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By taking the nucleon-to-quark phase transition within a neutron star as an example, we present a
thermodynamically consistent method to calculate the equation of state of ambient matter so that transitions
that are intermediate to those of the familiar Maxwell and Gibbs constructions can be described. This
method does not address the poorly known surface tension between the two phases microscopically (as, for
example, in the calculation of the core pasta phases via the Wigner-Seitz approximation), but instead
combines the local and global charge neutrality conditions characteristic of the Maxwell and Gibbs
constructions, respectively. Overall charge neutrality is achieved by dividing the leptons to those that obey
local charge neutrality (Maxwell) and those that maintain global charge neutrality (Gibbs). The equation of
state is obtained by using equilibrium constraints derived from minimizing the total energy density. The
results of this minimization are then used to calculate neutron-star mass-radius curves, tidal deformabilities,
equilibrium and adiabatic sound speeds, and nonradial g mode oscillation frequencies for several
intermediate constructions. Various quantities of interest transform smoothly from their Gibbs structures
to those of Maxwell as the local-to-total electron ratio η, introduced to mimic the hadron-to-quark interface
tension from 0 (Gibbs) to∞ (Maxwell), is raised from 0 to 1. A notable exception is the g mode frequency
for the specific case of η ¼ 1 for which a gap appears between the quark and hadronic branches.
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I. INTRODUCTION

In describing the transition from baryonic or hadronic
matter to that of its constituents, such as up, down, and strange
quarks in the interiors of neutron stars (NSs), the most
commonly employed methods are either the Maxwell or
the Gibbs construction [1,2]. In the Maxwell construction,
charge neutrality is achieved locally, whereas in the Gibbs
construction the same is achieved globally. The Maxwell
construction is applicable when the interface or surface
tension between the two phases is very large, whereas the
Gibbs construction is valid in the opposite limit of vanishing
(or zero) surface tension. (The phrases large and small here
refer to whether or not the surface contribution to the
Coulomb energy is large or small.) While the former method
is suitable for transitions from a single component system
(say, neutrons only), the latter is well suited when multiple

charges such as neutrons, protons, and electrons are present in
the transitioning system, particularly to account for separate
baryon number conservation and charge neutrality. For
intermediate surface tensions, the shape of the phase boun-
dary could varywith density as in the pasta phase at the crust-
core transition treated in theWigner-Seitz approximation [3].
Nevertheless, the magnitude of the quark-hadron interface
tension is highly uncertain, ranging from a few to hundreds of
MeV=fm2; see, e.g., discussions in the literature [4–11].
In the pressure P vs energy density ε plane, the Maxwell

construction in which the pressure and neutron chemical
potential equalities PðHÞ ¼ PðQÞ and μnðHÞ ¼ μnðQÞ are
established between the hadronic (H) and quark (Q) phases
is characterized by a flat region. The range of densities over
which these equalities hold can be determined using the
methods described in Refs. [12,13]. A consequence of this
flat region is that the squared equilibrium speed of sound
c2eq ¼ dP=dε becomes zero there. The density region over
which the flat region occurs as well as the extent of the jump
in the energy density depend on the details of the P vs ε
relationships, or the equation of state (EOS), in each of the
two phases.
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The description of the mixed phase in the Gibbs
construction is achieved by satisfying the rules PðHÞ ¼
PðQÞ and μnðHÞ ¼ μu þ 2μd, where the chemical poten-
tials μu and μd refer to those of the up (u) and down (d)
quarks, respectively. The conditions of global charge
neutrality and baryon number conservation are imposed
through the relations

Q ¼ fQðHÞ þ ð1 − fÞQðQÞ ¼ 0;

nB ¼ fnBðHÞ þ ð1 − fÞnBðQÞ; ð1Þ

where f denotes the fractional volume occupied by hadrons
and is solved for each baryon density nB. Unlike in the pure
phases of the Maxwell construction, QðHÞ and QðQÞ do
not separately vanish in the Gibbs mixed phase. The total
energy density is given by

ε ¼ fεðHÞ þ ð1 − fÞεðQÞ: ð2Þ

Relative to the Maxwell construction, the behavior of the
pressure vs baryon density is smooth in the case of Gibbs
construction. Discontinuities in its derivatives with respect
to baryon density, reflected in c2eq ¼ dP=dε, will, however,
be present at the densities where the mixed phase begins
and ends.
Situations in which neither the Maxwell nor the Gibbs

construction can be applied correspond to cases in which
the pressure and chemical potential equalities cannot be
met for many hadronic and quark equations of state. In such
cases, interpolatory techniques that make the transition a
smooth crossover have been used in Refs. [14–17]. In these
approaches, the pressure equality between the two phases
characteristic of Maxwell and Gibbs constructions is
abandoned, but the pressure vs baryon density in the mixed
phase is composed of contributions from hadrons and
quarks in an externally prescribed proportion. Outside of
the mixed phase, pure hadronic and quark phases exist. The
onset and ending densities of the mixed phase are chosen
suitably for smooth crossover from one phase to the other.
The model termed quarkyonic matter departs from first-

order phase transitions inasmuch as, once quarks appear,
both nucleons and quarks coexist until asymptotically
large baryon densities when the baryon concentrations
vanish [18]. The order of the phase transition depends
on the implementation of these models. In Ref. [18], the
transition is second order, but other approaches [15–17]
have yielded higher-order phase transitions. A character-
istic feature of the quarkyonic models is that the c2eq ¼
dP=dε exhibits a peak before approaching the value of 1=3,
an attribute of asymptotically free quarks. Depending on
the approach adopted, this value may also be reached from
below [18–20]. A drawback of the quarkyonic model with a
second-order transition is that the squared adiabatic speed
of sound c2ad ¼ ð∂P=∂εÞyp , where yp is the proton fraction,

becomes infinite at the onset of quarks [21]. This feature
prevents the calculation of oscillation modes of NSs,
particularly the g modes (gravity modes) [21].
A crossover model for the transition from hadrons to

quarks in NSs to mimic the crossover feature of baryon-free
finite temperature studies has also been investigated in
Ref. [22]. The key feature of this approach is an analytic
mixing or switching function that accounts for the partial
pressure of each component as a function of a single
thermodynamic variable—the baryon chemical potential.
As in the mixed phase hadrons/nucleons and quarks, both
appear explicitly as separate degrees of freedom in this
description, it is straightforward to keep track of their
individual contributions to the total pressure. In Ref. [21],
this approach was generalized to beta-equilibrated matter in
order to explore nonradial g mode oscillations of NSs.
Our goal here is to devise a framework in which the

