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We address the possibility of the appearance of a charged kaon condensate in neutron star cores
described within a generalized Skyrme model. Our treatment of strange degrees of freedom is based on the
bound state approach by Callan and Klebanov, which allows to obtain an in-medium effective potential for
the s-wave kaon condensate. We predict the onset of kaon condensation at a certain threshold density—
whose value depends on the parameters of the model, and ranges between 1.5 and 2.5 times saturation
density—and obtain both the particle fractions and equation of state for dense matter in the kaon condensed
phase. Finally, we discuss the effect of such condensates on the mass-radius curves and other observable
properties of neutron stars with kaon condensed cores.
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I. INTRODUCTION

While heavy ion collision experiments and lattice QCD
simulations provide insight into the properties of hot and
dense QCD, neutron stars (NSs) are the only known objects
in the Universe that may allow us to deepen our under-
standing of the rich structure of cold, ultradense strongly
interacting nuclear matter. The astrophysical inference of
NS masses, radii and moments of inertia in low mass x-ray
binaries and isolated NSs from the NICER experiment as
well as in binary NS inspirals and subsequent mergers from
gravitational-wave (GW) observatories have helped to
significantly constrain the NS equation of state (EOS) at
suprasaturation densities, which cannot be reached in
laboratory experiments.
These constraints, however, do not yield any information

on the microscopic structure of dense matter. Indeed, owing
to the nonperturbative nature of QCD at energies below the
confinement scale, the precise phase structure of cold,
strongly interacting matter at both finite baryon and isospin
chemical potential is still very speculative. Novel phases of
dense baryonic matter are expected to occur in the inner
core of NSs, containing additional particle species such as
Δ isobar resonances [1–5], hyperons [1], or pion or kaon
condensates [6–10]. There have been theoretical proposals
of even more exotic scenarios, where a transition to

deconfined quark matter takes place inside the core
[11–13], or a new state of matter in which both hadronic
and quark degrees of freedom coexist, the so-called
quarkionic matter [14,15]. Studies of the dynamical
features of compact stars, such as the occurrence of phase
transitions during mergers or the cooling rate of proto-
neutron stars may produce complementary data, as they
may strongly depend on the specific microscopic degrees of
freedom as well as on the EOS.
Many calculations for the EOS in dense matter predict

that strangeness degrees of freedom may become important
in the interior of compact stars, in the form of hyperons
(strange baryons) or a Bose-Einstein condensate of neg-
atively charged kaons, for densities just a few times nuclear
saturation. For a recent review, see [16]. Indeed, hyperons
may become stable at sufficiently high isospin chemical
potential, where the decay of neutrons relieves the Fermi
pressure exerted by the nucleons. On the other hand, the
strong attraction betweenK− mesons and baryons increases
with density and lowers the energy of the zero momentum
state. A condensate is formed when this energy equals the
kaon chemical potential, since kaons are favored over
negatively charged fermions for achieving charge neutral-
ity, as they are bosons and can condense in the lowest
energy state.
It is generally assumed that hyperons should appear at

densities above ∼2–3 times the nuclear saturation density
n0, whereas the critical density for kaon condensation is
usually predicted to be a bit larger, around ∼ð3–4Þn0
(although the specific values are of course model and
parameter dependent). A density of this order is smaller
than the central density of a typical NS, so a kaon
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condensate could be present in its core. The possibility of
kaon condensates in the core of neutron stars has been
extensively investigated in the literature, using different
approaches. Its appearance tends to soften the EOS,
producing smaller values for the allowed maximummasses.
Therefore, the presence of hyperons at too low densities is
not compatible with the stiffness required by the existence
of such massive stars. This is the so-called hyperon puzzle,
presently a subject of very active research [17,18].
In this work we will make use of a generalized Skyrme

model, a phenomenological, nonlinear chiral model that,
due to its nonperturbative nature, can in principle be used as
a simple model to study strongly interacting matter at all
scales, from single baryons and nuclei to nuclear matter in
neutron stars. The model contains a rather limited number
of fundamental degrees of freedom, which in the simplest
version are just pions, encoded into an SUð2Þ valued field
U, as chiral symmetry is nonlinearly realized. Nucleons and
atomic nuclei emerge as collective, topologically nontrivial
excitations of the mesonic fields. Mathematically they are
described by topological solitons, called skyrmions, whose
topological degree can be identified with the baryon
number. The most attractive feature of the model is the
small number of free parameters, which implies a rather
strong predictive power.
The Skyrme model [19] and its generalizations have

been applied successfully to the description of nucleon
properties [20,21], nuclear interaction potentials [22],
ground and excited states of atomic nuclei [23,24], or
the problem of nuclear binding energies [25–27]. Typically,
the best fit to phenomenological observations requires the
extension of the original Skyrme Lagrangian [19], either by
the addition of new degrees of freedom, e.g., vector mesons
[28], or additional, physically motivated higher derivative
terms, like the so-called sextic term [29], an effective term
related to two-body interactions mediated by ω mesons.
Simultaneously, in past years there has been significant

progress in the application of the Skyrme model to
investigate properties of dense nuclear matter and neutron
stars [30–33], where the sextic term is especially important,
as this part of the action provides the leading contribution in
the regime of high pressure and density [34]. Indeed, it
makes the skyrmionic matter much stiffer at extreme
conditions which results in physically acceptable values
of the maximal mass of neutron stars. A related observation
is that, without the sextic term, the speed of sound is always
below the conformal bound, c2s < ð1=3Þ, and EOSs with
such restricted speeds of sound are strongly disfavored [35].
The inclusion of the sextic term, on the other hand, only
implies the causal bound c2s ≤ 1, because the sextic term
alone leads to the maximally stiff EOS with c2s ¼ 1 [36].
The extension of the Skyrme model for a larger number

of flavors has also been discussed in the literature. In
particular, for NF ¼ 3, it has been used to describe
pentaquarks and strange hyperons, both in the flavor

symmetric limit, inwhich the fullSUð3ÞF group is quantized,
and in the flavor symmetry breaking limit, the so-called
bound state approach [37,38], in which oscillations into the
strange sector are treated as perturbations of the SUð2Þ
valued classical soliton. Since kaon degrees of freedom are
best described in the latter approach, in this paperwewill take
this path and extend its application to the crystalline phases of
skyrmion matter, in order to be able to describe the
phenomenon of kaon condensation in dense matter as
predicted by the Skyrme model.
The paper is organized as follows: in Sec. II, we

introduce the model and review the classical and quantum
properties of crystal solutions. In Sec. III we review the
bound state approach to kaons in the Skyrme model, and
compute the contribution to the total energy from the kaon
condensate. In Sec. IV, we obtain the system of equations
from minimizing the free energy of npeμK̄ matter, and
solve it to find the onset of kaon condensation for different
sets of parameters, and finally in Sec. V we calculate the
equation of state of skyrmion matter including a kaon
condensate, and compute the corresponding mass-radius
curves for NSs.

II. GENERALIZED SKYRME MODEL AND
SKYRMION CRYSTALS

The generalized Skyrme model we will consider is given
by the following Lagrangian density:

L ¼ L2 þ L4 þ L6 þ L0

≡ −
f2π
16

TrLμLμ þ 1

32e2
Tr½Lμ; Lν�2

− λ2π4BμBμ þm2
πf2π
8

TrðU − IÞ; ð1Þ

where Lμ ¼ U†
∂μU is the left invariant Maurer-Cartan

current and the Skyrme field can be written as

U ¼ σ þ iπaτa: ð2Þ

Here, πa (a ¼ 1, 2, 3) are the pions and τa are the Pauli
matrices. The unitarity of the matrix field implies
σ2 þ πaπa ¼ 1. Furthermore, Bμ is the conserved topo-
logical current which, in the standard manner, defines the
topological index of maps U, i.e., the baryon charge B:

B ¼
Z

d3xB0; Bμ ¼ 1

24π2
ϵμναβTrfLνLαLβg: ð3Þ

The generalized Skyrme effective model contains only four
terms and, therefore, four coupling constants, fπ; mπ; e; λ,
two of which have a direct phenomenological interpretation
as the pion decay constant and the pion mass. In addition, λ
can be related to a ratio between the mass and the coupling
constant of the ω meson. From the very beginning,
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we assume the physical mass of the pions,mπ ¼ 140 MeV.
The remaining constants are fitted to some properties of
infinite nuclear matter.
Before continuing with our investigation, we want to

comment briefly on its scope and limitations. The general-
izedSkyrmemodelwe consider differs from the standard one
only by the presence of the third term in the action, the so-
called sextic termL6. As alreadymentioned, the inclusion of
this term is obligatory when one studies the properties of
nuclear matter at high densities, which is a natural environ-
ment in the core of neutron stars. On the other hand, a
quantitatively fully realistic description of nuclei and nuclear
matter leading, e.g., to the realistic (small) binding energies,
or to the observed cluster structure of small nuclei, requires
the inclusion of further terms, like potential terms beyond the
pionmass termL0 [25–27], or the addition of further degrees
of freedom, like vector mesons [28]. These more extended
versions of the Skyrme model still allow to introduce and
study Skyrme crystals, although the calculations become
more cumbersome. In addition, the fit of the model to
physical observables in the resulting high-dimensional
parameter spacewould require advanced numerical methods
beyond the ones employed in the present paper.
We shall, therefore, continue to use the simpler model (1)

and pursue the more modest goal of fitting only the
observables most relevant for our purposes. These are
the nuclear saturation density and the energy per baryon at
saturation, on the one hand, because they set the length and
energy scales for nuclear matter. The third observable is the
nuclear symmetry energy, because this quantity determines
the proton fraction and, therefore, the electric charge
content of nuclear matter, which is essential for the
formation of a kaon condensate. Despite the limitations
of this approach—like, e.g., the too large binding energy of
the resulting skyrmion matter [39]—we shall find that for
reasonable values for these observables we find a reason-
able description of kaon condensation and its impact on
nuclear matter and NS properties. We also emphasize that
the methods and analytical tools we use are generic and can
be applied equally well to more extended versions of the
Skyrme model.
The canonical description of NSs is provided by the

relativistic Tolman-Oppenheimer-Volkoff (TOV) approach
where a particular model of infinite nuclear matter gives a
source term of the Einstein equations. Effectively, it enters
via an EOS, that is, a relation between e.g., pressure and
density. In the Skyrme model, infinite skyrmionic matter is
described by a periodic minimizer of the static energy
(E ¼ −

R
d3xL) and, therefore, it is usually referred to as

the Skyrme crystal. Obviously, while the total energy of the
crystal is infinite, the energy per baryon number remains
finite:

E
B
¼ NcellsEcell

NcellsBcell
¼ Ecell

Bcell
: ð4Þ

Here, Ncells is the number of cells and Ecell, Bcell are the
energy and baryon charge in a single, periodic cell. As
mentioned before, skyrmion crystals minimize the static
energy functional,

E ¼
Z

d3xðE2 þ E4 þ E6 þ E0Þ

¼ 1

24π2

Z
d3x

�
−
1

2
TrfLiLig −

1

4
Trf½Li; Lj�2g

þ 4π4c6ðB0Þ2 þ c0
2
TrðI −UÞ

�
ð5Þ

over a finite region of space with periodic boundary
conditions. Here U is the SU(2) valued Skyrme field
and Lμ ¼ U†

∂μU. Further, E2 and E4 are the standard
terms of the Skyrme model quadratic and quartic in
derivatives, and E6 is the sextic term mentioned above.
Finally, E0 is the pion mass potential. We have defined the

dimensionless constants c6 ¼ 2λ2 f2πe4

ℏ3 , c0 ¼ 2 m2
π

f2πe2
and use

the so-called Skyrme model units, so that our energy and
length units are

Es ¼ 3π2fπ=e; ls ¼ ℏ=ðfπeÞ; ð6Þ

respectively. Both the size of the unit cell (characterized by
the unit cell length parameter L) and its geometry will
affect Ecell. It turns out that, for our purposes, the ground
state of skyrmion crystals is well described by a cubic unit
cell with side length 2L composed of skyrmions in a face-
centered cubic arrangement, but with an additional sym-
metry. Concretely, it respects the following symmetries:

S1∶ðx; y; zÞ → ð−x; y; zÞ;
ðσ; π1; π2; π3Þ → ðσ;−π1; π2; π3Þ; ð7Þ

S2∶ðx; y; zÞ → ðy; z; xÞ;
ðσ; π1; π2; π3Þ → ðσ; π2; π3; π1Þ; ð8Þ

S3∶ðx; y; zÞ → ðx; z;−yÞ;
ðσ; π1; π2; π3Þ → ðσ;−π1; π3;−π2Þ; ð9Þ

S4∶ðx; y; zÞ → ðxþ L; y; zÞ;
ðσ; π1; π2; π3Þ → ð−σ;−π1; π2; π3Þ: ð10Þ

A detailed description of the construction of the Skyrme
crystal and the comparison of different symmetries can be
found in [32]. As in that previous work, the unit cell that we
will consider has size 2L and a baryon content of Bcell ¼ 4.
Because of the additional symmetry for this crystal, the unit
cell of size 2L decomposes into eight cubes of side length
L, each forming a simple cubic arrangement of half-
skyrmions, where half-skyrmions are located in the corners
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of the cube and lead to a baryon content of 1=2. The fields,
however, are periodic only in 2L, hence the unit cell has side
length 2L.We obtain the value of the energy for each value of
L and, as explained in [32], the energy-size curve,EcellðLÞ, is
a convex function which has a minimum at a certain L�. We
identify this pointwith the nuclear saturation point of infinite,
symmetric nuclear matter, which also presents a minimum in
the energy per baryon number curve as a function of the
baryon density nB ¼ ð4=ð2LÞ3Þ ¼ ð1=2ÞL−3.
Up to now, we have considered the classical skyrmion

crystal, which corresponds to symmetric nuclear matter.
However, for a realistic description of nuclear matter inside
a NS we need to consider an almost completely isospin-
asymmetric state, where only a small amount of protons is
allowed. We have already considered this scenario in [33]
via a semiclassical quantization of the isospin degrees of
freedom of the skyrmion crystal. Indeed, it is standard in
nuclear physics to define the binding energy of a nuclear
system in the following way:

E
B
ðnB; δÞ ¼ ENðnBÞ þ SNðnBÞδ2 þOðδ3Þ; ð11Þ

where δ is the isospin asymmetry parameter, defined in
terms of the proton fraction γ of the system, δ ¼ ð1 − 2γÞ.
ENðnBÞ denotes the binding energy of isospin-symmetric
matter, and SNðnBÞ represents the so-called symmetry
energy, which is responsible for the change in the binding
energy when the neutron-to-proton ratio changes for a fixed
value of the baryon number. The knowledge of the
symmetry energy at high densities is fundamental for a
correct description of NS interiors. However, although the
values of the symmetry energy at saturation are well known
(S0 ∼ 30 MeV) [40], the difficulty in experimentally meas-
uring its behavior at high densities forces us to express it as
an expansion in powers of the baryon density around n0,

SNðnBÞ ¼ S0 þ
nB − n0
3n0

Lsym þ ðnB − n0Þ2
18n20

Ksym þ � � � ;

ð12Þ

where

Lsym ¼ 3n0
∂SN
∂nB

����
nB¼n0

; Ksym ¼ 9n20
∂
2SN
∂n2B

����
nB¼n0

ð13Þ

denote the slope and curvature of the symmetry energy at
saturation, respectively. The values of these coefficients are
still very uncertain, but recent analysis of combined
astrophysical and nuclear observations made possible to
constrain the symmetry energy above n0 [41–45].
Let us now review the procedure for calculating the

symmetry energy of an SUð2Þ skyrmion crystal, as it will
be generalized to the three flavor case in the next section.
First, let us rewrite the Skyrme Lagrangian (1) as

L¼ aTrfLμLμgþ bTrf½Lμ;Lν�2gþ cBμBμ þ dTrðU − IÞ:
ð14Þ

In our dimensionless units, we have

a¼ −
1

2
; b¼ 1

4
; c¼ −8λ2π4f2πe4; d¼ m2

π

f2πe2
;

ð15Þ

and consider a (time-dependent) isospin transformation of a
static Skyrme field configuration:

Uðx⃗Þ → Ũðx⃗; tÞ≡ gðtÞUðx⃗Þg†ðtÞ: ð16Þ

The time-dependent isospin matrices gðtÞ are collective
coordinates, whose dynamics is given by a kinetic term in
the energy functional,

T ¼ 1

2
ωiΛijωj; ð17Þ

where Λij is the isospin inertia tensor, given by

Λij ¼
Z

f2aTrfTiTjg − 4bTrf½Ti; Lk�½Tj; Lk�g

−
c

32π4
εabcTrfTiLbLcgεarsTrfTjLrLsggd3x

¼ Λδij; ð18Þ

where Ta is the suð2Þ-valued current Ta ¼ i
2
U†½τa; U� and

ω⃗ the associated isospin angular velocity, defined by
g† _g ¼ i

2
ωaτa.

As shown in [33], we may canonically quantize the
isospin collective degrees of freedom and obtain a
Hamiltonian, which for a cubic crystal with a number N
of unit cells is given by

H ¼ ℏ2

2NΛcell
ItotðItot þ 1Þ ð19Þ

in terms of the isospin moment of inertia Λ ¼ NΛcell, and
the total isospin angular momentum eigenvalue Itot, given
by the product of the total number of unit cells times the
total isospin of each unit cell, which can be obtained by
composing the isospins of each of the cells. In the charge
neutral case, all cells will have the highest possible value of
isospin angular momentum, so that on each unit cell with
baryon number B, the total isospin will be 1

2
B, and hence

for the full crystal will be Itot ¼ 1
2
NB.

