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DIS dijet production at next-to-eikonal accuracy in the CGC
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We compute dijet production in deep inelastic scattering at low x in the dipole formalism at next-to-
eikonal accuracy. We calculate the contributions induced by single photon exchange of either longitudinal
or transverse polarization. We include all types of corrections to the eikonal approximation in the gluon
background field: (i) finite longitudinal width of the target, (ii) interaction of the quark-antiquark pair with
the subleading (transverse) component of the background field, and (iii) dynamics of the target which is
encoded in the z~-coordinate dependence of the background field. The final expressions for the dijet cross
section are written as the sum of a “generalized eikonal” contribution (where the longitudinal momentum
p* exchange between the target and the incoming quark-antiquark pair is allowed since the average z~
dependence of the background field is kept) and explicit next-to-eikonal corrections that involve decorated

dipole and quadrupole operators.
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I. INTRODUCTION

In the high-energy limit hadronic collisions are conven-
iently described by the effective theory called color glass
condensate (CGC) (see Refs. [1-3] for recent reviews and
references therein). The CGC effective theory relies on the
gluon saturation phenomena that is reached at sufficiently
high energies in the Regge-Gribov limit, where the increase
in the energy is provided by the decrease of the longitudinal
momentum fraction (Bjorken x) carried by the interacting
partons. In this limit, the gluon density of the interacting
hadrons increases rapidly with the increasing energy. The
rapid increase in the gluon density of the scattering hadrons
slows down due to the nonlinear interactions of the emitted
gluons at sufficiently high energies, causing the aforemen-
tioned gluon saturation phenomenon which is characterized
by a dynamical scale referred to as saturation momentum
Q. Gluon saturation ideas were initially studied through
nonlinearities of the classical Yang-Mills field theory
in [4-6] and the nonlinear functional evolution equation,
Balitsky-Kovchegov/Jalilian—Marian-lancu-McLerran-
Wiegert-Leonidov-Kovner (BK-JIMWLK) equation, derived
in [7-18].

Within the CGC effective theory, one of the most
frequently used observables to study the gluon saturation
effects is deep inelastic scattering (DIS) on a dense target
since it provides a clean environment to probe gluon
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saturation. DIS related observables are routinely computed
in the dipole factorization [19,20] where the incoming
lepton emits a virtual photon that splits into a quark-
antiquark pair. Then, the quark-antiquark pair is scattered
on the dense target. The interaction between the quark-
antiquark pair is described within the CGC framework, and
the rescatterings off the dense target are encoded in the
Wilson lines. On the other hand, the splitting of the photon
to the quark-antiquark pair is computed perturbatively.

Even though the gluon saturation phenomenon has shown
its hints in experimental data from the Relativistic Heavy lon
Collider (RHIC) in the USA, the Large Hadron Collider
(LHC) at CERN, and HERA at DESY, no consensus has yet
been reached concerning the discovery of the gluon satu-
ration. One of the main features of the upcoming Electron-
Ion Collider (EIC) in the USA is to provide a cleaner
environment to study the saturation effects than at the LHC,
but at lower colliding energies. Moreover, it will provide a
much higher luminosity than HERA, allowing the study of
less inclusive and more discriminating observables. Despite
the lower colliding energy, saturation effects should be
enhanced at EIC compared to HERA thanks to the use of
nuclear targets. Therefore, for saturation sensitive observ-
ables, a more precise theoretical framework is needed to
fully benefit from the EIC. This precision can be provided
either by performing the calculation of the observables at
higher orders in coupling constant g or by improving the
kinematical approximations adopted in the standard CGC
calculations.

Over the past ten years, we have witnessed a great effort
to compute the next-to-leading order (NLO) corrections to
the DIS related observables in the CGC. Computations of
inclusive DIS for massless quarks [21-27] and its fit to
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HERA data [28], as well as inclusive DIS for massive
quarks [29-31] and its fit to HERA data [32], diffractive
structure functions [33], diffractive dijet production in DIS
[34-36], exclusive light [37,38] and heavy [39,40] vector
meson production in DIS, inclusive dijet [41-43] and
photon + dijet production in DIS [44], inclusive [45,46]
and diffractive [47] dihadron, single inclusive hadron [48]
production in DIS have been performed at NLO accuracy
(or partial NLO in some of the cases).

On the other hand, as mentioned previously, another
way of increasing the precision of the calculations in the
saturation framework is to improve the adopted kinematical
approximations. The key approximation used in the CGC
framework is the eikonal one, and in general it amounts to
accounting for the contributions that are leading in collision
energy and neglecting all the energy suppressed terms in the
calculation of the observables. More precisely, from the
point of view of the highly boosted target that is described by
the background field A% (x), eikonal approximation amounts
to adopting the following three assumptions: (i) the back-
ground field is localized in the longitudinal directions
(around x* = 0), (ii) only the leading component of the
background field (which in our setup corresponds to the “—”
component) is taken into account during the interaction of
the projectile parton with the target and other components of
the background field of the target (transverse and “+”
components that are suppressed by the Lorentz boost factor)
are neglected, and (iii) the dynamics of the target is
neglected, which amounts to assuming that the background
target field is independent of the x~ coordinate due to
Lorentz time dilation. These three assumptions together give
the well-known shock wave approximation, and in this case
the background field of the target has the form

AG(x=, xT,x) 7 6(xT) A7 (x). (1)

While eikonal approximation is reliable for the LHC
energies and the computations adopting this approximation
are quite successful to describe the experimental data, for
energies at RHIC and the future EIC, energy suppressed
corrections can become sizable and thus should be included
in order to increase the precision of phenomenological
studies. This idea motivated a lot of studies that aim to go
beyond the eikonal approximation in the CGC framework
by relaxing all three assumptions listed above. Initially, in
Refs. [49,50] subeikonal corrections that stem from con-
sidering a finite width target are computed for the gluon
propagator and its application to single inclusive gluon
production, and various spin asymmetries in central pA
collisions were studied at next-to-next-to-eikonal accuracy.
In Refs. [51,52], it was shown that these corrections can be
attributed to the modifications of the Lipatov vertex in pp
collisions. The effects of subeikonal corrections on the
azimuthal harmonics for pp [53] and for pA [54,55]
collisions were also investigated. Recently, next-to-eikonal

(NEik) corrections that are related with the transverse
component of the background field [56] and the dynamics
of the target [57] have been computed for scalar and quark
propagators. Apart from the aforementioned works that
focus on the derivation of the subeikonal corrections to the
parton propagators and their applications to observables, in
[58—69] quark and gluon helicity evolutions have been
computed at next-to-eikonal accuracy. In [70,71] helicity
dependent extensions of the CGC at next-to-eikonal accu-
racy have been studied. In [72,73] subeikonal corrections to
both quark and gluon propagators have been calculated in
the high-energy operator product expansion (OPE) formal-
ism, and applied to study the polarized structure function g,
atlow x. Moreover, rapidity evolution of transverse momen-
tum dependent parton distributions (TMDs) that interpolates
between the low and moderate energies is studied in
[74-78]. A similar idea is pursued in [79,80] to study the
interpolation between the low and moderate values of x for
the unintegrated gluon distributions. Finally, an approach
based on longitudinal momentum exchange between the
projectile and the target during the interaction has been
followed in [81-83] to study the subeikonal effects. The
effects of subeikonal corrections are also studied in the
context of orbital angular momentum in [84,85].

In the single photon exchange approximation, the DIS
process can be expressed as the product of a leptonic tensor,
encoding the virtual photon emission by the incoming
lepton, and a hadronic tensor, encoding the interaction of
the virtual photon with the target. Integrating over the
azimuthal angle of the scattered lepton, the hadronic tensor
is projected into two scalar functions as

d61+target—>l’+dijet+x . Oem { <1 . ﬁ)
dxg;dQ%dPS.  mxy 07 YT
day;ﬁdijel
dP.S.

(xBja Q2)

do: _gijet

=¥ ps

(xij QZ)]- (2)
Let us denote k; the momentum of the incoming lepton,
g" the momentum of the exchanged virtual photon (so that
ki — g" is the momentum of the scattered lepton), and P,
the momentum of the target. Then, the usual Lorentz
invariant variables for DIS are defined as follows. The
Mandelstam s variable for the lepton-target collision is
s = (k; + Py )?, the photon virtuality is 0 = —¢* > 0, and
the Bjorken variable is xp; = Q?/(2Py, - ¢). Finally, the
inelasticity variable y is defined as y = 2Py - q)/s =
Q?/(sxp;). In Eq. (2), dP.S. is the Lorentz invariant phase
space measure for the produced hadronic final state (the dijet
in our example). The two scalar functions appearing in
Eq. (2) can be interpreted as cross sections for the virtual
photon—target subprocess, in which the photon has either a
transverse or longitudinal polarization. The aim of this paper
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is to calculate these two cross sections at NEik accuracy and
at leading order in the QCD coupling «,, in which the
produced quark and antiquark are identified as jets.

The outline of this paper is as follows. In Sec. II, we write
the S-matrix elements for the virtual photon to dijet
processes in terms of propagators in the background field
of the target. At NEik accuracy, there are two contributions
to these S-matrix elements, with the photon splitting to
quark-antiquark pair occurring either before or inside the
target. In Sec. III, we recall our earlier results on the NEik
corrections to the quark propagator through the whole
target, and calculate the quark propagator from inside to
after the target at eikonal accuracy. Sections IV and V
are devoted to the calculation of the contribution to the
S-matrix with photon splitting inside the target and before
the target, respectively. Then, Secs. VI and VII are devoted
to the calculation of dijet production cross sections from
longitudinal and transverse virtual photons, respectively,
appearing in Eq. (2). Finally, the summary and outlook are
provided in Sec. VIII. The detailed Dirac algebra calcu-
lations required to obtain the cross section are presented in
Appendix A. In Appendix B, we explain how to calculate
the cross section for scattering processes off a dynamical
background field (with dependence on the z~ light-cone
coordinate), generalizing the standard formula for the static
background field case.

II. REDUCTION FORMULA FOR THE S-MATRIX
AND INTEGRATED PROPAGATORS

A. LSZ-type reduction formula

Let us consider the process in which a virtual photon
of momentum ¢ and polarization A splits into a quark of
momentum k; and an antiquark of momentum k,, in the
presence of a gluon background field A#(x) representing the
target. The S-matrix element for that process can be obtained
following the Lehmann-Symanzik-Zimmermann (LSZ)
approach. The first nonzero contribution to the S-matrix
is at order e in QED, due to the photon splitting vertex.
Moreover, that process does not require QCD interactions
beyond the scattering with the background field. We are
interested in the lowest order contribution in perturbation
theory in a possibly strong background field, which is then of
order eg" at the S-matrix level, with g.A*(x) resummed to all
orders. At this order, the S-matrix can be written as'

'"We use the metric signature (4, —,—, —). We use x* for a
Minkowski 4-vector. In alight-cone basis we have x* = (xt, x,x7)
where x* = (xo + x3) / /2 and x denotes a transverse vector with
components x'. We will also use the notations x = (x,x) and
k = (k*,Kk). Finally we introduce the on-shell momentum =
(k*, Kk, IE_) constructed from k = (k™, k), with by definition =
(k% + m?)/(2k*) foraquark of mass m. We also use the condensed
notations u(1) = u(ky,h;) and v(2) = v(k,, h,) for the Dirac
spinors, where i or h, is the light-front helicity.

Sq]Z/2<—y* :/d4Z€;};(q)e_iq'z<0|d0ut(2)bout(1)
W(z)(—ieesy")¥(z):]0). (3)

In Eq. (3), byy (1) and d,,(2) are the annihilation operators
for the outgoing quark and antiquark in the asymptotic free
Fock space, whereas eﬁ(q)e"'q'Z accounts for the incoming
virtual photon, and the normal-ordered current operator
comes from the photon splitting vertex. The quark field
¥(z) in Eq. (3) is a quantum field in a modified interaction
picture, in such a way that the evolution of W¥(z) is
generated by a Hamiltonian quadratic in the quantum
fields, but with terms of any order in the background field.
Hence, not only the free limit of the theory but also the
interactions of quantum particles with the background field
contributes to the evolution of ¥(z). Only the interactions
between quantum particles are removed from the evolution
of W(z) in this picture with respect to the Heisenberg
picture. Moreover, we assume that the background field
alone cannot lead to pair creation or pair annihilation of
quantum particles. Then, the only possible contribution to
the expectation value in Eq. (3) factorizes as

<0|d0ut( ) out( )

W(z)(~ieesr")¥(z):(0)
= (010w (1)¥(2)[0) (—ieesr*) (0ldou (2)¥(2)[0).  (4)

Assuming that the background field decays fast enough at
large x™, the annihilation operators b, (1) and d,(2) can
be expressed in terms of the quark field ¥ in the same
modified interaction picture as [56]

bou(1) —llmx+_,+oo/d X/dx eifixg

don(® =timy s [y [ dye b)), (@

r¥x),  (5)

Finally, the Feynman quark propagator in the gluon
background field is defined in terms of the field ¥ in that
picture as

Se(x.y) = (O[T (¥(x)¥(y))[0)
= 0(x" = y°)(0] ¥ (x) ¥ (»)[0)
= 00° =)0 P()P)0).  (7)
where the implicit spinor indices and color indices of the
fields are not contracted, and where the minus sign in

the second term is due to the Fermi-Dirac statistics for the
quarks. Hence, one has

(0% (x)¥(2)|0) = Sp(x. 2)
(01®()¥(2)[0) = =SF(z.y)

for x™ = +o0,

for y* - +00. (8)
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All in all, one arrives at the expression

Sgiarer zlimx+yy+_,+oo/aax/dx‘/dzy/dy‘e”gl'xe“z”

x €4(q) / d*ze™ 2 (1)y* Sp(x, z)(—ieesy") (=Sp(z.y))r T v(2)., 9)

for the S-matrix element at lowest order eg” but with the
interactions with the background field resummed to all
orders.

For convenience, we define the reduced quark and
antiquark propagators

S$H(2) = limyi 4o / d2x/ dx= e a(1)y* Sp(x, 2),
(10)
S1(z) = limy-_ | / d’y / dy= ™ (=1)Sr(2.)r " v(2).
(11)
so that the S-matrix element can be written as

Sqll_lz‘—y* = _ieefeﬁ(q)/d4ze_iq.ZSqF(Z)7ﬂS‘?f(Z)' (12)

T4 ~ 2 N
S p(z) =lime o [ dx | dx~e™ (2,,)46

d*p
(27)*

. 4 . Y
= llmx+—>+ooelkl < e_lkl.zelkl Xt /

B. Vacuum case

As a preliminary, let us consider the vacuum limit of
Eq. (9), corresponding to the absence of the background
field. No particle production is expected in that case, if the
photon is spacelike, but it is instructive to check why this is
the case in our setup. In the absence of a background field,
the quark propagators involved in Eq. (9) reduce to the
standard Feynman propagator in vacuum

d* . [ m
Sor(x.y) = / #e"(’””’%- (13)

In the vacuum, the reduced quark propagator (10) is
then

. ) i( +
Srar (P;(—ldmzrj-) i€)
(2n035“)(2-—kl)e‘“x+‘z””'ﬁ(1)r*(;ééfggéﬁg;gj- (14)

Indeed, due to the presence of the y*, the term in p~y™ drops from p. We can then replace p by J to emphasize that
the numerator is independent of p~. The integration over p~ thus only receives a simple pole contribution, and one

obtains

86 p(2) = limyr et < ez o= =R [O(xt — 79)0(k{ ) = 0(z+ = x*)O(=k7)]a(1)y+

= ifi % a(D[{r* = (= mr]

= efreq(1),

(F, +m)
2k{

(15)

using the identity @(1)(¥ — m) = 0, and dropping 0(k{") because the condition k; > 0 for the produced quark is already

implicitly present in the definition of the observable.

