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We report a first demonstration for the application of quantum computing to heavy quarkonium
spectroscopy study. Based on a Cornell-potential model for the heavy quark and antiquark system, we show
how this Hamiltonian problem can be formulated and solved with the variational quantum eigensolver (VQE)
approach on the IBMcloudquantumcomputing platform.Errors due to a global depolarizing noise channel are
corrected with a zero-noise extrapolation method, resulting in good agreement with the expected value. We
also generalize the VQE method for solving excited states by orthogonalization with respect to the ground
state. This new approach is demonstrated to be successful for the quarkonium system on a noiseless quantum
simulator and can easily be adapted for solving similar excited state problems inmany other physical systems.

DOI: 10.1103/PhysRevD.107.074012

I. INTRODUCTION

In recent years, the intersection between quantum
computing and nuclear physics has experienced major
developments at a rapid pace [1–3]. While a full simulation
of QCD is not yet practical, quantum computers and
simulators are currently exploited for solving/simulating
effective models of strong interaction systems as well as
related gauge field theories (e.g., in lower dimensions
and/or with smaller symmetry groups) [4–17]. One cat-
egory of problems with wide applications to various
research fields, such as quantum chemistry and atomic/
molecular physics, is computing the energy eigenvalues for
a given Hamiltonian. Quantum algorithms for computing
eigenvalues mostly come in two flavors, those based on
quantum phase estimation (QPE) [18–20] and those based
on the variational quantum eigensolver (VQE) [21,22].
Recently, quantum computations of the ground state
energies of a few nucleon systems have been achieved
using VQE methods [4,5], extending the usefulness of
quantum algorithms into the subatomic realm. It is tempt-
ing to ask whether quantum computing can be applied to
even more fundamental nuclear matter, quarks and anti-
quarks. Hadron spectroscopy, or how various hadrons are
made from their quark/antiquark constituents, is an active
research frontier of nuclear physics with many interesting
and challenging problems. An example is the heavy
quarkonium system for which a Hamiltonian approach
with a nonrelativistic interaction potential provides a
reasonable approximate description. In this work, we

perform the first to our knowledge quantum computing
study for the ground state as well as excited states of a
charm-anticharm system. Our calculation uses the VQE
algorithm with unitary coupled cluster (UCC) ansatz
[22,23]. To correct errors due to decoherence in a noisy
quantum computer, we further demonstrate a zero-noise
extrapolation method for error mitigation. Furthermore,
we generalize the VQE method for solving excited states
by orthogonalization with respect to the ground state and
demonstrate its success for the quarkonium system on a
noiseless quantum simulator. The rest of this paper is
organized as follows: in Sec. II, the framework of our study
will be given, including the setup of the physics problem
and the details of the quantum computation, the variational
approach and its generalization to excited states, as well as
the error mitigation method; the results of the present study
for both ground and excited states will be presented in
Sec. III; finally we summarize in Sec. IV.

II. FRAMEWORK

A. The physics problem

The physics problem we consider is a pair of charm and
anticharm quarks that form a series of bound states through
their mutual interactions. The nonrelativistic potential model
was shown in past studies to provide a good description
of charmonium spectra, and the features of such a potential
were quantitatively determined from phenomenology and
lattice calculations [24,25]. We will adopt this approach and
use the following effective potential:

VðrÞ ¼ −
κ

r
þ σr; ð1Þ
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known as the Cornell potential. For simplicity, we ignore
spin-dependent contributions and consider the above as a
spin-averaged potential. We set κ ¼ 0.4063 and

ffiffiffi
σ

p ¼
441.6 MeV, which will result in a ground state energy
between that of the physical J=ψ and ηc. In the center-of-
mass frame, the relative motion of the charm and anticharm
is described by the quantum Hamiltonian

T þ V ¼ −
1

2μ
∇2 þ VðrÞ; ð2Þ

where μ ¼ 637.5 MeV is the reduced mass for the c-c̄ pair.
This defines the problem (i.e., finding eigenvalues and
eigenstates of the Hamiltonian) we aim to solve on a
quantum computer.