Thus, the quantum correction to the energy (per unit cell)
due to the isospin degrees of freedom in the neutral (i.e.
purely neutronic) limit would be (assuming N → ∞)
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Eiso ¼ ℏ2

8Λcell
B2; ð20Þ

where the value of ℏ is related to the value of e through

ℏ ¼ e2

3π2
: ð21Þ

The classical skyrmion crystal configurations can therefore
be understood as models for isospin-symmetric nuclear
matter, i.e. nuclear matter with zero total isospin.
Deviations from the exact isospin symmetric case yield
quantum isospin corrections to the crystal energy per baryon,
which depend on the difference between protons and
neutrons through the total isospin number per unit cell.
Hence, by considering the effect of isorotations over classical
solutionswe are effectively breaking the isospin symmetry of
the static energy functional by adding a correction of
quantum origin that explicitly breaks it. Moreover, knowing
the energy correction due to isospin, it is straightforward to
obtain the associated isospin chemical potential for the
skyrmion crystal using its thermodynamical definition:
μI ¼ − ∂E

∂NI
, where NI is the (third component of) the isospin

number per unit cell. Given that ðItotÞ2 ¼ I21 þ I22 þ I23 and
NI ¼ I3=N, we may rewrite Eq. (20) as

Eiso ¼ 1

2Λcell

�
N2

I þ
I22
N2

þ I21
N2

�
ð22Þ

and then

μI ¼ −
∂Eiso

∂NI
¼ −

NI

Λcell
: ð23Þ

Let us now consider a finite chunk of the Skyrme crystal
of N unit cells, and let A ¼ N × Bcell, where Bcell is the
baryon number of a unit cell. We do not enforce charge
neutrality at this step, and further leave unknown the
quantum state of the crystal. As in [33], we take a mean
field approximation and consider that the isospin density in
an arbitrary skyrmion crystal quantum state is approxi-
mately uniform so that

hI03i ¼
hI3iR
d3x

¼ hI3i
NVcell

≐
NI

Vcell
; ð24Þ

where NI is the isospin charge per unit cell in this arbitrary
quantum state. The effective proton fraction that would
yield such an isospin charge per unit cell is γ, so we write

NI ¼ −
1

2
ð1 − 2γÞBcell ¼ −

Bcell

2
δ: ð25Þ

Hence, the isospin energy per unit cell of the skyrmion
crystal in such a state can be written in terms of the
asymmetry parameter

Eiso ¼ ℏ2

8Λ
B2
cellδ

2; ð26Þ

and thus the symmetry energy for Skyrme crystals is
given by

SNðnBÞ ¼
L3

8Λ
nB: ð27Þ

As argued in [46], any quantum state different from purely
neutron matter leads to a divergent Coulomb energy term
for the skyrmion crystal. Therefore, in order to allow for a
nonzero positive electric charge within the unit cell we
consider the existence of a neutralizing background of
negatively charged leptons, namely, electrons and muons.
In this scenario, the effects of the positive charge become
almost completely screened, and the residual Coulomb
energy is negligible, so we do not take it into account.
Apart from electromagnetic forces, nuclear matter inter-

acts with leptons via the weak force. Indeed, the exchange
between leptons and nucleons inside NSs is completely
described by the β-decay and electron capture processes,

n → pþ lþ ν̄l; pþ l → nþ νl; ð28Þ

which take place simultaneously, as long as the charge
neutrality and β-equilibrium conditions are satisfied,

np ¼ Z
V
¼ ne þ nμ; ð29Þ

μn ¼ μp þ μl ⇒ μI ¼ μl; l ¼ e; μ: ð30Þ

Leptons inside a NS can be described as a noninteracting
relativistic Fermi gas. Then the chemical potential for a
given kind of lepton is

μl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏkFÞ2 þm2

l

q
; ð31Þ

where kF ¼ ð3π2nlÞ1=3 is the corresponding Fermi momen-
tum, and ml is the mass of the corresponding lepton.
Considering the most general case, in which we include
muons, we combine this last expression with the above
equilibrium conditions and obtain the following system of
equations:

nμ ¼
1

3π2

��
ℏBcellð1 − 2γÞ

2Λ

�
2

−
�
mμ

ℏ

�
2
�3

2

; ð32Þ

ℏBcell

2Λ
ð1 − 2γÞ ¼

�
3π2

�
γBcell

8L3
− nμ

��1
3

: ð33Þ

In order to solve the system for γ, we take the ultra-
relativistic approximation μe ≈ ℏkF;e for electrons. Besides
we start solving the system at low densities considering
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only electrons, hence we drop the first equation and set
nμ ¼ 0 until the condition μe ¼ mμ is reached. Then,
muons start to appear and we solve both equations. For
each length of the unit cell we obtain the value of the proton
fraction, hence we reconstruct the curve γðLÞ.
The total energy per unit cell in a β-equilibrated sky-

rmion crystal is therefore given by

E ¼ Eclass þ EisoðγÞ þ EeðγÞ þ EμðγÞ; ð34Þ

where Eclass correspond to the classical energy of the
Skyrme crystal, Eiso is calculated from Eq. (26) and the
energies of the leptons are the usual energy of a relativistic
Fermi gas with mass ml at zero temperature,

Elep ¼
Z

kf

0

k2dk
π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q

¼ m4
l

8π2

�
xrð1þ 2x2rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2r

q
− ln xr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2r

q �
;

ð35Þ

where xr ¼ kF=ml. Recall that for electrons we take the
approximation x−1r → 0, which is justified for den-
sities n ≥ n0.

III. KAON CONDENSATE IN SKYRMION
CRYSTALS

Having obtained the proton fraction (hence the electron
chemical potential) in npeμ matter as a function of density,
we can now turn to the question of whether kaon fields may
condense inside a Skyrme crystal for a sufficiently high
density, and, if so, whether this critical density value is
relevant for the description of matter inside compact stars.

A. Kaon fluctuations in the Skyrme model

Following the bound-state approach first proposed in
[37] we may include strange degrees of freedom in the
Skyrme model by extending the skyrmion field to a SUð3Þ-
valued field U through modeling kaon fluctuations on top
of a SUð2Þ skyrmion-like background u. With the only
requirement that unitarity must be preserved, different
Ansätze have been proposed in the literature for the total
SUð3Þ field describing both pions and kaons. In this work,
we choose the Ansatz proposed by Blom et al. in [47]:

U ¼
ffiffiffiffiffiffiffi
UK

p
Uπ

ffiffiffiffiffiffiffi
UK

p
: ð36Þ

In this Ansatz Uπ represents the SUð3Þ embedding of the
purely pionic part u, and the fieldUK are the fluctuations in
the strange directions. It can be shown that this Ansatz is
equivalent to the one first proposed by Callan and
Klebanov in [37] when computing static properties of

hyperons, although both may differ in other predictions
of the model [48].
In the simplest SUð3Þ embedding, the SUð2Þ field u is

extended to Uπ by filling the rest of the entries with ones in
the diagonal and zeros outside. On the other hand, the kaon
Ansatz is modeled by a suð3Þ-valued matrix D which is
nontrivial in the off-diagonal elements:

Uπ ¼
�
u 0

0 1

�
; UK ¼ ei

2
ffiffi
2

p
fπ

D;

u ¼ σ þ iπaτa ≡ inατα;D; D ¼
�

0 K

K† 0

�
; ð37Þ

where a ¼ 1; 2; 3, α ¼ 0; 1; 2; 3, σα ¼ ð−i1; τÞ, and K
consists of a scalar doublet of complex fields representing
charged and neutral kaons:

K ¼
�
Kþ

K0

�
; K† ¼ ðK−; K̄0Þ: ð38Þ

The extension of the generalized Skyrme Lagrangian from
(1) to include strange degrees of freedom consists in the
replacement of the pion mass term L0 by [48]

Lnew
0 ¼ f2π

48
ðm2

π þ 2m2
KÞTrfU þ U† − 2g

þ
ffiffiffi
3

p

24
f2πðm2

π −m2
KÞTrfλ8ðU þ U†Þg; ð39Þ

where λ8 is the eighth Gell-Mann matrix and mK is the
vacuum kaon mass, and the addition of the Wess-Zumino-
Witten (WZW) term, which can be expressed in terms of a
five-dimensional action integral:

SWZ ¼ −i
Nc

240π2

Z
d5x ϵμναβγTrfLμLνLαLβLγg: ð40Þ

B. The kaon condensate on classical crystals

The onset of kaon condensation in the Skyrme model
takes place at a critical density ncond at which μe becomes
greater than the energy of the kaon zero-momentum mode
(s-wave condensate). Thus, for baryon densities n ≥ ncond,
the macroscopic contribution of the kaon condensate to the
energy must be taken into account when obtaining the EOS
of dense matter. To do so, we follow the standard procedure
to describe Bose-Einstein condensation of a (complex)
scalar field (see e.g. [49]) in which the field condensates
correspond to the nonzero vacuum expectation values
(VEV), hK�i, which are assumed to be constant in space
and whose time dependence is given by

hK∓i ¼ ϕe∓iμKt: ð41Þ
The real constant ϕ corresponds to the zero-momentum
component of the fields, which acquires a nonvanishing,
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macroscopic value after the condensation. Its exact value is
determined from the minimization of the corresponding
effective potential, to whose calculation we will dedicate
the rest of this section. On the other hand, the phase μK is
nothing but the corresponding kaon chemical potential.
First, we will need an explicit form of the SUð3Þ Skyrme
field in the kaon condensed phase. Assuming the charged
kaons will be the first mesons to condense [50], we can
safely drop the neutral kaon contribution, and define the
following matrix:

D̃ ¼

0
B@

0 0 ϕeiμKt

0 0 0

ϕe−iμkt 0 0

1
CA ð42Þ

which results from substituting the kaon fields in D as
defined in (37) by their corresponding VEV in the kaon
condensed phase. Also, taking advantage of the property
D3 ¼ ϕ2D, we may write the SUð3Þ element generated by
D̃ explicitly in matrix form:

Σ ¼ ei
ffiffi
2

p
fπ
D̃ ¼

0
B@

cos ϕ̃ 0 ieiμKt sin ϕ̃

0 1 0

ie−iμKt sin ϕ̃ 0 cos ϕ̃

1
CA; ð43Þ

where ϕ̃ ¼
ffiffi
2

p
fπ
ϕ is the dimensionless condensate amplitude.

Furthermore, assuming the backreaction from the kaon
condensate to the skyrmion crystal is negligible, and thus
the classically obtained crystal configuration will be the
physically correct background even in the kaon condensed
phase, we may write the SUð3Þ field in this phase as
U ¼ ΣUπΣ, where Uπ is the SUð3Þ embedding of the
SUð2Þ skyrmion background as in (37). Introducing this U
in the total action yields the standard Skyrme action for the
SUð2Þ field plus an effective potential term for the kaon
condensate:

SSkðUÞ þ SWZWðUÞ ¼ SSkðUπÞ −
Z

dtVKðϕ̃Þ; ð44Þ

where

VK ¼ 1

24π2

Z
d3x

�
Vð2Þ
K þ Vð4Þ

K þ Vð6Þ
K þ Vð0Þ

K

�
þ VðWZWÞ

K :

ð45Þ

Let us now calculate the contribution to the effective
potential VK of each term in the action:

(i) Quadratic term.—Given that the crystal background
is static and the kaon condensate does not depend on
spatial coordinates, the kaon part of the quadratic
term may be written as

TrfL2
0g¼−½Trf∂tΣ†

∂tΣgþTrfΣ†
∂tΣU

†
πΣ∂tΣ†Uπg�:

ð46Þ

Introducing the explicit expression for Σ (43) yields

Vð2Þ
K ¼ μ2K sin2 ϕ̃½ð1þ σ2 þ π23Þ sin2 ϕ̃

− 2ð1þ σ cos2 ϕ̃Þ�: ð47Þ

(ii) Quartic term.—In the quartic term, the kaon effec-
tive potential comes from the terms with time
derivatives of the total field,

Trf½L0; Li�2g ¼ 2½Trf∂tU†
∂iU∂tU†

∂iUg
− Trf∂iU†

∂tU∂iU†
∂tUg�; ð48Þ

which, after substitution of the expression for Σ,
gives

Vð4Þ
K ¼ −2μ2Ksin2ϕ̃fð1þ σÞ∂in2cos2ϕ̃

þ 2½∂iσ2ð1 − π23Þ þ ∂iπ
2
3ð1 − σ2Þ

þ 2σπ3∂iσ∂iπ3�sin2ϕ̃g: ð49Þ

(iii) Mass term.—The kaon part associated to the mass
term gives the following contribution:

Vð0Þ
K ðϕ̃Þ ¼ 2

m2
K

f2πe2
ð1þ σÞ sin2 ϕ̃: ð50Þ

(iv) Wess-Zumino-Witten term.—The WZW term is
written as a five-form integrated over an auxiliary
five-dimensional disk D whose boundary is the
spacetime manifold M, but in Appendix Awe show
that the variation after the kaon fluctuations of the
pion background yields a local term which may be
written as an effective four-dimensional Lagrangian.
Indeed, we show that

SWZWðUÞ ¼ SWZWðUπÞ −
iNC

2

Z
M
B0Tr

��
12 0

0 0

�
ðΣ∂tΣ† þ U†

πΣ†
∂tΣUπÞ

	

¼ −NC

Z
μBcell sin2ðϕÞdt ¼

Z
VðWZWÞ
K ðϕÞdt: ð51Þ
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(v) Sextic term.—The contribution from the sextic term
is also obtained in Appendix A to be

Vð6Þ
K ¼ −

λ2f2πe4

16
Trf½Rj; Rk�ξ0g2; ð52Þ

where ξμ ¼ UπΣ∂μΣ†U†
π − Σ†

∂μΣ. Once the traces
are evaluated, we end up with

Vð6Þ
K ¼ −λ2f2πe4μ2K sin4ðϕ̃Þð∂iπ3∂jσ − ∂iσ∂jπ3Þ2:

ð53Þ

C. Effect of kaon condensation on the quantum
corrections to Skyrme crystals

In the above calculations, we have taken separately the
contributions of a kaon condensate and an isospin angular
momentum of the skyrmion crystal, and the kaon con-
densate interacts with the skyrmion isospin only indirectly
via the charge neutrality and β-equilibrium conditions,
which relate their corresponding chemical potentials.
However, since kaons possess an isospin quantum number,
we should consider a (time-dependent) isospin transforma-
tion of the full Skyrme fieldþ kaon condensate configu-
ration U ¼ ΣUπΣ:

U → Ũ ≡ AðtÞUA†ðtÞ; ð54Þ

where A is an element of SUð3Þ modeling an isospin
rotation,

A ¼
�
a 0

0 1

�
; a ∈ SUð2Þ: ð55Þ

The Maurer-Cartan form transforms as ( _A ¼ dA=dt)

Ũ†
∂μŨ ¼

�
AU†

∂iUA†; ðμ ¼ i ¼ 1; 2; 3Þ;
AU†

∂0UA† þ AðU†½A† _A;U�ÞA†; ðμ ¼ 0Þ:
ð56Þ

We now define the isospin angular velocity ω⃗ as A† _A ¼
i
2
ωaλa (a ¼ 1, 2, 3), with λA the Gell-Mann matrices

generating SUð3Þ for A ¼ 1;…8. Notice that ω⃗ is a three-
vector, sinceA† _A belongs to the isospin suð2Þ subalgebra of
suð3Þ Then, we may write the time component of the
Maurer-Cartan current as Ũ†

∂0Ũ ¼ AL0A† þ ATaA†ωa,
where Ta is the suð3Þ-valued current:

Ta ¼
i
2
U†½λa; U�≡ iTA

aλA; ð57Þ

where we have made use of the parametrization (37). The
time dependence of the new Skyrme field induces the
existence of a kinetic term in the energy functional, given
by [51]

T ¼
Z

faðTrfL0L0g þ 2TrfL0Tagωa

þ TrfTaTbgωaωbÞ
− 2bðTrf½ðL0 þ TaωaÞ; Lk�½ðL0 þ TbωbÞ; Lk�gÞ
− cBiBigd3x; ð58Þ

withBi the spatial components of the topological current (3):

Bi ¼ 3

24π2
εijkTrfðL0 þ TaωaÞLjLkg: ð59Þ

We may rewrite the kinetic isorotational energy in the
standard way as a quadratic form acting on the components
of the isospin angular velocity,

T ¼ 1

2
ωaΛabωb þ Δaωa − VK; ð60Þ

where Λab is the isospin inertia tensor and Δa is the kaon
condensate isospin current, given by

Λab ¼
Z �

2aTrfTaTbg − 4bTrf½Ta; Lk�½Tb; Lk�g −
c

32π4
εlmnTrfTaLmLngεlrsTrfTjLrLsg

	
d3x; ð61Þ

Δa ¼
Z �

2aTrfL0Tag − 4bTrf½Ta; Lk�½L0; Lk�g −
c

32π4
εlmnTrfL0LmLngεlrsTrfTaLrLsg

	
d3x; ð62Þ

where a, b, and c are those in Eq. (15).
The symmetries of the crystalline configuration that we

consider in this work, concretely the S1 and S2 trans-
formations, imply that the isospin inertia tensor becomes

proportional to the identity, i.e.Λcrystal
ab ¼ Λδab. However, the

presence of a kaon condensate breaks this symmetry to a
Uð1Þ subgroup, so that Λab presents two different eigenval-
ues in the condensate phase, Λcond ¼ diagðΛ;Λ;Λ3Þ.
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Similarly, Δa ¼ 0 in the purely baryonic phase, and its third
component acquires a nonzerovalue in the condensate phase,
Δcond ¼ ð0; 0;ΔÞ. The explicit expressions for Λ3 and Δ in
the condensed phase are written in Appendix B. One can
easily check that in the noncondensed phase, ϕ ¼ 0 and the
results of the previous section are recovered, namely,
Λ3 ¼ Λ, Δ ¼ 0.
The quantization procedure now goes along the same

lines as in the first section. However, the isospin breaking
due to the kaon condensate implies that the canonical
momentum associated to the third component of the isospin
angular velocity will now be different, and given
by I3 ¼ Λ3ω3 þ Δ.
Thus, after a Legendre transformation to rewrite (60) in

Hamiltonian form, and making the N → ∞ approximation,
one can write the quantum energy correction per unit cell of
the crystal in the kaon condensed phase as

Equant ¼
1

2Λ3

ðI23 − Δ2Þ: ð63Þ

The first term on the rhs is just the isospin correction, while
now there is an additional second term due to the isospin of
the kaons. Indeed, since the kaon field enters also in the
expression of the isospin moment of inertia Λ3, both terms
will depend nontrivially on the kaon VEV field.