Maxwell and Gibbs constructions are two extremes of a
continuous spectrum of possibilities for first-order phase
transitions. We accomplish our goal by postulating three
distinct electron clouds (with labels eN, eQ, and eG), whose
members are either strictly in contact with only nucleons
(eN) or quarks (eQ) or can be shared between the two phases
(eG). Thus, charge neutrality is fulfilled partially locally
and partially globally, the ratio being controlled by a new
variable η, which stands for the local-to-total electron ratio.
Note that, here, we do not posit distinguishable electrons in
the sense of intrinsic quantum numbers; instead, we simply
group them in relation to the many-body environment in
which they are embedded. This grouping is artificial and, at
the end of the calculation, we will be interested only in the
total number or fraction of electrons required for the system
to be charge neutral.
The physical picture is as follows. In the case of a large

surface tension between the hadron and the quark phases,
the boundary between the two is sharp, and the region each
phase occupies is well defined. Correspondingly, the
electrons ensuring charge neutrality will be unequivocally
associated with (or, at the very least, are far more likely to
interact with) one or the other phase by virtue of their
spatial position; thus, charge neutrality is local. In the
opposite limit of very-low/zero surface tension, there is no
spatial separation between the two phases and thus charge
neutrality is accomplished entirely globally.
For intermediate surface tension, the boundary between

the two phases becomes fuzzy and, therefore, in addition to
the two unambiguous regions from before, we have a third,
gray-zone region where the phase of baryonic matter is
unclear. Consequently, some electrons will be explicitly
attached to one or the other phase, while the rest interact
with both. In this case, charge neutrality is fulfilled partially
locally (by some electrons) and partially globally (by the
remaining electrons).
The precise mapping of the surface tension to the

variable η would require a specific model (that we have
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not considered) for the surface tension. As many models for
the surface tension with hugely varying values exist in the
literature (see Refs. [4–11]), such a mapping would differ
from case to case depending on the model considered. Even
then, an η that varies with density might be required.
Our framework offers a different way of modeling the

mixed phase between the Maxwell (corresponding to η ¼ 1
equivalent to a large surface tension) and Gibbs (with η ¼ 0
equivalent to a small surface tension) constructions, so the
extreme cases have a precise correspondence. Intermediate
values 0 < η < 1would then represent small to large values
of the surface tension, the precise one-to-one correspon-
dence between η and the surface tension necessarily
depending on the model chosen for the latter. It is, however,
a useful framework to provide equations of state as well as
their particle compositions in the mixture for phase
transitions between the Maxwell and Gibbs constructions.
The organization of this paper is as follows. In Sec. II,

the formalism to obtain a continuous spectrum of possibil-
ities between the Maxwell and Gibbs constructions is
detailed. Here, the relevant equations to describe matter
with nucleons, quarks, and electrons as well as those
including muons are provided. The equations of state for
nucleons, quarks, leptons, and the squared equilibrium and
adiabatic sound speeds are given in Sec. III. Nonradial g
mode oscillations are discussed in Sec. IV. Results of our
calculations are presented in Sec. V. A summary and
conclusions are contained in Sec. VI.

II. SIMULATING TRANSITIONS BETWEEN
MAXWELL AND GIBBS CONSTRUCTIONS

In this section, we present the formalism to obtain a
continuous spectrum of possibilities between the Maxwell
and Gibbs constructions for first-order phase transitions.
We begin with matter containing neutrons and protons or
nucleons (N), quarks (Q), and electrons (e) only.
Thereafter, the discussion includes muons (μ) as well.
Relations corresponding to the conservation laws of baryon
number and charge neutrality that connect the various
particle fractions yi, with i covering N ¼ n, p, Q ¼ u,
d, s, and the volume fractions f and η are presented first.
The working equations result from energy density mini-
mization with respect to the list of variables inNQeμ and f.
Values of the local-to-total electron ratio η are chosen
parametrically in the range (0, 1).

A. NQe matter

The total energy density of the system is given by the
sum of appropriately weighted contributions from the
individual components,

ε ¼ fðεn þ εp þ ηεeNÞ þ ð1 − fÞðεu þ εd þ εs þ ηεeQÞ
þ ð1 − ηÞεeG; ð3Þ

where f is the hadron-to-baryon fraction and η is the ratio
of electrons participating in local charge neutrality to the
total number of electrons.
Baryon and lepton conservation correspond to the

equations

1 ¼ fðyn þ ypÞ þ ð1 − fÞðyu þ yd þ ysÞ=3; ð4Þ

0 ¼ ye − fηyeN − ð1 − fÞηyeQ − ð1 − ηÞyeG; ð5Þ
whereas charge neutrality is described by the relations

0 ¼ ðyp − yeNÞη; ð6Þ

0 ¼ ½ð2yu − yd − ysÞ=3 − yeQ�η; ð7Þ

0 ¼ ½fyp þ ð1 − fÞð2yu − yd − ysÞ=3 − yeG�ð1 − ηÞ: ð8Þ

The overall factors of η and (1 − η) in Eqs. (6)–(8), respec-
tively, are not necessary, but they have been kept to emphasize
the fact that these equations describe partial local charge
neutrality (LCN) and global charge neutrality (GCN).
Equations (4)–(8) are then used to eliminate 5 of the 12

free variables (nB, yn, yp, yu, yd, ys, yeN , yeQ, yeG, ye, f, η)
in this scheme. The choice is arbitrary, but the most
convenient set (that is, the set that leads to physically
transparent phase-equilibrium conditions in the fewest
number of operations) is the following:

yu ¼
1þ ye − fyn − 2fyp

1 − f
; ð9Þ

yd ¼
2 − ye − 2fyn − fyp − ysð1 − fÞ

1 − f
; ð10Þ

yeN ¼ yp; ð11Þ

yeQ ¼ ye − fyp
1 − f

; ð12Þ

yeG ¼ ye: ð13Þ

For the subsequent calculation, the nonzero partial deriv-
atives of the above are necessary,

∂yu
∂yn

¼ −f
1 − f

;
∂yu
∂yp

¼ −2f
1 − f

;
∂yu
∂ye

¼ 1

1 − f
;

∂yu
∂f

¼ yu − yn − 2yp
1 − f

; ð14Þ

∂yd
∂yn

¼ −2f
1 − f

;
∂yd
∂yp

¼ −f
1 − f

;
∂yd
∂ye

¼ −1
1 − f

;

∂yd
∂ys

¼ −1;
∂yd
∂f

¼ yd þ ys − 2yn − yp
1 − f

; ð15Þ
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∂yeN
∂yp

¼ 1; ð16Þ

∂yeQ
∂yp

¼ −f
1 − f

;
∂yeQ
∂ye

¼ 1

1 − f
;

∂yeQ
∂ye

¼ yeQ − yp
1 − f

; ð17Þ

∂yeG
∂ye

¼ 1: ð18Þ

The ground state of matter is obtained by minimizing the
energy density εwith respect to the remaining free variables
[except the baryon density nB being that we want to retain it
as a free variable for the purposes of studying neutron-star
matter (NSM)]:

(a) The usual condition for neutron strong equilibrium
results from minimization with respect to the neutron
fraction yn,

∂ε

∂yn
¼ f

∂εn
∂yn

þ ð1 − fÞ
�
∂yu
∂yn

∂εu
∂yu

þ ∂yd
∂yn

∂εd
∂yd

�

¼ fnBμn þ ð1 − fÞ
�

−f
1 − f

nBμu −
2f

1 − f
nBμd

�

¼ fnBðμn − μu − 2μdÞ ¼ 0

⇒ μn ¼ μu þ 2μd: ð19Þ

(b) Minimization with respect to the proton fraction yp
leads to a condition that combines proton strong and
electron electromagnetic equilibrium. These two are
no longer independent as a result of our having
overspecified the system,

∂ε

∂yp
¼ f

�
∂εp
∂yp

þ η
∂yeN
∂yp

∂εeN
∂yeN

�
þ ð1 − fÞ

�
∂yu
∂yp

∂εu
∂yu

þ ∂yd
∂yp

∂εd
∂yd

þ η
∂yeQ
∂yp

∂εeQ
∂yeQ

�

¼ fðnBμp þ ηnBμeNÞ þ ð1 − fÞ
�
−2f
1 − f

nBμu −
f

1 − f
nBμd − η

f
1 − f

nBμeQ

�

¼ fnBðμp þ ημeN − 2μu − μd − ημeQÞ ¼ 0

⇒ μp ¼ 2μu þ μd − ηðμeN − μeQÞ: ð20Þ

By combining Eqs. (19) and (20), we find

μu ¼ 1=3ð2μp − μn þ 2ΔηÞ; ð21Þ

μd ¼ 1=3ð2μn − μp − ΔηÞ; ð22Þ

Δη ≡ ηðμeN − μeQÞ: ð23Þ

(c) A chemical potential relation corresponding to quark β
equilibrium is obtained by minimizing with respect to
the total electron fraction ye,

∂ε

∂ye
¼ ð1 − fÞ

�
∂yu
∂ye

∂εu
∂yu

þ ∂yd
∂ye

∂εd
∂yd

þ η
∂yeQ
∂ye

∂εeQ
∂yeQ

�
þ ð1 − ηÞ ∂yeG

∂ye

∂εeG
∂yeG

¼ ð1 − fÞ
�

1

1 − f
nBμu −

1

1 − f
nBμd − η

1

1 − f
nBμeQ

�
þ ð1 − ηÞð1ÞnBμeG

¼ nB½μu − μd þ ημeQ þ ð1 − ηÞμeG� ¼ 0

⇒ μd ¼ μu þ ημeQ þ ð1 − ηÞμeG: ð24Þ

This, together with Eq. (20), engenders a relation for
nucleon β equilibrium,

μp ¼ 2μu þ μd − ημeN þ ½μd − μu − ð1 − ηÞμeG�
¼ ðμu þ 2μdÞ − ημeN − ð1 − ηÞμeG

⇒ μp ¼ μn − ημeN − ð1 − ηÞμeG: ð25Þ

(d) Minimization with respect to the strange-quark frac-
tion ys gives a condition for quark weak equilibrium,

∂ε

∂ys
¼ ð1 − fÞ

�
∂yd
∂ys

∂εd
∂yd

þ ∂εs
∂ys

�

¼ ð1 − fÞð−nBμd þ nBμsÞ ¼ 0

⇒ μd ¼ μs: ð26Þ
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This condition is necessary not only in neutron-star
matter but also for supernovae and NS mergers where
the relevant dynamical timescales are longer than
those of quark flavor-changing processes.

(e) We get the condition for mechanical equilibrium by
minimizing the energy density with respect to f,

∂ε

∂f
¼ ðεn þ εp þ ηεeNÞ− ðεu þ εd þ εs þ ηεeQÞ

þ ð1− fÞ
�
∂yu
∂f

∂εu
∂yu

þ ∂yd
∂f

∂εd
∂yd

þ η
∂yeQ
∂f

∂εeQ
∂yeQ

�

¼ εN þ ηεeN − εQ − ηεeQ

þ ð1− fÞ
�
yu − yn − 2yp

1− f
nBμu

þ yd þ ys − 2yn − yp
1− f

nBμd þ η
yeQ − yp
1− f

nBμeQ

�
;

ð27Þ

where, in going from the first to the second equality,
use of ∂ε=∂yi ¼ nBμi was made, together with the
definitions εN ≡ Σh¼n;pεh and εQ ≡ Σq¼u;d;sεq. In the
next step, we group chemical potentials according to
whether they are multiplied by nucleon or quark

particle fractions,

∂ε

∂f
¼ εN þηεeN þ½ð−εQþnByuμuþnBydμdþnBysμdÞ

þηð−εeQþnByeQμeQÞ�− ðynþ2ypÞnBμu
− ð2ynþypÞnBμd−ηnBypμeQ: ð28Þ

Then, those μu and μd that are proportional to yn and
yp are replaced by Eqs. (21) and (22). Moreover, the
term nBysμd becomes nBysμs [using Eq. (26)] with the
whole parenthesis in which it belongs written as PQ

(as per the T ¼ 0 thermodynamic identity
P ¼ nBμ − ε),

∂ε

∂f
¼ εN þ ηεeN þ PQ þ ηPQe

− ðyn þ 2ypÞ
nB
3
ð2μp − μn þ 2ΔηÞ

− ð2yn þ ypÞ
nB
3
ð2μn − μp − ΔηÞ − ηnBypμeQ:

ð29Þ

Subsequently, we expand the products in the second
and third lines above and collect similar terms,

∂ε

∂f
¼ εN þ ηεeN þ PQ þ ηPQe − ηnBypμeQ −

nB
3
ð2ynμp − ynμn þ 2Δηyn þ 4yp − 2ypμn þ 4ypΔη

− 2ynμp þ 4ynμn − 2ynΔη − ypμp þ 2ypμn − ypΔηÞ
¼ εN þ ηεeN þ PQ þ ηPQe − ηnBypμeQ −

nB
3
ð3ynμn þ 3ypμp þ 3ypΔηÞ: ð30Þ

Finally, we apply Eq. (23) to replace Δη with the electronic
chemical potentials μeN and μeQ, which leads to an
expression involving only the pressures of the various
components (using P ¼ nBμ − ε where necessary),

∂ε

∂f
¼ ðεN − nBynμn − nBypμpÞ þ PQ þ ηPQe

− nBypðΔη þ ημeQÞ
¼ −PN þ PQ þ ηPQe þ εeN − ηnByeNμeN

¼ −PN − ηPeN þ PQ þ ηPeQ ¼ 0

⇒ PN þ ηPeN ¼ PQ þ ηPeQ: ð31Þ

(f) For completeness, we also include the result
of the minimization with respect to η. However, we
will not be implementing this condition because we
want η to remain a free variable (along with nB) in
order to explore the effects of the changing surface
tension,