B. Quantum gate representation of the Hamiltonian

Our next step is to represent the Hamiltonian in terms of
quantum gate operations that can be implemented on a
quantum computer. In comparison to the second-quantized
formalism, very little study has been given to preparing
first-quantized Hamiltonians on quantum hardware [26].
Thus, we first rewrite Eq. (2) in second-quantized form:

HN ¼
XN−1

m;n¼0

hmjðT þ VÞjnia†man: ð3Þ

While HN is only exact in the N → ∞ limit, we must limit
N to a finite value since only finitely many orbits can
be simulated on a quantum computer at once. By the
Hylleraas-Undheim-MacDonald theorem [27,28], the nth
eigenvalue of HN is an upper bound on the nth eigenvalue
of H∞. More attention is given to this theorem in
Appendix A. The basis fjnig is a set of complete and
orthogonal quantum states that spans the Hilbert space
for the original physical system under consideration. We
take a similar approach to that of [4] by using the spherical
quantum harmonic oscillator states as basis orbits. As we
are mostly interested in computing the ground state of the
Hamiltonian, we will limit ourselves to the s-wave states.
The operators a†n and an correspond to the creation and
annihilation operators for a c-c̄ pair in the harmonic

oscillator s-wave state jni. At any point in time, the state
of the system in the many-body formalism is of the form
jfN−1 � � � f1f0i, where each fn represents the number of
c-c̄ pairs in the state jni. Each jfni can straightforwardly be
identified with a qubit: j0i ¼ ð1; 0ÞT or j1i ¼ ð0; 1ÞT. This
is possible despite the fact that each c-c̄ pair is a boson
since there is at most one pair per orbit.
The mapping described above is standard for both

classical and quantum computational ab initio studies of
molecular systems that use the popular coupled cluster
(CC) and UCC methods. In classical computations, CC is
typically preferred since the classical resources needed to
implement the UCC scale exponentially with the system
size [26]. However, CC is in general not variational; i.e.,
convergence to finite energies is not guaranteed [26,29].
While possible solutions to this issue do exist, their scaling
is also usually exponential [26]. In contrast, UCC is
variational, making it immune to explosive failures and a
potential attractive alternative to CC on a future fault-
tolerant quantum computer. There is also a near-term
advantage to using UCC since variational algorithms have
been shown to be somewhat resilient to sources of noise
present on current quantum devices [26].
To compute the matrix elements of the Hamiltonian, we

use the well-known coordinate-space wave functions,

hrjni ¼ ð−1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!
b3Γðnþ 3=2Þ

s
exp

�
−

r2

2b2

�
L1=2
n

�
r2

b2

�
;

ð4Þ

where the oscillator length b≡ ðμωÞ−1=2 is a function of the
oscillator frequency ω (chosen to be 562.9 MeV in this
calculation) and the reduced mass μ. The matrix elements
of the kinetic energy operator are

hmjTjni ¼ ω

2

n
ð2nþ 3=2Þδmn −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1=2Þ

p
δmþ1;n

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 3=2Þ

p
δm−1;n

o
: ð5Þ

To evaluate the potential energy operator, we separately
calculate the matrix elements of r and r−1:

hmjrjni ¼ ð−1Þmþn 4b
πð1 − 4n2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðmþ 3=2ÞΓðnþ 3=2Þ

m!n!

r
2F1ð2;−m; 3=2 − n; 1Þ; ð6Þ

hmjr−1jni ¼ ð−1Þmþn 4b−1

πð1þ 2nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðmþ 3=2ÞΓðnþ 3=2Þ

m!n!

r
3F2ð1=2; 1;−m; 3=2; 1=2 − n; 1Þ: ð7Þ
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To represent the creation and annihilation operators that
previously operated on orbits into quantum gates that act on
qubits, we use the Jordan-Wigner transformation [30],

a†n ¼ 1

2

�Yn−1
j¼0

Zj

�
ðXn − iYnÞ; ð8Þ

an ¼
1

2

�Yn−1
j¼0

Zj

�
ðXn þ iYnÞ; ð9Þ

which uses the abbreviated notation Xn ≡ σxn, Yn ≡ σyn,
and Zn ≡ σzn for Pauli operators acting on the nth qubit.
In our simulations, we use a 3-qubit quantum circuit, which
computes the Hamiltonian