Similarly, for the antiquark reduced propagator (11), one finds in the vacuum case

= o7 y(2).

< . iy (AP iy i(pf +m)
S6.7(2) :llmy+—>+oo/dZY/dy e'k”/We (1) oy

(p/2 —m? + ie) +1}(2)

(16)
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Now we can compute the vacuum contribution to the
S-matrix element as

Sqlflr—y*lvac:_ieefeﬁ(Q)/d4ze_iq.z‘§z‘0(z)7ﬂsgo(z)

=—ieepeh(q)(2n)*6W (g =k = ky)a(1)y"v(2).
(17)

Hence, we obtain the 4-momentum conservation 12’1' +
k5 = g* in addition to the on-shell conditions k{ = m? and

k3 = m? and to the requirements ki >0 and k{ > 0 for
produced particles. From all of these relations, it is possible
to calculate the virtuality of the incoming photon as

7 =2q" (ki + k) -

2kt

(k3 + m?)
+ 22k+ —q>  (18)
2

Introducing the notations

K=k, -z9=-k; + (1 -2)q, (19)

with the positivity of k" and k5 implying 0 < z < 1, one
finds from Eq. (18)

N = —ieesel(q)

/
_ieesel(q) / Pz
)/

q192<7"

—ieesel(q dzz/dz‘

according to the region in which the photon splitting
happens. In the third term, the photon crosses the medium
and splits afterwards. At the LO accuracy in QED that we
are considering here, the photon does not interact with the
gluon field, so this third term is a vacuum contribution. By
contrast, the first two terms in Eq. (21) contain both
vacuum and medium-induced contributions. As we have
recalled in the previous subsection, the total vacuum
contribution is zero. Hence, we can subtract the total
vacuum contribution region by region from the S-matrix
element and obtain

bef
S‘il Grer”

S .+ Sin

QG

(22)

91q2<7"

where

== T,
7 z2(1-72)

(20)

meaning that the photon is timelike. However, the photon is
always spacelike (¢*> < 0) in a DIS process. Hence, the
condition ¢? < 0 is not compatible with the 4-momentum
conservation Ig’f + 12’2‘ = ¢* and the other requirements, so
that the vacuum contribution (17) to the S-matrix element
vanishes in that case. We have simply checked the obvious
statement that there cannot be a DIS process (including
particle production) without interaction with the target.

C. General structure of the S-matrix element

Letus now consider the process of dijet production in DIS
at low x, with a gluon background field representing the
target. Physically, the gluon field strength of the target
should decay faster than any power for z — +oo due to
confinement along the longitudinal direction. For simplicity,
we assume this background field strength to have a finite
support of length L™ along z*, allowing us to define the
range from —oo to —LT /2 as before the target, the range
from —L* /2 to +L*/2 as inside the target, and the range
from +L7" /2 to +oo as after the target. Moreover, we choose
a gauge in which not only the field strength but also the
gauge field is vanishing outside of the target, for example the
light-cone gauge A" = 0. The S-matrix element from
Eq. (12) can then be split into three contributions as

2 o .
dzt e ST (2) 457" SH(2) 55
’ dete a3 1(2)as7"SH(2) 55

+oo L ——
/L+/2 dZJre_lq.ZSg,F(Z)aéyﬂsg,F(Z)éﬁ’

—L*/2
/ Pz / dz- / dzt it
é
Sr(z

(k,+k2)zu(1)yﬂv( )], (23)

(21)

bef

Nyt T —zeefe’l

x St

.
Sin_ . =—ieescl(q) | &z | dz= e dzte %
01327 Ion 12

S — ei(];1+/;2)~z ﬁ(])yﬂv(z)}

x [S4(2)r"5(z) (24)

are the medium-induced contributions corresponding to
photon splitting before (see Fig. 1 left panel) or inside (see
Fig. 1 right panel) the target, respectively.
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. k1, by

IR W

FIG. 1.
(left panel) and photon splitting inside the target (right panel).

D. Power counting beyond the eikonal approximation

Since the aim of this study is the calculation of the first
subleading corrections beyond the eikonal approximation,
the NEik corrections, let us remind the reader how we
define the power counting in the high-energy limit in order
to have an unambiguous definition of the NEik corrections.
This issue has been discussed in depth in Ref. [57], and we
will provide here only a short reminder.

The high-energy limit of a collision process can be
understood, for example, as the limit of the infinite Lorentz
boost of the target. In that case, one can classify contri-
butions according to their scaling with the Lorentz boost
factor y, of the target.

Scaling of the background field: Under a large active
boost of the target along the x~ direction, the compo-
nents of the background field strength are transformed
following the standard Lorentz transformation rules
for tensors. In light-cone coordinates, the tensor
components are enhanced by a factor y, for each
upper “—"" or lower “+” index under such a boost, and
are suppressed by a factor 1/y, for each lower “—” or
upper “+” index. Hence, the components of the
background field strength scale as

F oy, >1, (25)
Flo(r,)’ =1, (26)
Fho(r)’ =1, (27)

F*fo<1<< 1, (28)

Vi

under a large boost of the target along the x~ direction.
These transformation rules can be extended to the
background gauge field of the target, resulting in the
following scaling:

A (x) oy, > 1, (29)

Al(x) ()" =1, (30)

q, A

Y; ko, o

Contributions to dijet production in DIS at next-to-eikonal accuracy: photon splitting into a ¢g pair before reaching the target

1
At (x) x — < 1.
Vi

(31)

Scaling of derivatives: All the components of the

momenta associated with the projectile photon or the
produced jets are defined to be invariant under a large
boost of the target. By contrast, components of the
momenta associated with the target, or equivalently
derivatives acting on the background field, follow the
same scaling rules based on the counting of “+” and
“— indices. Indeed, the action of a partial derivative on
a tensor leads to a higher rank tensor, so that

1
O_FM o — FM < F,

(32)

Vi
0. FH oy, FH > Fr, (33)
0 & (y,) " FH, (34)

and similar rules apply for partial derivative acting
on the background gauge field. Moreover, due to the
scaling rules of the components of the background
gauge field given in Egs. (29), (30), and (31),
background covariant derivatives follow the scaling
rules as partial derivatives when acting on the
background field.

Scaling of the width of the target: Since the back-

074016-6

ground field strength F#¥(x) represents a hadronic or
nuclear target subject to confinement, it should decay
faster than a power for x™ — +o0. Hence, the profile
of F#(x) along x™ has a finite width that we note as
L*. Under a large boost of the target along the x~
direction, that width scales as

1
Vi

due to Lorentz contraction. In particular, in the limit of
infinite boost, F**(x) becomes a shock wave of
vanishing width along the x* direction. For the
purpose of power counting, the finite width L™ of

(35)
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F*(x) can be assimilated as a finite support for
F*(x) along the x*. In a generic gauge where
A~ (x) #0 [for example, the light-cone gauge
AT (x) = 0], the background gauge field A#(x) has
a finite width of O(L™) along the x™ direction, which
becomes a shock wave in the infinite boost limit.
Therefore, each integration over the position x of a
background field strength or gauge field insertion is
effectively restricted to the small width L' along the
xT direction, and it can thus be counted as a
suppression by a factor of L™ or equivalently of
1/y, at large y,.

With these power counting rules, eikonal and NEik con-

tributions to propagators can be defined as follows:

(i) In the eikonal approximation, only the leading
component A~ (x) of the gauge field is kept.
Because of its enhancement (29) with y,, each power
of A~ (x) compensates the suppression due to the
integration over its x* coordinate. Hence, multiple
insertions of A7(x) have to be resummed in the
eikonal approximation, leading to the Wilson lines
describing the interaction of each parton in the
projectile with the target in the CGC formalism in
the eikonal approximation. Because of the para-
metrically small L* width of the target, each A~ (x)
insertion in a Wilson line has the same transverse
position x in the eikonal approximation. Finally,
expanding A~ (x) as a series in x~, each further term
comes with an extra d_ acting on the background
field, and is thus further suppressed by an extra 1/y,
factor under large boosts. Therefore, in the eikonal
approximation only the zeroth order term in this
gradient expansion is kept, so that the x~ depend-
ence of A~ (x) is neglected.

(ii) Going from eikonal to NEik accuracy for a
propagator, one includes contributions that are sup-
pressed by one power of 1/y, at large y, compared to
the eikonal contribution. Such terms arise as follows:
(a) by replacing an enhanced A~ (x) insertion with a

nonenhanced A/ (x) insertion,

(b) or by accounting for the transverse motion of the
projectile parton over the duration Lt of the
interaction with the target, and

(c) or by including terms with one d,- derivative
acting on the background field in the gradient
expansion of A~ (x) in x~.

|

In practice, when calculating a cross section, one may
encounter technical difficulties when squaring the ampli-
tude if the gradient expansion of all A~ (x) insertions is
performed around a fixed value of x~ such as x™ = 0. To
bypass this issue, one can instead perform the gradient
expansion of all A~ (x) insertions around a common value
of x~ and write the amplitude (or S-matrix) as an integral
over that variable. This amounts to resumming a subset of
noneikonal corrections together with the eikonal term, and
one obtains what we refer to as generalized eikonal
approximation.

In this study, the aim is to calculate the dijet production
in DIS, including all types of NEik corrections in the gluon
background field of the target. In the contribution (23) to
the S-matrix element, the photon splits at light-cone time z*+
before the medium, outside of the background field. Hence,
the integration over z™ does not bring a suppression at large
7, in that case. To calculate both the eikonal and NEik terms
in the contribution (23) to the S-matrix element, one should
thus include both eikonal and NEik terms in the reduced
propagators $%(z) and S%(z).

By contrast, in the contribution (24) to the S-matrix
element, the photon splits at light-cone time z* inside the
medium, so that the integration over z* brings a suppres-
sion by a factor L™, and thus 1/y,. Hence, the expression
(24) does not contribute at eikonal accuracy, and starts
contributing only at NEik accuracy. To calculate the NEik
terms in contribution (24) to the S-matrix element, we
should thus restrict ourselves to the eikonal expression for

the reduced propagators S%(z) and S%(z).

III. QUARK PROPAGATOR IN GLUON
BACKGROUND FIELD AND EIKONAL
EXPANSION

The quark propagator in the gluon background field has
been studied at NEik accuracy in Refs. [56,57], in particular
the case of propagator from before to after the target. We
will remind the reader of the results of these studies in this
section. In Sec. III B, we will also calculate explicitly the
quark propagator from inside to after the target at eikonal
accuracy, required in order to evaluate contribution (24)
with photon splitting inside the target.

The quark propagator in a background field with only the
A~ component is

Ak 0 ey dp Pk ik — iz (pr—k*
SF(xvy)ﬂa|PureA‘,Eik = lﬂa5(3>(ﬁ_X)7+ Zme K (=y7) +/W W@ p+yk/dz eie (' =k")
X /dzze—”'“"k)(isz;m) rHOt —y")O(pH )0 ) UR(x", ¥y 52,27,
: { +
00— AW x5 2,2, ) ) (36)
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at eikonal accuracy, but with an overall z~ dependence
retained in the Wilson lines for further convenience. This
corresponds to what we call the generalized eikonal
approximation for the propagator. The first term on the
right-hand side of Eq. (36) corresponds to an instantaneous
quark exchange. By contrast, the two terms in the bracket
correspond, respectively, to the propagation of a quark or of
an antiquark in the background field. Here, the z~ depen-
dent Wilson line is defined as

UF(x+,y+;

z,77) =P, exp {—ig /yiﬁ dz*A‘(z)}, (37)

where P, denotes ordering of color matrices along the z*
direction. In the following, when the 7~ dependence of the
Wilson line is dropped, it corresponds to evaluating
Eq. (37) at z= = 0, such that

Up(xt.y"z) =Up(xt. ytiz,27 =0).  (38)

& 3
Se(x.y) = / G T

o /4
L pAm) p’ +k/) /Li
<)

2 + 4 {MF(Zv )_ +k+

ﬁ/ [“F( <

8 d 5

_i_i
4(pt+kT) J-

and for the case of antiquark propagating through the whole medium, meaning y™ > L™ /2 and x™ <

&Ep [ &k
Sr(x.y) = / (27)’ / (27)’
(B m)

The expression (36) contains the full eikonal result for any
kinematics, provided the background field only has a A~
component. By contrast, if the background field has
transverse components A; as well, new contributions to
the quark propagator arise already at eikonal accuracy if at
least one of the end points x or y is inside the medium. Such
contributions will be derived in Sec. III B.

