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We study the partial decay widths of charmonium (bottomonium) states to DD̄ðBB̄Þ mesons in
magnetized (nuclear) matter using a field theoretical model of composite hadrons with quark (and
antiquark) constituents. These are computed from the mass modifications of the decaying and produced
mesons within a chiral effective model, including the nucleon Dirac sea effects. The mass modifications of
the open charm (bottom) mesons are calculated from their interactions with the nucleons and the scalar
mesons, whereas the mass shift of the heavy quarkonium state is obtained from the medium change of a
scalar dilaton field, χ, which mimics the gluon condensates of QCD. The Dirac sea contributions are
observed to lead to a rise (drop) in the quark condensates as the magnetic field is increased; an effect called
the (inverse) magnetic catalysis. These effects are observed to be significant, and the anomalous magnetic
moments (AMMs) of the nucleons are observed to play an important role. For ρB ¼ 0, there is observed to
be magnetic catalysis (MC) without and with AMMs, whereas, for ρB ¼ ρ0, the inverse magnetic catalysis
is observed when the AMMs are taken into account, contrary to MC, when the AMMs are ignored. In the
presence of a magnetic field, there are also mixings of spin 0 (pseudoscalar) and spin 1 (vector) states
(PV mixing), which modify the masses of these mesons. The magnetic field effects on the heavy
quarkonium decay widths should have observable consequences on the production the heavy flavor
mesons, which are created in the early stage of ultrarelativistic peripheral heavy ion collisions, at RHIC and
LHC, when the produced magnetic fields can still be extremely large.
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I. INTRODUCTION

The study of the in-medium properties of the heavy flavor
mesons [1], in particular in the presence of strong magnetic
fields, has been a topic of intense research due to its relevance
in relativistic heavy ion collision experiments. The heavy
flavormesons are created at the early stagewhen themagnetic
fields resulting from ultrarelativistic peripheral heavy ion
collisions, estimated to be huge [2], can still be extremely
large. The heavy quarkonium states and the open heavy
flavor mesons have been studied extensively in the literature
using the potential models [3–13], the QCD sum rule
approach [14–31], the coupled channel approach [32–38],
the quark meson coupling (QMC) model [39–47] as well as

using a chiral effective model [48–55]. Studies of heavy
quarkonium states (Q̄Q bound states, Q ¼ c, b) in presence
of a gluon field, assuming the distance betweenQ and Q̄ to be
small as compared to the scale of the gluonic fluctuations,
show that themassmodifications of these states arise from the
medium modification of the scalar gluon condensate in the
leading order [56–58]. A study of the mass modifications of
the charmonium states due to thegluon condensates aswell as
D̄Dmeson loop [59] showed that the dominant contributions
are due to the medium modifications of the gluon conden-
sates. In a chiral effectivemodel, the in-mediummasses of the
heavy quarkonium (charmonium and bottomonium) have
been computed from the medium change of a scalar dilaton
field [50,51,55], which simulates the gluon condensates of
QCD within the effective hadronic model.
The chiral effective model, in the original version with

three flavors of quarks [SU(3) model] [60–63], has been
used extensively in the literature, for the study of finite
nuclei [61], strange hadronic matter [62], light vector
mesons [63], strange pseudoscalar mesons, e.g., the kaons
and antikaons [64–67] in isospin asymmetric hadronic
matter as well as for the study of bulk matter of neutron
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stars [68]. Within the QCD sum rule framework, the light
vector mesons [69,70] as well as the heavy quarkonium
states [16–18] in (magnetized) hadronic matter have been
studied, using the medium changes of the light quark
condensates and gluon condensates calculated within the
chiral SU(3) model. Using the in-medium masses of the
heavy flavor mesons in the (magnetized) hadronic matter,
calculated within the chiral effective model, the partial
decay widths of the heavy quarkonium states to the open
heavy flavor mesons have been studied in (magnetized)
hadronic medium [51,71], using a light quark-antiquark
pair creation model [72], namely the 3P0 model [73–76] as
well as using a field theoretical model for composite
hadrons with quark (and antiquark) constituents [77–81].
The effects of magnetic field on the masses of the
heavy flavor mesons have been studied in Refs. [82–89],
and it is observed that the spin-magnetic field interac-
tion leads to mixing between the pseudoscalar meson and
the longitudinal component of the vector meson (PV
mixing). This results in a dominant rise (drop) in the
mass of the longitudinal component of the vector meson
(pseudoscalar) meson for the heavy quarkonia (charmonia
and bottomonia) states as well as for open charm (bottom)
mesons [84–89]. In the presence of a magnetic field, the
studies of the effects of Dirac sea (DS) in the quark
matter sector [90–93] within the Nambu-Jona-Lasinio
model [94–96] are observed to lead to enhancement of
the light quark condensates with increase in the magnetic
field; an effect called the magnetic catalysis (MC). The
opposite trend of the light quark condensates with magentic
field, namely the inverse magnetic catalysis (IMC) is
observed in some lattice QCD calculations [97], where
the critical temperature, Tc is seen to decrease with increase
in the magnetic field. For the nuclear matter, the effects of
Dirac sea (DS) have been studied using the Walecka model
as well as an extended linear sigma model in Ref. [98].
These are observed to lead to magnetic catalysis (MC)
effect for zero temperature and zero density, which is
observed as a rise in the effective nucleon mass with the
increase in magnetic field. In Ref. [99], the contributions of
Dirac sea of the nucleons to the self-energies of the
nucleons have been studied in the Walecka model by
summing over the scalar (σ) and vector (ω) tadpole
diagrams, in a weak magnetic field approximation of the
fermion propagator. At zero density, the effects of the Dirac
sea are seen to lead to magnetic catalysis (MC) effect at
zero temperature [99]. When the anomalous magnetic
moments (AMMs) of the nucleons are taken into account,
at a finite density and zero temperature, there is observed to
be a drop in the effective nucleon mass with increase in the
magnetic field. This behavior with the magnetic field is
observed when the temperature is raised from zero to
nonzero values, up to the critical temperature, Tc, when the
nucleon mass has a sudden drop, corresponding to the
vacuum to nuclear matter phase transition. The decrease in