H3 ¼
X9
i¼0

Hi
3; ð10Þ

H0
3 ¼

1

2

�
21

4
ωþ V00 þ V11 þ V22

�
; ð11Þ

H1
3 ¼ −

1

2

�
3

4
ωþ V00

�
Z0; ð12Þ

H2
3 ¼ −

1

2

�
7

4
ωþ V11

�
Z1; ð13Þ

H3
3 ¼ −

1

2

�
11

4
ωþ V22

�
Z2; ð14Þ

H4
3 ¼

1

4

�
−

ffiffiffi
3

2

r
ωþ 2V01

�
X0X1; ð15Þ

H5
3 ¼

1

4
ð−

ffiffiffi
5

p
ωþ 2V12ÞX1X2; ð16Þ

H6
3 ¼

1

4

�
−

ffiffiffi
3

2

r
ωþ 2V01

�
Y0Y1; ð17Þ

H7
3 ¼

1

4
ð−

ffiffiffi
5

p
ωþ 2V12ÞY1Y2; ð18Þ

H8
3 ¼

1

2
V02X0Z1X2; ð19Þ

H9
3 ¼

1

2
V02Y0Z1Y2; ð20Þ

with Vmn ≡ hmjVjni. Equations (12)–(20) are proportional
to traceless unitary operators.

C. Variational approach

The variational principle states that, given an ansatz
jψðθ⃗Þi and a Hermitian observable O that is bounded
below,

hψðθ⃗ÞjOjψðθ⃗Þi ≥ ϵ0; ð21Þ

where ϵ0 is the lowest eigenvalue ofO. This principle forms
the basis of the VQE algorithm, which uses a classical
optimization procedure to minimize hOiwith respect to the
parameters θ⃗ and a quantum subroutine to calculate hOi for
any given θ⃗. We approximate the ground state energy ofH3

using the VQE algorithm in tandem with the UCC ansatz.
For a single c-c̄ pair with access to three orbitals, this ansatz
consists of the unitary operator

Uðθ;ϕÞ¼ expfθða†1a0−a†0a1Þþϕða†2a0−a†0a2Þg; ð22Þ

which rotates the state j001i into a linear combination of
j001i, j010i, and j100i with coefficients tuned by θ and ϕ.
For this specific system, however, it is more convenient to
use the parameters α and β, defined by α≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2 þ ϕ2
p

and
sin β≡ θ=α. The 3-qubit UCC ansatz for a single c-c̄ pair is
then just

jψðα;βÞi ¼ cosαj001iþ sinα sinβj010iþ sinαcosβj100i:
ð23Þ

A low-depth gate decomposition of jψðα; βÞi is illustrated
in Fig. 1. The variational principle states that for any α
and β,

hψðα; βÞjH3jψðα; βÞi ≥ ϵ0;

where ϵ0 is now the ground state energy ofH3. To compute
hH3i on a quantum computer with respect to the variational
ansatz, we separately measure the traceless unitaries in
Eqs. (12)–(20).

FIG. 1. A low-depth gate decomposition of the UCC ansatz
used in our simulations. In the diagram, the state is initialized to
j0i since this is the initial state encountered on the IBM quantum
computers.

QUANTUM COMPUTING FOR HEAVY QUARKONIUM … PHYS. REV. D 107, 074012 (2023)

074012-3



D. Generalized approximation scheme for excited states

The VQE algorithm has been primarily applied to
estimate the ground state energy ϵ0 and wave function
jψðα0; β0Þi, which is a kind of limitation for the method.
Oftentimes it is interesting and important to also find the
excited states of a quantum system, such as the heavy quark
spectroscopy problem under consideration in this work.
Here we generalize the VQE approach to a more compre-
hensive method for systematically estimating excited states
in addition to the ground state. The main idea is to find the
next higher energy level (i.e., the first excited state) via
variational minimization within the sub-Hilbert space
orthogonal to the already found ground state. Obviously
this scheme can be carried out further to systematically find
the next higher energy level via variational minimization
within the sub-Hilbert space orthogonal to all the lower-
lying levels that are already found. The excited states
variationally found this way are meaningful as they provide
upper bounds on the corresponding true excited state
energy values, just as the conventional variational method
that gives an upper bound on true ground state energy. This
is based on the so-called Hylleraas-Undheim-MacDonald
theorem [27,28], for which an explicit proof has been
included in Appendix A for readers’ convenience.
To illustrate how this works, let jψðα1; β1Þi and

jψðα2; β2Þi be the first and second excited states with
eigenenergies ϵ1 and ϵ2, respectively:

H3jψðα1; β1Þi ¼ ϵ1jψðα1; β1Þi; ð24Þ

H3jψðα2; β2Þi ¼ ϵ2jψðα2; β2Þi; ð25Þ

where ϵ2 > ϵ1 > ϵ0. Assuming the ground state is known
exactly, we consider all possible states that are orthogonal
to the ground state, i.e., hψðα0; β0Þjψðα; βÞi ¼ 0. Such
states can be expressed in general as linear combinations of
all other eigenstates except the ground state. In our case of
three basis orbits, we may write

jψðα; βÞi ¼ ajψðα1; β1Þi þ bjψðα2; β2Þi;
jaj2 þ jb2j ¼ 1: ð26Þ

Therefore,

hψðα; βÞjH3jψðα; βÞi ¼ ϵ1 þ jbj2ðϵ2 − ϵ1Þ ≥ ϵ1

¼ hψðα1; β1ÞjH3jψðα1; β1Þi: ð27Þ

With an ideal optimization procedure, the first excited state
can also be obtained by the variational approach in the sub-
Hilbert space orthogonal to the ground state.
Given jψðα0; β0Þi is known to good precision, this

provides a way to estimate the first excited state by
scanning the Hilbert-subspace orthogonal to the ground
state and minimizing the expectation value of H3. One can

apply this technique iteratively to estimate any excited state
energy, with the largest excited state limited by the number
of truncated basis orbits. Of course, a tricky issue here is
that the ground state itself is obtained via the variational
method in the first place. So there would be an error of the
variational ground state with respect to the true ground
state. The question is how such an error in the ground
state would affect the further estimates of excited states.
A detailed analysis of the problem, as presented in
Appendix B, concludes that the errors for the excited
states stay at the same level as the ground state itself, and
there will be no worrisome accumulation or even magni-
fication of errors in this method. We also note that even
though errors in the calculation of the ground state can
cause excited state energy measurements to be less than the
eigenenergies of the truncated Hamiltonian, the measure-
ments may still overestimate the eigenenergies of the full
Hamiltonian (as illustrated in Fig. 2). The bottom line is
that our method of estimating excited state energies can
achieve the same level of accuracy as the conventional
VQE method for estimating the ground state.

E. Error mitigation

A key challenge for any quantum calculation is that on a
real quantum computer each measurement will necessarily
generate errors due to decoherence (environmental noise),
such as amplitude damping, phase damping, or depolariz-
ing noise channels. Of these, we choose to correct for
a potential global depolarizing channel. Though this
channel usually overestimates the degree to which quantum

FIG. 2. An illustration of the method for estimating excited
states. Left column: the lowest two energies of a Hamiltonian
with potentially infinitely many energies. Middle column: after
truncating to two levels, eigenvalues increase due to the Mac-
Donald theorem. Right column: inaccuracies in variationally
determining the ground state cause the ground state measurement
to increase and the excited state measurement to decrease.
However, the excited state measurement may still be an upper
bound on the exact first excited state.
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information is lost to the environment, it is appropriate
since we have no detailed information about the actual
physical noise channel of the quantum computer we are
using. To correct for the noise channel, we employ a zero-
noise extrapolation method based on [31]. Let

U ¼ Ld � � �L2L1 ð28Þ

be an N-qubit quantum circuit with depth d. Each layer Li
is composed of one or more quantum gates that can be
executed simultaneously. Assuming a global depolarizing
channel is the dominant source of noise in the circuit, the
density matrix ρ transforms under Li in a way that depends
only on an ideal noiseless part L̃i and a layer-dependent
success rate 0 ≤ ri ≤ 1. That is,

ρ ⟶
Li riL̃iρL̃

†
i þ

1

2N
ð1 − riÞI: ð29Þ

Consequently, ρ transforms as

ρ ⟶
U

rŨρŨ† þ 1

2N
ð1 − rÞI ð30Þ

under the circuit U, with total success rate r≡Q
d
i¼1 ri.

While U will have a base level of noise that cannot be
controlled, it is possible to scale the presence of noise in a
predictable manner. Consider the new circuit

V ≡UðU†UÞnðL†
1 � � �L†

sÞðLs � � �L1Þ; 0 ≤ s < d: ð31Þ

While V is logically equivalent to U, the ratio of their
depths is

κ ≡ 2
s
d
þ 2nþ 1: ð32Þ

Under this larger circuit, ρ transforms as

ρ ⟶
V

rλŨρŨ† þ 1

2N
ð1 − rλÞI; ð33Þ

where

λ≡ 2
ln q
ln r

þ 2nþ 1 ð34Þ

is a noise scaling parameter and q≡Q
i≤s ri. In the

simplest case where s ¼ 0, the additional noise introduced
by V depends only on circuit depth since λ ¼ κ. This is the
scaling behavior given the most attention in [31]. However,
in the general case where 0 ≤ s < d, knowledge of the
depths alone is not sufficient.