A. Propagators from before to after the medium
at NEik accuracy

If we restrict ourselves to propagation through the whole
medium, with y before and x after (respectively, x before
and y after) the support of the background field, the
transverse components A; only matter at NEik accuracy,
and the first term in the bracket in Eq. (36) [respectively, the
second term in the bracket in Eq. (36)] gives the entire
result at eikonal accuracy. In such cases, the full NEik
corrections were calculated in Refs. [56,57]. For the case of
quark propagating through the whole medium, meaning
xt > L"/2 and y* < —L* /2, one has®

emix pety v P elZ (pt=k*) / dZZe—iZ-(p—k)

-~ LJr
[ ( ,Z ,ZZ)DZJUF<Z+,—7;Z,Z‘>}

L+
7/ DZ/Z’{F< 7_7;Z7Z_>:|

AU, (L2+’Z*;z,z_>9t-Fu(z)UF<Z+’_%;Z’Z_)}(k+ )+0(NNElk) (39)

2k*

—L*"/2, one has

9(—P+)9(—k+)e_ix'ﬁeiy";/dz‘eiz(”+‘k+)/dzze"'z'<1"k)

LAk g% L Nsm (L
2’T}/J’{—U}(z,z)—m dz Z/l z+,—7;z,z DZ;U} 7,z+;z,z

i L Lt 5y (L
m/ (e 2%1‘) P ()

I
4(p +k+

In the above formulas we use the notation

/_ dz U, (z ,——,z,z‘)gt.]-"ij(z)u; (%,z*;z,z‘)} (ﬁz‘; )+ O(NNEik). (40)

Do = 04 +igt- A(2), (41)

’In the case of Wﬂson lines traversing the whole medium, in order to avoid unnecessary cluttering, we adopt the compact notation

Up(z.27) =Up(s .~

% ;2,77 ), and similarly we will use the notation U (z)

+

=Ur(y .4 :2).
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D, = 04 —igt- A,(2), (42) B. Propagators fr(?m inside to after the medium
at eikonal accuracy

<>

_ _ 5 . To evaluate the inside contribution (24) to the S-matrix

¢ ¢ ¢ i gt~ Au) (43) element, we need the quark propagator Sy (x, y) from inside

Fa — 0., A%(2) — 0. A(2) — qFabe AP () AC (7 44 to after the medium at eikonal accuracy, in the outgoing

w(2) = 0p AY(2) = 0p AU(2) = 9f AU ANZ) - (44) quark kinematics x* > L*/2 and —L*/2 < y* < L*/2,

as well as in the outgoing antiquark kinematics y* > L*/2

where ¢ are the SU(N,) generators in the fundamental ~ 2nd —L7/2 <xT <L7/2. Let us first focus on the

representation. Note that in Egs. (39) and (40), the overall former case. From Ef] (36), one can r_ead off the quqk

z~ dependence of the Wilson lines is kept, so that in ~ Propagator in pure A background.at eikonal accuracy in

particular, the first term in the bracket in both equations the+ m51deffter +quark kinematics x> L*/2 and
corresponds to the generalized eikonal approximation of — —L /2 <y" <L"/2, and find

the propagator.

for the background covariant derivatives and field strength,

&Pp [ Pk e BAEm) (R Am)
1A, 2 ~ —ix-p iy kT —iy-
SF(x’y)ﬂ0t|purZA‘,Eik = W/We(pﬂa(kﬂe P giv K —iyk o yt e
x / dz=ei* (P k") / d*ze7 P U L (xF, YT 2,27) gy (45)

In Eq. (45), we have dropped the phase factor ¢ F since it would contribute only beyond eikonal accuracy, because
|y*t| < L™/2. Expressing the Dirac structure of that contribution as

(# +m)y* (R+m) = (p+m)[{y" K} = K=m)y*] = (§ + m)[2k" = (B —m)y" — (K= p)r']
= (P +m)2k" = (k" = p)yy* + (k' = p))r'y]. (46)

thanks to the identity (# + m)(p —m) = (p> — m?) = 0, one obtains

&*p &Pk o0(p™) A PR )
SF(xyy)ﬁa|;ﬁ;ZA—’Eik :/(2753/(2”53 2 O(kT)e P ey k _’y'k/dz—elz (p*—k )/dZZe—zz-(p—k)

pt—kt) pi— K i )
X (p+m) {1 +—( e )7 ]/++—< T )y+y Up(xT,yT 2,2 ) pe
d*p &Sk 0(pT) L P .
:/ (2:53/ Gy 2p7 (K _ly'k/ deerir >/ dmet vy
yrt — Y — _
X (ﬁ —|—m) |:1 + i i0,- — T i 0,i :|Z/{F(X+,y+;Z,Z )[)’a' (47)

As explained in Sec. I1 C, the z~ dependence of the background field and of Uy (x™, y*;z, z7) is parametrically slow for a
highly boosted target due to Lorentz time dilation. For that reason, the term in 0.-Up(x", y*; z, z7) is a NEik correction. To
evaluate Eq. (24) at NEik accuracy, we need the propagator (47) only at strict eikonal accuracy. In Eq. (47), it is thus safe to
neglect the term in 0,-Up(x", y*;z, z7). Moreover, the whole dependence of Ux(x™, y*;z,z7) on z~ can be neglected as
well. It is then possible to perform the integral over z~ in addition to the integral over k. One finds

& dkt9(p* o )
el = [ s [ G Ao 2ms(p - k) [ ez

(2z)* ) 2z 2p*
Y =
X (p+m) [1 —ml Oy :|UF(X+’y+;Z)ﬂa’ (48)
and finally
&Ep o(pt) o i
IA, P o\p —ix B iy pt —iv Vv .
SF(x’y)ﬁ(z|pufZA_,Eik :/(271.)3 2p+ e Pe P e yp(ﬁ—i_m) l:l _2p+layi:|UF(x+’y+>y)/}a' (49)
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In addition to this pure A~ contribution, the quark
propagator in that inside-after kinematics also receives
an eikonal contribution from single interaction with the
transverse components of the gauge field. In general,
the contribution to the propagator due to single insertion
of the transverse field is

5SF(x’y)|singleAJ_ _/d4WSF(x’W)'pureA'[_igyjta]

x A;l (W)SF(W’ y) |pureA‘ . (50)

Naively, because of the integration over w restricted to the
inside region, in which A¢(w) is nontrivial, the contribution
(50) seems to be a NEik correction. However, because of
the instantaneous term present in the propagator in the pure
A~ field (36), this integration can be removed, and an
eikonal contribution can indeed be obtained’ from Eq. (50),
with the transverse gauge field inserted either at w* = x*
or at wT = y*. In the inside-after kinematics x* > L*/2
and —L%/2 < y* < L*/2 under consideration, the gauge
field vanishes at x™ but not at y™, so that Eq. (50) provides
an eikonal contribution

1A, .
oSk (X y) |smgleAl Eik / d4WSF (x’ W) |pur2A*,Eik[_lgyj ta]‘A? (W)SF<W7 y) |pure A~ instant.

/d4 /d3p 9(p
27)® 2p*

X [—igy 1| A%(w)8™) (w — y)r "

—txﬁeivv’p*e—iw'p(ﬁ + m){ |:1 _

dg*
2 2q*

4,0

—g 7; IW] Up(xT, W+;W)}

— =i Wy (51)

where we have neglected the w™ dependence of the Aj‘ following the eikonal approximation. In Eq. (51), the term
containing the 0, derivative comes with a factor y " y'y/y* = y*y*yiy/ = 0, and thus disappears. Performing the integration

over w, and then over g™, one finds

&Epopt) o yry/
350t = [ s A emere o m) (-0 E Lty o A G (52)

(27)* 2p*

The full quark propagator at NEik accuracy in the inside-
after kinematics with outgoing quark, x* > L*/2 and
—L*/2 <yt < L*"/2,is then the sum of the expressions
(49) and (52), which can be written as

d3p o(pt
S = [ G g e B 5
rr, ey Pt emive,
X [1 TS ]e e (53)

We emphasize that the propagator contributions given in
Egs. (49) and (52) are of order (y,)? according to the power
counting rules introduced in Sec. IID and therefore
corresponding to eikonal order.

*Because the Dirac structure of the instantaneous contribution
to the propagator is simply y*, we would get y*y/y* = 0 in the
case of two instantaneous propagators separated by a transverse
field insertion. Because of this observation, there is no eikonal
contribution to the quark propagator in inside-after kinematics
with more than one transverse gauge field insertion.

[

Following the same steps, one can also calculate the
quark propagator at eikonal accuracy in the inside-after
kinematics with outgoing antiquark, meaning y* > L*/2
and —L7/2 < x* < L*/2. One finds

7 &k O(—kt) . - .
S B

}w(y cix)(F 4+ m).

(54)

IV. PHOTON SPLITTING INSIDE THE MEDIUM

To calculate the contribution to the S-matrix element
at NEik accuracy from the diagram with photon
splitting inside the target (see Fig. 1 right panel),
Eq. (24), we need the expression for the reduced propa-
gators S%.(z) and S%(z) at eikonal accuracy when the vertex
location z# is inside the target, meaning —L*/2 <
z" < L*/2. In the case of the reduced quark propagator
5%.(z), it simply amounts to insert the expression (53) into
the definition (10) as

074016-10



DIS DIJET PRODUCTION AT NEXT-TO-EIKONAL ACCURACY ... PHYS. REV. D 107, 074016 (2023)

S‘?’(Zﬂgk - hmx*—ﬂroo / d2 /dx e’kl +SF(JC Z)|E1k
O(ky) _ yry e— R
= 2k+ ( ) +(k/1+m)uF<+00,Z 5 )|:1_2ki~> lDz,' et kle k,
L+
= MF( 5 Z ,Z)M<1) |:l };k}; 1:| ik p-iz kl (55)

using the identity @(1)(¥; — m) = @(k,, hy)(K; — m) = 0. The Heaviside #(k]) can be dropped since the produced quark
has by definition k{ > 0. Moreover, since the gauge field is assumed to vanish outside of the target, it does not matter if the
end point of the Wilson line is taken at +oo or at +L7" /2.

Similarly, inserting the expression (54) into the definition (11), one finds the reduced antiquark propagator at eikonal
accuracy from z* inside the target as

St = limy oo / dZY/dy‘e”é”(—l)SF(Z,y)|}§1f'7’+v(2)
- . i Lt
= i<k gmizk: {1 + % lDZ/:| v(2)U, (7 2t z). (56)

Now, we can calculate the contribution to the S-matrix from photon splitting inside the target by inserting the expressions
(55) and (56) into Eq. (24), and dropping the z™ dependent phase factors, which would contribute only at NNEik accuracy
in the S-matrix and cross section. Hence,

. L2 .
i = _ 2 ~(ki 4k =g ) +7 _—i(k+k;,—q)-
SlInﬁr—V* leefe /d /dz e'* /—L+/2 dz M(l){ e—i(ki+k, (I)Zyll
Lt rtr —q)z rY =1, (LT .
—l—UF( > ,Z ,Z){ 2k+ ,] —i(k;+ko—q) y"[l—l— 2k+ lDzj Up - —., 752 ) pv(2)

= —ieese)(q)2m8(k{ + k3 — /d2 / dz"u( ( Zhz )
L+/2 2

X { }/ v }/ﬂ iD, —i(k;+k,—q)z + e~ i(ki+ky—q)z —}/ v 7/] l'_>

2 2% 7
Yty - _ (L,
y LIEE P D emitkitkema)z D Ay iz )0(2). (57)
(2k7)(2k3) 27

The color structure from the second term can be simplified as

Lt (Lt L+ Lt
[L{p<7,z+;z>D—Z;U’ <2 ,zt Zﬂ {UF< .zt >(D—ﬂ)_ U (2 25 )]
Lt — Lt
(5 )+ ()
< LJr
{ < ,zT; >T%J1}(,ZWZ>]
2
1 Lt
dufuls il )
Lt <~ . LT
{ (2 ) pz,-uF(z,z+;z)] (58)

\S] \

and similarly one gets for the first term
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Lt Lt
|:Z’{F (7,Z+; Z) (D_Z,Ll; (7,Z+;Z>] =

Using these relations, one arrives at

1 Lt <> Lt
3 [uF (7 ,7t; z) DU}, (7 .7t z)} . (59)

Lt)2

S = —ieepel(q)2n8(kf + k5 —q") / dPze~ikitka—a)2 / dz*

i

—L*)2

X { [Wu(l)}ﬁ}”?”v(ﬁ +@U(1)7’l7+7’]”(2)} {UF <7,Z+;Z> DUy <7’Z+;Z>}

+
2k Kt

+
+

2

where the covariant derivatives now act only on the Wilson
lines, within the square brackets, and not on the phase
factor.

In light-cone gauge, both the longitudinal and the
transverse polarization vectors obey €; (¢) = 0. Hence,
the last term in the bracket in Eq. (60) cannot contribute
to the scattering processes.

A. Longitudinal photon case

In light-cone gauge, the longitudinal polarization vector
can be chosen as

%@e¢@z%¢. (61)

Upon inserting this polarization vector in Eq. (60), the first
two Dirac structures vanish as well, due to the identities
y'y" =0 and {y*,y/} = 0. Therefore, in the case of a
|

o L
u(yty'y/v(2) [UF (— 2tz

(LT
)5;f§z¢(zr¢+n)}}, (60)

longitudinally polarized photon, the inside contribution to
the S-matrix element vanishes at NEik order:

Sin

M ey, = 0+ O(NNEik), (62)

B. Transverse photon case

For a transverse photon, the two possible polarization
vectors in light-cone gauge can be written as

€5 (q) =0,
e (q) = €,
B qié‘i
€ (q) = Tﬁ’ (63)

in terms of two-dimensional polarization vectors ¢} that are
momentum independent. Upon inserting these polarization
vectors in Eq. (60), one gets

i j _ o 1 _ ; )
Sogrey;, = €es€2n8(k{ +ky = q") | = u()y*y/y'v(2) = = a(1)r'y*r/v(2)
! 4k 4k}
. L")2 L+ <« L+
X/dZZe—t(kﬁkz—(I)‘z/ dzt Uy 7tz DZ/U;- Z o). (64)
—-L)2 2 2

It is convenient to extract the parts of the Dirac structures that are either symmetric or antisymmetric under the exchange of i

and j. Then, one finds

+

g
ki kS

+ - 5 +
*{L{p<%,z+;z> Dzju}(%,zﬂz)}, (65)

Si;@«—y’; = ee,el2md(k + k3 —q*)

X /dzze—i(k|+kz—q)-z /L /2
—-Lt)2

(B2 4 S o)

where, as a reminder, the covariant derivative acts only on the Wilson lines, within the square brackets, and not on the phase

factor.
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V. PHOTON SPLITTING BEFORE THE MEDIUM

It remains now to calculate the contribution (23) to the S-matrix, in which the photon splits before the target, at NEik
accuracy (see Fig. 1 left panel). For that purpose, we should first calculate the reduced quark and antiquark propagators
S%.(z) and 5% (z) at NEik accuracy, using the results of Sec. TIL.