∂ε

∂η
¼ fεeN þ ð1 − fÞεeQ − εeG ¼ 0

⇒ εeG ¼ fεeN þ ð1 − fÞεeQ: ð32Þ

In the present approach, η ¼ 0 amounts to a Gibbs
construction (GCN) and η ¼ 1 to a Maxwell con-
struction (LCN). It has the added benefit of maintain-
ing control over the various particle fractions in the
Maxwell mixed phase, which has not been the case in
previous literature. Clearly, first-order transitions of
intermediate surface tension will have 0 < η < 1.
Extension to finite temperature is accomplished by
minimizing the free energy density instead of
the energy density. The conservation laws remain
the same, as do the formal expressions describing the
phase-equilibrium conditions, albeit with the use of
the corresponding finite-T pressures and chemical
potentials. Applications to supernovae and neutron-
star mergers require ðnB; ye; TÞ as independent
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variables; that is, one must also skip minimization with
respect to ye.

Crossovers.—These can also be studied in this
context. One sets η ¼ 0

1 and eliminates the mechanical
equilibrium condition [Eq. (31)] in favor of an explicit
functional form for f, which approaches asymptotically 0
and 1 at high and low densities, respectively, e.g.,
f ¼ 1 − exp½−aðnB=nsatÞ−b�, where a and b are fit param-
eters and nsat is the saturation density of symmetric nuclear
matter. The hadron-to-baryon fraction f can also depend on
composition (prior to equilibration) with the added alge-
braic burden of terms proportional to ∂f=∂yi in the
equilibrium equations.

B. NQeμ matter

The inclusion of muons in the calculation comes at the
cost of four additional variables (yμN , yμQ, yμG, yμ), a
muon-number conservation equation that mimics Eq. (5)
for electrons, and modifications to the total energy density
of the system and the charge neutrality equations (baryon
number and electron number equations are unaffected),

ε ¼ f½εn þ εp þ ηðεeN þ εμNÞ�
þ ð1 − fÞ½εu þ εd þ εs þ ηðεeQ þ εμQÞ�
þ ð1 − ηÞðεeG þ εμGÞ; ð33Þ

0 ¼ ðyp − yeN − yμNÞη; ð34Þ

0 ¼ ½ð2yu − yd − ysÞ=3 − yeQ − yμQ�η; ð35Þ

0 ¼ ½fyp þ ð1 − fÞð2yu − yd − ysÞ=3
− yeG − yμG�ð1 − ηÞ; ð36Þ

0 ¼ yμ − fηyμN − ð1 − fÞηyμQ − ð1 − ηÞyμG: ð37Þ

The minimization procedure yields modifications to the
mechanical equilibrium and surface-tension optimization
conditions [Eqs. (31) and (32)] such that muonic contri-
butions are accounted, while the chemical potential
relations [Eqs. (19), (20), (24) or (25), (26)] remain
unchanged. Moreover, three new constraints are generated
corresponding to lepton weak equilibrium in each of the
three regions,

PN þ ηðPeN þ PμNÞ ¼ PQ þ ηðPeQ þ PμQÞ; ð38Þ

εeG þ εμG ¼ fðεeN þ εμNÞ þ ð1 − fÞðεeQ þ εμQÞ; ð39Þ

μeN ¼ μμN ; μeQ ¼ μμQ; μeG ¼ μμG: ð40Þ

III. EQUATION OF STATE

To demonstrate the workings of the scheme devised
above, we describe the equations of state employed for
nucleons, quarks, and leptons below. Selected properties of
NSs such as their mass-radius curves, equilibrium, and
adiabatic squared speeds of sound are calculated, results of
which are shown and discussed. The outer crust EOS
described by a uniform background of relativistic degen-
erate electrons in an ionic lattice is relatively well under-
stood. Here we use the SLy4 crust EOS for nB < 0.05 fm−3

[23,24]. As our focus is on the core g modes, the
composition information of the crust is ignored in calcu-
lating the equilibrium and adiabatic sound speeds (that is,
the two speeds are set equal to each other).

A. Nucleons

For the description of nucleons, we use the Zhao-
Lattimer (ZL) EOS [21] with the parametrization termed as
ZLA in [25]. The parameters of ZLA are detailed in Table I.
This is consistent with laboratory data at nuclear saturation
density nsat ≃ 0.16 fm−3, the chiral effective field theory
calculations of Refs. [26,27], and constraints obtained by
Legred et al. [28], which combined available observations
including the radio pulsar mass measurements of PSR
J0348þ 0432 and J0470þ 6620 [29–31], the mass and
tidal deformability measurements of GW170817 and
GW190425 [32–34], and the x-ray mass and radius con-
straints from latest Neutron Star Interior Composition
Explorer measurements of J0030þ 0451 and J0470þ
6620 [35–39]. The total energy density of nucleons with
a common mass mN ¼ 939.5 MeV is given by the density
functional

εN ¼ εNðnB; yn; ypÞ

¼ 1

8π2ℏ3

X
h¼n;p

�
kFhðk2Fh þm2

NÞ1=2ð2k2Fh þm2
NÞ

−m4
N ln

�
kFh þ ðk2Fh þm2

NÞ1=2
mN

��

þ 4n2Bynyp

�
a0
nsat

þ b0
nγsat

½nBðyn þ ypÞ�γ−1
�

þ n2Bðyn − ypÞ2
�
a1
nsat

þ b1
nγ1sat

½nBðyn þ ypÞ�γ1−1
�
; ð41Þ

where kFh ¼ ð3π2ℏ3nByhÞ1=3 is the Fermi momentum of
nucleon species h. Above and below units of c ¼ 1 are
used; also, wherever ℏ appears, ℏc is implied. The chemical

1Unlike first-order transitions where two distinct phases are in
contact, crossovers involve only a single phase whose ground
state properties change drastically as some parameter of the
system is changed. Therefore, in the present context, electrons
will always encounter a mixture of quarks and hadrons regardless
of their configuration-space coordinates, and, correspondingly,
charge neutrality is achieved globally, i.e., η ¼ 0.
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potentials and the pressure are obtained from Eq. (41)
according to

μh ¼
∂ðεN=nBÞ

∂yh
; h ¼ n; p; ð42Þ

PN ¼ nB
X
h¼n;p

μhyh − εN: ð43Þ

B. Quarks

For the calculation of the quark EOS, we use the vector
MIT bag model [40,41]. The total energy density of quarks
in this context is

εQ ¼ εQðnB; yu; yd; ysÞ

¼
X

q¼u;d;s

εq þ
1

2
aℏ½nBðyu þ yd þ ysÞ�2 þ

B
ℏ3

; ð44Þ

εq ¼
3

8π2ℏ3

�
kFqðk2Fq þm2

qÞ1=2ð2k2Fq þm2
qÞ

−m4
q ln

�
kFq þ ðk2Fq þm2

qÞ1=2
mq

��
; ð45Þ

where kFq ¼ ðπ2ℏ3nByqÞ1=3 is the Fermi momentum of
quark species q. Similar to the nucleonic case, the chemical
potentials and pressure can be derived from the thermo-
dynamic identities

μq ¼
∂ðεQ=nBÞ

∂yq
; q ¼ u; d; s; ð46Þ

PQ ¼ nB
X

q¼u;d;s

μqyq − εQ: ð47Þ

The parameters of this EOS (a and B) referred to as vMIT
in Table I are as shown there.