Consider a circuit that begins in the pure state ρ ¼ j0̃ih0̃j
and is transformed by the noisy operator V. The expectation
value of each traceless Hi

3 with respect to this state is

hHi
3iðλÞ ¼ h0̃jŨ†Hi

3Ũj0̃irλ; 1 ≤ i ≤ 9: ð35Þ

Evidently, hHi
3iðλÞ is proportional to the noiseless expect-

ation value, but vanishes exponentially quickly as λ increases
beyond 1. One estimates the noiseless result by measuring
hHi

3iðλÞ for various λ, fitting the exponential ansatz to the
data, and evaluating the fit at λ ¼ 0. The approach that is
simplest and least prone to error is to only gather data for
odd λ. Yet, each time λ is increased to the next odd integer,
the circuit depth increases by 2d. After only a few values
of λ, the depth may be too large for a given quantum
processor to handlewithout introducing significant errors. To
build a circuit with arbitrary λ ≥ 1, resulting in a better fit,
one needs precise knowledge of each ri, which is impractical
for even moderately large circuits. However, under the
simplifying assumption that each ri is approximately equal,
λ ≈ κ. In other words, one can approximate the true scaling
behavior using only circuit depths.

F. Scaling

While the current study is based on three-qubit circuits
representing three physical states, it is useful to think about
the scaling aspect when performing a similar calculation
with N physical states, with each quantum state represented
by one qubit as in the typical VQE approach. The number of
Pauli strings created by the Jordan-Wigner transformation
is OðN4Þ, and computing the expectation value of each
Pauli string at precision ϵ requiresOð1=ϵ2Þ repetitions of the
circuit. Thus,OðN4=ϵ2Þ total circuits must be evaluated. The
depth of each evaluation depends on the quantum gate
representation of the UCC ansatz. While it is possible to find
low-depth representations of the ansatz for small systems
through experimentation, the standard approach for larger
systems is to rewrite the ansatz using a Suzuki-Trotter
decomposition. For k Trotter steps, each with a depth
OðN2Þ, the total depth of a single evaluation is OðkN2Þ.
However, for an accurate description of the ground state in
simple systems, it is often sufficient to set k ¼ 1 [26].
Additionally, when using a real quantum computer, noise
mitigation will further increase the circuit depth. The zero-
noise extrapolation method described above increases the
depth of a given evaluation by a factor λ.

III. RESULTS

A. The ground state

For this work, we used IBM’s cloud quantum computing
platform and ran our circuit on IBMQ Athens, which uses a
five-qubit Falcon r4 quantum processor. The IBM platform
also provides the QASM Simulator that one can use to
generate quantum calculation results in an ideal noiseless

QUANTUM COMPUTING FOR HEAVY QUARKONIUM … PHYS. REV. D 107, 074012 (2023)

074012-5



setting. To calculate the expectation value of H3 for a
given α, β, λ, Eqs. (12)–(20) were measured separately
1.024 × 106 times. Beginning with λ ¼ 1, we used the
VQE algorithm to find the appropriate α0 and β0 corre-
sponding to the ground state jψ1Si. These were determined
to be α0 ¼ 3.31 and β0 ¼ 0.95. We then calculated the
expectation values of Eqs. (12)–(20) with respect to jψ1Si
for λ ¼ 2, 3, 4, 5. These data are shown in Fig. 3. As one
can see, overall we have found quite reasonable scaling
behavior in line with expectations, and the extrapolation
results toward the λ ¼ 0 limit are in good agreement with
noiseless results for most cases. However, the plots for
hH5

3i and hH7
3i conform especially poorly to the global

depolarizing model. In these cases, a different noise model
may be needed to reduce the uncertainty in the extrapolated
value. Combining these data gives the final plot for
hH3iðλÞ, shown in Fig. 4. Here we also list the obtained
values: hH3iðλ¼1Þ¼751.57�7.20MeV; hH3iðλ¼2Þ¼
875.87�12.41MeV; hH3iðλ¼3Þ¼1146.05�31.13MeV;
hH3iðλ ¼ 4Þ ¼ 1232.98� 19.63 MeV; hH3iðλ ¼ 5Þ ¼
1382.92� 15.83 MeV. As one can see, the statistical errors
of each calculation at given λ are rather small, mostly at
the (1–2)% level.
The extrapolation toward the noiseless limit gives a

value of hH3iðλ → 0Þ ¼ 502� 98 MeV. The correspond-
ing ground state wave function is found to be

jψ1Si ¼ −0.9858j001i − 0.1369j010i − 0.09722j100i:
ð36Þ

Notice that jψ1Si is almost entirely composed of the
harmonic oscillator ground state, supporting our choice
of basis.

