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We study the leading-twist unpolarized generalized parton distributions (GPDs) of light and heavy
vector mesons, i.e., the ρ, J=ψ , and ϒ, at zero skewness. An ansatz incorporating the zero-mode
contribution is introduced to modify the light front overlap representation of GPDs. The leading Fock-state
light front wave functions of vector mesons from Dyson-Schwinger and Bethe-Salpeter equations approach
are then employed to study the meson GPDs. The light front spatial distribution of valence quarks within
vector mesons is then studied with the impact parameter dependent GPD. We also investigate the
electromagnetic and gravitational form factors, which are the first and second Mellin moments of the
GPDs. The light-cone mass radius of ρ is determined to be 0.30 fm, close to a recent Nambu-Jona-Lasinio
model prediction of 0.32 fm. For J=ψ and ϒ, they are predicted to be 0.151 fm and 0.089 fm respectively.
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I. INTRODUCTION

The generalized parton distribution functions (GPDs)
extend the 1-dimensional collinear parton distribution
functions (PDFs) to the three-dimensional case, thus
allowing a femtoscale tomography of the hadrons and
nuclei [1–4]. Meanwhile, it builds a direct connection
between hadrons’ electromagnetic and mechanical proper-
ties with their partonic substructure [5–9]. Experimentally,
the GPDs are accessible in various hard exclusive proc-
esses, such as deeply virtual Compton scattering, deeply
virtual meson production, and timelike Compton scattering
[1,2,10,11]. Interest from both theory and experimental
sides thus motivates next generation facilities as the
electron-ion colliders [12–14].
Although great interest resides in spin-0 and spin-1=2

targets, the general formalism of unpolarized and polarized
GPDs of a spin-1 target was investigated for the case of
deuteron [15,16], followed by various model calculations
[16–19]. Meanwhile, the GPDs of vector mesons were
studied by various light front quark models [20–23] and the
Nambu–Jona-Lasinio (NJL) model [24]. In recent years,
with the growing interest in gravitational form factors, the
GPDs of vector mesons, whose second Mellin moments

yield the gravitational form factors (GFFs), provide an
important handle to study the mechanical properties of
vector mesons [25,26]. The ρGPDs are also connected with
the generalized distribution amplitudes (GDAs), with the
latter being the analytic continuation of GPDs to the
crossed channel [5,27,28]. Experimentally the information
of GDAs is accessible in the exclusive process γγ� →
ρρ [29,30].
In this paper, we present a model calculation of the

unpolarized GPDs of vector mesons through a synergy
between the Dyson-Schwinger and Bethe-Salpeter equa-
tions (DS-BSEs) and the light front approaches. The DS-
BSE approach has a long history of successfully predicting
various meson and baryon properties [31–36]. Regarding
the vector mesons, the ρmass and decay constant were first
predicted with the Maris-Tandy model in [37], and then a
fully rainbow-ladder calculation on electromagnetic form
factors (EMFFs) of ρ and J=ψ in the instant space-time
form was given in [38,39]. It is certainly desirable to
generalize such a calculation to the case of GPDs. However,
difficulties can be expected when a realistic propagator and
vertices are to be employed, e.g., how to implement the
dressing effect in the quark-photon vertex and control
potential numerical noise in computation. Here we circum-
vent such problems for now and resort to the light front
overlap representation, but use the Bethe-Salpeter equa-
tions (BSEs)-based leading Fock-state light front wave
functions (LF-LFWFs) as input [40,41]. In this regard, the
nonperturbative dynamical information of vector mesons is
conveyed from DS-BSEs to the GPDs. So this work
presents an initial effort from DS-BSEs toward the vector
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meson GPDs. Moreover, as the light and heavy vector
mesons can be simultaneously studied with the same
truncation scheme in the DS-BSEs formalism, it also
provides a good opportunity to see how the GPDs evolve
as the current mass of the valence quark increases.
Physically, this is accompanied by the diminishing of
dynamical chiral symmetry breaking, as well as the
relativistic parton motion inside the mesons.
This paper is organized as follows. In Sec. II we

recapitulate the general formalism of vector meson GPDs
and their overlap representation, and also the BSEs-based
LF-LFWFs of vector mesons. To incorporate the zero-mode
contribution, a revised ansatz of GPD overlap representation
is proposed. In Sec. III, we first show three-dimensional
distribution with the help of impact parameter dependent
generalized parton distributions (IPD GPDs). The electro-
magnetic form factors and multipole moments, as well as
certain gravitational form factors and light-conemass radius
are then given. We finally summarize in Sec. IV.