IV. RESULTS

When the kaon field develops a nonzero VEV, apart from
the neutron decay and lepton capture processes of Eq. (28),
additional processes involving kaons may occur:

n ↔ pþ K−; l ↔ K− þ νl ð64Þ

such that the chemical equilibrium conditions

μn ¼ μp þ μK; μl ¼ μK ð65Þ

are satisfied. The last expressions are the extension of
Eq. (30) to the condensate phase.
The total energy within the unit cell may be obtained as

the sum of the baryon, lepton and kaon contributions:

E ¼ Eclass þ Eisoðγ; ϕ̃Þ þ EKðμK; ϕ̃Þ
þ EeðneÞ þ Θðμ2e −m2

μÞEμðnμÞ: ð66Þ

We remark that the above expression does not exactly
correspond to the (relativistic version of the) internal
thermodynamical energy for nonzero kaon condensate.
The reason is that the kaon chemical potential μK appears
as an independent variable in EK , whereas the remaining
chemical potentials μl are functions of the corresponding
particle densities, as must be the case for an internal energy.
Concretely, the kaon contribution is the effective potential
energy

EKðμK; ϕ̃Þ ¼ VK −
Δ2

2Λ3

; ð67Þ

which depends on the condensate ϕ̃ and on the kaon
chemical potential through the explicit dependence on μK
of both VK and Δ. Now we want to determine the values of
the proton fraction, kaon condensate and electron chemical
potential that minimize the total energy for a given baryon
density nB (or equivalently, fixed L) under the condition of
charge neutrality and beta equilibrium. For this purpose, we
consider the grand potential

Ω ¼ E − μeðNe þ Θðμ2e −m2
μÞNμ − γBÞ; ð68Þ

where the equilibrium conditions (65) imply μI ¼ μK ¼
μμ ¼ μe where already imposed. Further, the Legendre
transformation leading to Ω is performed only with respect
to the electrically charged particle numbers Ne, Nμ, and
Np ¼ γB, but not with respect to the baryon number B. It is
also not performed with respect to NK , because E already
depends on μK . The grand potential must now be mini-
mized with respect to its variables, i.e. ϕ̃ and μe,

∂Ω
∂μe

����
nB

ðϕ̃; μeÞ ¼
∂Ω
∂ϕ̃

����
nB

ðϕ̃; μeÞ ¼ 0: ð69Þ

Using Eqs. (66)–(68) we explicitly have

γnB −
ðμ2e −m2

eÞ3=2 þ ðμ2e −m2
μÞ3=2

3π2ℏ3
þ nB

4

∂EK

∂μK

����
μK¼μe

¼ 0;

ð70Þ

∂VK

∂ϕ̃
−

Δ
Λ3

∂Δ
∂ϕ̃

þ ∂Λ3

∂ϕ̃

�
Δ2

2Λ2
3

−
μ2e
2ℏ2

�
¼ 0: ð71Þ

The first expression is precisely the charge neutrality
condition, where we maintain γ in the first term, but we
recall that it is related to μI via Eq. (23). The second one is
the minimization of the grand canonical potential with
respect to the kaon field. We note here that we drop the
ultrarelativistic consideration for electrons since the appear-
ance of kaons may decrease hugely the electron fraction.
By solving the system of Eqs. (70) and (71) for μe and ϕ̃,
we obtain all the needed information for the new kaon
condensed phase. Then we may compare the particle
fractions and energies between both phases, which we will
call npeμ and npeμK̄.
Before solving the full system for different values of the

lattice length L, we may try to obtain the value of the length
at which kaons condense, Lcond. This value is indeed
important since it will determine whether or not a con-
densate of kaons will appear at some point in the interior of
NSs. This is accomplished with the same system of
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Eqs. (70) and (71) by factoring the sin ϕ̃ from the second
equation and setting ϕ̃ ¼ 0. Then we may see the system as
a pair of equations to obtain the values of γcond and Lcond,
the values of the proton fraction and the length parameter
for which the kaons condense.
We show in Table I the density at which kaons condense

for different values of the parameters as well as the values
of some nuclear observables they yield. All the values are
given in units of MeV or fm, respectively.
We choose some representative parameter values such

that, for the parameter sets 1 and 2, the energy per baryon
and baryon density at saturation are reasonably close to
their experimental values, whereas sets 3 and 4 reasonably
fit the symmetry energy and slope at saturation. An
exhaustive scan of the parameter space to find some
optimal values for these parameters is beyond the scope
of the present paper because, as explained already, a
quantitatively precise description of a larger number of
nuclear physics observables in any case will require the use
of a more extended version of the Skyrme model.
In Fig. 1, we show the EðnBÞ curves both without and

with kaon condensation, in dimensionless Skyrme units. It
is clearly visible that for sufficiently large nB a nonzero
kaon condensate is preferred. In Fig. 2 we show the
resulting particle fractions for a particular set of parameters.

When the kaon condensate is taken into account, we
observe that (i) the electric charge neutralization is almost
exclusively provided by the negatively charged kaons, with
a small contribution of electrons and a negligible contri-
bution of muons, and that (ii) the proton fraction gets rather
close to the neutron fraction for large densities. In Fig. 3 we
plot the symmetry energy as a function of both nB and the
kaon condensate ϕ. Here two effects can be appreciated.
First, larger contributions of the sextic term (larger values
of the parameter λ2) lead to a smaller symmetry energy and,
second, the kaon condensate reduces the symmetry energy
in all cases.

TABLE I. Sets of parameter values and observables at nuclear
saturation.

Label fπ e λ2 E0 n0 S0 Lsym ncond=n0

Set 1 133.71 5.72 5 920 0.165 23.5 29.1 2.3
Set 2 138.11 6.34 5.78 915 0.175 24.5 28.3 2.2
Set 3 120.96 5.64 2.68 783 0.175 28.7 38.7 1.6
Set 4 139.26 5.61 2.74 912 0.22 28.6 38.9 1.6

FIG. 1. Energy vs baryon density for set 1 of the parameters.
The energy is shown for the classical crystal without isopin
contributions (green), isospin asymmetric (npeμ) matter with
(black) and without (blue) kaons. We also plot the completely
asymmetric neutron matter (magenta) which lies slightly above
the blue curve.

FIG. 2. Particle fractions as a function of baryon density for
set 1 of the parameters, both with (solid lines) and without
(discontinuous lines) kaon condensate. For the case with kaon
condensate, the contribution of muons is negligible.

FIG. 3. Symmetry energy of nuclear matter as a function of
baryon density for the sets of parameters considered in this work.
The thick line represents the symmetry energy when kaons are
considered in the system and the dashed line does not include
kaons.
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V. NEUTRON STARS WITH KAON CONDENSED
CORES WITHIN THE SKYRME MODEL

In this section we briefly recapitulate how to obtain the
EOS from the Skyrme crystal solution. Then we calculate
the full npeμK̄ matter EOS, and finally solve the TOV
system and compare the NS properties with and with-
out kaons.