A. Calculation of the reduced propagators from before to after the medium

When the photon splits before the target, we use, for the quark propagator in the formula (10), the expression (39). Then

we get
. , L d*p Bk o B
St(z) :11mx+_>+°o/dzx/dx‘e’k"xu(l)y+/(2753/(2”33/5111_6”’ (P =KDQ(kT)O(pt)e P eitk

(ﬁ+m) 2v ,—iv-(p—K) 1 % + LY +. —
X TS % /dve (p- Up(v,v7) + ++k+/_%d1} Uy T,U,V,U
4

gy R E N (e N )
x( 19 Fij(v) 7 Dyi —iDyi Dy |Up| v SV TR (66)

Next we use y*(# + m)y*t = 2p*y™ and integrate over x and x~ to get (27)?6® (k; — p) and 2z5(p* — k). Performing
the integration over p we obtain

~ Bk o . .
§4(2) = a(1)y* / = o(k+)eick / dv-eiv (k") / dzve"v'(k'_k){UF(V, v

(27)
! E L\ (Y (K] + k)=~ ———
+m/_%d1}+ |:UF<7,U+,V,’U )( 4 gt- f”( ) T'Dw‘ —iD,; D,
L\ FEtm)
xUF<y+,_7;v,v ﬂ} = (67)
where we used e/ (K1=77) 5 pix"(hi—k1) — 1,

For the antiquark propagator in the formula (11) we use the expression (40). We have

3 3
§2(z) = lim,+ d*y | dy=elkv o [ &k dw=e™ (P =K Q(— pH)O(—kT)e TP eiv
g v 27)* ) (27)
(B+m) . 2w —iw-(p—K) J 7/t - 1 e A A -
27+7 /dwe uF(W,W )—m/_%dw Z/lF w ,—T,W,W

><<[yifj]gt-fi,-<> W%D —sz,Dw,)Z/{‘ (L; w*;w,w—ﬂ}(%z;m)y*v(z). (68)

Since y* commutes with [y, /], we can use y* (K4 m)y* =2k*y*. We also integrate over y and y~ and get (27)25 (k, + k)
and 275(k* + k3 ). Then we perform integration over k and obtain

. e -, |
§1(z) = / L o—pioe) / dw- e (4 —zzp(l‘; ) / dzwe—zw(wkz){u;(w,w-)

(27)° P
_ 1 e (o LT [7 7] (p’/ k’)
— 5 77) — D D
+k2+_p+/_%dw {%(w, SWw e Fij(w) = 5 i
x U (7 whw w‘)}}y v(2) (69)
where we used e (F+8) o iy (-k+k) — 1.
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B. Before contribution to the S-matrix: General photon polarization

Let us make the first steps in the calculation of the diagram with photon splitting before the target without specifying the
photon polarization. Inserting the propagators (67) and (69) into Eq. (23) we get

bef - 4’k > -L*/2 T oiz(gEtp)
Slhﬁz‘—}’* leerey ( ) 2 )3 ( ) d°z | dz= dz"e
% / dv— etV (ki k%) / dw— e (k;+p™) / d2ve—iv(ki-k) / dZWe—iw'(p+k2)ﬁ<1)y+ {uF (V, U_)

Lt

1 T Lt [y, v’] K + ki) ==  ———
S = vrvo | (g Fo() -2 D - Dy, Dy,
+k1++k+/_L2+dv Z/{F(z,v A 1 gt- Fi;(v) = 5 i —iDyi D,

Lt [ . 1 e ; Lt
XUF <U+,—7;V, Z)_> } (k2<|1;+m) }/'” (ﬁ2++m) {U}(W, W_) +m/li dW+u}: <W+,—7;W, W_>
) _L

2

i j/ _k] L+
X<V ;t”gz.fﬂjw—("—)ﬂ -iDy D, )“ (7’W+;W’W_>}

2
-L*/)2 L
xy+v(2)—}—ieefeﬁ(q)ﬁ(l)y"v(Z)/Jzz/dz_/ dzte mla—khi=k) (70)

The integrals over the location z# of the photon splitting vertex before the target can be performed explicitly: the unrestricted

integrations over z and z~ enforce the conservation of the transverse and + components of the momentum at the vertex,
whereas the integrations over z* are of the form

-Lt)2 |
/ / dzTe TE = - ! : ei%E_, (71)
oo (E~ + ie)

with E- = (g~ — k™ 4 p~), except in the vacuum subtraction term, in which E~ = (¢~ — k] — k5 ). We thus obtain

Sty = —ieesel(q )/ . o(k )/ i« 0(-p*)(22)*6%) (¢ = k + p) ! i)
e ) @y’ (27)* T S g =kt +e)

x/dv‘ei”(kr_“)/dw‘eiw(k2++”+)/dzve‘iv'(k"k)/d2we'iw'(1’+k2)ft(1)7+{UF(V, v7)

1 Lt Lt B [},l’yj] (kj +k]) - -—
k++k+/idv+L{F(7,v+;v,v )(Tgt-]:[j(v) fpv, iD,; D,

Lt 4 1 b Lt
XUF<U+,—7;V, U_>}(k2—;+m)]/ (iszz ){UT( )‘I—W/Li dW+u;<W+,—7,W,W_>
2 T

i j_k] <> Lt
x<[y;‘y]gt~f”(w)—¥p ,b_—w,))Z,{F(?w ww>}

X 7 0(2) + ieesel(q)a(1)y v(2) (22)363) (g — ky — ky) ————r—— el e K2), (72)
(CI — ki — k3 +l€)

The expression (72) contains effects beyond the eikonal approximation of various types and origins: decorations on the
Wilson line associated with the quark or with the antiquark, phase factor dependent on the target width L™, and dependence
on v~ or w- of the background field and Wilson lines. Since our aim is to calculate the S-matrix element and cross section at
NEik accuracy, we only need to extract the NEik correction associated with each noneikonal effect separately. We would
need to take into account two noneikonal effects simultaneously only in order to calculate the observable at NNEik accuracy
and beyond.

First, let us consider the contribution to the expression (72) with decorations inserted on the quark Wilson line, but not on
the antiquark Wilson line, which is
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&k &*p ; o
Shet ec on —ieese] —0(k" / 0(-p™)(2x 35(3) —k+ v elT(‘l —k=+p7)
ey leong = =16€10) | s OUT) | s PR =k D) (e

o N . . 1

x/dv‘e”’ (kT =k )/dw—elw (k5 +p )/sze—lv(k]—k)/dZWe—tw(p-&-kz)ﬁ(l)y-‘rm
b L* Ly k) +k/ Lt

x/ Ldvt [L{F<7 vV, v )(%gt-]ﬂj(v) %Dw —iDy; Dv/>l/{F(v+ —T;V,v‘ﬂ
2

+m +m
y uézk+ ) (ﬁ2p+ )

UL (w.w)yto(2). (73)

Because of the integration over the v™ at which the decorations are inserted, the contribution (73) only starts at NEik
accuracy. We can thus neglect in that expression any further noneikonal effect: the phase factor dependent on L™, and the
dependence on v~ and w™ of the background field and Wilson lines. The latter allows us to perform the integrations over v~
and w™ analytically and to obtain®

| &k ’
bef kS S i
Sq?§2<—y* |dec ong — 27[5(k + k -4 ) ( )eef€ (q) / (2 ) Zﬂﬁ(k kl ) / (27[)3

. 5 +
x% o ! - . /aave"""(kl‘“/dzwe"'w‘“’“‘ﬁL‘t(l)/2 dvt {L{F <L—,v+;v)
2k (¢~ — k™ + p~ +ie) Lt 2
i’ J k] k/) == LT R
X (%gt'}"u(v) %Dw (YD_D—‘,/))UF<U+,—7;V)UJ¢(W):|

Xyt (kz;m)y (ﬁ2++m)7 v(2). (74)

Similarly, one can extract from Eq. (72) the NEik contribution associated with decorations inserted on the antiquark Wilson
line, and simplify it into

. &k dp
St haecong = 278(k} + k3 =) (=i)eesel(q) / @y o= k+)/ Gy 2280 (g =kt p)
1 i (f+m) L (Btm) / : . L
X —— - (1l + d2ve—lv-(k|—k)/dZWe—zw-(p+k2)/ dwt
2ky (g~ =k~ +p~ +ie) Wr e g i

2
i

x [uF(v)u;<w+,—L—;;w) <[yfj]gt'f,-j(m)—wp —iD, ij>w <L—; W w)]v(Z). (75)

After extracting from Eq. (72) the contributions (74) and (75) of decorations on the quark or antiquark Wilson lines, the
leftover is

d3k
bef bef bef — A 3
H<r" S(llf12<—}’ |de° ong SCI]‘?2<—7*|dCC ong — Tlecrey ( ) (2” (2 2”) 5( )(2 —k+ B)
i L L Fm) (B4 m)
(g =K +57) (1 H +u(2
X 6 u v
Tt Wy = r TS (2)

/dzve iv (k= /sze iw(p+ks) /d v (k= k*)/dw_eiw_(kfﬂv*)

X Up (v, o)) UL (W, w™) + teefeﬂ(q)u(l)y"v&)(27:)35(3) (g —ki —ky)
x _ ‘ _ etk =) (76)
(¢~ — ki — k3 + ie)

“Note that in this case (k™) = O(k{) = land@(=p*) = 8(kj) = 1,since k; > Oand kI > 0 by definition for the produced particles.
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Noting that
/ TE ok ~p*)(2n)’69) (g ~ k+ p) - sl K
(27)* T H g -k e

¥ ) +
Xﬁ(l)y+( 2‘21”))/ (ﬁz‘;:’/l yo2 /dQve—lV k- /dQWe—lw P+kz)/dv et (kf =k /dW W (kK +p)

d3k d3p i P A
— 9(k* = 0(=pH)(21)353) (g — k _ i (q™=k"+p7)
(2]_[)3 ( ) / (2]_[)3 ( p )( 7[) (g = + p) e?2

(g -k 4 p +ie)
(K+m) (p+m) ,

a8 ) oo - k) 20 + )
— a0 =k k) ey B R
= 0'80g —ka k) [ SR ), (1)
it is possible to rewrite Eq. (76) as
d3
i~ Sty ldec ong = Sgrgy e lace ng = —ieer€u(q) / (2r (2n ) —o50(=p")(27)*6%) (¢ — k + p)
e -F Jlrﬁ‘ + ie) SARU (%2—|l;+m) v @2;*"1) 7o)
% /d2ve—iv-(kl—k) /d2we—iw~(p+k2) / dv-eiv (=K
< / dw e GO U (v, 5 U (w, w) — 1]. (78)

Expanding the L™ dependent phase factor at small target width L™, one finds the contribution linear in L™ to be

3 d3 v m -
Strarr|L phase = —ie€f€ﬁ(4)/ L 9(k+)/ L o pt)mps0(g -k + pa(ly ETM B EM) o)

(27)* (2n)? 2kt r 2pt rt
Lt , ‘ o
X (_1)7/6{2%_”'(]“_”/dzwe"“"(l’*kz)/dv‘e’” (k{ =k)
X /dw‘eiw‘(kﬁpﬂ[up(v, v U (W, w) = 1]. (79)

The contribution (78) starts at NEik accuracy due to the overall L™ factor. We can thus neglect the dependence of the Wilson
lines on v~ or w™ in that case and find

&k &
St e =280k +45 =) (<i)eesehta) [ 5s2matk k) [ G Es 20 (g=kt )

o )
xSy B B ) [ vetnt) [werm @l -1). (0

Subtracting the contribution (80) as well from Eq. (78), one has at NEik accuracy
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bef _ Qbef _ Sbef o Sbe{ N
91G2<7" q1G2 <" Idecong q1Go <" Idecong q1Ga< " IL" phase
&Sk d*p i (F+m) (p+m)
=—iees€l / —9k+/ = 0(—pH)(27)36%) (g —k+ . a(1)y* # (2
« / Pye—iv(kiK) / Pwev ) / dveiv (k) / dw e P U (v, 0 WU (wow) = 1], (81)

In Eq. (81), the only leftover effect beyond the eikonal approximation is the dependence on v~ or w™ of the Wilson lines.
Using the change of variables (v~,w™) > (b™, r~) defined as

b_:(v ;W), rm=w —v) (82)
so that
- - -
w-=b +2, v =b 5 (83)

and Taylor expanding the Wilson lines around 5, one finds
/dv‘e"”(klhk+> / dw‘e"wf(kzukhqﬂ[UF(V, v“)U;(Wv wo) —1]
= / db= et (ki +h=4") / dreir I =(ki —ky +4")] [up (v, b — g) Uy <w, b~ + r2_> - 1]
_ / dbeit (ki +s=a") / dr—efr-[k+-é<kr-kz*+q*>l{[uF<v, b (w.b7) ~ 1]
—~ % (0p-Urp(v. b)) UL(W, b™) + %up(v, b™)(0,-UL(w. b)) + O(NNEik)}
B 2”5<"+ Skt q+>> [ dbem Oy (v bt (v, 7) = 1)
—% 218 <k+ - % (ki —kj + q+)> / db~ e Ktk =g 1 o (v, b-)aT:u;(w, b~)] + O(NNEik)
=278 <k+ - % (ki —ky + q+)> / db= e W =) 1 (v, b UL (W, b)) — 1]
—% 218 <k+ - % (kf —kf + q+))2ms(k1+ + K = g Up(v, b7) 9y U (w, bl + O(NNEiK).  (84)

Indeed, each derivative along the — direction acting on a Wilson line provides an extra power suppression in the high-energy
limit. In the last step of Eq. (84), in the second term, which starts only at NEik order due to the derivative in 5~, we have
neglected the overall b~ of the color object after taking the derivative, since it would matter only at NNEik accuracy. By
contrast, in the first term in (84) we have kept the dependence of the Wilson lines on the average b~ instead of expanding it,
in order to facilitate the calculation on the cross section. This corresponds to the generalized eikonal approximation at the
S-matrix level. Hence, at NEik accuracy, one finds two contributions in the expression (81), corresponding to the two terms
in Eq. (84). First, we have the generalized eikonal contribution

Soet o lgen Bik = —ieefefl(q)/aav/JZW/db‘ei”_(kr+k2+_q+)[up(v, b7 Uy (w, b™) = 1]

3 3
) / (jnlfs 0(k*)25 ("+ — Sk -k ‘”)) / é;fa 6(=p*)(2n)'6 (g ~k+ p)
(

B B ), (85)

, . i
X e_’v'(kl_k)e_lw'(p‘HQ) u +

(=K +p+ie 2k Tt
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which contains the dependence of the Wilson lines on a common b~ as the only leftover effect beyond the strict eikonal
approximation. Second, we have an explicit NEik correction’

SYL o g = 2780 + K — g7 )(=i)eesél(q) / dy / PWUR(v, 57) 3y U (W, 7)o

3 i &
g / (jﬂ]; O} (=1)5 228 (K" = ki) / Gy 0P )20 (g~ k- p)

x e~V (k1=K) p—iw:(p+ks) _ i il },+ (k/+ m) " (ﬁ + m)
(g —k +p +ie) 2kt 2p*

yro(2). (86)

As a reminder, the — axis in light-cone coordinates can be interpreted as the longitudinal direction for the right-moving
projectile and as the time direction for the left-moving target. If the target background field is dynamical, meaning z~
dependent, the quark and antiquark from the projectile will probe a different value of the field not only because of their
transverse separation w — v but also because of their longitudinal separation r~ = w™ — v~. The contribution (86) is then
the NEik correction induced by the tidal-like force exerted by the dynamical background field on the quark and antiquark
due to their longitudinal separation r~.

All in all, we have written the S-matrix element for the before diagram at NEik accuracy as

bef

bef __ Qbef
q L* phase + Sl]lflz‘—}’*

bef
Qp<r T Syt |Gen Eik T S‘Il‘?z‘—}’*

bef
dec ong +S

bef
Qg <y |dec ong +S

Qqr<r” dyn target + O(NNE1k>’ (87)
with the generalized eikonal contribution given in Eq. (85), and the four types of further NEik corrections given,
respectively, by Egs. (74), (75), (80), and (86).

Most of these contributions contain the same energy denominator, which is

Y= s s (> - 0% (K*4+m?)  (p*+m?) .
-k +p+ = — + + i€, 88
(a ie) 2g* 2k 2p* e (88)

introducing as usual the photon virtuality Q? = —q"q,- Using the momentum conservation constraint p = k — g at the
photon splitting vertex, valid for all these contributions, one finds

(*-0%) (K*+m*) ((q-k)*+m?)