Tc with increase in value of B is identified with the inverse
magnetic catalysis (IMC) [99].
In the present work, the partial decay widths of the

charmonium (bottomonium) states to open heavy flavor
mesons, DD̄ðBB̄Þ are studied in magnetized (nuclear)
matter using a field theoretical model of composite
hadrons. As the matter created in ultrarelativiistic periph-
eral heavy ion collisions is dilute, we study the partial
decay widths of the lowest quarkonium states in the charm
and bottom sectors, ψð3770Þ and ϒð4SÞ (which decay to
DD̄ and BB̄ in vacuum). These are investigated for ρB ¼ 0
as well as for ρB ¼ ρ0, the nuclear matter saturation density,
for symmetric as well as asymmetric nuclear matter in the
presence of an external magnetic field. The study of effects
of temperature on the open charm and charmonium masses
(and hence on the charmonium decay widths) [50,51] have
been observed to be marginal for small densities (up to ρ0).
Within the chiral effective model, the mass shift of the
heavy quarkonium states and the open heavy flavor mesons
arise from the medium modifications of the dilaton field
and the scalar fields, which have marginal modifications
due to temperature, and hence, the temperature effects on
the quarkonium decay widths (due to mass modification of
these mesons) are not taken into account in the present
study. The magnetic effects are the most dominant effects
for the (dilute) matter resulting from ultrarelativistic
peripheral collisons, which include the contributions from
the magnetized Dirac sea of nucleons as well as PV mixing,
in addition to the Landau level contributions for the charged
hadrons. In the chiral effective model, the effects of the
Dirac sea are incorporated to the nucleon propagator,
through summation of scalar (σ, ζ, and δ) and vector (ω
and ρ) tadpole diagrams. When the anomalous magnetic
moments (AMMs) of the nucleons are not taken into
account, for zero density as well as for ρB ¼ ρ0, magnetic
catalysis (MC) is observed. However, when the AMMs of
nucleons are considered, for ρB ¼ ρ0 (both for symmetric
and asymmetric nuclear matter), inverse magnetic catalysis
(IMC) is observed; i.e., the quark condensate is observed to
be reduced with rise in the magnetic field.
The outline of the paper is as follows. In Sec. II,

we describe briefly the chiral effective model used to
calculate the masses of the charmonium (bottomonium)
and open charm (bottom) mesons, accounting for the
effects of the Dirac sea for the nucleons. The PV mixing
effects are also taken into account which modify the
masses of the heavy quarkonium states as well as open
heavy flavor mesons. In Sec. III, the computations of the
decay widths of ψð3770Þ → DD̄ and ϒð4SÞ → BB̄ using
the field theoretical model of composite hadrons are briefly
described, and, the salient features of the model are
presented in the Appendix. The results of the partial decay
widths in magnetized (nuclear) matter are discussed in
Sec. IV, and the summary of the present work are given
in Sec. V.
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II. MASS MODIFICATIONS OF CHARM
AND BOTTOM MESONS