A. The Skyrme crystal EOS for
(a)symmetric nuclear matter

The energy per baryon as a function of the lattice length,
EðLÞ, has a minimum at a certain value L�. The density
n0 ¼ ð1=2ÞL−3� at which this minimum is achieved is the
so-called nuclear saturation density, which has been exper-
imentally found to be n0 ≃ 0.16 fm−3. Further, the energy
per baryon at nuclear saturation is E0 ¼ 923 MeV. On the
other hand, for the crystal solutions one can define the
energy density ρ, pressure p and baryon density n as

ρ ¼ E
V
¼ Ecell

Vcell
; ð72Þ

p ¼ −
∂E
∂V

¼ −
∂Ecell

∂Vcell
; ð73Þ

nB ¼ B
V
¼ Bcell

Vcell
¼ 1

2L3
: ð74Þ

We can understand the cell length parameter L as labeling
the different energy-minimizing configurations at different
densities. Therefore, the three quantities above are related
as functions of L. This relation is precisely the equation of
state (EOS) for skyrmion crystals. It has been recently
shown in [31] that this EOS stiffens in the generalized
Skyrme model, i.e. when the sextic term in (5) is included.
This stiffening significantly rises the maximal NS masses
that can be reached, which is a strong motivation for the
inclusion of the sextic term, as it is necessary in order to
reach the mass range of massive pulsars, around 2–2.5M⊙
according to recent observations.
The global energy minimum of the crystal is reached at

L ¼ L�, at which skyrmionic matter remains in equilib-
rium, i.e. at zero pressure. For L < L� the crystal is
squeezed, which translates into larger values of pressure
and density. In the opposite region, L > L�, the matter
content inside the unit cell spreads and we enter the
unstable branch. Indeed, the pressure in this region is
negative, hence we conclude that this (low-density) regime
is not well described by the crystal solution. We actually
expect that matter inside the unit cell will rearrange in a
kind of inhomogeneous central lump surrounded by vac-
uum [32]. More exotic configurations presenting nonho-
mogeneous structures have also been constructed in the
Skyrme model [52,53]. However, the physical relevance of

these configurations as true energy minimizers in the model
still remains unclear.
Hence, the main ingredient to obtain the EOS for the

Skyrme crystal is the energy dependence on the unit cell
size. The npeμ matter case is easy to obtain using Eq. (34)
for different values of L after solving the β-equilibrium and
charge neutrality conditions for γ. However, once we
include kaons, the change in the energy curve (Fig. 1)
may lead to a first- or second-order phase transition. To
distinguish the order of the phase transition in our case, we
need to know accurately the pressure near the condensation
point. Therefore, we computed more points for the energy
near the condensation value with higher accuracies, and we
obtained the pressure using a numerical derivative. We
conclude that the kaon condensation produces a first-order
phase transition for our choices of parameters in the
Skyrme model. This can be seen in the right plot of
Fig. 4, where we show the EOS for our best accuracy
and for set 1 of the parameters. Clearly, there is a
nonphysical region which must be bridged by a first-order
phase transition. Similar results, indicating a first-order
transition, are found for the other parameter sets. The phase
transition to kaon condensation has been investigated
previously, e.g., within a relativistic mean field theory
framework [9,54]. The kaon optical potential, which is the
relevant parameter for the phase transition, was allowed to
vary within a rather large range in these investigations. This
lead to a large variety of possible situations, from a second-
order phase transition for a weak optical potential to a
strongly first-order transition for a strong one, where the
number of protons outweighs the number of neutrons at
sufficiently high density. For intermediate optical poten-
tials, their results are similar to ours.

FIG. 4. Left plot: energy per baryon against the side length of
the crystal, calculated with more points near the condensation
values for both branches and their interpolations. Right plot:
pressure against the energy density, from which we conclude that
there is a first-order phase transition. Both plots are for set 1 of the
parameters.
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B. Maxwell construction versus Gibbs construction

The Maxwell construction (MC) is typically used to
obtain a physical equation of state when a first-order
transition is present. Indeed, the MC has been already
studied in the Skyrme crystals context to describe the
transition between crystals with different symmetries [32].
This construction is based on a mixed phase of constant
pressure which connects the two solutions. However, the
MC is only correct when there is a single conserved
charge (in this case, the baryon number) for which the
associated chemical potential is enforced to be common
for both phases in the mixed phase [55]. If, instead, an
additional charge is conserved, like the electric charge in
the case of npeμ matter, the Gibbs conditions for the
phase equilibrium,

pI ¼ pII; μIi ¼ μIIi ; i ¼ B; q; ð75Þ

cannot be both satisfied in a standard MC. In the last
expression μB and μq represent the chemical potentials
associated to the conserved baryon and electric charges,
respectively. Instead, one should perform a Gibbs con-
struction (GC) [9,55]. Indeed, the GC has also been
proven useful in the context of a hadron-to-quark phase
transition inside NSs [56].
We may write the chemical potential of each particle

species as a linear combination of the chemical potentials
associated to the conserved charges of our system:

μi ¼ BiμB þ qiμq; ð76Þ

where Bi and qi are the baryon number and electric charge
of the particle species i. Then we might identify the baryon
and electric charge chemical potentials with the neutron
and electron chemical potentials respectively. The main
difference between MC and GC is that, in the mixed phase,
the first one imposes charge neutrality locally, i.e. both
phases are neutral independently, however in the GC it is
imposed globally in the mixed phase. Considering a
volume fraction χ of the kaon condensed phase, charge
neutrality is imposed in the GC as

nMP
q ¼ ð1 − χÞnIq þ χnIIq ¼ 0: ð77Þ

The mixed phase in the GC is calculated by identifying first
the contributions to the pressure and charge densities in
each phase separately. Then we have to solve the system of
equations composed by Eqs. (71), (75), and (77). We use
the unit cell length parameter of the first (npeμ) phase LI as
the variable defining our position in the phase diagram,
then the unknowns are the length in the second (npeμK̄)
phase LII, the proton fractions γI, γII, the kaon field ϕ̃ and
the volume fraction χ.
We remark that we assumed in our calculations of the

kaon condensate in Sec. III that the backreaction of the

condensate on the crystal is negligible, such that our two
phases are always considered in the same classical crystal
background, and the energies per baryon of the two phases
are compared for the same length L. As a result, we always
should have LI ¼ LII and, consequently, nB;I ¼ nB;II by
construction. On the other hand, the relation between L and
the thermodynamical variables p, μi and ϕ used in
Eqs. (71), (75), and (77) is quite nontrivial in both phases.
We, therefore, treat LII as an independent variable in our
numerical calculations. We find that always LI ¼ LII within
our numerical precision, which provides us with an addi-
tional consistency check both for our numerics and for the
thermodynamical transformations we used.
We show our results in Figs. 5 and 6 for set 1 of the

parameter values. Concretely, in Fig. 5 the energy per
baryon is shown as a function of the baryon density nB both

FIG. 5. EðnBÞ curves for the two phases, for set 1 of the
parameter values. The different slopes at the point of phase
separation indicate a first-order phase transition. We also show
the curves resulting from a Maxwell construction (MC) and a
Gibbs construction (GC).

FIG. 6. EOSs for the three different cases that we have
constructed. The jump in the MC due to the first-order transition
and the different behavior of the GC at low densities are clearly
visible. We also show the standard nuclear physics EOS of [57]
(BCPM) and a hybrid EOS obtained by joining the BCPM EOS at
low pressure with the GC EOS at high pressure.
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for the two pure phases and for the mixed phases resulting
from a MC and a GC, respectively. We find that the mixed
phase of the GC, and hence the values at which the kaon
field becomes nonzero, starts at a smaller density than the
value obtained in Table I. This is also found in [9], for
which the GC mixed phase extends to a larger region than
the one obtained from the MC, because the mixed phase in
the GC no longer is for constant pressure. In our case, even
the minimum of EðnBÞ is shifted to slightly higher densities
and, hence, the use of the GC affects the low density regime
of the EOS. This can also be seen in Fig. 6, where we plot
the equation of state (EOS) ρðpÞ for the different phases. In
particular, in the insert for low pressure it is clearly visible
that for the same set of parameters the GC leads to a slightly
higher energy density at low pressure, which is related to
the fact that the energy minimum is attained for slightly
larger nB in Fig. 5. Further, as will be discussed in more
detail below, the various Skyrme model EOSs approach a
nonzero energy density for zero pressure and, therefore,
must be joined to a standard nuclear physics EOS at low
pressure for a more realistic description.
We may also calculate the particle fractions in the mixed

phase of the GC using an expression equivalent to Eq. (77)
for each particle. We show the new particle fractions in
Fig. 7. In comparison to Fig. 2, it is clearly seen that
(i) kaon condensation sets in earlier, and (ii) the proton
fraction is enhanced in the GC. We remark that in Fig. 7 in
the mixed (kaon and no-kaon) phase we only plot the total
particle fractions, i.e., the sum of kaon and no-kaon phase
contributions, weighted by their relative volumes according
to Eq. (77). Considering the kaon and no-kaon phases in the
mixed phase separately, we find that there are more protons
in the kaon phase. Nevertheless, the presence of more
kaons than protons in this phase results in a partially
negative charge density, which is compensated by the
overall positive charge density of the no-kaon phase. In
both phases the number of electrons is much less than that
of protons and kaons.