(g -k +p +ie) = S e 20 =) +ie
0> g+ o\2 .
_—-——— k_ 2 . 8
2 2K (g =Kk —q+q +m=| +ie (89)

Since the real part of this energy denominator cannot change sign, the +i¢ has no effect and can always be dropped. Using
the expression (89) in the generalized eikonal contribution (85), one has

bef_
Q197"

Gen Eik = eefeﬁ(q)/dzv/sz/db‘eib_<k1++kz+“f+)[uF(v, bIUL(w, b7) = 1]

1 &k 1 . ,
/ = 9(k+)6’(q+ _ k+)2ﬂ5 <k+ _ E (k;r _ er + q+))e—zv~(k1—k)e—zw~(kz+k—q)

“24% ] (2n)
EOr o mp (= & miyt o) %0)
[(k = £ q)? 4+ m? + £ 02

Similarly, one obtains

<>
*Note that due to the choice of the light-cone gauge A = 0, the ordinary derivative 0,- can equivalently be written as a covariant

. . Ng
derivative D,-.
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%ﬁfy@mma=mﬂwr+@=ﬂqu¢w[/fv/d%@&wmvabuumbﬁmeo

(_l) d3]_€ —iv-(k;—Kk) ,—iw-(k,+k—
X @ (27[)3 9(k+)6’(q+ - k+)277,'(3/(k+ — k;r)e (ky=k) p—iw-(ky+k—q)

a(1)y* (K + m)y" (K - %Jrln)}' v(2)
[(k — £ q)? 4 m? + L) 07

o1

from Eq. (86) and

2?274—7 |+ phase — 277.'5(](Jr + k+ —9q )eefé‘ /dzv/dzw Url )UF( ) 1]

_ 3
o [ X sk ke st G0 ) B+ mo(2) - (2)
sk i ) (2a)

from Eq. (80). Then, from Eq. (74), one finds
L+
S laec ong = 288k 4+ k3 — g™) ee e /d2 /d2 +k+/ / — 2n6(kt — ki)

xﬁ(l)[uF<% vt v> <[74M t- Filv) - (k/+kj)z>w —i<D_VjD_V;)L{p<v+,—%;V>Z/l}(W)}

+(k + m)y/‘(k ﬁ + m)y 7)(2) e—iV'(kl—k)e—iW'(kz+k—q).

Tloc-bap e+ S

(93)

At this stage, let us note that the third line in Eq. (93) is identical to the k dependent factor in the integrand of the generalized
eikonal contribution (90) or in the integrand of Eq. (91). By contrast, in Eq. (93) there is an extra dependence on K in the
bracket in the second line. For later convenience, let us eliminate this extra dependence on k. Since k appears both in the v
and in the w dependent phase factors, this extra k can be traded for a derivative in v or for a derivative in w or for a
combination of both. All of these choices would lead to equivalent results, related to each other via integration by parts.
Choosing to trade k for a derivative in w, one arrives at

1[5 d’k
SVl =200 45 =g eesio) [ P [ Pogrzze [ Lo [ -
LT ia,J kj kJ J LT
X ﬁ(l){ [L{F <7,v+;v> (D, ;‘y ]gt~.7-"l-j(y) _(—22+(1)va —iDy, DV])Z/{F (U 7 ,V>U;(W):|

i Lt + g + Lr il
+§ Up 7,1} V| Dyldp| v ,—T;V (0wl (W))

r*(ﬁ+m)7”(ﬁ—4+m)r+v(2) T
(k= 5

e~ iw(Katk—q) (94)

To obtain more compact expressions, let us introduce the notations

Lt Lt
/ 1}+UF(— U >DVJUF(U ) ;V>7 (95)
Lt Lt LT
2) V):/LivaruF(Tv/UJF;V),ZTV/D—V;Z/{F(T}JF’_?;V)’ (96)

074016-19



ALTINOLUK, BEUF, CZAJKA, and TYMOWSKA PHYS. REV. D 107, 074016 (2023)

3) o LTt Lt
Z/{I‘;;ij(v) = /L+ dU+uF (7,v+;v>gt-.7:,-j(y)Z/lF <U+,—7;V> (97)
7

for the decorated Wilson lines appearing at NEik accuracy. Their Hermitian conjugate is

Lt
= ; Lt Lt
USFI;}T(V) =- : dvtU} (v*, —7;v> Dy <U <7, v*;v), (98)
5 «——s (LT
/ dvtU}; < —— v) D, Dy U <7, y+,v>, (99)
Lt LT LT
uﬁ?ij(v) = / Cdvtull, <v+, —7;V>gt - Fi(Uy <7 v+;v). (100)
’ Lt

2

With these notations, the expression (94) becomes

3
Tk 27‘17(‘)‘(](+ k+) —iv-(k;=k) p=iw: (ks +k—q)

2?224—;/ |dec ong 2”5(k+ +k+ —q )eefeﬂ(q 4 +k+/d2 /d2 /

x u(1) [[yi’y ]Ufzj(v) - il/{f)(v) + Z/{%(v) <_(k1—k2§+qf) + éawj)]U}(w)

r (R +m)p (R - ¢i+m)7 v(2)
[(k—; )2+ m? 4~ k+ o7

(101)

Following the same steps, one can rewrite the contribution with decoration on the antiquark Wilson line (75) as

L+
SPt i ldec ong = 278(ky + k3 —qt) eepel( /d2 /d2 +k+/ /

k;—k) p—iw-(ky+k—q) "‘(1)7 ( +m)7ﬂ(k g+m)y*

[(k 5 q) + m? + 00 02)

{ rtont (.- o0) <[yf;y-1gt.f,,jwwp e A )

-~

_é |:(avqu(V>)u;~ <w+, —L;;w> Dwﬂ/{} <L; wt; Wﬂ }v(2), (102)

or, using the notations (98), (99), and (100),

L 278(k* = k)

x e~iv(

S5y i ong = 280K k5 = ) eesela) - +k+ [ [

o [ Tk, o 2Oy Em)rt F =g+ mr ey
/(2n)32 o k>[( K q)? 4+ m? + 55 07 o

i . . - J 1 j ) )
[ (F o - o+ (57 - TR g i . 03)

C. Before contribution to the S-matrix: Longitudinal photon polarization

Let us now evaluate our general expressions (90), (91), (92), (101), and (103), in the case of an incoming longitudinal
photon. Introducing the longitudinal polarization vector in light-cone (LC) gauge given in (61), one finds

074016-20



DIS DIJET PRODUCTION AT NEXT-TO-EIKONAL ACCURACY ... PHYS. REV. D 107, 074016 (2023)

y y o .. . 0 o
e (@QrT (K +m)p (=g +m)y™ = q—w*(k +m)y (=g +m)y" = e " B {k—d.r"}
4k (g7 — k)
== oy (104)
Inserting this result into Eq. (92)
bef + + + ") ") ¥ (—Z)L+
Sovarey: |1 phase = 270(ky + k3 —q") eey [ d*v [ d*wlUp(V)U(W) — I]W

dS]_C —ivi(k,—K) ,—iw- - 4k+(q+_k+) P
X/WZﬂé(kJr—kf)e (ki —k) g=iw-(ky+k—q) (—1)q—+Qu(1)y+v(2)

=2x8(k{ + k3 —q")ee;Qu(1)y v(2) ;Lqi / d*v / PW[U(VUL(V) = 1]6@) (v — w)e v (kitko=a)
=0. (105)

To calculate the cross section, it is sufficient to know the S-matrix element for ¢ = 0. Hence, we will assume q = 0 from
now on, for simplicity. Then, inserting the expression (104) into (90) and taking q = 0, one obtains

S loen ik = —2Qeesi(1)y+v(2) / AL / e / db= e+ =) U (v, b (w, ) — 1]
k(g — k") ek (v=w)

(@) k24 m? 4 5 07

3
x / (;lﬂl; O(kt)0(q+ — k+)2,,5(k+ _ % K -k + q*))

(¢" +ki =k3)(q" + k3 = k)

eer .
= —2Q7;ﬁ(1)r*v(2) Oq™ +ki —k3)0(q" +k§ — k) / dPve vk

4(q*)?
« / Pwe Ko (Olw - v]) / db e =) L (v, b)Y (w, ) — 1], (106)
using the relation
Pk ek
/WWIEKO(\/KM), (107)

where K,(z) is the modified Bessel function of the second kind. In Eq. (106), we have introduced the notation

A oo @k = k) (g -kt k)
¢ \/’"+ 4q )

Similarly, in the longitudinal photon case, Eq. (101) becomes

02. (108)

ey
2w

2?224—;/2 ‘dec ong — 2”5(kT + kzr - q+) (—1)Q

+
(;f)z/dgve‘iv'kl /dzwe‘iw'k2K0(Q|w—v|)

<t [P, 0 - et (3 Lo fpoon) )

and Eq. (103)

ee ki . . _
gfqu_y; decong — 27[5(16—1*_ + k; - q+) 2_]:(_1)Q (qi)z/é{lve_lv'k‘ /dzwe_’w'kZKO(Q|w— V|)
- }/i’ 7j T . [ — kj - kJ
xa(lrt [UFW)([ TR0 -l ) + (5 oy - K i) o). (10)
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where Q is defined as®

kik;

2
m O

0

(111)

Finally, integrating by part in k™, Eq. (91) leads to

bef_
9192<7]

=2n6(k{ + k; —q*)iQeefﬁ(l)ﬁv(Z)/dzve_iv‘kl /dzwe_iw‘kz[b{p(v, b_)(a_,:l/{fp(w, b)]lp-—o

<k+(q+_k+)

<q+)2 ) }
(k2 4 m2 4 K=K "+ ) 0?]

[ o amlkr = ke (<o) {0kt -

=2x6(k{ +ky —q")iQeesu(1)y v(2) / d*ve ki /dzwe"‘w'k2 [Up(v,b™) 0p- L{;(W, b)]lp-—o

=k / PR ooy [
(Q*)2 (27)? k> + O

+
= 26k} + ki —q*)iQ%ﬁ( ot (2)M / PvevEi / Pwe v

(g%)?
(0> —m?)

 [Kot@lw =) = 2 Ik (@ = v 4357357y 57 o (112)

discarding zero mode contributions at k; = 0 or k; = 0, which would not contribute to the cross section of dijet production
in the experimentally meaningful range. In the last step of Eq. (112), we have used both the relation (107) and

[ G e DY (113)
r? (kK2 + A2  4zyA !
In summary, in the longitudinal photon polarization case, the S-matrix element at NEik accuracy is given by
_ gbef bef bef bef
Sqlt?z<—1/2 - Sq?(b‘—}’z S q?ér—yi |de€ an +S q?qw—n g+ S q?qw—n (l 14)

where explicit expressions for each contribution are given in Egs. (106), (109), (110), and (112). We remind the reader that
the contribution (105) vanishes, as well as the contribution from photon splitting inside the target (62).

By contrast, the strict eikonal approximation for the S-matrix element can be obtained from the generalized
eikonal contribution (106) by neglecting the »~ dependence of the Wilson lines. In such a way, one recovers the standard
result

bef
‘11’12<—7L

kiky .
=200k + K = a") (=207 La(l)y vl2) {1, / dPye v

x / dPwe ™K (Olw — V) U (VU (w) — 1]. (115)

D. Before contribution to the S-matrix: Transverse photon polarization

Let us now consider the case of transverse photon polarization, with polarization vectors as given in (63). The part of the
Dirac structure associated with the photon splitting before the target is then

®Note that Q, as defined in Eq. (108), collapses to Q if ki + k3 = g*, which is the case in most terms, apart from the generalized
eikonal contribution (106). Still, we keep a separate notation for Q, since that quantity is the one commonly used in the literature about
dipole factorization for DIS processes in the eikonal limit.
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4 mdy (@)~ d + m)yr =k — i 4o Hyi té %y*] [(kF = gy — (k! = )y + m]
=yt =Ky + m][—=ely'| (kT — g ")y 7y +rHkty[—ely ][ (K = q')y! + m]yt
[ d _
+ytkty {aq—m*] (kK" =q )y r*

. . . o 4kt (gt — k)
= 837*{2(@7+ — k) [=Ky +mly’ + 2Ky (K = /)y + m] - %q’}

= 2q*837+{ [<q ;2k+)5’f + [yi’zyj]] [kf I; q ] + my } (116)

Inserting the result (116) into the expression Eq. (90) for the generalized eikonal contribution, and taking q = 0, one finds

oerloan = cer [ @verm [ dwems [ avm e kDo ) - 1

1 / Pk k00" — ks K — Lk — K+ g e_ik'(w_v)
1 —vams (i — L -
2q+ ) (22)° ! 2 TR T ) e B 07
. T—2kT) . Lyl .
X 2q+£j1ﬁ(l)y+{ {((] - k )5’/ + i ’27/ q k/ + m}/’}v(Z)
q

= Z_Zeﬁe(w k= kD)0(gT + K — k) / Pye-ivk / —

WV T kD) )
x{—zmgmaw—ku(l)y[ e }v@)

Ko(QIW—VI)mﬁ(1)7+7iv(2)} /db‘e"b_("r*k;‘ﬂ[up(v, b )Up(w.b7) ~ 1], (117)

using the identities (107) and

d’k  ekT (=)
/(2ﬂ)2(k2+A)k T 2rr |‘/7K1(\/—|"|) (118)

In the same way, in the transverse photon case and for q = 0, the contribution (101) becomes

S =271 + + 2 —ik-
o’ | | (k k )e d2 —iv-k 2 —iwk, d°k e (w— )_( )
Q@< e e d

p decong 1 2 q felzk A% we (

27)* (k> + 07
% {[ylzm]ug)lm(v)_iug)(v)_i_ug?l;)l(‘,) ((k 2k1) —OWHUF(W){ [(k*q k+)511+[ : ]]:| kj-l-myi}l)(Z)
=2n8(k{ +ky —q* —e,lzk+/dzve""kl/ e~k (1)t
<[ - a0+ (B0 Lo o
X{_Z(T::, |)QK1(Q|W V|)|:(kJr k+)5lj+b/i’2yj]:| +KO(Q|W—V)m3/i}U(2), (119)

and the contribution (103) becomes
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bef + + 2o —ivk, Pwe-wks d2k ek (w=v) B .
Sql%‘_yﬂdec ong = 2n6(ky +ky —q™" eej£/12k+ d*ve we 27)? [k2 o7 u(l)y

X{[(Hq kD gii 4 [y’ ;/ ]:|kj+myi}|:uF(V) (%U(FB;),;(W) U (w)
= (5o -t ) oo

1 , ,
- 27[5(](‘1’» + k; — q+) ﬂgi%—-&-/ dZVe—lV‘kl /dQWe—lW-kz

)y { =15 20 o @) |2 50 2T k@t v )
e (L adt o - a0+ (337 - B gt ) (120)

As areminder, in Egs. (119) and (120), the covariant and the ordinary derivatives only act within the square bracket on the
Wilson lines.
Using the expression (116), the contribution (92) can be simplified for the transverse photon and q = 0 as

St it phase = 276(k{ + k3 — g7 eepél / d?ve~ivk /dzwe‘”‘"k2 [UF(V)U}L;(W) —1]

e [5200  h

=278(k{ + k3 —q") eeyé! /dzve ivk, /clzwe""v"‘2 Ur(VUL(W) = 1]

(=)L*q" [ &k _ o ([ k) o i s i k(W)
<t | G T [T+ 5@ = A e a2 e

) . . —i)L*g*
=278(k{ + k3 —q") eeél / d?ve Vi /dzwe""“‘2 %5(2)(W —-v)
172
k- kf Lyl ' k) — k] .
cay { |5 e B (@0 -0 - B ) o bt ety o - 1

(=1)Ltqt _ K —k) o Iy
=2z5(kf + k3 —q") eefeﬁl%u(l)y+ [< 2 =6+ [ 5 ]] v(2)
152 q

[ dve o U () 3 U ), (121)

where, in the final expression, the partial derivative acts only within the square bracket on the Wilson lines.
Using Eq. (116) and taking q = 0, the contribution (91) associated with the dynamics of the target can be evaluated as

Sbef‘ p |dyn target — 2”5(k;r + k;r - q*)eefsfl / d2ve—iv~k1 /dZWe—iw-kz [Z/[F(V, b_>5;>uTF<W? b_)”h‘:O

992V
d3k —ik-(W-v)
’)/ — k*)2n8 (kT - k}) ¢ z
27) (k2 + m? + 1050 02)
g g
5’ + > k/ +my' pv(2)
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= 226(k{ +kf — g )eese] / Pvevi / Pwe ™52 (1 (v, ) 0 U (W, 7)o
O(k")o(g" — k)

(—i)/ PR oy {
A ek V) (—1) 0+ -
2 ) ey e e+ 07

) u(l)ﬁqw ;+2k+) 5+ [Vi,zyfq ki + m},l) 0(2)}

= 2w} + k5 =) el [ @ve™ [ dwe oy (v.b7) 3y U w6y

kt=k{

(w' -v)0 i(ky = ki)Q*|w—v|

sty { - =2k v - G K @ vy
_ %’f);@ (Wi = v))Ky (Ol — v|) {(kg q‘ﬁ) 5i 4 [yi’zyjq }0(2), (122)
thanks to the identities (113), (118), and
/ é;; (kiik;)zkf = C1) iy (V) (123)

In Eq. (122) we have once again discarded the terms obtained by acting with d;+ on (k™) or 8(¢g™ — k™), which are zero
modes k{7 = 0 or k; = 0, irrelevant for DIS dijet production.
All in all, at NEik accuracy, the S-matrix element for ¢gg production from a transverse photon is given by

bef

bef
decong + Sql Gy

bef
decong + Sqlz‘h(—y’;

_ Qbef in
S L*phase+5q1q2ey;|dyntarget+Sq1Z12<—y;’ (124)

G197y _Sqlér—y?

bef
GenFik 7545, <y

where explicit expressions for each contribution coming from the photon splitting before reaching the target are given in
Egs. (117), (119), (120), (121), and (122). The expression for the contribution coming from the photon splitting inside the
target is given in Eq. (65).