C. Leptons

Leptons are treated as noninteracting, relativistic par-
ticles for which

εL ¼ 1

8π2ℏ3

X
l

�
kFlðk2Fl þm2

l Þ1=2ð2k2Fl þm2
l Þ

−m4
l ln

�
kFl þ ðk2Fl þm2

l Þ1=2
ml

��
; ð48Þ

μl ¼ ðk2Fl þm2
l Þ1=2; ð49Þ

PL ¼ nB
X
l

ylμl − εL; ð50Þ

kFl ¼ ð3π2ℏ3nBylÞ1=3; l ¼ e; μ: ð51Þ

At low baryon densities, only electrons are present in the
system. The muon onset density is such that μe −mμ ¼ 0.
Depending on the parametrization choice, this condition
also gives the density at which muons vanish.

D. Sound speeds in the pure and mixed phases

We begin with pure-phase thermodynamic quantities
written as functions of the total baryon density nB and the
individual particle fractions yn, yp, yeN , yu, yd, ys, yeQ, yeG,

εN ¼ εNðnB; yn; ypÞ; PN ¼ PNðnB; yn; ypÞ;
μh ¼ μhðnB; yn; ypÞ; ð52Þ

εQ ¼ εQðnB; yu; yd; ysÞ; PQ ¼ PQðnB; yu; yd; ysÞ;
μq ¼ μqðnB; yqÞ; q ¼ u; d; s; ð53Þ

εeX ¼ εeXðnB; yeXÞ; PeX ¼ PeXðnB; yeXÞ;
μeX ¼ μeXðnB; yeXÞ; X ¼ N;Q;G: ð54Þ

In terms of these, we express the thermodynamics of the
mixed ð �Þ phase as

ε� ¼ fεN þ ð1 − fÞεQ
þ fηεeN þ ð1 − fÞηεeQ þ ð1 − ηÞεeG; ð55Þ

P� ¼ fPN þ ð1 − fÞPQ

þ fηPeN þ ð1 − fÞηPeQ þ ð1 − ηÞPeG; ð56Þ

μ�h ¼ μh; μ�q ¼ μq; ð57Þ

y�h ¼ fyh; y�q ¼ ð1 − fÞyq: ð58Þ

For NSM (denoted by the subscript β), the various con-
servation laws [Eqs. (4) and (5)] and conditions for phase
equilibrium [Eqs. (19), (20), (24), (26), (31)] must be
applied. The solution of these equations converts the yi and
f from independent variables to functions of nB and η.
Thus, the state variables also become functions of nB and η
according to the rule

QðnB; yi; yj;…; ηÞ → Qβ½nB; yiðnB; ηÞ; yjðnB; ηÞ;…; η�
¼ QβðnB; ηÞ:

Note that the upper- and lower-density boundaries of the
mixed phase correspond to fβðnB; ηÞ ¼ 0 and 1, and
depend on η.
The adiabatic speed of sound in the mixed phase is

obtained by first calculating the expression

c2adðnB; yi; f; ηÞ ¼
∂P�

∂nB

����
yi;f;η

�
∂ε�

∂nB

����
yi;f;η

�
−1

ð59Þ

FRAMEWORK FOR PHASE TRANSITIONS BETWEEN THE … PHYS. REV. D 107, 074013 (2023)

074013-7



and then evaluating it for NSM

c2ad;βðnB; ηÞ ¼ c2ad½nB; yi;βðnB; ηÞ; fβðnB; ηÞ; η�: ð60Þ

On the other hand, the equilibrium sound speed is given by
the total derivatives of the pressure and the energy density
with respect to the baryon density after the enforcement of
NSM equilibrium,

c2eq ¼
dP�

β

dnB

�
dε�β
dnB

�−1
: ð61Þ

IV. NONRADIAL NEUTRON-STAR
OSCILLATIONS

Neutron stars are expected to oscillate in many modes
corresponding to different restoring forces. Pressure-
supported modes including f (fundamental) and p (pres-
sure) modes are sensitive to stellar structure. The f-mode
frequency approximately scaleswith themean density and is
universally correlated with the tidal deformability and the
moment of inertia [42–44]. p-mode oscillations are more
confined toward the surface of the NS and are thus sensitive
to the EOS at lower density [45]. Both f and p modes are
sensitive to the bulk pressure and not sensitive to detailed
chemical composition. We have verified that the novel
construction of first-order phase transitions in this work
does not play a significant role due to the universal relation
between the oscillation frequencies and other NS
observables.
In this paper, we study the g mode, the fluid mode with

gravity as the restoring force. The g mode oscillation
acquires nonzero frequency because there is a gradient
of chemical composition or a first-order phase transition
between the two phases [46,47]. A universal relation
between the chemical gmode frequency and lepton fraction

was discovered recently [48], providing key information
about the nuclear symmetry energy at high density. A g
mode due to a density discontinuity from a phase transition
can be understood as a special version of a g mode due to
chemical composition changes, since matter on the low-
density side can be treated as having a different compo-
sition from that on the high-density side. This situation
occurs when matter does not instantaneously change phase
upon passing through the phase transition boundary [49].
The discontinuity g mode is most sensitive to the local
gravity and the density discontinuity at phase transi-
tion [44,50].
At high temperature relevant to neutron-star mergers, the

compositional g mode can be suppressed [51]. However,
another branch of g mode can also have nonzero frequency
when adiabatic compression of the NS matter is not in
thermal equilibrium with the matter in hydrodynamic
equilibrium [52]. These are very-low-frequency modes
because thermal pressure is negligible in the cores of
neutron stars when temperature T ≲ 107 K [52]. For
T ≳ 1010 K, the thermal g mode has comparable frequency
to the compositional g mode [53]. Recent core-collapse
supernova simulations suggest that the thermal g mode
could dominate when there is a large entropy gradient [54].
In this work, we consider only the zero-temperature EOS

for hybrid NSs with the novel framework of a first-order
transition. We focus on the lowest-order nonradial g mode
oscillation (l ¼ 2) arising from a gradient in the chemical
composition. This oscillation mode couples directly to
gravitational waves and has a frequency of a few hundred
hertz for NSs, which lies in the band of gravitational wave
observations [55,56]. Assuming the chemical composition
does not change in a period of oscillation, the local g mode
frequency νg is determined by the Brunt-Väisälä frequency,