II. UNPOLARIZED GPDs OF VECTOR MESON

In the light-cone gauge, the unpolarized quark GPDs of
spin-1 hadrons are defined through the correlation function

VΛ0;Λðx;ξ; tÞ

¼
Z

dz−

4π
eixP

þz−hp0;Λ0jψ̄
�
−
z−

2

�
γþψ

�
z−

2

�
jp;Λi: ð1Þ

Here the p and p0 are the four-momentum of incoming and
outgoing hadrons, with Λ and Λ0 ¼ 0;�1 denoting their
helicity. The light front vector definition takes the con-
vention a� ¼ ða0 � a3Þ= ffiffiffi

2
p

, and the light front four-vector
thus is aμ ¼ ðaþ; a−; a⊥Þ. Other variables used are
Pμ ¼ ðp0μ þ pμÞ=2, Δμ ¼ p0μ − pμ, t ¼ Δ2 and skewness
variable ξ ¼ −Δþ=ð2PþÞ. At leading twist, there are five
GPDs that enter the decomposition of VΛ0;Λ [15]:

VΛ0;Λðx;ξ;tÞ¼−ðϵ0� ·ϵÞH1þ
ðϵ ·nÞðϵ0 ·PÞþðϵ0 ·nÞðϵ ·PÞ

P ·n
H2

−2
ðϵ ·PÞðϵ0� ·PÞ

M2
H3

þðϵ ·nÞðϵ0 ·PÞ−ðϵ0� ·nÞðϵ ·PÞ
P ·n

H4

þ
�
M2

ðϵ ·nÞðϵ0� ·nÞ
ðP ·nÞ2 þ1

3
ðϵ0� ·ϵÞ

�
H5: ð2Þ

The polarization vector ϵ≡ ϵμðp;ΛÞ and ϵ0 ≡ ϵμðp0;Λ0Þ.
Parity and time reversal invariance then lead to [15,17]

VΛ0;Λðx; ξ; tÞ ¼ ð−1ÞΛ0−ΛV−Λ0;−Λðx; ξ; tÞ; ð3Þ

VΛ0;Λðx; ξ; tÞ ¼ ð−1ÞΛ0−ΛVΛ;Λ0 ðx;−ξ; tÞ: ð4Þ

Using Eq. (3), five VΛ0;Λ’s are independent, e.g., V0;0, V0;1,
V1;0, V1;1, and V1;−1.
In the following, we will limit our study of the GPDs to a

special kinematic limit ξ → 0. Note that in the light front
overlap representation, only the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) region jxj > jξj is acces-
sible in the qq̄ Fock-state truncation. Yet fortunately, the
GPDs at zero skewness already give rise to many interest-
ing quantities such as the IPD GPDs, and the electromag-
netic and gravitational form factors. In this case, V0;1 and
V1;0 are related to Eq. (4). In the end, there are four
independent VΛ0;Λ’s left at zero skewness, which will be
taken as V0;0, V0;1, V1;1, and V1;−1 in the following. To
reverse Eq. (2), one can take a specific Breit frame
(pþ p0 ¼ 0) in which the four-vectors are [23,42]

nμ ¼ ð0;
ffiffiffi
2

p
; 0; 0Þ ð5Þ

Δμ ¼ ð0; 0; jΔ⊥j; 0Þ; ð6Þ

pμ ¼
�
M

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
ffiffiffi
2

p ;M

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
ffiffiffi
2

p ;−
jΔ⊥j
2

; 0

�
; ð7Þ

p0μ ¼
�
M

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
ffiffiffi
2

p ;M

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
ffiffiffi
2

p ;
jΔ⊥j
2

; 0

�
; ð8Þ

with τ ¼ Δ2⊥=ð4M2Þ, and the polarization vector reads as

ϵμðp;Λ ¼ �1Þ ¼ ∓ 1ffiffiffi
2

p
�
0;−

jΔ⊥jffiffiffi
2

p
pþ ; 1;�i

�
; ð9Þ

ϵμðp0;Λ0 ¼ �1Þ ¼ ∓ 1ffiffiffi
2

p
�
0;

jΔ⊥jffiffiffi
2

p
pþ ; 1;�i

�
; ð10Þ

ϵμðp;Λ¼ 0Þ¼ 1

M

�
pþffiffiffi
2

p ;
−M2þΔ2⊥=4ffiffiffi

2
p

pþ ;−
jΔ⊥j
2

;0

�
; ð11Þ

ϵμðp0;Λ0 ¼ 0Þ¼ 1

M

�
pþffiffiffi
2

p ;
−M2þΔ2⊥=4ffiffiffi

2
p

pþ ;
jΔ⊥j
2

;0
�
: ð12Þ

Reversing Eq. (2) yields

H1 ¼
1

3
½V0;0 − 2ðτ − 1ÞV1;1 þ 2

ffiffiffiffiffi
2τ

p
V1;0 þ 2V1;−1�; ð13Þ

H2 ¼ 2V1;1 −
2ffiffiffiffiffi
2τ

p V1;0; ð14Þ

H3 ¼ −
V1;−1

τ
; ð15Þ

H4 ¼ 0; ð16Þ

H5 ¼ V0;0 − ð1þ 2τÞV1;1 þ 2
ffiffiffiffiffi
2τ

p
V1;0 − V1;−1; ð17Þ
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with the abbreviation Hi ¼ Hiðx; 0; tÞ and VΛ0;Λ ¼
VΛ0;Λðx; 0; tÞ.
The light front overlap representation of correlation

function VΛ0;Λ can be obtained using the Fock state
expansion of the meson state and canonical expansion of
the (anti)quark field. Its final form reads [5,23] as