Again, the strict eikonal approximation for the S-matrix element is obtained from the generalized eikonal contribution

(117) by neglecting the b~ dependence of the Wilson lines. In such a way, one recovers the standard result

bef
Sq] g1y

eer . . .
s = 200(k7 k5 = q") 52e] [ v [ ety () - 1

(k5 — k)

e N

W=l

VI. NEik DIS DIJET PRODUCTION CROSS
SECTION VIA LONGITUDINAL PHOTON

A. Relations between S-matrix, amplitude, and cross
section beyond eikonal accuracy

In standard CGC framework, where the observables are
computed in the eikonal approximation, the background
field does not depend on x~. Because of that, no light-cone
“4” momentum can be exchanged with the target. In this
case, the scattering amplitude can be defined as

Sq]z'h«—yz |x’ indep — (2q+)277:6(k;r + k; - q+)iM611(_12‘_72’
(126)

L V’f] v<2>+KO<Q|w—v|>ma<1>r*7"”(2)}‘

(125)

I
by factorizing out the obtained Dirac delta function. Then,
as discussed in Appendix B 4, the cross section is obtained
by squaring this amplitude and including the correct
prefactor, as

do

Y1.—4q19>

s = (2¢")275(k{ + k3 —q*)

x~ indep
X § :‘Mqlfzryz

hel,col

2, (127)

where the two-particle phase space is defined as

Pk, dkf Ak, dki
(2n)2 2k (27) (27)? 2k3 (1)

dP.S. = (128)
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and the summation in Eq. (127) is over the colors and light-
front helicities of the produced quark and antiquark.

When performing a strict expansion of the S-matrix
element into an eikonal contribution, a NEik contribution,
and so on, the gradient expansion of the background field
with respect to x~ would be performed entirely. In that case,
not all the terms would be of the form (126): some NEik
corrections would include & (k| + k3 — ¢ ") instead. It is
not possible to calculate the contribution of such terms to
the cross section without introducing wave packets, which
is a major inconvenience. This is the motivation that has led
us to introduce the generalized eikonal approximation, in
which the dependence of the Wilson lines on a common x~
is kept at the S-matrix level.

Then, one should use the result derived in Appendix B 5
[for the scattering amplitude see Eq. (B19) and for the cross
section see Eq. (B29)] in the case of a x~ dependent
background field. We mention that, at the accuracy con-
sidered in the present study, this modified procedure is
necessary only to compute the contribution of the squared
generalized eikonal amplitude to the cross section. For the
rest of the contributions that are explicitly NEik order, the
x~ dependence of the background field can be neglected,
and one can go back to the standard procedure from eikonal
CGC to obtain the cross section.

Following this argument, the cross section at NEik
accuracy for the DIS dijet for a longitudinal photon can
be written as

The generalized eikonal contribution to the cross section
is then given by

do,_, ; N
L | Gen Eik = 2q+/d(Ab_)€'Ab (ki ks =q")

dP.S.
. Ab~\\ 1
Gen Eik
< (-29)

. (Ab~
Gen Eik
X M‘Zle‘b‘—ﬁ < 2 )>’

where (- - ) stands for averaging over the background field
of the target. The S-matrix and the b~ dependent scattering

: Gen Eik 3
amplitude M 0wy AT€ related via

(130)

— + —,ib~ (k[ +kj—q") ;ngGen Eik -
Sqlq2<—72|Gen Eik _2q /db e ( ! 27 >1Mq1[12<—yz(b )

(131)

The explicit NEik correction to the cross section in
Eq. (129) corresponds to the interference between the
generalized eikonal contribution (106) and the NEik
corrections [(109), (110), and (112) in the longitudinal

dgyi—’qlqz _ dGVZ—’qﬁz |Gen Eix + dayi—’qﬁz i photon case]. In that case, and at the NEik accuracy, the
dP.S. dp.s. TH dP.S. eeon generalized eikonal contribution (106) can be replaced by
+ O(NNEIk). (129) the strict eikonal contribution (115). Then, the x~ depend-
ence of the background field can be dropped, and relations
of the type (126) and (127) can be used, leading to
do_. . -
VL9 _ + + + _ + strict Eik \ NEik corr NEik corr\t strict Eik
dP.S . - (2(] )2ﬂ5(k1 + k2 4q ) Z [<(Mqthz<—72 Ml]ll—h‘—}’z> + <(Mq1‘72‘—72) M%Fh‘—ﬁ”
+>+  INEik corr hel,col
= (2¢7)2m8(kj + ki — ") Y 2Re((Mrict Bk )T ANEK corr) (132)
hel,col - t
B. Generalized eikonal contribution to the cross section for longitudinal photon
By comparing Egs. (106) and (131), one can read off the b~ dependent amplitude
. en Ei - eey _ <q+ + ki — k+><q+ + ky — k+>
MBS (b) = ~Q5 L)y o(2) T R TR TR0 K = k0 A =)
« / Pye-ivki / Pwe 6Ky (Olw — ) Up (v, b (w, b-) — 1], (133)

Inserting Eq. (133) into Eq. (130), one arrives at’

"Here we introduce a compact notation for the transverse coordinate integrals Jor=[dx- -
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do

Yi=91%

dP.S.

kfky
2(q")°
< (q" + ki —ky)*(q" =k + k?)z/ e V) M YW K (O — V) Ko (O|w ~ v])
V.V . W,W
(S (=5 ) (e (5 () 1))
The required Dirac algebra has been performed in Appendix A; see Eq. (A7). The color operator in Eq. (134) can be split as
Ab~ Ab™ Ab™ Ab~
<Tf[(“F(w”-z>“?(v"-z)-1> (53 () 1))
Ab™ _A A A -
= (Tr|Uyp w/,-i U (v b Up( v b U, b
2 2
_Ab” Ab™ Ab~ Ab™
(o)) - 2 o

In the two dipole terms in the expression (135), the dependence on Ab~ can be removed by using the invariance under
translations along x~, which is restored by the target average. Then, using the definitions

. 2
— 2+ / d(Ab™) e (ki + =) (—eef Q) 0lq" + ki —k)0g" — ki + k)5 =2
Gen Eik 27

atv.w) = (- T L )] ), (136

oftan ) (Lol (2o o o))

one can rewrite the expression (134) as

doy; ~4,g m ki ks
— s lcen Bk = Ne ; e;Q%0(q" + ki —k3)0(q" — ki +k5) T )2 (q" + & — k(g —kf + k)2

) [ ek gy (Ol — ) Ko Ol v

X /d(Ab-)el‘Ab<kT+k§—q*>{Q<w V.V, W, Aé’) —d(W. V) —d(v.w) + 1} (138)

with a., = e*/(4n).

C. Explicit NEik correction to the cross section for longitudinal photon

To obtain the NEik correction to the cross section from Eq. (132), we first need the strict eikonal amplitude, and
the full NEik correction to the amplitude beyond the generalized eikonal contribution. They are related to the corres-
ponding contribution to the S-matrix elements as in Eq. (126). From Eq. (115), we then find the strict eikonal
amplitude as

k++

(¢%)

eef

MSTIICtElk — Q_u< )y+1)(2)

G132<7],

/a’zve‘ZVkl /dzwe‘iw'szo(Q|w — V) U(UL(W) = 1]. (139)
The NEik correction to the amplitude can be written as

NEik corr __ dec ong dec on q dyn target
M‘Il‘]z“l’ - lMQl‘h‘—}’ +1 Mq G217 +1 M‘Iﬂ]z‘—}’ ’ (140)

with the three terms obtained from Eqgs. (109), (110), and (112) as
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. ec on ee k —iv- —iw- ?
lM(;l‘_h&J[’]z =-0 27:2(q ) /d2V€ k]/dZWe kZKO(Q|W_V|)
kK, —kJ) i
<y [0 - a0+ ulyo (T4 Lo g, aan
. n g 66 k _, —iw- ~
M =~ 5t [ e [ Bwe K 0w =)

<y [um (“ g - o+ (Fo7 -8 o) o 0

and

dyn target ., €€f _ (kfr — k;) 2 o—iv-k 2w o—iwk
Mooy, =105, #rv2) 55 [ dive™™ 8 [ diwer
(Q*—m?)
20
In the NEik corrections to the amplitude (141), (142), and (143), all the terms apart from the ones with a ;; decoration
have the same Dirac structure #(1)y " v(2) as the eikonal contribution (139). Hence, when calculating the overlap of these
NEik corrections with the strict eikonal amplitude in Eq. (1 32) the same structure as in Egs. (A5)—(A7) will be encountered.
On the other hand, the terms with a F;; decoration (within us Fi J) will lead at the cross section level (132) to a different Dirac
structure, (A8), which is shown to Vamsh in Appendix A; see Eq. (A12). Hence, the terms with a F;; decoration do not
contribute to the cross section at NEik accuracy in the longitudinal photon case.
Then, the contribution of Eq. (141) at the cross section level is

x |:KO(Q|W_V|) - IW—V|K1(Q|W—V|)] Up(v.07) 0y Up(w. )|y (143)

do,: ., 2, |dec ong ee \2kTki ki
L = (2a)27285(kT kt — g8k kT 2 E5F 172 2
dP.S.  |NEik corr Qqr)zmdll +k — )8k 0 2r (‘I+)3 2(‘1+)3

X 2Re/ eV M VWK (OIW — V'[)Ko(Ofw — V)
V.V W,W

T Uy (U ) = 1] =0 () + U ) (@ 30 |wron).

Similarly, the contribution from (142) at the cross section level is

doy; q,3,|% ona ee,\2kiky ki
rnTh9 — 20V 275(kT + kF — k+k+ 2 f
o W A I IR < ) @) 2
XRe [ M VI (I VKo Ofw - v)
v.v.,ww

e U WU ) = 1 [um) (w0 + (39 - W)u&? w)|). a4

Finally, the contribution from (143) at the cross section level is

de*—»q g dyn target eer\? k+k+ (kJr k+)
— Lok = (2q")2m8(k} + k5 — ¢*)8k{ k3 0?52 21— 2/ 9Re
dP.S.  |Ngik corr g7zl + 7) ¢ ( 2r (‘I+)3 2(q" ) (=)
x [ emtvneinn [ 0w - ) - @ vk, (@ Ofw =)

X Ko(QIW = ¥V Tr(Up (WUR(V) = 1 Up(3.57) 9 UL (W, 57)] o). (146)
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To obtain more compact expressions, let us introduce the
following notations for decorated dipole and quadrupole
operators

A (veow) = (TG, (147)

a®(v.ow) = (TP, (148)

c

1
0 v.ow) = (MU (WL U 0L )] ).

(149)

(W, V. v, w,) = <NLTI‘[Z/{F(W/)UI;(V,)(UF(V, b_)<0__>1/{;(w, b)) |b_0]>.

1
0¢.v..w) = o Tl (W UL U4 (U )] ).
(150)
with the star indicating the position of the decoration.
Moreover, for the case of d_ acting on Wilson lines, we

define the following decorated dipole and quadrupole
operators:

v = (G T () 0 Uy Dl o] )

(151)

(152)

With these definitions, the expression (144) can be simplified into

do

Y1914

dP.S.

dec ong
=2n5(k{ +k3 —q")8N, Jem 2Q2<

NEik corr

(k)
(4")

x 2Re/ M V) ek (VWK (W — V[ )Ko (Q|w —V])
v ww

XH( _zk—jl) 2%}[Qﬁ“<w',v/,v*,w>—dﬁ”(v*,w)]—i[Q<2>(w’,v’,V*7W>—d(z’(v*’w)]} 153)

and the expression (145) into

d

Oy —>q,q,

dP.S.

decong

NEik corr

=2ﬂ5(kf’+k§—q+)8 ;m 2Q2( () (;‘ )

« 2Re / ek (YY) gk (VWK (W —v[)Ko( O] W — V)
v,V .w.w

i

2

Kk —kJ
X { [—(2721) —I——dv/} [Q;l)(v’,w’,w*,v)T - d;l)(w*,v)f} —i[ @OV, W, w,,v)" —d® (w*,v)W}.

