ¼ D̄ab

μ ϖb; ðB1aÞ

δAa
μ ¼ −gfabcϖbAc

μ; ðB1bÞ
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and transformations analogous to (B1b) for φ and φ̄.
In [118] the authors state that this is possible, but without
showing explicitly how. If the background is a constant and
the transformation brings it to another constant background
(for example a gauge rotation) then the expression show in
Eq. (26) in [118] is manifestly invariant provided we
remember to redefine the indices. (The Greek color indices
in [118] are defined with respect to the Casimir, where the
background is assumed to be in.) To get invariance under
general background transformations, we need to do
more work.
We need to define a projection operator Pab such that

facdPabAb
μðφcd

μ þ φ̄cd
μ Þ ðB2Þ

is invariant. If the background is in the minimal Landau
gauge, we want this projection operator to be equal to
Pab → Āa

μĀb
μ=Ā2. In that case, the projector will pick out

the color direction along the background, to which we
couple one of the γ0s. For example in SU(2) there is only
one Casimir direction and we can therefore use

ðγ0Pab þ γchðδab − PabÞÞAb
μ: ðB3Þ

In order to write down such a projector, we search for a field
Āa

μ such that Āa
μ transforms as (B1b) under background

transformations (δĀa
μ ¼ −gfabcϖbĀc

μ) and also such that
Āa

μ → Āa
μ whenever the background is in minimal Landau

gauge. Then,

Pab ¼ Āa
μĀ

b
μ

Ā2
ðB4Þ

fits the bill:

δPab ¼ −g
facdϖcĀd

μĀ
b
μ þ fbcdĀa

μϖ
cĀd

μ

Ā2

¼ −gðfacdδbe þ δadfbceÞϖcPde

⇒ δðPabAb
μÞ ¼ −gfabcϖbPcdAd

μ; ðB5Þ

which is sufficient for our needs.
Take the ansatz

Āa
μ ¼ ðĀhÞaμ þ Xa

μ: ðB6aÞ

Expand the above in orders of Āa
μ:

ðĀhÞaμ ¼
�
δμν −

∂μ∂ν

∂
2

�X∞
n¼1

ðF nÞaνðĀÞ; ðB6bÞ

Xa
μ ¼

X∞
n¼2

ðGnÞaμðĀÞ; ðB6cÞ

where the index n denotes the number of Āa
μ fields. Given

that ðĀhÞaμ is invariant under δĀa
μ ¼ D̄ab

μ ϖb, we get

δĀa
μ ¼ δXa

μ ¼
X∞
n¼2

D̄bc
ν ϖc

δðGnÞaμ
δĀb

ν
ðĀÞ

¼
X∞
n¼1

∂νϖ
b
δðGnþ1Þaμ

δĀb
ν

ðĀÞ−gfbcdĀd
νϖ

c
X∞
n¼2

δðGnÞaμ
δĀb

ν
ðĀÞ:

ðB7Þ

Requiring δĀa
μ ¼ −gfabcϖbĀc

μ and equating order by
order in Āa

μ gives

−gfabcϖb

�
δμν−

∂μ∂ν

∂
2

�X∞
n¼1

ðF nÞcνðĀÞ

−gfabcϖb
X∞
n¼2

ðGnÞcμðĀÞ

¼
X∞
n¼1

∂νϖ
b
δðGnþ1Þaμ

δĀb
ν

ðĀÞ−gfbcdĀd
νϖ

c
X∞
n¼2

δðGnÞaμ
δĀb

ν
ðĀÞ

⇒∂νϖ
b
δðGnþ1Þaμ

δĀb
ν

ðĀÞ¼−gfabcϖb

�
δμν−

∂μ∂ν

∂
2

�
ðF nÞcνðĀÞ

−gfabcϖbðGnÞcμðĀÞþgfbcdĀd
νϖ

c
δðGnÞaμ
δĀb

ν
ðĀÞ: ðB8Þ

For n ¼ 1 one gets (with G1 ¼ 0):

∂νϖ
b
δðG2Þaμ
δĀb

ν
ðĀÞ ¼ −gfabcϖb

�
δμν −

∂μ∂ν

∂
2

�
Āc
ν: ðB9Þ

Given that

∂νω
b δ

δĀb
ν

�
δμν−

∂μ∂ν

∂
2

�
Āa
ν ¼

�
δμν−

∂μ∂ν

∂
2

�
∂νϖ

a¼0; ðB10Þ

we only need to multiply ðδμν − ∂μ∂ν

∂
2 ÞĀb

ν with some expres-
sion Yab that obeys ∂νϖb δ

δĀb
ν
Yac ¼ −gfabcϖb. An obvious

solutions is Ybc ¼ gfabc ∂λ

∂
2 Āc

λ .
The cases for n > 1 are left as an exercise for the reader.