ν2g ¼ g2
�

1

c2eq
−

1

c2ad

�
eν−λ; ð62Þ

where ν and λ are the temporal and radial metric functions.
The Brunt-Väisälä frequency depends on density and
chemical composition that vary across the NS. We show
in Sec. V C the difference between the inverse squared
sound speeds and the bracket on the right-hand side of
Eq. (62) for the various models studied. With the correct
boundary condition and perturbation fluid equations, one
can find global oscillation modes, known as gmodes driven
by local buoyancy oscillations. Such g modes have been
studied for hybrid NSs with Gibbs construction and under
the Cowling approximation [56,57]. In this work, we solve
the g mode with linearized theory of full general relativity.
Detailed methods to calculate the gmodes with and without
the Cowling approximation can be found in our previous
work [48].

TABLE I. Parameter sets used in the present work. Units of
c ¼ 1 are employed.

Model Parameter Value Units

ZLA

a0 −96.64 MeV
b0 58.85 MeV
γ 1.40
a1 −26.06 MeV
b1 7.34 MeV
γ1 2.45

vMIT

mu 5.0 MeV
md 7.0 MeV
ms 150.0 MeV
a 0.20 fm2

B1=4 165.0 MeV

Constants
ℏðcÞ 197.3 MeV fm
me 0.511 MeV
mμ 105.7 MeV
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V. RESULTS

In this section, we demonstrate the effect of changing the
local-to-total lepton ratio on the EOS and its composition,
associated structural and tidal properties of NSs, the two
sound speeds, and the resulting g mode frequencies. We
also show plots pertaining to the EOS and particle fractions
of a crossover application. All results refer to neutron-star
(β-equilibrated) matter.

A. Equation of state

The change in the nucleonic content of the mixed phase
is shown in Fig. 1 for five different implementations of
charge neutrality. The decrease in fβ is steeper as the
Maxwell limit (of high surface tension and thus LCN) is
approached; that is, the mixed phase becomes narrower in
terms of density. This indicates that first-order transitions
with sharper phase separation (Maxwell-like, “stiff”)
undergo a faster compositional change that can impact
the g mode frequency more severely than transitions
where extensive phase mixing occurs (Gibbs-like, “soft”).
The approximately common intersection point of the
various curves occurs at, roughly, fβ ¼ 2=3 near the
density nt at which the energy densities of the pure
phases are equal. We note that, for the models and
parametrization used herein, the boundaries of the
Gibbs and the Maxwell mixed phases are (0.34, 1.63)
and ð0.75; 0.88Þ fm−3, respectively.
Figure 2 is a representation of the effect of varying η on

the EOS in the pressure vs energy density plane for NQeμ
matter. It follows the trends already seen in Fig. 1 of more
Maxwell-like behavior with increasing η and a correspond-
ingly smaller mixed phase. Our EOS includes a wide
variety of possibilities between the Maxwell and Gibbs
constructions, some of which are very similar to equations
of state of the quark-hadron phase calculated using the
Wigner-Seitz approximation (WSA); see, e.g., [58–61].
Thus, we may interpret the present framework as one that
recasts the complicated Coulomb and surface problem of

the WSA into an easier form involving only lepton phase
space, with local leptons increasing the energy of the
system mimicking the effect of surface energy.
Figure 3 shows the particle fractions corresponding to

four different η’s: η ¼ 0 (Gibbs), η ¼ 1 (Maxwell), and two
intermediate cases of η ¼ 0.3 and η ¼ 0.6. Two features are
of particular interest here: (1) the total lepton fraction yL ¼
ye þ yμ tends to the proton fraction yp with increasing η;
that is, for more Maxwell-like transitions, charge neutrality
for the nucleonic sector in the mixed phase is largely
achieved via negatively charged leptons, whereas (2) for
more Gibbs-like transitions, the negatively charged quarks
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FIG. 1. Nucleon-to-baryon fraction vs baryon density for the
indicated values of the local-to-total lepton ratio η.
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FIG. 2. A representation of the EOS of β-equilibrated matter in
the pressure vs energy density plane for various η’s.
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FIG. 3. Various particle fractions vs baryon density for the
indicated η’s. Muons drop out of the system at intermediate to
high densities (when μe ¼ mμ is met). Electrons are always
present, but, at higher densities, at 2 orders of magnitude less than
what is shown here.
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d and s are the main counterparts to the proton. As a result,
u quarks are suppressed relative to the pure-quark-phase
abundances of the three species for small η’s.
This is also reflected in the fractions of the “quark-

attached” leptons that, in the mixed phase, operate as if they
are positively charged. See Fig. 4 for yeQ; the muonic case
(not shown) is qualitatively similar. Note that these frac-
tions must be weighed by an overall factor of ð1 − fÞη in
the calculation of the net lepton fractions. We can under-
stand this behavior as follows: An inverse beta reaction
such as uþ → d− þ lþ þ νl cannot occur in vacuum
because it is endothermic. In medium, however, it can
proceed by borrowing the missing energy from the system
and, in doing so, lowering the latter’s total energy (as
desired). Clearly, positrons and antimuons, if seen in
isolation, make positive contributions to the total energy
density of the system. However, their presence lowers the
net electron and muon fractions ye and yμ (which are the
physical quantities) leading to a composition with an
overall lower energy (relative to the case without anti-
leptons). It should be mentioned here that the lowest energy
configuration is the one with η ¼ 0, i.e., the Gibbs case.
Unsurprisingly, it is also the configuration with the lowest
(largest absolute value) yeQ since the presence of positrons
removes energy from the system—even though, when
η ¼ 0, these positrons do not contribute to the net electron
fraction.