Finally, the expression (146) can be simplified into

do

x _ |d t. t
vi—aiq |7 EC

1 )2 (ks (ki — k7))

(154)

=2 + + _ aem 2 2(
S 76(kT +ky —q")8N, . +0

NEik corr

(g%)

< [OW V. Ve w,) — Ay, W) [Ko(DIW = V) [Ko@w -

ZRC(—I) / eikr(v’—v)eikz‘(w’—w)
v,V w,w

(Q* —m?)

o W VIKi (@ =) |

(155)

All in all, the NEik correction to the cross section for a longitudinal photon beyond the generalized eikonal contribution
(138) is given by the sum of the contributions (153), (154), and (155).
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VII. NEik DIS DIJET PRODUCTION CROSS A. Generalized eikonal contribution to the cross section
SECTION VIA TRANSVERSE PHOTON for transverse photon
Let us now consider the case of DIS dijet production In the transverse photon case, the dijet cross section at

initiated by a transverse photon. All the definitions and ~ NEik accuracy can be written as a sum of a generalized
relations introduced in Sec. VI A in the longitudinal photon ~ eikonal contribution and an extra NEik correction, as in
case are still valid in the transverse photon case, except that  Eq. (129) for the longitudinal photon case. The generalized
we consider the transverse photon cross section to be  eikonal contribution is obtained as

averaged over the two transverse polarizations.

okt 1 en Ei Ab~ ! en Ei Ab~
:2q+/ d(Ab™ et (k= EZ Z<< S}qﬁ%(— 5 )) Mg’l%fz_l;;< 5 )> (156)
Gen Eik

hel,col

do

Y1919

dP.S.

which includes an averaging over the polarization A of the incoming transverse photon. The b~ dependent amplitude
involved in Eq. (156) is defined in the same way as in Eq. (131) and can be read off from the generalized eikonal expression
from the S-matrix (117) in the transverse photon case. In such a way, one finds

G (07) = S e sz0la” + k= kD0l + ks =) [ dverh [ e
Jj k+ k+ i’ J
== ok @ vty [ K o 4 L
Kol @w = ¥)mn(1)y 7 o) (3,07 o.57) = 1. (157)

The two Dirac structures in Eq. (157) do not interfere at the cross section level, as shown in Appendix A [see Egs. (A23) and
(A24)]. Their squares, summed over /&; and %, and averaged over A are obtained in Eqs. (A19) and (A21), respectively.
Using these results, the generalized eikonal cross section for the transverse photon is found to be

da}"}—“]]@z

dP.S.

Tttt [ €€ 2 1
=2 [atorjenr i) (1) Lotk —kola® 4 k)

x [ emtvgkinm {Skfk;mzKo@w’ —VKo(Qlw —v))

’ + _ +\ 2 I v . _
+4krk;[l+<k2qﬁ) }Qz(w, v)-(w V)K1<Qw'—v'|>Kl<Q|w—v|>}

W —V||w —v|

(o2 o)) (i) )

Using the decomposition (135) of the color operator and the definitions (136) and (137), one gets

Gen Eik

day*—) g Q, 2k+k . .
r—4q192 _ em 2 + _ 1+ + + _ 1+ ik (V=v) ik, (W—w)
=N 129 kM — k)0 ki —k 1
dPS. |oun e <7 g (g7 +ki —ky)0(qg" +ky — ki) V’v/,w,w/‘f’ e
2 A ! / 7 k; _k?— 2
x ¢ 2m*Ky(Q|w — vV )Ko(Qlw —v|) + |1 + e
—v). f— N A
x 0V Y g Bl K (@1 i)
W —V[|lw—v]|

Ab (I kg Ab
X /d(Ab_)e’A” (k7 +k —g ){Q<w’,v/,v,w,7> —d(w,v)—d(v,w) + 1}. (159)
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B. Explicit NEik correction to the cross section for transverse photon

The NEik correction to the transverse photon cross section beyond the generalized eikonal contribution is calculated in
the same way as in the longitudinal case, up to the averaging over 4, as

do

799

dP.S.

(zq )27[5(k+ +k+ _ q+) Z Z 2Re Mstnct Elk)fMNEm corr> (160)

. ‘IHIZ‘—}’T 9192 Yr
NEik corr 2 hel,col

It amounts to calculating the interference between the strict eikonal amplitude and the NEik correction to the amplitude,
normalized as in Eq. (126). From Eq. (125), the strict eikonal amplitude for the transverse photon is found to be

ees . 1 ; j 1
T el K e 2

(W =) _ _ (ky — k) ij lr'. 7] 2 Ay
X{—IWQKI(QW’_VD”(I) { P oY + ) v(2) + Ko(Q|w — v[)mi(1)y 7”(2)}-

(161)
By contrast, the NEik correction to the amplitude is the sum of five contributions
NEik corr in dec ong . dec on g . A 4L " phase . 1 «dyn target
Mqlq “rr Mqlq <7 T Mqlqzﬂ/»’; + qulér—ﬁ + qulér—r*,% + qulér—ﬁ- ’ (162)

corresponding to the contributions (65), (119), (120), (121), and (122) to the S-matrix element, respectively. We thus have

1
My, = e a2 a4 S o

e
/d2ze i(ki ko) /*/2 [ <2+,z ¥ > sz}(%,z*;zﬂ, (163)
f

.4 gdecong eef 1 1
Mooy = 2 G2yt 2%

xa(l) {(“ U, W) - 2 ) + Ul ) (“‘Z;k’ b ) Juthiw]

=i oo - )[BT ko vimr fo) 6

WV

d2ve—zv k; —lW k,

-\ 4dec on _eef 11 2o —ivk, 2w —iwk,
quIZ]Z‘_gr 5 ’12q+2k+ d*ve d*we™
W=V _ K=k . [y , _
{1 =3 ok - v |5 25 a0 T k@l - iy}
Y.y, ey L2 i— (kb—-Kk)
x [um)( o Ui ) = U (W) + (50 =25 U () ) |ol2). (165)
. + phase : _1 L+_ kJr_kJr P i’ J —1 5
Misgme = cepe Scaty [ 2B BT [ e )3 @, 169
172

and
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dyn targe 1 —iv- —iw- NS o/ —
My =T iaggre ] Cve | dwe U (v.b7) O Up(w. )]l

iﬁf—kDQﬂw—V
490

51 + [yi’zyjq }0(2). (167)

x ﬁ(l)ﬁ{—wm(@lw— W) - K, (Qlw — v])my’

W —v]|
%
4qg™

(ks k*)

(v =Ko (Olw =) |

The contributions (163) and (166) to the amplitude contain the same two Dirac structures as the generalized eikonal
contribution (157). Their contributions at the cross section level can then be obtained thanks to the relations (A19), (A21),
(A23), and (A24), as

doy: ~q,5,|™

dP.S.

k k+ 2 P ! ; /
_ 271'5(k+ 4 k+ _ q+)N aemef |:1 4 < — > ]2Re(i)/ ezk]-(v —z)ezkz-(w -z)
NEik corr q v.w

L=l okiow v [ e (v -1

W L)

Lt < Lt
X [L{F<7,z+;z> Dz.fup<7,z+;z>}> (168)
do. — | L™ phase

14192 _ + + o+ 2 k+ k . E ik (V' -z) ,ik, (W -2z)
—r =2n0(kj +ky —q" )N demer |1+ - 2Re(—1i) e e
dP.S.  |NEik corr q AN

and

« (W’_::]) 0K, (OIW — V') <Ni Telld (WU (V) = 1] [MF(Z)3U2(Z)]>- (169)

|w

The Dirac algebra for the contribution of (164) at the cross section level can be performed as well using the relations
(A19), (A21), (A23), and (A24), except for the terms involving the longitudinal chromomagnetic background field F/,,,,
which require instead the relations (A29), (A30), (A31), and (A33). Then, one finds
dgﬁ"‘]lflz

dP.S.

dec ong

+
— 2;-[5(](?‘ + kz‘ _ q+)N Aem 2 2k2 Re / eikr(v’—v)eikf(w’—w)
T q AR A

NEik corr

X { K@Jr%dw) (Q;,l)(w/,v/’v*,w) - dﬁ.l)(v*,W)) —i(QD(W. V. v,, W) —dD (v, w))
+ _ 1\ 2 v . _ ~ B )
X E (1 + (kz q+k1> ) (W : V) (W V) Q2K1(Q|W/ —V,|)K1(Q|W—V|)

W —V||w—v|

o0l = VI)Ko( @ v} | + I EENINE =) oo g - v
<K (O =)@ (W, veow) = (v . (170)
using the notations (147), (148), (149), and (150), as well as
o) (v.ow) = (- UL U0 ), (171)
03¢, ¥ v.ow) = Ty (UL (U 4 ) ). (172)

In the calculation of the contribution of (165) at the cross section level, the Dirac algebra can be performed using the
relations (A19), (A21), (A23), and (A24), apart from the terms involving the longitudinal chromomagnetic background
field F,,, which led to the Dirac structures calculated in Egs. (A39), (A40), (A41), and (A38). With all this, one finds
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do -, - |decong 2k
Yr—4q192 2271'5(]{?_—}—]{3— _q+)NCaem 2 1
dP.S.  |NEik corr n q

v)-(w=v)

ef - 2Re// /eik1~(v’—v)eik2~(w’—w)
\AR A

QK (QIW' = VK, (Q[w — v])

X ! 1+ K — k)] (v
2 7 W= vw—v

+m2K0(Q|W/—V'|)K0(Q|W—V|)]

k/ _ k/ .
X { {—M + iav,} [Qﬁl)(v’,w’,w*, v - dﬁ-l)(w*,v)w — i[O, W, w,,v)T —d? (w*,V)T]}

2 2
(k' —ky) (w"
q+

— Vi) (w = v)

+ W =V ||w—v|

0K, (0w — VK, (Olw — V) [0 (v'. W w,.v)| —d (w., vﬂ}.

(173)

Finally, using the relations (A7), (A12), (A19), (A21), (A23), (A24), and (A42), one gets the contribution corresponding to

(167) at the cross section level

* ~ |dyn tar (1t
da}’r‘"]l‘h yn target _ 2ﬂ,5<ki&- + k;— _ q+)Ncae_m62 kl k2 (k2 kl )ZRG(—Z>/ eiky(v’—v)eikz‘(w’—w)
dP.S.  |NEik cor z (¢") AR A
~ - 1 kH —kh\2
X [Q(W’,V’,V*,w*)—d(v*,w*)]{i {1 + < 2q+ 1) ]
W=v)-(w=v)_ T | Y _
|W/ —V’| QKI(Q|W -V |)Q KO(Q|W_V|) +m=Q KO(Q|W -V |) Q KI(Q|W_V|)

(W —=V)-(w=v)

2
+ W =V ||w—v|

using the notations (151) and (152).

All in all, the NEik correction to the cross section for the
transverse photon beyond the generalized eikonal contri-
bution (159) is given by the sum of the contributions (168),
(169), (170), (173), and (174).

VIII. SUMMARY AND OUTLOOK

In this paper, we computed the DIS dijet production
cross section at next-to-eikonal accuracy in a dynamical
gluon background field in the color glass condensate
framework. The dijet production cross section is calculated
for both transverse and longitudinal polarizations of the
exchanged virtual photon, and all possible sources of next-
to-eikonal corrections are considered in a gluon back-
ground field. More specifically, we have accounted for the
corrections that stem from (i) the finite longitudinal width
of the target, (ii) the interaction of the quark-antiquark pair
with the subleading (transverse) component of the back-
ground field, and (iii) the dynamics of the gluon back-
ground which is encoded in the z~ dependence of the
background field.

The cross sections for both transverse and longitudinal
photons are written as a generalized eikonal contribution

0K, (Olw —v'|>K1<Q|w—v|>},

(174)

|

and explicit NEik corrections. The generalized eikonal
contribution includes the average z~ dependence of the
background gluon field at the amplitude level. Therefore, it
goes beyond the strict eikonal approximation by including
“+”-momentum exchange with the target. On the other
hand, explicit NEik contributions are independent of this
effect since it brings further power suppression at high
energy.

Beyond the generalized eikonal approximation, the z~
dependence of the background field provides a new type
of explicit NEik correction [Egs. (155) for longitudinal
and (174) for transverse photon polarization] that encodes
the relative z~ dependence of the quark and antiquark at
amplitude level. This correction gives a new type of
decorated dipole (151) and quadrupole (152) operators
that include a derivative of the Wilson lines along the “—”
light-cone direction.

An interesting observation regarding the NEik corrections
is the following. Contrary to the other kind of NEik
corrections, the one that involves the longitudinal
chromomagnetic field F;; of the target drops from the
longitudinal photon cross section identically. However, in
the transverse photon cross section it can give a nonvanishing
contribution.
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An immediate continuation of our work presented in this
manuscript is to study the so-called correlation limit of the
dijet production. In this limit, the produced jets fly almost
back-to-back in momentum space, and one can get access
to various types of gluon TMDs for dijet production in
different processes (see Ref. [86] for a review and refer-
ences therein). At eikonal accuracy, DIS dijet production
gives access to Weizsicker-Williams TMDs in the corre-
lation limit. It would be very interesting to study this limit
beyond eikonal accuracy in order to understand and
establish how the CGC result together with its subeikonal
corrections can be equivalent to the TMD factorization
result together with its higher twist corrections.

Another interesting observable to study at NEik accuracy is
inclusive photon + jet production at forward rapidity in
proton-nucleus collisions. Since the produced photon does
not rescatter on the target, this observable is expected to
provide a clean environment to study the interaction of the
quark probe with the dense target at a hadron collider. We are
planning to study both the cross section and photon-jet angular
correlations for this process at NEik accuracy in the future.
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APPENDIX A: DIRAC ALGEBRA FOR THE
CROSS SECTION

In this appendix, we calculate the Dirac structures that
arise in the numerator at the cross section level, in the
calculation of the DIS dijet at NEik accuracy, using the
standard relations

Nu= 3

hy =4

= Trply +{151 r Y Y’]kﬂ

— (2k})Trp [% [yf,m} — 2y FD 1 ).

52y u(D)a()y ', y/v(2)

. r} = 29", (A1)
()" =71"r", (A2)
> u(a(l) = £ +m. (A3)
> v(2)p(2) =K —m (A4)

In particular, from Eq. (Al), one finds y"y" =0 and
{r*,y/} =0, which will be used constantly. Moreover,
since the Dirac matrices y* are 4 x 4 matrices, the trace of
the corresponding identity matrix is Trp[1] = 4.