The final result is (to second order in the background field):

Āa
μ ¼

�
δμν −

∂μ∂ν

∂
2

�

×

�
Āa
ν − gfabc

��
δνλ −

1

2

∂ν∂λ

∂
2

�
Āb
λ

�
∂κ

∂
2
Āc
κ þ � � �

�

þ gfabc
��

δμν −
∂μ∂ν

∂
2

�
Āb
ν

�
∂λ

∂
2
Āc
λ þ � � � : ðB11Þ
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APPENDIX C: FREE PARAMETERS IN THE
SYMMETRIC APPROACH

The free parameters of the φ̄φ approach at zero temper-
ature were computed in [116]. The symmetric approach has
not yet been done, so we work it out in this appendix.
The gap equation for λ4 is

5

6
−
4

3
b0 −

4ð4πÞ2
3Ng2

−
1

2
log

m2M2 þ λ4

μ̄4

−
m2 þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ4 − ðm2 −M2Þ2
p arccot

m2 þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

p ¼ 0;

ðC1Þ

or, after plugging in the renormalization group, the poles,
and our choice for μ̄2:

5

6
−
4

3
b0 −

44

9
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
Λ2

MS

−
x0
y0

arccot
x0
y0

¼ 0: ðC2Þ

This gives b0 ¼ −8.49 in SU(3) and −6.7 in SU(2).
The equation for m2 is

2ðm2M2þλ4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4−ðm2−M2Þ2

p arccot
m2þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ4−ðm2−M2Þ2
p

þm2

�
1

3
−

6

13

ð4πÞ2
g2N

−
m2þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ4−ðm2−M2Þ2
p

×arccot
m2þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ4−ðm2−M2Þ2
p −

1

2
ln
m2M2þλ4

μ̄4

�
¼0; ðC3Þ

or, after plugging in the renormalization group, the poles,
and our choice for μ̄2:

x20 þ y20
y0

arccot
x0
y0

þm2

�
1

3
−
22

13
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
Λ2

MS

−
x0
y0

arccot
x0
y0

�
¼ 0: ðC4Þ

This gives m2 ¼ 0.152 GeV2 in SU(3) and 0.27 GeV2 in
SU(2). Given that M2 ¼ 2x0 −m2, we also find M2 ¼
0.370 GeV2 in SU(3) and 0.31 GeV2 in SU(2). Given that
λ4 ¼ x20 þ y20 −m2M2 we also find λ2 ¼ 0.478 GeV2 in
SU(3) and 0.67 GeV2 in SU(2).

The equation for M2 is

2ðm2M2 þ λ4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðm2 −M2Þ2

p arccot
m2 þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ4 − ðm2 −M2Þ2
p

þM2

�
−
2

3

ð4πÞ2
N2 − 1

β −
m2 þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ4 − ðm2 −M2Þ2
p

× arccot
m2 þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ4 − ðm2 −M2Þ2
p −

1

2
ln
m2M2 þ λ4

M4

�
¼ 0;

ðC5Þ

or, after plugging in the poles,

x20þy20
y0

arccot
x0
y0

þM2

�
−
2

3

ð4πÞ2
N2−1

β−
x0
y0
arccot

x0
y0
−
1

2
ln
x20þy20
M4

�
¼0: ðC6Þ

This gives β ¼ 0.0601 in SU(3) and 0.045 in SU(2).

APPENDIX D: CONVENTIONS

1. SU(2)

We define isospin eigenstates as

vþ ¼ 1ffiffiffi
2

p

0
B@

i

1

0

1
CA; v−¼

1ffiffiffi
2

p

0
B@

i

−1
0

1
CA; v0¼

0
B@
0

0

1

1
CA: ðD1Þ

We then have that

1 ¼ vþv
†
þ þ v−v†− þ v3v

†
3; ðD2aÞ

trA ¼ v†þAvþ þ v†−Av− þ v†3Av3: ðD2bÞ

If we define

sab ¼ iϵab3; aabþ ¼ ϵab1 − iϵab2; aab− ¼ −ϵab1 − iϵab2;