B. Neutron stars

For the calculations in this section, in addition to the core
EOS described previously, we use SLy4 crust EOS for
nB < 0.05 fm−3 [23,24].
Figure 5 depicts the NS mass-radius (M-R) diagram for a

few chosen values of η. The maximum mass as well as the
corresponding radius rise with η from ðM;RÞ ¼ ð2.05M⊙;
10.8 kmÞ for η ¼ 0 (Gibbs) to ð2.17M⊙; 11.7 kmÞ for
η ¼ 1 (Maxwell). The latter set is shared by all stars with
η ≥ 0.5, whereas a larger spread occurs as ηmoves to lower

values. On the other hand, stars close to the canonical mass
of 1.4M⊙ deviate from the general trend only for
small η ≤ 0.1.
This behavior can be better understood by turning to

Fig. 6, where the central densities of the 1.4M⊙, 2.0M⊙,
and Mmax stars are plotted as functions of η together with
the boundaries of the mixed phase. We find that 1.4M⊙
NSs with η ≥ 0.1 are purely nucleonic, whereas 2.0M⊙
NSs contain no quark admixture for η ≥ 0.35—see also
Figs. 7 and 8 for the particle fractions as functions of the
NS radius for these two NS masses. In the neighborhood of
the maximum mass, however, stars are always hybrid; the
exception being η ≥ 0.9, where an inner core of pure quark
matter forms. This only affects the upper 0.2% of the
mass range.
The tidal properties of neutron stars such as the tidal

Love number k2 and the tidal deformability Λ (Figs. 9 and
10, respectively) exhibit similar trends as theM-R diagram.
That is, different implementations of charge neutrality
affect stars with larger masses more severely, in part
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FIG. 4. Fraction of electrons ensuring LCN for quarks in the
mixed phase. Note the negative sign indicating opposite electric
charge (positive).

FIG. 5. Neutron star mass-radius curves for various η’s. Radii
and masses both move to higher values with increasing η, before
leveling out for η ≥ 0.5.
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FIG. 6. NS central densities for M ¼ 1.4M⊙ (green), M ¼
2.0M⊙ (blue), and M ¼ Mmax (red) as functions of η. The lower
(L) and upper (H) density boundaries of the mixed phase are
represented by the black dashed and dotted curves, respectively.
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because the associated radii can change by up to 10% from
η ¼ 0 to η ¼ 1.

C. g modes

The adiabatic and equilibrium squared sound speeds as
functions of the baryon density are shown in Figs. 11 and 12,
respectively, for five different values of η. Both increase
monotonically with nB in the pure nucleonic phase, whereas
the presence of both nucleonic and quark matter in the mixed
phase leads to nonmonotonic behaviors. Being that the
transition onset is at higher density for higher η, larger sound
speeds (of either kind) are attained by themoreMaxwell-like
models with correspondingly sharper decreases over the
mixed phase. The relative change is more pronounced in the
case of the equilibrium sound speed. Since particle fractions
in pure quark matter are almost constant, see Fig. 3, the
adiabatic and equilibrium sound speeds are very nearly the
same. As a result, NSs with inner cores of pure quark matter
have negligible Brunt-Väisälä frequency as shown in
Fig. 13. These are the stars with η ≥ 0.9 in the vicinity
of the maximum-mass configuration mentioned earlier in the
context of Fig. 6.
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FIG. 7. Various particle fractions vs NS radius for a 2.0M⊙ star.
With increasing η, the quark content of the core decreases.
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The influence of the growing surface tension to the
difference of the inverses of the two sound speeds (Fig. 13)
is quite dramatic. While sharp peaks at intermediate-to-high
densities occur for all η’s, those associated with more
Maxwell-like transitions can be orders of magnitude higher
than those of softer transitions. Given that this quantity
enters directly in the calculation of the Brunt-Väisälä
frequency, correspondingly strong g mode signals may
be produced. Also worth noting is that the kinks,
evident on the η ¼ 0.3 and η ¼ 0.6 curves at nB ≃ 1.3
and 1.0 fm−3, respectively, occur when muons exit the
system. For the Maxwell construction case with η ¼ 1.0,
the particle fractions are shown in Fig. 14.
As shown in Figs. 15 and 16, the g mode frequency

increases smoothly with mass for hadronic NSs. The g
mode frequency for hybrid NSs increases rapidly when
quarks appear at the center of the NSs because their mixed
phases have larger Brunt-Väisälä frequencies. Since a
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FIG. 12. Squared equilibrium sound speed vs baryon density
normalized to the speed of light.
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FIG. 15. The g mode frequency vs NS central pressure. The
small orange line segment at ðPc; νgÞ ≃ ð300 MeV fm−3; 850 HzÞ
corresponds to the discontinuity g mode generated by the
Maxwell construction.
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FIG. 16. The g mode frequency as a function of NS mass. The
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at ðM; νgÞ ≃ ð2.2M⊙; 850 HzÞ corresponding to the discontinuity
g mode of the Maxwell construction.
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transition model with a larger surface tension has larger
composition gradients and forms a narrower and higher
peak in the Brunt-Väisälä frequency, the g mode frequency
increases more rapidly for a larger η.
In the case of a Maxwell transition where the quark-

hadron mixture vanishes (see Fig. 14), the chemical gmode
frequency is reduced to a discontinuity g mode, which is
discontinuous from the hadronic (ZLA) branch; see
Figs. 15 and 16. The discontinuity g mode frequency
has been widely studied in the slow-conversion limit
[44,47,50,62,63] without involving chemical composition.
At the slow-conversion limit, matter does not instantane-
ously change phase upon passing through the phase
transition boundary. Indeed, a g mode due to a density
discontinuity from a phase transition can be understood as a
special version of a g mode due to chemical composition
changes, since matter on the low-density side can be treated
as having a different composition from that on the high-
density side. When η approaches 1 from below, the g mode
frequency goes toward the Maxwell case quickly. Here we

include the adiabatic sound speed off equilibrium and
verify that the discontinuity g mode frequency is not
sensitive to the detailed chemical composition of hadronic
or quark matter. To our knowledge, this is the first work
explicitly showing that the compositional g mode in a
hybrid NS reduces to a discontinuity g mode at the limit of
Maxwell construction.

D. Crossovers

In the final two plots of this section (Figs. 17 and 18), we
show a comparison of the EOS and of the particle fractions
corresponding to a crossover with a hadron-to-quark
fraction fðnBÞ ¼ 1 − exp½−35ðnB=nsatÞ−1.8� in the present
framework and to the XOA parametrization of Ref. [21]
which provides a crossover EOS between the ZLA and
vMIT equations of state as implemented in Kapusta and
Welle [22]. The various quantities are qualitatively similar
even though quantitative differences exist. The use of a
composition-dependent fðnB; yiÞ can, presumably,
improve agreement, but such an undertaking is beyond
the scope of this work.