In the calculation of the cross section induced by the
longitudinal photon in Sec. VI, most terms (apart from the
ones including UE: ;) lead to the Dirac numerator

Nip= ) @)yrte@)fa(l)y s(2).  (AS)
hy hy==4
Using the relations (A1)—(A4), one finds
Nip= Y 5Q)rru)a(l)y v(2)
hy ==,
= Trp[y " (Ky + m)y* (K — m)]
= Trply " {K,. v+ 1) = (k) Trply K], (A6)
Hence, using the cyclicity of the trace,
+ 7 +
N =kt | T3 = i) B g 1) s
(A7)

The other Dirac numerator encountered in the calculation
of the longitudinal photon cross section, corresponding to

the contribution containing Z/ISZ I is

NZLEMZ (@(yte(2) @y [y, ¥]v(2).  (A8)
| In the same’way, one gets
= Trply " (fy + m)r* [y, ) (o = m)]
(k) Teo [ [
(A9)

2
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However, due to the cyclicity of the trace,

i
Trply'y/] = Trp {{y ’2y }} = 4gi = —457,  (A10)
so that
Trp[[y".7/]] = 0. (A11)
and thus
Ny =0. (A12)

In the transverse photon case, the amplitude contains two
types of Dirac structures in eikonal and NEik terms,
excluding for the moment the contributions in Llﬁv )lm’ and
the NEik contribution from the target dynamlcs (167).
At cross section level, one has then to calculate the squares
of these two structures as well as their interferences,
defined as

y+u<1>a<1>y+[

Nar=330 S0 @ty ) a1 o),
A hy =+
(Al4)
Nir=3 3 3 erel@ytr v@) )yt
A hyhy==£1
« [(k;c;—k;r)(sij_'_ [7’1,27//]] 11(2), (A15)

[u L;”]]p<2>>m<1>y+m<z>.
(A16)

The transverse polarization vectors obey the completeness
relation

(A17)

i'x i si'i
E elel, =6".
A

Then, using the same method as before, one finds

(k+_k+) ij [7iv}’j]
2=y o

(STH(qu)é ﬂ"/zy’”q ey [ g ] gy )

3 2
& Y Su = IR I [ (/e oy gy 5o
= - (k) Tr H(q—il)é’f +77y |yt (q—+)5”+r7’ 2
+ ot ot )2
— & (21;2 ) Trp [5:"1'7,/},1"7,:'},] + ZW—2myj’yj + (q—'—(k+)2kl>5”}
q
7o gt et Tk — k)2
= kK Trp [5#1’},}" {r éy }yj + 2(9""]‘—2]‘1)7]*)/; + %&V]
q
(ks =k} | (@ + k3 —k)?
= k?‘k;‘TrD |:2 q+ 2 + (q+)2 (sfj
. k+_k+ + k+_k+2
_4k1+k2+5,,[_2(2 k) | @t in 1)], (A18)
q (¢")
so that finally
L k+ _ k+ 2
Nip = ki k67 [1 LU k) 7 ) } (A19)

Moreover,
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Nop == Z Z el yiytu(l)a
2 b=
511 51"1’
2 k(-

2

— k)Tl v i) 1)

using Eq. (A10), so that

Noy

Concerning the interference contribution, one finds

2)y ytu(l)a

Nip == Z Z e el (

A hyhy=+L

+
2

i

(Wrfriv(2)

(2k
2

= 8k k7.

)

6!! o v
7Trn[}' ke +m)yty (b

—m)]

+
2 T[] = —ki kg1 (—4)5T, (A20)

(A21)

8 +

(Dr* [(k e k)

+

i lr'. 7]

_%
2 b

511

{7’”7*(% +m)yt [(
(k.

qu

+

3

1

87 +

8 +

3 ](kz —m)]

[yi’ yj} 77 (A22)

- —TI‘D

7 {7 vyt [

qu

This is the trace of an odd number of y# matrices, so that

Nir =0 (A23)

For the same reason, one has

Nyg=0 (A24)
The two Dirac structures from the amplitude with a
transverse photon are thus not interfering after all. Note
that these calculations of N7, Nor, N3r, and N4 have
been done without assuming ki + k3 = ¢, so that they
are valid for the generalized eikonal contribution to the
cross section, in which k" + k3 can be different from ¢*.

It remains now to evaluate the various Dirac structures
induced at the cross section level by the contributions in

Z/{gm in the transverse photon amplitude; see Eqgs. (164)
and (165). In the case of the F,, decoration inserted on the
quark line, at v, it is clear from Eq. (164) that one obtains at
the cross section level Dirac structures that are similar to
Nirs Nor, N3, and N7, but with [y!, y”] inserted at the
right of &(1)y™, as

Nir=33 S

4 hl~h2:

kK =ki) oo 7]

j!
)
y'.y

Nd
> ]0(2),
(A25)

i'% i i’
8/1 £) o' +

@y [(

2 =K g
ot

< o(2)) a1y ] [(
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i'i i'i

. . 5 ) N
Noyp = = Troly'y (K +m)r* VLl (K —m)] = 5 kDTl y ™y k)

=2 o) E gy i = -k T .
= 2k{ 'k Trp[[y". y"]] = 0. (A29)
thanks to Eq. (A11). Moreover,
Nyr =0, (A30)
Nyr =0, (A31)

since they both correspond to the trace of an odd number of y# matrices, such as A5, and N 47. Concerning N7, one finds

N”_a TDH(k+q+ 1) i +[7f',7"/]]y+(%1+m)y+[yz,ym] [(qu k) i I y’]} %_m)}

2 2

P kK — ki —qgt
2k+)T [ s =k =07 oy _ -y y’]r*[ﬂ,y”’] {(zq—iq)fi” —7ly }kz]
5ll (2k+ (k+ k+ - q i k+ - k+ - q+ st T
= (2k+) 22)Tr [[}’,Y ][ qi )51 ]/’yl (2ql+)5z,1 —yly

e K —kf—g™) ., K —kf—gt)?
= k1+k2+TrD {[yl,ym] <5”y1y1yl ¥ —2(qu+q)y’}’] +(21q)5//>}

(¢")?
o Y'Y (ki —kf—q") (K -k —q
—ka;TrD{[J’ZJ’ ]<5 7’"{ 7 —}V’ ook =gl . )7’7” +%5”
q (¢7)
ki — ki
:—2¥k*k*TrD[[7 y"Iryr ]
16,k (k= k)
_ 10K 2(+1 2)[5115]m_6]151m]’ (A32)

q

because, using the cyclicity of the trace,

Tro[[y'. vy’ = Tro [y {y™. v/ 31| = Tl v/ {r™. v/ }]
= =26/"Trp[y'y’] + 28/ " Trp|y'y’]
= g[5/15/m — 5ilsim). (A33)

Finally, in the case of the F,, decoration inserted on the antiquark line, at w, it is clear from Eq. (164) that one obtains at

the cross section level Dirac structures that are similar to N7, N7, N3z, and N4, but with [yl, y™] inserted at the left of
v(2) as

Nypp = %Z Z el*el ((1)y+ [(k; - k) P 4 7}’1}} v(2)) ()t [(kJr ki )511 + [}/",Vj]] Ly o(2),  (A34)

A hyhy==%1 q* 2 q* 2
Ner=33 3 ee @ty v @) a7yl o), (A33)
A Ry hy==]
Ner=33 Y e o@yay [ s L g m), (A3
A hyhy=+L
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Ner=53 3 erelati)y

A hyp=+1

(k5 = k) o 7]
RS S SV Y S LU
) [ q* A

xv(2) @ty y' y"v(2). (A37)

Using similar calculations or arguments than for Ay,
Ny, Nyr, and N g7, one can arrive at the results

16k} Kf (kf — &)

Ny = ~ [6/15/m — sitsI™], (A38)
q

Ny =0, (A39)

Ny =0, (A40)

Ny =0. (A41)

Finally, the NEik correction at the cross section level
associated with the contribution (167) of the dynamics of
the target can be evaluated using relations calculated so far
in this appendix, and

Z (@(L)yty'v(2) a(l)yto(2)
hy hy=L
= Trp[y'y* (K +m)r*(
= 2k )Trp[y'y* k) =0

v,

5 —m)]

(A42)
as a trace of three y* matrices.

APPENDIX B: CROSS SECTION ON A x~
DEPENDENT BACKGROUND FIELD

To understand the relations among the S-matrix, the
amplitude, and the cross section for scattering on a x~
dependent background field, let us consider for simplicity a
scalar model.

1. Incoming wave packet

An incoming state with one on-shell scalar particle of
momentum k%, is
ajy(Kin) 0). (B1)
with the creation operator in the incoming free Fock space
normalized as
[ai(K). a, (k)] = (2k") (22)* 5 (K — k). (B2)
To avoid issues, one is led as usual to consider incoming
wave packets instead of pure momentum states, such as

$) = / %wu& — m)0(O)p ()l (0)]0)

+ + ”)
N / %92(;) / (‘;l,[';¢<k>a?n</_c>|0>,

with the normalization

(B3)

(#lg) =1

or equivalently with the profile function ¢ (k) normalized as

(B4)

[ s 2500 = )00 07

2
:/%%?/%lqsw:l.

For simplicity, let us actually take a profile function that
factorizes as

(BS)

P(k) = ¢ (k")p P (k). (B6)
with the normalizations
dkt 0(k*
[5 5 wewr-1 @)
&’k
/ Sl =1 (BS)

Let us assume that the wave packet is centered at
position x =0 in the transverse plane. Then, we can
introduce translations of this wave packet in the transverse
direction, in order to gain control on the impact parameter
of the collision that we will consider. The translation of
the wave packet in the transverse plane by a vector B is
performed thanks to the transverse momentum operator as

fw) = e Pg)
_ [dkTokt) [ &’k _iBk
~ ) 2z 2kt / (2n)2¢(/_<)e iy (£)[0).

(B9)

2. S-matrix

Let us consider the scattering of this wave packet on a
classical background field. For the final state, we will
simply take a Fock state F in the outgoing asymptotic Fock
space

(B10)

Foul = O Tl }

feF
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Then, the S-matrix element for the scattering of the incoming wave packet on the classical background field into F and
with an impact parameter B is

T 91+ 2
Sprr(B) = (Fauktn) = [ G52 [ G50 ™ (Fonlal (010, (B11)

The background field appears only implicitly in the mapping between the in and out Fock spaces.

3. Cross section: General formula

The fully differential cross section for this scattering is the integral over the impact parameter B of the square of the
S-matrix element. Hence

do SF
Lz/cﬂmsqp}f(sw

dP.S.(F)
I+ g+ 21 ol
— /dé; 9§Z+)/(d k)2 o /dz/;92(£+)/(62il;2¢(/_()/d2BeiB.<k’—k) (B12)
X <0|ain(E)|Fout> < Out‘alln(k)|0>
1+ /4 +0 2
:/d; 92(/;/+)¢(+)(k )* % 2k+ +)/ d k k)2 (B13)
(0] atin (K, K)|Fou) (Foulal, (k+.k)]0). (B14)

Assuming that the profile function ¢*) (k) is sharply peaked at some k = k;, and using its normalization relation (B8), one
finds

doy_.r dk (k™) dk"O(k") (o It T
_ w [ 2 ) k. )|F F " (kT Kk, . B1
dP.S-(j ) / 27 2kt ¢ (k ) / 27 2kt ¢ (k )<O|am(k ) m)| 0ut>< out|am(k , ln)|0> ( 5)

4. Cross section: Case of x~ independent background field

If the background field is independent of x~, the whole problem is invariant under translations along x~, and the p*
component of the momentum is conserved by the scattering. In that case, (Foy|a;, (k*, ki,)|0) should be proportional to
5(k™ — pJ), where p is the total light-cone momentum of the particles belonging to the final Fock state . By convention,
we can then define the scattering amplitude M r(k™, K;,) via

(Foulaly (k" kin)[0) = (2k)228(k* — pf)iMp(k*. Kin), (B16)

if F is not a one scalar Fock state like the initial state. Instead, if it is a one scalar Fock state as well, we should subtract the
“no scattering” contribution from (B16), as usual. Inserting that expression into Eq. (B15), one finds

di?z;)_/dgez(l,quﬁ (K )/dzlje(?qﬁ (k) (2K )28k + = pf) (=) Mg (K k)T

x (2kH)278(kt — pL£)iMy(kt, ki)

= / dzk O(k™)p ) (kT) / AT O ) (K ) Sk — k) 2m8(k™ — pr)My(K T, kin) T Mgz (k, Kyy)

=[SO g Pk 2wtk - p) Mk K ®17)
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Assuming that the profile function ¢(*)(k*) is sharply
peaked at some k" =k; and using its normalization
relation (B7), one finds

doy,_,
T (2k)2a8(k — p i) M (K

ki) 2
dP.S.(F) i Kin)|

(B18)

This is the standard expression used in CGC-type calcu-
lations, together with Eq. (B16).

5. Cross section: Case of background field
with x~ dependence

If the background field depends on x~ and thus breaks
invariance under translations along x~, one has in general
kT # p}, so that the relation (B16) is not valid anymore. In
that case, it is convenient to Fourier transform with respect
to py—k' as

(Foull (K Ji)[0) = 26+ / dz-ei (P5+)

X l'M]:(Z_,k+,kin), (Blg)

doy.r _/dk/+ O(k"") q§(+)(k/+)*/
dP.S.(F) 2 2k

k" o(k)

where M(z7, k™, k;,) now does not depend on p} (but
other choices of variables should be possible).

As a remark, in the limit of no x~ dependence of the
background field, the z~ dependence of M£(z7, kT, Kky,)
would disappear, and we would obtain

<< fout|a;fn(k+’ kin)|0> - (2k+)271'5(p}':- - k+)

X IM]:(O, k+, kin)’ (BZO)

and thus
M}‘(O, k+’ kin) - M]:(k+? kin)’

(B21)

by comparison with Eq. (B16).
Coming back to the case of a x~ dependent background
field, one can insert the relation (B19) into (B15) and obtain

S ¢(+)(k+)(2k+)/dz—eiz(p}—k+)

X (2K+) / dz-e= PRI (2= K Ky M (2, K Ky ). (B22)
With the change of variables (z7,z'~) = (x7, ™), defined as
— J—
O e (B23)
2
=z -7, (B24)
the cross section becomes
do dk'* dkt 9(k+) e (kP
i V) (K */ (H)(p+ + / — ir (pr—75—)
= 0(k Kk k7)) (2k d 2
dP.S.(F) /271'( W) | S QKT [dret
X / dx=e™ K kKON 2 (x~ —%,k’tkm)TMf (x— +%,k+,kin). (B25)

At this stage, at first, it does not seem possible to get rid of
the wave packet profile function without further approx-
imations. Instead, we have to remember that here, we were
considering the cross section for scattering on a given
configuration of the background field. In CGC-type cal-
culations, it is necessary to take a statistical average over
the configurations of the classical background field, which
is supposed to be proportional to the quantum expectation

[
value in the “one target” state of the same quantity, now
considered to be a quantum operator.

Let us focus on the inclusive version of the studied
scattering. It means that we are not measuring anything in
the target fragmentation region, so that, for example, we
include both events in which the target breaks up and events
in which it stays intact. For such observables, the target
average is done at the cross section level as
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<di(.7§7§>> - / K oy /

X /dx‘ei"_(k/+‘k+)<Mf(x' - %,k’*, kiy) "Mz <X_ + %,k+, kin> >

i o(ic)

(kK )
)

k) [arerin-

(B26)

In this averaging over field configurations, we are including configurations that can in particular have support anywhere
along z~. In such a way, there is an overall invariance under translations along the — direction which is restored by the target

average. In particular, we have

;
M T—— kT
(e

-5

i r-
kin) M]: <.X'_ + ?, k+’ kin

) .
kin) M5 <%,k+,kin>>. (B27)

Using this property, the integral over x~ becomes trivial in Eq. (B26) and forces k' = k*. Then,

() = [ s [araroro (e, o

We can now assume that the profile function ¢(*)
relation (B7), one obtains

do
Pp-F _ + — ir (ph—k") +
—_——— = 2k d n M 7k )
<JPS<F)> ln/ r e Fo < ]:< in

(k™) is sharply peaked at some k™ = k;’ and using its normalization

(B29)

) (Gm)

This expression is then the generalization of Eq. (B18) in the case of an arbitrary x~ dependence of the background field.
Interestingly, it is valid only at the level of the target-averaged cross section, not for each configuration of the background

field as Eq. (B18).

In the case of a slow x~ dependence of the background field we can then Taylor expand M and M

Tf in Eq. (B29) around

~ = 0, and perform the integration over r~ explicitly. At zeroth order, we would recover Eq. (B18), and at every following

order we would get terms with derivatives of §(k;, — p¥).
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