We describe briefly the chiral effective model used to
study the open charm (bottom) mesons and the charmo-
nium (bottomonium) states in magnetized nuclear matter.
The model is a generalization of a chiral SU(3) model,
based on a nonlinear realization of chiral symmetry and the
breaking of scale invariance of QCD. The scale symmetry
breaking is incorporated through a scalar dilaton field
(which mimics the scalar gluon condensate), and the mass
modifications of the heavy quarkonium states are obtained
from medium modifications of the dilaton field. The in-
medium masses of the open heavy (charm and bottom)
flavor mesons are obtained by generalizing the chiral SU(3)
model to include the interactions of the open charm and
bottom mesons with the light hadrons.
In the presence of a magnetic field, the Lagrangian for

SU(3) model has the form [100],

L ¼ Lkin þ
X
W

LBW þ Lvec þ L0 þ Lscalebreak

þ LSB þ LBγ
mag; ð1Þ

where Lkin refers to the kinetic energy terms of the baryons
and the mesons, LBW is the baryon-meson interaction term,
Lvec describes the dynamical mass generation of the vector
mesons via couplings to the scalar mesons and contain
additionally quartic self-interactions of the vector fields, L0

contains the meson-meson interaction terms, Lscalebreak is
the scale invariance breaking term and LSB describes the
explicit chiral symmetry breaking. The kinetic energy terms
are given as

Lkin ¼ iTrB̄γμDμBþ 1

2
TrDμXDμX

þ TrðuμXuμX þ XuμuμXÞ þ
1

2
TrDμYDμY

þ 1

2
DμχDμχ −

1

4
TrðṼμνṼμνÞ − 1

4
TrðAμνAμνÞ

−
1

4
TrðFμνFμνÞ; ð2Þ

where B is the baryon octet, X is the scalar meson multiplet,
Y is the pseudoscalar chiral singlet, χ is the scalar dilaton
field, Vμν ¼ ∂μVν − ∂νVμ, Aμν ¼ ∂μAν − ∂νAμ, and Fμν ¼
∂μAν − ∂νAμ are the field strength tensors of the vector
meson multiplet, Vμ, the axial vector meson multiplet, Aμ,
and the photon field, Aμ. In Eq. (2),

uμ ¼−
i
4
½ðu†ð∂μuÞ− ð∂μu†ÞuÞ− ðuð∂μu†Þ− ð∂μuÞu†Þ�; ð3Þ

and the covariant derivative of a field Φð≡B;X; Y; χÞ reads
DμΦ ¼ ∂μΦþ ½Γμ;Φ�, with

Γμ ¼−
i
4
½ðu†ð∂μuÞ− ð∂μu†ÞuÞþðuð∂μu†Þ− ð∂μuÞu†Þ�; ð4Þ

where u ¼ exp
�

i
σ0
Pγ5
�
, where P ¼ πaλa, with πa and λa,

i ¼ 1;…8, as the pseudoscalar mesons and the Gell-Mann
matrices. The interaction of the baryons with the meson,W
(scalar, pesudoscalar, vector, axialvector meson) is given as

LBW ¼ −
ffiffiffi
2

p
gW8 ðαW ½B̄OBW�F þ ð1 − αWÞ½B̄OBW�DÞ

−
gW1ffiffiffi
3

p TrðB̄OBWÞtrðWÞ; ð5Þ

where, the F-type (antisymmetric) and D-type (symmetric)
couplings are defined as ½B̄OBW�F¼TrðB̄OWB−B̄OBWÞ
and ½B̄OBW�D¼TrðB̄OWBþB̄OBWÞ−2

3
TrðB̄OBÞTrðWÞ.

In Eq. (5), ðW;OÞ≡ ðX; 1Þ; ðu; γ5Þ; ðV; γμÞ, and ðA; γμγ5Þ
for the interactions of the baryons with the scalar, the
pseudoscalar, the vector, and the axial-vector mesons,
respectively.
The Lagrangian for the vector meson interaction is

written as

Lvec ¼
m2

V

2

χ2

χ20
TrðVμVμÞ þ μ

4
TrðVμνVμνX2Þ

þ λV
12

ðTrðVμνÞÞ2 þ 2ðg4Þ4TrðVμVμÞ2: ð6Þ

The masses of ω, ρ, and ϕ are fitted from mV; μ, and λV .
The Lagrangian describing the interaction for the scalar
mesons, X, and pseudoscalar singlet, Y, is given as [61]

L0 ¼ −
1

2
k0χ2I2 þ k1ðI2Þ2 þ k2I4 þ 2k3χI3; ð7Þ

with I2¼TrðXþiYÞ2, I3¼detðXþiYÞ, and I4¼TrðXþiYÞ4.
In the above, χ is the scalar dilaton field that is introduced in
order tomimic theQCD trace anomaly, i.e., the nonvanishing
energy-momentum tensor,

θμμ ¼ ðβQCD=2gÞhGa
μνGμνai þ

X
i

miq̄iqi; ð8Þ

where Ga
μν is the gluon field tensor and the second term in

the trace accounts for the finite quark masses, withmi as the
current quark mass for the quark of flavor, i ¼ u, d, s. The
scale breaking and the explicit chiral symmetry breaking
terms are given as [60,61]