ðD3Þ

then we have the commutation relations

½s; a�� ¼ �a�; ½aþ; a−� ¼ 2s; ðD4Þ

and that

sv3 ¼ 0; svs ¼ svs; ðD5aÞ

aþvþ ¼ 0; aþv0 ¼
ffiffiffi
2

p
vþ; aþv−¼

ffiffiffi
2

p
v0; ðD5bÞ

a−vþ ¼
ffiffiffi
2

p
v0; a−v0 ¼

ffiffiffi
2

p
v−; a−v−¼ 0: ðD5cÞ
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We also have

ϵaceOcdϵbde ¼
�
sOsþ 1

2
aþOa− þ 1

2
a−Oaþ

�
ab
: ðD6Þ

2. SU(3)

The structure constants of the Lie algebra of SU(3) are
given by

f123 ¼ 1; ðD7aÞ

f147¼−f156 ¼ f246 ¼ f257 ¼ f345 ¼−f367 ¼
1

2
; ðD7bÞ

f458 ¼ f678 ¼
ffiffiffi
3

p

2
; ðD7cÞ

while all other fabc not related to these by permutation are
zero. To avoid cluttered indices, define the matrices
ðfaÞbc ¼ fabc. Now define the following operators:

s3 ¼ if3; s8 ¼ if8; ðD8aÞ

a�1 ¼�f1 − if2; a�2 ¼�f4 − if5; a�3 ¼�f6 − if7:

ðD8bÞ

These obey the commutation relations:

½s3; s8� ¼ 0; ðD9aÞ

½s3; a�1 � ¼ �a�1 ; ½s8; a�1 � ¼ 0; ðD9bÞ

½s3;a�2 � ¼ � 1

2
a�2 ; ½s8; a�2 � ¼ �

ffiffiffi
3

p

2
a�2 ; ðD9cÞ

½s3; a�3 � ¼ ∓ 1

2
a�3 ; ½s8; a�3 � ¼ �

ffiffiffi
3

p

2
a�3 ; ðD9dÞ

½aþ1 ; a−1 � ¼ 2s3; ½aþ2 ;a−2 � ¼ s3 þ
ffiffiffi
3

p
s8;

½aþ3 ; a−3 � ¼ −s3 þ
ffiffiffi
3

p
s8; ðD9eÞ

½a�1 ; a�2 � ¼ 0; ½a�1 ; a∓2 � ¼ −ia∓3 ; ðD9fÞ

½a�1 ; a�3 � ¼ −ia�2 ; ½a�1 ; a∓3 � ¼ 0; ðD9gÞ

½a�2 ; a�3 � ¼ 0; ½a�2 ; a∓3 � ¼ −ia�1 : ðD9hÞ

Next, define the following vectors:

va3 ¼ δa3; va8 ¼ δa8; ðD10aÞ

ðv�1 Þa ¼
1ffiffiffi
2

p ðiδa1 � δa2Þ; ðv�2 Þa ¼
1ffiffiffi
2

p ðiδa4 � δa5Þ;

ðv�3 Þa ¼
1ffiffiffi
2

p ðiδa6 � δa7Þ: ðD10bÞ

We have the following operations:

s3 s8 aþ1 a−1 aþ2 a−2 aþ3 a−3
v3 0 0

ffiffiffi
2

p
vþ1

ffiffiffi
2

p
v−1

1ffiffi
2

p vþ2
1ffiffi
2

p v−2 − 1ffiffi
2

p vþ3 − 1ffiffi
2

p v−3
v8 0 0 0 0

ffiffi
3
2

q
vþ2

ffiffi
3
2

q
v−2

ffiffi
3
2

q
vþ3

ffiffi
3
2

q
v−3

vþ1 vþ1 0 0
ffiffiffi
2

p
v3 0 iv−3 ivþ2 0

v−1 −v−1 0
ffiffiffi
2

p
v3 0 ivþ3 0 0 iv−2

vþ2
1
2
vþ2

ffiffi
3

p
2
vþ2 0 ivþ3 0 1ffiffi

2
p ðv3 þ

ffiffiffi
3

p
v8Þ 0 −ivþ1

v−2 − 1
2
v−2 −

ffiffi
3

p
2
v−2 iv−3 0 1ffiffi

2
p ðv3 þ

ffiffiffi
3

p
v8Þ 0 −iv−1 0

vþ3 − 1
2
vþ3

ffiffi
3

p
2
vþ3 −ivþ2 0 0 −iv−1 0 1ffiffi

2
p ð−v3 þ

ffiffiffi
3

p
v8Þ

v−3 1
2
v−3 −

ffiffi
3

p
2
v−3 0 −iv−2 −ivþ1 0 1ffiffi

2
p ð−v3 þ

ffiffiffi
3

p
v8Þ 0

As a result, the as function as ladder operators:

a�1 ∶ 0 ← v−1 ↔ v3 ↔ vþ1 → 0; 0 ← v−2 ↔ v−3 → 0;