VΛ0;Λðx;0; t;μ0Þ ¼
X
λq;λq̄

Z
d2kT
2ð2πÞ3Φ

Λ0�
λq;λq̄

ðx; k̂TÞΦΛ
λq;λq̄

ðx; k̃TÞ;

ð18Þ

with k̂T ¼ kT þ ð1 − xÞ ΔT
2

and k̃T ¼ kT − ð1 − xÞ ΔT
2
. The

ΦΛ
λq;λq̄

ðx; kTÞ is the LFWF of the qq̄ component of the

vector meson.
To proceed, we take the ρþ, J=ψ and ϒ LF-LFWFs

obtained with the DS-BSE approach [40,41]. To be more
specific, we first numerically solve the quark propagator
SðpÞ and vector meson Bethe-Salpeter amplitudes Γμðk; PÞ
in the rainbow-ladder truncation. Then, using the projection
formula

ΦΛ
Λ;Λ0 ðx; kTÞ ¼ −

1

2
ffiffiffi
3

p
Z

dk−dkþ

2π
δðxPþ − kþÞ

× Tr½ΓΛ;Λ0γþχMðk; PÞ · ϵΛðPÞ�; ð19Þ

the covariant Bethe-Salpeter (BS) wave functions are
projected onto the light front and the LF-LFWFs are
obtained. Here the χMμ ðk; PÞ ¼ Sðkþ ηPÞΓM

μ ðk; PÞSðk −
ð1 − ηÞPÞ and the ϵΛðPÞ is the meson polarization vector.
The Γ�;∓ ¼ I � γ5 and Γ�;� ¼ ∓ðγ1 ∓ iγ2Þ correspond to
different quark-antiquark helicity configurations. The trace
is taken over Dirac, color, and flavor spaces. The obtained
LF-LFWFs well produced diffractive electroproduction
vector meson data at HERAwithin the color dipole picture
[40], and yield novel results on vector meson transverse
momentum dependent parton distributions that are sensitive
to higher orbital angular momentum [41].
Since Eq. (18) has taken the leading Fock-state trunca-

tion, the BSEs-based LF-LFWFs are further rescaled to
satisfy the normalization condition

1 ¼
X
λq;λq̄

Z
1

0

dx
Z

dk2T
2ð2πÞ3 jΦ

Λ;ðreÞ
λq;λq̄

ðx; kTÞj2; ð20Þ

withΦΛ¼0;ðreÞ
Λ;Λ0 ¼ N1ΦΛ¼0

Λ;Λ0 andΦΛ¼�1;ðreÞ
Λ;Λ0 ¼ N2ΦΛ¼�1

Λ;Λ0 . This
ensures the quark number sum rule for vector mesons with
Λ ¼ 0;�1 respectively

Z
1

0

dxfΛðxÞ≡
Z

1

0

dxVΛ;Λðx; 0; 0Þ ¼ 1; ð21Þ

where the fΛðxÞ is the collinear distribution of unpolarized
quark in a vector meson with helicity Λ.
At this stage, it seems straightforward to calculate theHi

(i ¼ 1, 2, 3, 5) of vector mesons using Eqs. (13)–(18).
However, as we have noticed, there are two sources of zero-
mode contributions encountered in the literature regarding
the vector meson GPDs. The first one is found in the
calculation of vectormeson EMFFwith the triangle diagram
using bare photon-quark vertex γμ [42,43]. The authors
demonstrated with explicit calculation that I0;0ðtÞ ¼R
dxV0;0ðx; 0; tÞ in the front form receives nonvalence

contribution, which is referred to as the zero-mode con-
tribution since it originates in the nonvalence region which
shrinks to zero in the limitpþ → p0þ, or namelyΔþ → 0. In
terms of GPD, this suggests that there is a nontrivial
Efremov-Radyushkin-Brodsky-Lepage (ERBL) region
[44,45] contribution in V0;0ðx; 0; tÞ, which does not vanish
in the limit ξ → 0, but rather yields a finite contribution
when integrated over x. Analytically, this property can be
realized with an ansatz as V 0

0;0ðx; 0; tÞ ¼ V0;0ðx; 0; tÞþ
F̄ðtÞδðxÞ, where the second term mimics the zero-mode
modification. It should be emphasized that VΛ;Λ0’s with
helicity configurationsΛ ≠ 0 orΛ0 ≠ 0 are free of such zero-
mode contributions [42].
On the other hand, a NJL model calculation of GPD

using the triangle diagram shows that a zero-mode con-
tribution could also arise when the bare photon-quark
vertex gets fully dressed, i.e., from γμ to Γμ. The Γμ can
be obtained by solving the inhomogeneous Bethe-Salpeter
equation, with γμ its inhomogeneous bare driving term. In
the Appendix of [46], the zero-mode contribution is
analytically shown to be proportional to δðxÞ, which serves
as a hidden ERBL region and contributes nontrivially when
integrated over x. This zero-mode contribution originates
from the dressing of the photon-quark vertex, so it is
independent of the type of hadron or its polarization.
Therefore all the VΛ;Λ0 should receive such contribution,
which is unlike the first kind of zero mode. Summarizing
all these considerations, we eventually propose an ansatz
for the modified GPDs:

V 0M
Λ;Λ0 ðx; 0; tÞ ¼ VM

Λ;Λ0 ðx; 0; tÞ þ δΛ0δΛ00F̄MðtÞδðxÞ

þ δðxÞF̃MðtÞ
Z

1

0

dyVM
Λ;Λ0 ðy; 0; tÞ: ð22Þ

The third term on the right-hand side corresponds to the
second kind of zero-mode contribution. The M here
denotes the meson dependence. As the SU(3) NJL model
deals with light quarks, it only provides F̃ρðtÞ,1 so we
assume F̃J=ψðtÞ ¼ F̃ϒðtÞ ≈ 0. This is physically reasonable
in the sense that the dressing effect in a heavy-quark-photon

1The expression of F̃ρðtÞ can be found in Eq. (B13) of the
Appendix of [46].
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vertex is more suppressed than in a light-quark-photon
vertex. As for the F̄MðtÞ, we will determine it using the so-
called angular momentum condition [43,47], which will be
addressed in connection with the EMFFs of vector mesons
later. In the following, we will use V to refer to the modified
V 0 in Eq. (22) for convenience.
Finally, it should be remarked that the zero-mode

contributions introduced above are related to higher
Fock states. This was clear in Refs. [42,43] for the triangle
diagram with bare electromagnetic vertex, where the zero-
mode contribution of first kind is the limit of a higher Fock
state diagram, namely the nonvalence contribution, in a
special kinematic. Such contributions can be easily missed
if a naive light front Hamiltonian is used. One may also see
this connection from the viewpoint of the GPD overlap
representation: it is known that the DGLAP region takes
overlap between Fock states with the same number of
constituents, while the ERBL region takes overlap between
lower and higher Fock states [5]. These zero-mode con-
tributions both live in the ERBL region and hence are
related to the higher Fock states.

III. DENSITY DISTRIBUTION
AND FORM FACTORS

Aligning Eqs. (13)–(18) and (22), we can calculate all
the unpolarized GPDs at zero skewness. Next we utilize
these GPDs to explore various properties of the vector
meson, including the three-dimensional parton distribution
and electromagnetic and gravitational form factors.

A. Impact parameter dependent parton distribution
function of vector mesons

It is well known that the GPDs encode the density
distribution of quarks within hadrons in a joint space of
longitudinal momentum and transverse spatial coordinate
[3,4]. In the case of pion and nucleon, which are spin-0 and
−1=2 respectively, it has been shown that the Fourier
transform of unpolarized GPD Hðx; ξ ¼ 0; tÞ gives rise to
the unpolarized GPD in the impact parameter space (IPD
GPD) [4], i.e.,

ρðx; b⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 Hðx; 0;−Δ2⊥Þe−ib⊥·Δ⊥ ; ð23Þ

which has the physical meaning of density distribution of
unpolarized quarks within unpolarized hadron in the x − bT
space. We recall that the unpolarized impact parameter
dependent PDF was originally defined as [4]

ρΛðx;b⊥Þ≡ hPþ;R⊥¼ 0⊥;ΛjÔqðx;b⊥ÞjPþ;R⊥ ¼ 0⊥;Λi;
ð24Þ

with the operator

Ôqðx;b⊥Þ¼
Z

dz−

4π
q̄

�
−
z−

2
;b⊥

�
γþq

�
z−

2
;b⊥

�
eixP

þz− ð25Þ

∼N b̃†ðxPþ; b⊥Þb̃ðxPþ; b⊥Þ ð26Þ

characterizing the probability density of unpolarized
quark at x and b⊥. Here the hadron state is localized
at the origin of the transverse center of momentum, i.e.,
R⊥ ¼ P

i xir⊥;i ¼ 0. The Λ in Eq. (24) indicates the
helicity of the hadron. For the nucleon, the Λ ¼ 1=2 or
−1=2 yield the same ρΛðx; b⊥Þ; hence the Λ dependence
can be dropped, and Eq. (24) leads to Eq. (27) [4].
Analogously, the Fourier transform of V0;0 and V1;1 can

be interpreted as the unpolarized quark distribution inside
helicity-0 and -1 vector mesons respectively, i.e.,

ρΛðx; b2⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥VΛ;Λðx; 0;−Δ2⊥Þ: ð27Þ

One also finds ρ−1ðx; b2⊥Þ ¼ ρ1ðx; b2⊥Þ according to Eq. (3).
In Fig. 1, we show the ρΛðx; b2⊥Þ for ρ, J=ψ , and ϒ.2

Comparing the rows, one can see that in heavier mesons,
the quark distributions are more localized around x ¼ 0.5
and small bT , indicating that the heavy quarks tend to carry

FIG. 1. The IPD GPD ρ0ðx; b2⊥Þ (left column) and ρ1ðx; b2⊥Þ
(right column) defined in Eq. (27) for ρ (top row), J=ψ (middle
row), and ϒ (bottom row), respectively.