FIG. 4. Expectation value (in MeV) of H3, obtained by
combining the plots in Fig. 3 with 2σ prediction bands. Actual
values have a 95% chance of lying within bands. A noiseless
quantum simulation result is indicated by the star symbol for
comparison.

FIG. 3. Expectation values (in MeV) of Eqs. (12)–(20) versus the scaling parameter λ with 2σ prediction bands. Actual values have
95% chance of lying within bands. Noiseless quantum simulation results are indicated by stars, but are not included in the fits.
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The central value of hH3i from such extrapolation,
502 MeV, compares well with both the result of 493�
1 MeV from the noiseless QASM Simulator and the
expected value of 492.6 MeV from exact diagonalization
of H3. The �98 MeV error represents a 2σ uncertainty
band dominantly from the extrapolation uncertainty. While
the quantum algorithm itself generates rather small errors,
there is still sizable uncertainty due to the extrapolation,
which is actually a useful reflection of the limitation due
to noisy quantum computers. On such real-world devices,
the actual noisy behaviors could go beyond the strategy we
adopt for error mitigation while only a perfect under-
standing of noise sources could help substantially reduce
the extrapolation uncertainty.

B. Estimating an excited state

Next, we calculate the first excited state energy of the
charmonium system under consideration. There are several
effective methods for estimating excited state energies
using a variational algorithm [22,23,32–34], some of which
were developed before their applications to quantum
computing were realized. In this work, we measure the
2S noiseless expectation value of H3 by orthogonalizing
the UCC ansatz with respect to our estimate of the ground
state, and then applying the VQE algorithm to this reduced
Hilbert space. This approach is likely to be effective since
we only use the noiseless QASM Simulator, which will
keep statistical errors small. Because of the orthogonaliza-
tion constraint, the α1 and β1 are not independent. Basic
geometric considerations suggest that α1 and β1 be related
by a third parameter γ:

cos α1 ¼ − sin α0 cos γ; ð37Þ

sin α1 sin β1 ¼ cos α0 sin β0 cos γ þ cos β0 sin γ; ð38Þ

sin α1 cos β1 ¼ cos α0 cos β0 cos γ − sin β0 sin γ: ð39Þ

We find the 2S energy to be 1212� 2 MeV, which
compares well with the expected value of 1210.8 MeV
from exact diagonalization. The corresponding wave
function is

jψ2Si¼−0.1617j001iþ0.9298j010iþ0.3307j100i; ð40Þ

with γ ¼ 2.87. By employing more qubits for the compu-
tation, one can easily extend this strategy to calculate
higher and higher excited states.

IV. SUMMARY

In summary, we have reported a first demonstration for
the application of quantum computing to heavy quarko-
nium spectroscopy study. Based on a Cornell-potential
model for the heavy quark and antiquark system, we have

shown how this Hamiltonian problem can be formulated and
solved with the VQE approach on the IBM cloud quantum
computing platform. Errors due to a global depolarizing
noise channel on a real quantum computer have been
mitigated with a zero-noise extrapolation method, resulting
in good agreement with the expected value for the ground
state. We have also generalized the VQE method for solving
excited states by orthogonalization with respect to the
ground state and analyzed the error in such estimates of
excited states. This new method has been successfully
demonstrated for the quarkonium system on a noiseless
quantum simulator and shall be generally applicable for
solving similar excited state problems in many other physical
systems. With the current explorative study showing the
potential of quantum computing for quark dynamics in
hadron spectroscopy, it is tempting to fully exploit the
possibility of solving more challenging problems in this
area (such as exotic states) on a quantum computer, which
will be our future work to be reported elsewhere.
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APPENDIX A: THE HYLLERAAS-UNDHEIM-
MACDONALD THEOREM

The following is a proof of the Hylleraas-
Undheim-MacDonald theorem [27,28] for first-quantized
Hamiltonians in a simple setting applicable to this research.
The result is immediately applicable to second-quantized
Hamiltonians since the eigenvalues are unchanged.
Suppose a given Hamiltonian H operating on the Hilbert
space H has the matrix representation