VI. SUMMARY AND CONCLUSIONS

In this work, we have devised a thermodynamically
consistent method to calculate neutron-star EOS properties
when a first-order phase transition within the star lies in
between the familiar Maxwell and Gibbs constructions. The
implementation of this approach combines both the local and
global charge neutrality conditions characteristic of the
Maxwell and Gibbs constructions, respectively. Overall
charge neutrality is achieved by dividing the leptons (electrons
and muons) to those that take part in local charge neutrality
(Maxwell) and those that maintain global charge neutrality
(Gibbs). Accounting for both possibilities in conjunction with
the conditions of baryon and lepton number conservation
enables the calculation of the EOS upon minimizing the total
energy density with respect to the various particle fractions,
which generates the necessary phase-equilibrium equations.
This method circumvents addressing the poorly known sur-
face tension between the two phases microscopically (as, for
example, in the calculation of the core pasta phases via the
Wigner-Seitz approximation).
To be specific, we have considered the case of baryon

(nucleons)-to-quark phase transitions. Separate model equa-
tions of state are used to describe the pure phases that contain
nucleons and quarks, respectively. In the region of the phase
transition, the mixed phase is characterized by the fractional
volume f occupied by nucleons, which is solved for each
baryon density using the aforementioned phase-equilibrium
equations. Charge neutrality is achieved partially locally and
partially globally with the aid of a new variable η, which
lies in the range (0, 1) with η ¼ 0 corresponding to a Gibbs
construction and η ¼ 1 to a Maxwell construction. The
quantity η serves as a proxy for the surface or interface

f=1–e–35 (nB/n0)–1.8
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FIG. 17. Comparison of the XOA parametrization of the
crossover EOS of [21] based on the Lattice QCD-inspired model
of [22] and a crossover EOS constructed in the current scheme
with fðnBÞ ¼ 1 − exp½−35ðnB=nsatÞ−1.8�.

xoa
xoa
xoa
xoa
xoa
xoa
xoa

Crossovers

0.5 1.0 1.5 2.0
10–4

0.001

0.010

0.100

1

nB(fm–3)

Y
i

n
p
u
d

e
μ

n
p
u
d
s
e

s

μ

FIG. 18. Comparison of the composition of β-equilibrated
matter vs baryon density for the same equations of state as in
Fig. 17.
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tension between the two phases. For a very large surface
tension, theMaxwell constructionwith local charge neutrality
is appropriate, whereas for a very small surface tension, the
Gibbs construction with global charge neutrality applies. For
intermediate surface tension, the boundary between the two
phases is blurred and charge neutrality in the ambient phase is
fulfilled both locally and globally.
The exact relation between the variable η and the surface

tension is contingent upon the particular microscopic
approach used in calculating the latter. Such a relation is
by nomeans unique, being that many models for the surface
tension exist in the literature [4–11]. Moreover, a density-
dependent η [that is, inclusion of Eq. (32) in the equilibrium
conditions] would be required for a direct comparison.
The distinguishing feature of our framework is that it

enables, with a single knob η ∈ ½0; 1�, the exploration of all
available EOS phase space between the Gibbs (η ¼ 0) and
the Maxwell (η ¼ 1) constructions, while maintaining
control over the composition. Since these constructions
also correspond to the extremes of small and large surface
tension (or, equivalently, complete and no phase mixing), η
can be viewed as a rough proxy for the surface tension even
in the absence of a precise mapping between the two.
Furthermore, it should not be difficult to parametrically
tune η such that the results of microscopic calculations are
(approximately) reproduced.
The stability aspects contained in our model are as

follows. In NS matter with leptons, the pressure equation
resulting from energy minimization with respect to the
fractional volume occupied by hadrons f ensures that the
pressure increases monotonically with baryon density, thus
ensuring mechanical stability. Convective stability has been
checked by the positivity of the Brunt-Väisälä frequency in
Eq. (62) throughout the star. As we discuss the zero-
temperature EOS for an ideal fluid, thermal or stress related
instabilities are not within the scope of discussion.
If, however, the pressures PQ and PH are compared,

neglecting leptonic contributions, spinodal instabilities
could occur; see Ref. [64] for a detailed discussion in
the context of a liquid-gas phase transition. Nucleation
instability with respect to different “pasta” phases cannot be
tracked in our framework as a specific model has not been
constructed as in Refs. [4–11]. In the approach we have
developed, the precise location of charges cannot be
determined. Thus, a discussion of possible instabilities at
the hadron-quark interface becomes impossible.
Calculations of the equations of state and that of thevarious

particle fractions for representative values of η intermediate to
(0, 1) are performed in this framework.The ensuing results are
then utilized to calculate NS properties such the mass-radius
curves, tidal deformabilities, adiabatic and equilibrium sound
speeds, and g mode oscillation frequencies.
The results are in line with expectation in that the various

quantities of interest transform smoothly from their Gibbs
structures to those of Maxwell as η is raised from 0 to 1. In

the cases of the hadron-to-baryon fraction and of the EOS,
we find that the corresponding phase spaces between the
Gibbs and the Maxwell constructions are covered in their
entirety for η ∈ ½0; 1�. The composition, which favors the
negatively charged quarks for the establishment of charge
neutrality at small η, progressively switches over to leptons
as the Maxwell limit is approached.
Owing to the earlier onset of the mixed phase at smaller

η’s, neutron stars with softer transitions tend to contain a
higher proportion of hybrid matter at any given mass. As a
result, their M-R diagrams peak at lower values for both
the mass and the associated radius; a trend which is also
reflected in tidal properties such as the Love number k2 and
the tidal deformability Λ. However, pure-quark-matter
cores are only attainable in stars with stiffer transitions
because the Maxwell(-like) mixed phase covers a narrower
band of densities which, for sufficiently large η andM, can
be exceeded by the stars’ central densities.
A rich, nonmonotonic behavior is produced in both the

equilibrium and the adiabatic sound speeds by varying η.
Relative changes are more conspicuous for the Maxwell-
like transitions leading to Brunt-Väisälä frequencies that
can be orders of magnitude larger than those occurring in
the opposite end of low η.
The exception to the general rule of smooth change with η

is the lowest-order l ¼ 2 gmode frequency. It has the highest
frequency among the g mode family of oscillations with the
fluid perturbation peaking in the core of a neutron star [65].
Such a g mode can be excited in the inspiral phase of NS
mergers [66] causing orbital phase advance, which can be
measured fromwaveformanalysis in upgradeddetectors [67].
The g mode frequency rises rapidly at the onset of the mixed
phase, more so for stiffer transitions, albeit requiring higher
NS masses to be triggered. While this process advances in a
regular manner for η < 1, it becomes discontinuous for
η ¼ 1; that is, the g mode frequency of the quark phase is
discontinuous from that of the hadronic branch for aMaxwell
construction. This is the first explicit demonstration of the
compositional g mode in a hybrid NS reducing to a dis-
continuity g mode at the Maxwell limit.
Finally, we have shown how this scheme can be

adapted to the description of crossovers by replacing the
mechanical equilibrium condition, Eq. (31), by a hadron-to-
baryon fraction f with a definite functional dependence on
density.
Our results in this paper can be straightforwardly

extended to finite temperature T by minimizing the free
energy density instead of the energy density. The con-
servation laws remain the same as those presented here,
as do the formal expressions describing the phase
equilibrium, albeit with the use of finite-T pressures and
chemical potentials. The ensuing results will be of rel-
evance to applications such as the short- and long-term
cooling of neutron stars, simulations of binary neutron-star
mergers, etc.
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