0 ← vþ3 ↔ vþ2 → 0; 0 ← v8 → 0; ðD11aÞ

a�2 ∶ 0← v−2 ↔ ðv3;v8Þ↔ vþ2 → 0; 0← v−1 ↔ vþ3 → 0;

0← v−3 ↔ vþ1 → 0; ðD11bÞ

a�3 ∶ 0← v−3 ↔ ðv3;v8Þ↔ vþ3 → 0; 0← v−2 ↔ v−1 → 0;

0← vþ1 ↔ vþ2 → 0; ðD11cÞ

where the plus operators work to the right and the minus
operators to the left.
Now consider the operator faceOcdfdbe. In the above

notations, this gives
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�
s3Os3 þ s8Os8 þ

1

2
aþi Oa−i þ 1

2
a−i Oaþi

�
ab
: ðD12Þ

Assuming Oab to be diagonal in the above basis, the
operator under consideration is also diagonal in the v�i
subspace with eigenvalues

v�1 ∶ O3 þO�
1 þ 1

2
O�

2 þ 1

2
O∓

3 ; ðD13aÞ

v�2 ∶
1

4
O3 þ

3

4
O8 þ

1

2
O�

1 þO�
2 þ 1

2
O�

3 ; ðD13bÞ

v�3 ∶
1

4
O3 þ

3

4
O8 þ

1

2
O∓

1 þ 1

2
O�

2 þO�
3 : ðD13cÞ

In the v3;8 subspace, the operator under consideration has
the following form:

1

4

�
4Oþ

1 þ 4O−
1 þOþ

2 þO−
2 þOþ

3 þO−
3

ffiffiffi
3

p ðOþ
2 þO−

2 −Oþ
3 −O−

3 Þffiffiffi
3

p ðOþ
2 þO−

2 −Oþ
3 −O−

3 Þ 3ðOþ
2 þO−

2 þOþ
3 þO−

3 Þ

�
: ðD14Þ

In our case we will have that Oþ
2 þO−

2 ¼ Oþ
3 þO−

3 , such
that this part is also diagonal.

APPENDIX E: SUMS AT FINITE TEMPERATURE

In this appendix, all integrals and sums are assumed to be
part of suitably regularized multidimensional integrals,
such that we do not need to care about convergence.
Consider the most general (up to a multiplicative con-

stant) second-order polynomial z2 þ azþ b with complex
conjugate (nonreal) roots. We have that

T
Xþ∞

n¼−∞
lnðð2πnTÞ2 þ að2πnTÞ þ bÞ

¼
Z þ∞

−∞

dp
2π

lnðp2 þ apþ bÞ

þ T lnð1 − e
i
TzþÞð1 − e−

i
Tz−Þ; ðE1Þ

where z� ¼ − a
2
� i

ffiffiffiffiffiffiffiffiffiffiffiffi
b − a2

4

q
, the roots of the polynomial. In

the case considered in this paper, the polynomials under
consideration are of the form ðzþ αTÞ2 þ β. In this case
we find

T
Xþ∞

n¼−∞
lnðð2πnþ αÞ2T2 þ βÞ

¼
Z þ∞

−∞

dp
2π

lnðp2 þ βÞ

þ T lnð1 − 2e−
ffiffi
β

p
=T cos αþ e−2

ffiffi
β

p
=TÞ; ðE2Þ

where we performed a shift p → p − αT in the integral at
the right. Using the notation (59), we can write

T
Z

d3p
ð2πÞ3

Xþ∞

n¼−∞
lnðð2πnþ αÞ2T2 þ p⃗2 þ βÞ

¼
Z

d4p
ð2πÞ4 lnðp

2 þ βÞ þ Iðβ; α; TÞ: ðE3Þ

If we start from an arbitrary polynomial function PðzÞ
with two-by-two complex conjugate zeros and with the
coefficient of the term with highest power equal to one, we
have that

T
Xþ∞

n¼−∞
lnPð2πnTÞ

¼
Z þ∞

−∞

dp
2π

lnPðpÞþT ln

�Y
z0

ð1−esgnðℑðz0ÞÞ iTz0Þ
�
; ðE4Þ

where the product goes over all zeros z0 of the polynomial
PðzÞ, and sgnðℑðz0ÞÞ is the sign of the imaginary part of the
zero. The roots of a polynomial can be easily found
numerically, making numeric evaluation straightforward.
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