2The zero-mode contribution is not taken into account in
calculating the ρΛðx; b2⊥Þ, as it is essentially in the ERBL region
and cannot yield the probability density interpretation.
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half of the meson’s longitudinal momentum and are
spatially more centered. On the other hand, the ρ0ðx; b2⊥Þ
and ρ1ðx; b2⊥Þ are a bit different by comparing the columns.
To make it more transparent, we integrate over x and look
into the spatial distribution

ρð0ÞΛ ðb2⊥Þ≡
Z

1

0

dxρΛðx; b2⊥Þ; ð28Þ

which is displayed in Fig. 2. We notice that the unpolarized
quarks are generally more broadly distributed in bT in the
helicity-1 meson than in the helicity-0 case. An underlying
reason is that the helicity-1 meson host components that
have higher orbital angular momentum in the z direction.
For instance, at qq̄ Fock-state truncation, the helicity-1
meson LF-LFWFs contain up to d wave components while
in the helicity-0 meson there are only s- and p-wave
components [40,41]. For the same reason, the difference
between ρ0ðx; b2⊥Þ and ρ1ðx; b2⊥Þ significantly reduces in
J=ψ and ϒ, as p- and d-wave components are much more
suppressed in heavy mesons.
Finally we recall that the corresponding collinear unpo-

larized parton distribution functions of vector mesons have
been reported in [41], along with their transverse momen-
tum dependent distributions. Therein we have determined
the renormalization scale of our PDFs to be μ0 ≈ 670 MeV,
2.6 GeV, and 8.6 GeV for ρ, J=ψ , and ϒ respectively. They
should be considered to be the scale of our calculated GPDs
herein as well.

B. Electromagnetic form factors of vector mesons

Historically, the EMFFs are early and important tools to
study the internal structure of hadrons. They enter the
decomposition of the correlation function of the current
operator as

GΛ0;Λ ¼ 1

2Pþ hp0;Λ0jψ̄ð0Þγþψð0Þjp;Λi

¼ −ðϵ0� · ϵÞF1ðtÞ þ
½ϵþðϵ0� · PÞ þ ϵ0�þðϵ · PÞ�

Pþ F2ðtÞ

− 2
ðϵ · PÞðϵ0� · PÞ

m2
ρ

F3ðtÞ: ð29Þ

Comparing Eqs. (1), (2), and (29), one finds the EMFFs are
the first Mellin moments of the GPDs, i.e.,

Fq
i ðtÞ ¼

�R
1
−1 dxH

q
i ðx; ξ; tÞ; i ¼ 1; 2; 3

0; i ¼ 4; 5:
ð30Þ

Note that Eq. (30) holds for general ξ values, including the
special case ξ → 0 we take in this work. At this stage, one
can resort to Eqs. (13)–(15) and obtain the EMFFs.
However, the F̄MðtÞ in Eq. (22) is not determined yet.
Here, we determine F̄MðtÞ using the angular momentum
condition

ð1þ 2τÞG1;1 þ G1;−1 −
ffiffiffiffiffi
8τ

p
G1;0 −G0;0 ¼ 0: ð31Þ

This condition had been noticed in the study of vectormeson
EMFFs, and physically it originates in angular momentum
conservation [43,47]. It comes about as there are only three
independent Fi’s in Eq. (29); hence the four GΛ;Λ0 ’s (with
different Λ and Λ0) must be linearly dependent. It is
equivalent to Fq

5ðtÞ ¼
R
1
−1 dxH5ðx; 0; tÞ ¼ 0 of Eq. (30),

given Eq. (17) and GΛ;Λ0 ¼ R
1
0 dxVΛ;Λ0 ðx; 0; tÞ. Here we

remark that themodification term F̃MðtÞ inEq. (22),which is
associatedwith the second kind of zeromode, only brings an
overall multiplicative factor 1þ F̃MðtÞ to the left-hand side
of Eq. (31), hence cannot fix the angular momentum
condition. While the F̄MðtÞ in Eq. (22) adds an inhomo-
geneous term to the left-hand side of Eq. (31), it is
indispensable to fix the issue. In Fig. 3 we plot the F̄ρðtÞ,

FIG. 2. The sptial distribution of valence quarks of vector

mesons. The ρð0Þ0 ðb2⊥Þ of ρ, J=ψ , and ϒ are displayed in green
solid, blue dotted, and red dot-dot-dashed curves, and the

ρð0Þ1 ðb2⊥Þ’s are displayed in orange dashed, purple dot-dash-
dashed, and cyan dot-dashed curves.