C. The TOV system and NS properties

In order to calculate the mass and radius for a nonrotating
NS we have to solve the standard TOV (Tolman-
Oppenheimer-Volkoff) system of ordinary differential
equations. It is obtained inserting a spherically symmetric
ansatz of the spacetime metric,

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð78Þ

in the Einstein equations,

Rμν −
1

2
gμνR ¼ 8πGTμν: ð79Þ

To describe matter inside the star, in the right-hand side of
the equation, we use the stress-energy tensor of a perfect
fluid,

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð80Þ

where the pressure p and the energy density ρ are not
independent but related by the EOS. Hence the EOS
describes the nuclear interactions inside the NS and differ-
ent EOSs lead to different observables.
The resulting TOV system involves three differential

equations for A, B, and p, which must be solved for a given
value of the pressure in the center of the NS [pðr ¼ 0Þ ¼ p0]
until the condition pðr ¼ RÞ ¼ 0 is achieved.
We use a fourth order Runge-Kutta method of step Δr ¼

1 m to solve the system and to obtain the main observables
from the solutions. The radial point at which the pressure
vanishes defines the radius of the NS, and the mass M is
obtained from the Schwarzschild metric definition outside
the star,

Bðr ¼ RÞ ¼ 1

1 − 2GM

R

� : ð81Þ

The results of this section are plotted in Fig. 8 for the four
sets of parameters. We compare the results between the MC
and GC as well as with the EOS without kaons. The first
observation is that the addition of kaons to the EOS agrees
with the expectation, reducing the achievable maximum
mass. This represents the so-called hyperon puzzle in which
the appearance of new strange degrees of freedom softens
the EOS such that it may not lead to sufficiently massive
NS (∼2M⊙). As can be seen, this is not the case in the
generalized Skyrme model since we may obtain very high
masses easily due to the contribution of the sextic term.
Furthermore, the radii of NSs are also reduced, which
benefits our concrete model since the radii for skyrmion
crystals are in some cases too large.
The main difference between the two different construc-

tions is that the MC starts at a given density, hence it
deviates from the npeμ EOS at a certain mass. On the other

FIG. 7. Particle fractions for the GC. The main difference with
respect to Fig. 2 is the earlier appearance of kaons.
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hand, since the GC changes the location of the minimum, it
leads to different results also in the low mass region.
However, both constructions practically merge in the high
masses region, in which they follow the same npeμK̄ EOS.
As already explained, the thermodynamically stable

region of the EðLÞ curves and the corresponding EOS
based on the Skyrme crystal is L ≤ L� or, equivalently,
nB ≥ n0. As a consequence, NSs based on the Skyrme
crystal have nB ¼ n0 at the NS surface or, in other words,
Skyrme crystal NSs have no low-density region (outer core
and crust). In the right panel of Fig. 8, therefore, we show
the result of adding a low-density region to the NS by
joining the GC equations of state of the Skyrme crystal with
a standard nuclear physics EOS for low densities (the
corresponding EOSs are shown in Fig. 6). Concretely, we
use the BCPM EOS [57] and joint the two EOSs at the
pressure p ¼ p� where the two EOSs coincide, i.e.,
ρBCPMðp�Þ ¼ ρ;crystalðp�Þ, exactly as we did in [31]. In
terms of the baryon density, the joining occurs at nB;� ∼
1.1n0 for parameter sets 1–3, and for nB;� ∼ 1.2n0 for set 4.
Again as in [31], we assume a smooth joining between the
two EOSs (concretely, described by a quadratic interpola-
tion) in order to avoid an artificial phase transition at p�.
We also plot in Fig. 8 the most likely mass-radius relations
for the NS corresponding to GW170817 [58] and
GW190425 [59] events (orange and blue regions). The
green regions represent the estimations for the mass and
radius values of PSR J0740þ 6620 (top) [60] and J0030þ
0451 (bottom) [61]. We find that the NSs resulting from the
addition of a low-density region to the Skyrme crystal EOS
with a nonzero kaon condensate agree very well with these
recent constraints. Further, the softening of the EOS due to

the presence of kaons and the resulting smaller NS radii are
important for this agreement.

VI. CONCLUSIONS

The quantization of the isospin degrees of freedom in
[33] allowed us to find the dependence of the isospin
contribution to the energy (hence the isospin chemical
potential) on the lattice length of the skyrmion crystals,
which in turn determines the proton (and electron) fraction
in β-equilibrated skyrmion crystals. In this paper, we have
used this information to develop a method for the precise
determination of the critical density at which charged kaons
will condense inside a neutron star described by a Skyrme
crystal. Although the prediction of the condensation of
charged mesons at high (isospin) chemical potential is
common in nuclear matter literature, and there have been
some partial results within the Skyrme model [62,63], we
have, to our knowledge, for the first time provided a
framework which allows to precisely calculate the value
of the density where kaon condensation sets in.
Concretely, the version of the Skyrme model we use is

still too simple for a quantitatively precise determination of
a large number of observables of nuclear physics, but
reasonable values for those observables most relevant for
nuclear matter in the interior region of neutron stars and for
kaon condensation can be achieved. For the corresponding
sets of parameter values, kaon condensation sets in at
around twice nuclear saturation, so the prediction from the
Skyrme model is that strangeness will be present at the core
of neutron stars in the form of an (anti)kaon condensate.
Further, we have computed the EOS for skyrmion matter in

FIG. 8. Mass-radius curves of NS with a kaon condensed core. The different sets of parameters that we consider are shown with
different colors. Left panel: solid lines represent npeμ matter, dash-dotted lines are obtained with a MC and the dashed with the GC.
Right panel: the effect of adding a standard nuclear physics low-density region to the Skyrme crystal EOS with kaon condensate
obtained from the Gibbs construction (GC).
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the condensate phase, which becomes softer due to the
additional degrees of freedom. This has appreciable effects
on the mass-radius curves for physically relevant param-
eters in the model, reducing the maximum radii by about
0.5–1 km. We found that a correct treatment of the resulting
first-order phase transition between the phase with and
without kaon condensate by a Gibbs construction, as
originally advocated in [55], is important for these results.
Despite the prediction of a very early onset of kaon

condensation as compared with other nuclear EOSs, the
maximum mass limit for neutron stars does not get
significantly reduced, due to the sextic term being dom-
inant at such densities. The fact that the presence of a kaon
condensate does not pose a problem for reaching high
masses in the Skyrme model, however, does not imply that
the hyperon problem is completely solved in skyrmion-
based EOSs. Indeed, in addition to kaons, one should take
into account also hyperon degrees of freedom within the
Skyrme model. Whilst hyperons can be successfully
described within this model [38], and even a proposal to
study modifications of hyperon properties in dense matter
has been provided in [64], it is not clear for us how to apply
these ideas to skyrmion crystals. A possibility would be to
extend the isospin quantization scheme proposed in [33] to
the three flavor case, and quantize the whole SUð3Þ rotation
group. This method, however, is much more technically
involved, and relies on the assumption of an approximate
SUð3Þ symmetry of the Hamiltonian, which only holds for
sufficiently large densities.
In any case, a quantitatively more precise modeling of

nuclear matter will require more extended versions of the
Skyrme model as a starting point. This is all the more true
for nuclear matter at lower densities which is relevant, e.g.,
for the outer core and the crust of NSs, and where both finer
details of nuclear forces and electrostatic (Coulomb energy)
effects must be taken into account. On the other hand, at
high densities the behavior of skyrmionic matter (Skyrme
crystals) becomes more universal, and the inclusion of the
sextic term is the most important modification. We are,
therefore, confident that the main results of the present
paper will continue to hold once such a more refined
treatment is employed.
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APPENDIX A: DERIVATION OF THE WZW AND
SEXTIC TERMS CONTRIBUTION TO VK

To work with the WZW and sextic terms, it is useful to
employ the formalism of Lie algebra-valued differential
forms, which we will extensively do in this appendix. Let us
first review the basic properties of such objects and establish
the notation that wewill follow. A g-valued differential form
α can be written in terms of the Lie algebra generators Ta, as
α ¼ αa ⊗ Ta. The exterior derivative is then simply
obtained as dα ¼ dαa ⊗ Ta. Furthermore, the wedge prod-
uct on g-valued forms is defined as

α ∧ β ¼ αa ∧ βb ⊗ TaTb; ðA1Þ

so that the following useful properties hold:

dα ∧ β ¼ ðdαÞ ∧ β þ ð−1Þjαjα ∧ ðdβÞ ðA2Þ

Trα ∧ β ¼ ð−1ÞjαjjβjTrβ ∧ α; ðA3Þ

where jαj denotes the degree of α. Also, by linearity of
the trace, both the trace and the exterior derivative com-
mute, i.e.

dTrα ¼ Trdα: ðA4Þ

To alleviate the notation, in the following we will drop the
wedge product symbol and denote the product (A1) simply
by αβ. Then, for instance, if α and β denote two one-forms,
we have Trαβ ¼ −Trβα, dðαβÞ ¼ dαβ − αdβ.
Let us now perform the most general chiral transforma-

tion to the Skyrme field Uπ , given by U ¼ glUπg
†
r, with

ðgl; grÞ ∈ SUð3ÞL × SUð3ÞR and define the following
suð3Þ-valued differential forms:

V ¼U†dU; L¼U†
πdUπ; α¼ g†l dgl; β¼ grdg

†
r :

ðA5Þ

By definition, we have the following relation between the
forms above:

V ¼ ðUπgrÞ†½αþ UπðL − βÞU†
π�Uπgr: ðA6Þ

On the other hand, the WZW action is then given by the
pullback of a volume five-form Ω5 by an extended Skyrme
field U∶D5 → SUð3Þ [65] integrated over an auxiliary
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five-dimensional disk D whose boundary is the spacetime
manifold M,

SWZW ¼ −i
NC

240π2

Z
D
U�ðΩ5Þ: ðA7Þ

The form U�ðΩ5Þ can be expressed in terms of L as

SWZWðLÞ ¼ −i
NC

240π2

Z
D
TrfV5g

¼ −
iNC

240π2

Z
D
Trf½αþ UπðL − βÞU†

π�5g: ðA8Þ

Let us denote the one-form UπðL − βÞU†
π by ω. The

exterior derivative of this form is

dω ¼ dUπðL − βÞU†
π þUπðdL − dβÞU†

π −UπðL − βÞdU†
π

¼ −U†
πðdLþ dβ þ Lβ þ βLÞUπ; ðA9Þ

where we have used the fact that both β and L satisfy the
Maurer-Cartan equation dβ ¼ −β2. Moreover, one can
straightforwardly see that

ω2 ¼U†
πðL− βÞ2Uπ ¼ U†

πð−dβ− dv− βv− vβÞUπ ¼ dω:

ðA10Þ

Knowing this, we have

SWZWðLÞ ¼ −i
NC

240π2

Z
M

Trf½αþ ω�5g

¼ SWZWðαÞ þ SWZWðωÞ −
iNC

48π2

Z
M

Trfα4ωþ ω4αþ α2ω3 þ ω2α3 þ αωαω2 þ ωαωα2g

¼ SWZWðαÞ þ SWZWðωÞ −
iNC

48π2

Z
∂M

Tr

�
ω3α − α3ω −

1

2
ðαωÞ2

	
; ðA11Þ

where we have used Eqs. (A2)–(A4), the relation (A10) for ω, the M-C equation for α and Stokes’ theorem in the last step.
Repeating the same calculation for SWZWðωÞ yields

SWZWðωÞ ¼ −i
NC

240π2

Z
M

Trf½L − β�5g

¼ −SWZWðβÞ þ SWZWðLÞ −
iNC

48π2

Z
∂M

Tr
�
L3β − β3L −

1

2
ðLβÞ2

	
; ðA12Þ

so that

SWZWðVÞ ¼ SWZWðLÞ þ SWZWðαÞ − SWZWðβÞ

−
iNC

48π2

Z
∂M

Tr

�
L3β − β3L −

1

2
ðLβÞ2 þ ω3α − α3ω −

1

2
ðαωÞ2

	
: ðA13Þ

Equation (A13) shows that a chiral transformation of the
SUð3Þ Skyrme field induces an additional local term in the
action due to the nontrivial transformation of the (nonlocal)
WZW term. Furthermore, if we fix the chiral transforma-
tion fields to only depend on one spacetime coordinate,
gl=rðxÞ≡ gl=rðtÞ, any power of α and β will vanish in the
local, four-dimensional effective term. Taking this into
account, we arrive at the final result:

SWZWðVÞ ¼ SWZWðLÞ −
iNC

48π2

Z
∂M

TrfL3ðβ þU†
παUπÞg;

ðA14Þ
from which Eq. (51) is readily obtained.

Let us now turn to the sextic term. The coordinate free
version of L6 is given by

L6 ¼ λ2π4B ∧ ⋆B; ðA15Þ

where ⋆ denotes the Hodge star operator, and B the one-
form in spacetime whose coordinates in a local chart
coincide with the baryon current, B ¼ Bμdxμ. We can
construct such form as the Hodge dual of the baryon
number density three-form,
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b¼ ð24π2Þ−1U�ðΩ3Þ ¼
1

24π2
TrfLμLνLρgdxμ ∧ dxν ∧ dxρ

¼ 1

3!
bμνρdxμ ∧ dxν ∧ dxρ; ðA16Þ

i.e.

B ¼ ⋆b ¼ 1

3!
bνρσενρσμdxμ

¼ 1

24π2
ενρσμ TrfLνLρLσg ¼ Bμdxμ: ðA17Þ

Thus L6 ¼ λ2π4⋆b ∧ b. Expressing the sextic term in such
form is most useful for calculating its contribution to the
kaon potential employing the formalism of differential
forms in the same way as for the WZW term. Indeed,
we see that

b ¼ 1

24π2
TrfL3g ¼ 1

24π2
Trfω3 þ 3wω2g; ðA18Þ

where we used the fact that wn ¼ 0 for n ≥ 2 because the
kaon field Σ only depends on time. Hence, also vn ¼ 0 for
n ≥ 2 and vw ¼ 0 hold, and, given that ω ¼ U†

πðβ − vÞUπ ,
we may write

b ¼ 1

24π2
Trfβ3 þ 3ðwU†

πðβ − vÞ2Uπ − β2vÞg

¼ 1

24π2
Trfβ3 þ 3β2ðUπwU

†
π − vÞg: ðA19Þ

Thus, the baryon current density in the kaon condensed
phase will be modified by Bμ ¼ Bμ

π þ Cμ, where Bμ
π is the

baryon current due to the pionic background and

Cμ ¼ 1

8π2
εμνρσTrfRνRρðUπΣ∂σΣ†U†

π − Σ†
∂σΣÞg: ðA20Þ

For a time independent pion background and a homo-
geneous kaon condensate, we have Bμ

πCμ ¼ 0, and hence
the only contribution from the sextic term (∝ BμBμ) to VK

comes from the additional term:

CμCμ ¼ 1

64π4
εμνρσϵμαβTrfRνREρξσgTrfRαRβξγg

¼ −1
64π4

εijkεilmTrfRjRkξ0gTrfRlRmξ0g; ðA21Þ

where ξμ ¼ UπΣ∂μΣ†U†
π − Σ†

∂μΣ.

APPENDIX B: EXPLICIT EXPRESSIONS

We show here the explicit expressions of the (third
component of the) inertia tensor and the kaon isospin
current, divided into separated contributions coming from
the quadratic, quartic, sextic and Wess-Zumino-Witten
terms. A superindex labels the origin of each contribution:

Λ33 ≡ Λ3 ¼ Λð2Þ
3 þ Λð4Þ

3 þ Λð6Þ
3 ðB1Þ

Δ3 ≡ Δ ¼ Δð2Þ þ Δð4Þ þ Δð6Þ þ ΔðWZWÞ ðB2Þ

with

Λð2Þ
3 ¼ 2aTrfT3T3g

¼ π21 þ π22
2

ð1þ cos2ϕÞ2 þ ð1þ σÞsin2ð2ϕÞ=4; ðB3Þ

Λð4Þ
3 ¼ −4bTrf½T3; Lk�½T3; Lk�g ¼ 2ð1þ cos2ϕÞ

× ½ð1 − π23Þð∂iσ2 þ σπ3∂iσ∂iπ3Þ þ ðσ ↔ π3Þ�
þ ð∂inαÞ2ð1þ σÞ=4sin2ð2ϕÞ; ðB4Þ

Λð6Þ
3 ¼−

c
32π4

εlmnTrfT3LmLngεlrsTrfT3LrLsg

¼ λ2f2πe4μ2K
2

ð1þcos2ðϕ̃ÞÞ2ð∂iπ3∂jσ−∂iσ∂jπ3Þ2 ðB5Þ

Δð2Þ ¼ 2aTrfT3L0g
¼ −iμK½ðπ21 þ π22Þðcos4ϕ − 1Þ þ ð1þ σÞsin2ð2ϕÞ=2�;

ðB6Þ

Δð4Þ ¼ −4bTrf½Ta; Lk�½Tb; Lk�g ¼ −2iμK½2ð1 − cos4ϕÞ
× ðπ21∂iπ22 þ π22∂iπ

2
1 − 2π1π2∂iπ1∂iπ2

− ð∂inαÞ2ðπ21 þ π22ÞÞ þ ð∂inαÞ2=4ð1þ σÞsin2ð2ϕÞ�;
ðB7Þ

Δð6Þ ¼ −
c

32π4
εlmnTrfT3LmLngεlrsTrfL0LrLsg

¼ iμKλ2f2πe4ð1þ cos2 ϕÞ sin2 ϕð∂iπ3∂jσ − ∂iσ∂jπ3Þ2
ðB8Þ

ΔðWZWÞ ¼ −
NCBcell

2
sin2ðϕÞ: ðB9Þ
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