H ¼
�

h X

X† Y

�
; ðA1Þ

where h ¼ h† and Y ¼ Y†. The submatrices X and Y may
be infinite; however, the N × N block h is finite. Let the
normalized eigenvectors of h satisfy

hjφni ¼ λnjφni; λ0 < λ1 < � � � < λN−1: ðA2Þ

Define the states jφ̃ni≡ðjφni;0Þ∈H, with n¼0;…;N−1.
Then

hφ̃njHjφ̃ni ¼ hφnjhjφni ¼ λn: ðA3Þ
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Next, let the normalized eigenvectors of H satisfy

Hjvii ¼ Λijvii; Λ0 < Λ1 < � � � ; ðA4Þ

where the spectrum of H may be infinite. Consider the
ground state jv0i. Since jv0i minimizes the Rayleigh
quotient of H,

Λ0 ¼ hv0jHjv0i ≤ hφ̃0jHjφ̃0i ¼ λ0; ðA5Þ

that is, Λ0 ≤ λ0. Now, define an auxiliary state that is
orthogonal to the ground state:

jΦ1i ¼ c01jφ̃0i þ c11jφ̃1i ðA6Þ

such that hv0jΦ1i ¼ 0 and hΦ1jΦ1i ¼ 1. Then

Λ1 ¼ hv1jHjv1i ≤ hΦ1jHjΦ1i ðA7Þ

since jv1i minimizes the Rayleigh quotient within the
orthogonal subspace. Hence,

hΦ1jHjΦ1i ¼ jc01j2λ0 þ jc11j2λ1
¼ λ1 þ jc01j2ðλ0 − λ1Þ ≤ λ1; ðA8Þ

as λ0< λ1 and jc01j2 ≥ 0. As a result, one sees that Λ1 ≤ λ1.
This argument can be extended to any excited state by
defining

jΦni ¼
Xn
m¼0

cmnjφ̃mi ðA9Þ

such that hv0jΦni¼ ���¼hvn−1jΦni¼0 and hΦnjΦni ¼ 1.
This thus completes the proof.

APPENDIX B: ERROR IN ESTIMATING
EXCITED STATES

In this appendix, we analyze the error in our general-
ized method for estimating excited states. The main
source of error when estimating an excited state stems
from the error in the initial estimate of the ground state, so
long as statistical errors are small, as in the case of the
QASM simulator. The key issue here is whether the error
in the ground state estimate may accumulate and even get
magnified into the estimate of the excited states. For
simplicity, we first consider how error propagates in
applying our method to a two-level system. We then
demonstrate how the result generalizes to a three-level
system.
Given a Hamiltonian H, let fjψ0i; jψ1ig be a complete

and orthonormal set of eigenstates with ϵn ≡ hψnjHjψni.
Suppose our variational method leads to the following
approximate states:

jψ 0
0i ¼ α0jψ0i þ β0jψ1i; ðB1Þ

jψ 0
1i ¼ α1jψ0i þ β1jψ1i; ðB2Þ

as estimates of the ground and excited states with
hψ 0

0jψ 0
0i ¼ hψ 0

1jψ 0
1i ¼ 1 and hψ 0

0jψ 0
1i ¼ 0. Without loss

of generality, assume α0 and α1 are real and positive.
The corresponding energy estimates are ϵ0n ≡ hψ 0

njHjψ 0
ni

with errors δn ≡ ϵ0n − ϵn. Because the eigenstate estimates
are normalized,

δ0 ¼ jβ0j2Δ01; ðB3Þ

δ1 ¼ −α21Δ01; ðB4Þ

where Δmn ≡ ϵn − ϵm. Additionally, orthogonality requires
−α1=β�0 ¼ β1=α0. Taking the magnitude squared gives

α21
jβ0j2

¼ jβ1j2
α20

¼ 1 − α21
1 − jβ0j2

; ðB5Þ

which reveals α21 ¼ jβ0j2. Thus, for a two-level system,

δ1 ¼ −δ0: ðB6Þ

In other words, the magnitude of the error does not change
when using orthogonality to go from the ground state
estimate to the excited state estimate.
For a three-level system, let fjψ0i; jψ1i; jψ2ig be a

complete and orthonormal set of eigenstates for H and let

jψ 0
ni ¼ αnjψ0i þ βnjψ1i þ γnjψ2i; n ¼ 1; 2; 3; ðB7Þ

be the eigenstate estimates. Similar to the two-level case,
we assume α0, α1, α2 are real and positive, and we derive