FIG. 3. The zero-mode contribution F̄ρðtÞ (black solid), F̄J=ψ ðtÞ
(blue dashed), and F̄ϒðtÞ (purple dotted) determined with angular
momentum condition Eq. (31).
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F̄J=ψðtÞ, and F̄ϒðtÞ determined from Eq. (31). We notice
they are significantly suppressed in the heavy sector. With
the angular momentum condition respected, different pre-
scriptions for EMFFs, such as the Grach and Kondratyuk
[47] and Brodsky and Hiller [48] prescriptions, are now
equivalent and free of theoretical ambiguity.
The charge, magnetic, and quadrupole form factors of

vector mesons are related to the form factors Fi by

GCðtÞ ¼
�
1þ 2

3
τ

�
F1ðtÞ þ

2

3
τF2ðtÞ þ

2

3
τð1þ τÞF3ðtÞ

ð32Þ
GMðtÞ ¼ −F2ðtÞ ð33Þ

GQðtÞ ¼ F1ðtÞ þ F2ðtÞ þ ð1þ τÞF3ðtÞ: ð34Þ

We plot them for ρ, J=ψ , and ϒ in Figs. 4–6, respectively.
Since the J=ψ and ϒ are electric neutral, their results only
take the valence quark contribution to EMFFs into account,
as was done in [23,39]. We also supplement with the fully
covariant DS-BSE calculation on ρ and J=ψ EMFFs in the
plots for comparison [38,39]. From Fig. 4 we can see that
for the light meson ρ, the two approaches yield results that
are somewhat different. This is mainly due to the leading
Fock-state truncation we impose, while for heavier meson
J=ψ , the agreement is much better and extends into the high
Q2 region, suggesting the leading Fock-state truncation to
be more valid in heavy mesons.
From the plots we extract the charge radius hr2i, the

magnetic moment μ, and the quadrupole moment Q of the
vector mesons, which are defined as

hr2ic ¼ 6
∂

∂t
GcðtÞ

����
t→0

; ð35Þ

μ ¼ GMð0Þ ×
1

2mV
; ð36Þ

Q ¼ GQð0Þ ×
1

m2
V
: ð37Þ

Our calculated values are listed in the first three columns of
Table I, with subscript LFBS referring to a combined effort
of light front approach and the Bethe-Salpeter approach.
Our ρ charge radius is smaller than the full Bethe-Salpeter
equation and lattice calculation, but larger than other light
front approach results [49,50]. If we remove the modifi-
cation term associated with F̃M in Eq. (22), our result
would be close to theirs. Similar to [49,50], our ρ magnetic
and quadrupole moments are generally larger in magnitude
than the full BSE calculation, but somehow closer to the
lattice prediction [51]. Meanwhile, there is better agree-
ment between LFBS, full BSE, and lattice calculations on

FIG. 4. The EMFFs of ρ. Our calculated GCðtÞ, GMðtÞ, and
GQðtÞ are displayed in green solid, red dotted, and blue dot-dot-
dashed curves. The fully covariant Bethe-Salpter approach with
the Maris-Tandy model gives the orange dashed, cyan dot-
dashed, and purple dot-dash-dashed curves, respectively [38].

FIG. 5. The EMFFs of J=ψ . Our calculated GCðtÞ, GMðtÞ, and
GQðtÞ are displayed in green solid, red dotted, and blue dot-dot-
dashed curves. The fully covariant Bethe-Salpter approach with
the Maris-Tandy model gives the orange dashed, cyan dot-
dashed, and purple dot-dash-dashed curves, respectively [39].

FIG. 6. The GCðtÞ, GMðtÞ, and GQðtÞ for ϒ displayed in green
solid, red dotted, and blue dot-dot-dashed curves.
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J=ψ . We also notice a monotonic decrease in the magnitude
of hr2i, μ, and Q from ρ to J=ψ and eventually ϒ.

C. Gravitational form factors of vector mesons

The GFFs are defined as the form factors in the
decomposition of the energy-momentum tensor of QCD,
i.e., hp0;Λ0jTμνð0Þjp;Λi. At present, there are different
definitions of the QCD’s energy-momentum tensor (EMT)
operator Tμν. The Belinfante-Rosenfeld EMT, for instance,
is symmetric in μ and ν [53,54], and the canonical EMT or
the gauge-invariant kinetic EMT [26,55] are not. Here we
take the Belinfante-Rosenfeld EMT, which reads as

Tμν ¼ Tq
μν þ Tg

μν; ð38Þ

Tq
μν ¼ 1

4
ψ̄q

�
γμiDν

↔ þ γνiDμ

↔ 	
ψq − gμνψ̄q

�
i
2
=D
↔
−m

�
ψq;

ð39Þ

Tg
μν ¼ Fa;

μρFa;ρ
ν þ

1

4
gμνFa;ρλFa;

ρλ ð40Þ

withDμ

↔ ¼ ð∂⃗μ − ∂⃖μÞ − 2igtaAa
μ and Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ
gfabcAb

μAc
ν, whose decomposition has thus only symmetric

terms [25,26,56–58], i.e.,

hp0;Λ0jTμνð0Þjp;Λi ¼ −2PμPν



ðϵ0�ϵÞG1ðtÞ −

ðΔϵ0�ÞðΔϵÞ
2m2

ρ
G2ðtÞ

�
−
1

2
ðΔμΔν −Δ2gμνÞ



ðϵ0�ϵÞG3ðtÞ−

ðΔϵ0�ÞðΔϵÞ
2m2

ρ
G4ðtÞ

�

þ Pfμðϵ0�νgðΔϵÞ− ϵνgðΔϵ0�ÞÞG5ðtÞ þ
1

2
½Δfμðϵ0�νgðΔϵÞ þ ϵνgðΔϵ0�ÞÞ− ϵ0�fμϵνgΔ

2 − gμνðΔϵ0�ÞðΔϵÞ�G6ðtÞ;
ð41Þ

where A½μBν� ¼ ðAμBν − AνBμÞ=2 and AfμBνg ¼ ðAμBν þ AνBμÞ=2. The notation for GFFs here follows that in [26], and its
equivalence to other notations is summarized in [25]. More generally, the quark or gluon EMT does not have to be
conserved separately, so it has three additional symmetric tensor structures [26]:

hp0;Λ0jTa
μνð0Þjp;Λi¼−2PμPν



ðϵ0�ϵÞGa

1ðtÞ
ðΔϵ0�ÞðΔϵÞ

2m2
ρ

−Ga
2ðtÞ

�
−
1

2
ðΔμΔν−Δ2gμνÞ



ðϵ0�ϵÞGa

3ðtÞ−
ðΔϵ0�ÞðΔϵÞ

2m2
ρ

Ga
4ðtÞ

�

þPfμðϵ0�νgðΔϵÞ− ϵνgðΔϵ0�ÞÞGa
5ðtÞþ

1

2
½Δfμðϵ0�νgðΔϵÞþ ϵνgðΔϵ0�ÞÞ− ϵ0�fμϵνgΔ

2−gμνðΔϵ0�ÞðΔϵÞ�Ga
6ðtÞ

þ ϵ0�fμϵνgm
2
ρGa

7ðtÞþgμνm2
ρðϵ0�ϵÞGa

8ðtÞþ
1

2
gμνðΔϵ0�ÞðΔϵÞGa

9ðtÞ: ð42Þ

The superscript a could be either quark or gluon. Given
that Tμνð0Þ¼

P
a T

a
μνð0Þ, one has GiðtÞ¼

P
aG

a
i ðtÞ. Owing

to the leading Fock-state truncation we employ, the gluon
EMT form factors (FFs) vanish. Consequently the quark
contribution Gq

i ; i ∈ f7; 8; 9g vanishes as
P

a G
a
i ðtÞ ¼ 0;

i ∈ f7; 8; 9g.
In experiment, the GFFs are not directly measurable,

but rather connected with the GPDs. Comparing their
definitions, the quark GFFs can be generally connected
with the second Mellin moments of the unpolarized quark
GPDs [25,26,57,58]

Z
1

−1
dx x



Ha

1ðx; ξ; tÞ −
1

3
Hq

5ðx; ξ; tÞ
�
¼ Gq

1ðtÞ þ ξ2Gq
3ðtÞ;

ð43Þ

Z
1

−1
dx xHq

2ðx; ξ; tÞ ¼ Gq
5ðtÞ; ð44Þ

Z
1

−1
dx xHq

3ðx; ξ; tÞ ¼ Gq
2ðtÞ þ ξ2Gq

4ðtÞ; ð45Þ

TABLE I. The charge radius and magnetic multipole moments of vector mesons. Our results are in the first three columns. The lattice
simulation for ρ meson is performed at ρ mass of 793 MeV [51].

ρLFBS J=ψLFBS ϒLFBS ρBS [38] J=ψBS [38] ρLF1 [49] ρLF2 [43] ρLF3 [50] ρLat [51] J=ψLat [52]ffiffiffiffiffiffiffiffiffiffi
hr2ic

p
(fm) 0.66 0.21 0.11 0.74 0.23 0.52 � � � 0.48 0.819(43) 0.257(4)

μ × 2mV 2.21 2.06 2.02 2.01 2.13 2.10 1.92 2.15 2.209(82) 2.10(3)
Q ×m2

V −0.76 −0.36 −0.31 −0.41 −0.28ð1Þ −0.898 −0.43 −0.886 −0.733ð99Þ −0.23ð2Þ
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Z
1

−1
dx xHq

4ðx; ξ; tÞ ¼ ξGq
6ðtÞ; ð46Þ

Z
1

−1
dx xHq

5ðx; ξ; tÞ ¼ −
t

4M2
Gq
6ðtÞ þ

1

2
Gq
7ðtÞ: ð47Þ

Since our calculated GPDs are limited to zero skewness and
Gq
7 ¼ 0 as mentioned above, four GFFs, e.g., the Gq

1 , G
q
2 , G

q
5 ,

and Gq
6 can be extracted. In Figs. 7–9, we display them for

ρ, J=ψ , and ϒ, respectively. In Fig. 7, we display our
calculated ρ GFFs as curves, while the colored bands are
enveloped by results from the NJL model [59] and light
front constituent quark model (LFCQM) model [60]. We
only show results up to 2 GeV2, as the high-t region should
be dominated by LF-LFWFs before the rescaling procedure

in Eq. (20) [61]. With the momentum sum rule G1ð0Þ ¼ 1
and angular momentum sum rule [58] G5ð0Þ ¼ 2 automati-
cally hold, our results are generally closer to the NJL model
prediction, in particular regarding the sign of the g6ðtÞ.
However, our g6ðtÞ is significantly larger in magnitude, i.e.,
it is twice that of the NJL model at the origin. For the heavy
mesons, we predict their GFFs up to 12 GeV2, as displayed
in Figs. 8 and 9. From these GFFs, one can extract the light
front mass radii of vector mesons through [59]

hr2⊥iLC ≡ lim
Δ⊥→0

−
1

Pþ ∇2
Δ⊥



1

2Pþ hp0;ΛjTþþð0Þjp;Λi
���
Δþ¼0

�

ð48Þ

¼ 4
dG1ðtÞ
dt

þ 1

mV



2

3
G1ð0Þ −

2

3
G2ð0Þ−

1

3
G5ð0Þ −

1

3
G6ð0Þ

�
:

ð49Þ

We find
ffiffiffiffiffiffiffiffiffiffiffiffiffihr2⊥iρLC

p ¼ 0.30 fm, which is comparable to the
NJL model result 0.32 fm [59] and LFQCM model result

0.41 fm [60]. We also find
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2⊥iJ=ψLC

q
¼ 0.151 fm andffiffiffiffiffiffiffiffiffiffiffiffiffi

hr2⊥iϒLC
q

¼ 0.087 fm, showing the heavy mesons are

spatially more compact in energy distribution. We notice
these values are almost identical to what we found for
pseudoscalar mesons, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2⊥iηcLC

p
¼ 0.150 fm andffiffiffiffiffiffiffiffiffiffiffiffiffi

hr2⊥iηbLC
p

¼ 0.089 fm, with the exactly same DS-BSEs
interaction models [62].

IV. SUMMARY

The GPDs of light and heavy vector mesons, i.e., the ρ,
J=ψ , and ϒ, at zero skewness are investigated with
a combined effort from the light front and Dyson-
Schwinger equations (DSEs) framework. Potential zero-
mode contributions are considered, and the light front

FIG. 7. Our calculated gravitational form factors G1 (blue
dotted), G2 (red dashed), G5 (green solid), and G6 (gray dot-
dashed) of ρ displayed in curves. The colored bands are
enveloped by the NJL model [59] and LFCQM [60]. At
t ≈ 0 GeV2, from top to bottom, these bands correspond to G5,
G1, G2, and G6, respectively. Among them, the NJL model yields
the upper boundaries of G5 and G1, and the lower boundaries of
G2 and G6.

FIG. 8. The gravitational form factors G1 (blue dotted), G2 (red
dashed), G5 (green solid), and G6 (gray dot-dashed) of J=ψ .

FIG. 9. The gravitational form factors G1 (blue dotted), G2 (red
dashed), G5 (green solid), and G6 (gray dot-dashed) of ϒ.
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overlap representation is revised with an ansatz, e.g.,
Eq. (22). Vector meson LF-LFWFs determined from the
DS-BSE approach are then employed to study the GPDs.
As collinear parton distributions had been reported

in [41], in this work we focus on the three-dimensional
distribution IPD GPD. We show that the valence quark
distributions are spatially broader in transversely polarized
vector mesons (jΛj ¼ 1) than in longitudinal mesons
(Λ ¼ 0). We argue this is because there are more Fock
components with higher orbital angular momentum in
transversely polarized mesons. This is supported by our
further finding that the difference between ρ0 and ρ1 is
significantly reduced in heavy mesons, which are s-wave
dominated systems.
We then investigate the EMFFs of the vector mesons. In

addition to the F̄MðtÞ term, which gains evidence from
earlier studies [42,43], the other zero-mode contribution
associated with F̃MðtÞ arises from the dressing of the quark-
photon vertex and softens the EMFFs. Namely, it makes the
EMFFs decrease faster and yields a larger charge radius.
Before the introduction of GPDs, such contribution was
intuitively interpreted as the form factor of a partonlike
quark inside a constituent quark [63]. By comparing the

obtained ρ and J=ψ EMFFs with a fully covariant DS-BSE
calculation [38,39], we notice the agreement gets much
improved from ρ to J=ψ . We therefore consider the
deviation resides in the leading Fock-state truncation,
which works much better for heavy systems.
The gravitational form factors of the vector mesons are

finally studied. As the second Mellin moments of GPDs,
the GFFs receive no contribution from the zero mode,
which is different from the EMFFs. In the leading Fock-
state approximation, the GFFs come solely from the
quarks, and certain GFFs can be extracted. Our ρ GFFs
are shown in Fig. 7 and compared with the NJL model and
LFCQM predictions. We also predict the GFFs for J=ψ and
ϒ, which had not been reported in the literature before.
Based on the experience from EMFFs, we believe they
should be very close to a fully covariant calculation, which
remains to be checked by DS-BSEs or other models in the
future.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (under Grant No. 11905104).

[1] X.-D. Ji, Phys. Rev. D 55, 7114 (1997).
[2] A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997).
[3] M. Burkardt, Phys. Rev. D 62, 071503 (2000); 66, 119903

(E) (2002).
[4] M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003).
[5] M. Diehl, Phys. Rep. 388, 41 (2003).
[6] A. V. Belitsky and A. V. Radyushkin, Phys. Rep. 418, 1

(2005).
[7] M. V. Polyakov, Phys. Lett. B 555, 57 (2003).
[8] M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33,

1830025 (2018).
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