δ0 ¼ jβ0j2Δ01 þ jγ0j2Δ02; ðB8Þ

δ1 ¼ −α21Δ01 þ jγ1j2Δ12; ðB9Þ

δ2 ¼ −α22Δ02 − jβ2j2Δ12; ðB10Þ

from normalization. Next, we minimize

δ1 ¼ −Δ01 þ jβ1j2Δ01 þ jγ1j2Δ02 ðB11Þ

subject to α0α1 þ β�0β1 þ γ�0γ1 ¼ 0 using the method of
Lagrange multipliers. Normalization allows the orthogon-
ality condition to be equivalently written as

0 ¼ gðβ1; γ1Þ
≡ ð1 − jγ0j2Þjβ1j2 þ ð1 − jβ0j2Þjγ1j2

þ 2Reβ�0β1γ0γ
�
1 þ jβ0j2 þ jγ0j2 − 1: ðB12Þ
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Define the auxiliary function

L≡ δ1 þ Reðλgðβ1; γ1ÞÞ; ðB13Þ

with λ a complex Lagrange multiplier. Then

0 ¼ ∂L
∂β1

¼ β�1Δ01 þ ðð1 − jγ0j2Þβ�1 þ β�0γ0γ
�
1ÞReλ; ðB14Þ

0 ¼ ∂L
∂γ1

¼ γ�1Δ02 þ ðð1 − jβ0j2Þγ�1 þ β0β
�
1γ

�
0ÞReλ: ðB15Þ

Solving this set of equations gives the first excited state
error:

δ1 ¼ −
1

2

�
Δ01 − Δ02 þ δ0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ01 þ Δ02 − δ0Þ2 − 4α20Δ01Δ02

q �
: ðB16Þ

One can also minimize

δ2 ¼ −Δ02 þ jβ2j2Δ01 þ jγ2j2Δ02 ðB17Þ

subject to hψ 0
1jψ 0

2i ¼ hψ 0
0jψ 0

2i ¼ 0 by introducing a
second Lagrange multiplier. The method is similar, but
the calculation is substantially more involved. Eventually,
one finds that

δ2 ¼
1

2

�
Δ01 − Δ02 − δ0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ01 þ Δ02 − δ0Þ2 − 4α20Δ01Δ02

q �
: ðB18Þ

Interestingly enough,

0 ¼ δ0 þ δ1 þ δ2; ðB19Þ

that is, the sum of the signed errors is zero, just as in the
two-level case. Additionally, one can quickly show that
Δ02 > Δ01 implies −δ0 ≤ δ1 ≤ 0 and −δ0 ≤ δ2 ≤ 0 using

Eq. (B8) with Eqs. (B16) and (B18). Evidently, the error in
the ground state contributes toward an error budget that is
shared between the excited states. Furthermore, ϵ01 ≤ ϵ1 and
ϵ02 ≤ ϵ2, whereas ϵ00 ≥ ϵ0 by the variational principle.
We now turn our attention to the values of δ1 and δ2 in a

few interesting limits. First, observe that if α20 ¼ 1, then
δ0 ¼ δ1 ¼ δ2 ¼ 0, as expected. Next, consider the almost
ideal scenario where α20 ¼ 1 − κ with κ ≪ 1. Using the
parametrization jβ0j2 ¼ κ cos2 θ and jγ0j2 ¼ κ sin2 θ for
0 ≤ θ ≤ π=2,

δ1 ≲ −κΔ01 cos2 θ; ðB20Þ

δ2 ≳ −κΔ02 sin2 θ; ðB21Þ

where “≲” is to be read “less than, but asymptotically equal
to in the limit of small κ.” To conclude this analysis, we
consider the equal superposition α20 ¼ jβ0j2 ¼ jγ0j2 ¼ 1=3:

δ0 ¼
1

3
ðΔ01 þ Δ02Þ; ðB22Þ

δ1¼−
1

3

�
2Δ01−Δ02þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

01þΔ2
02−Δ01Δ02

q �
; ðB23Þ

δ2 ¼
1

3

�
Δ01 − 2Δ02 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

01 þ Δ2
02 − Δ01Δ02

q �
: ðB24Þ

In this case, δ0, δ1, and δ2 are completely determined by the
energy differences Δ01 and Δ02.
We think it is reasonable to conclude that the magnitude

of the error on each excited state in a two- or three-level
system contributed by inaccuracies in the ground state is
bounded by the error on the ground state. We also think this
property can be plausibly generalized for four-level systems
and beyond. Even including statistical errors on the order of
δ0, the error on the excited states obtained through an
orthogonalization procedure will remain comparably small.
Therefore the generalized variational approach developed
in this work for estimating excited states is a robust one.
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