Lscalebreak¼−
1

4
χ4 ln

χ4

χ40
þd
3
χ4 ln

��
I3

dethXi0

��
χ

χ0

�
3
�
; ð9Þ

LSB ¼ TrApðuðX þ iYÞuþ u†ðX − iYÞu†Þ; ð10Þ
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with Ap ¼ 1=
ffiffiffi
2

p
m2

πfπdiagð1; 1; 2m
2
KfK

m2
πfπ

− 1Þ; here, mπ and

mK are the masses of the pion and K meson, and fπ and fK ,
their decay widths.
In the present investigation, we use the mean field

approximation, where all the meson fields are treated as
classical fields. In this approximation, only the scalar and
the vector fields contribute to the baryon-meson interaction,
LBW, since for all the other mesons, the expectation values
are zero. The various terms of the Lagrangian density in the
mean field approximation are given as

LBX þ LBV ¼ −
X
i

ψ̄ i½giωγ0ωþ giϕγ0ϕþm�
i �ψ i ð11Þ

Lvec ¼
1

2

χ2

χ20
ðm2

ωω
2 þm2

ρω
2 þm2

ϕω
2Þ

þ g44ðω4 þ 2ϕ4 þ 6ω2ρ2 þ ρ4Þ ð12Þ

L0 ¼ −
1

2
k0χ2ðσ2 þ ζ2 þ δ2Þ þ k1ðσ2 þ ζ2 þ δ2Þ2

þ k2

�
σ4

2
þ δ4

2
þ ζ4

�
þ k3χðσ2 − δ2Þζ − k4χ4 ð13Þ

Lscalebreak¼−
1

4
χ4 ln

χ4

χ40
þd
3
χ4 ln

�ðσ2−δ2Þζ
σ20ζ0

�
χ

χ0

�
3
�
: ð14Þ

The baryon-scalar meson interactions generate the
baryon masses and the parameters corresponding to these
interactions are adjusted so as to obtain the baryon masses
as their experimentally measured vacuum values. In
Eq. (11), the effective mass of the baryon of type i
(i ¼ p; n;Λ;Σ�;0;Ξ0;−) is given as

m�
i ¼ −gσiσ − gζiζ − gδiδ; ð15Þ

which is calculated from the values of the scalar fields in the
magnetized medium, and the masses with the vacuum
values of the scalar fields correspond to the experimentally
measured vacuum values of the baryons.
The explicit chiral symmetry breaking term is given as

LSB ¼ Tr

�
diag

�
−
1

2
m2

πfπðσ þ δÞ;− 1

2
m2

πfπðσ − δÞ;� ffiffiffi
2

p
m2

kfk −
1ffiffiffi
2

p m2
πfπ

�
ζ

��
¼ −

�
m2

πfπσ þ
� ffiffiffi

2
p

m2
KfK −

1ffiffiffi
2

p m2
πfπ

�
ζ

�
: ð16Þ

In the above, the matrix, whose trace gives the Lagrangian
density corresponding to the explicit chiral symmetry
breaking in the chiral SU(3) model, has been explicitly
written down. Comparing the above term with the explicit

chiral symmetry breaking term of the Lagrangian density in
QCD given as

LQCD
SB ¼ −Tr½diagðmuūu;mdd̄d;mss̄sÞ�; ð17Þ

one obtains the nonstrange quark condensates (hūui and
hd̄di) and the strange quark condensate (hs̄si) to be related
to the scalar fields, σ, δ, and ζ as

muhūui ¼
1

2
m2

πfπðσ þ δÞ; mdhd̄di ¼
1

2
m2

πfπðσ − δÞ;

mshs̄si ¼
� ffiffiffi

2
p

m2
kfk −

1ffiffiffi
2

p m2
πfπ

�
ζ: ð18Þ

It might be noted here that with the choice for Ap in
the explicit symmetry breaking term as given by
Eq. (10), together with the constraints σ0 ¼ −fπ , ζ0 ¼
− 1ffiffi

2
p ð2fK − fπÞ assure that the PCAC relations of the pion

and kaon are fulfilled. Using one loop QCD β function

βQCDðgÞ ¼ − 11Ncg3

48π2
ð1 − 2Nf

11Nc
Þ, with Nc ¼ 3, the number of

colors and Nf as the number of quark flavor, in the trace of
energy momentum tensor in QCD given by Eq. (8) and
equating with θμμ of the chiral model,

θμμ ¼ χ
∂L
∂χ

− 4L ¼ ð1 − dÞχ4; ð19Þ

the scalar gluon condensate gets related to the dilaton fleld
as [51] 	

αs
π
Ga

μνGμνa



¼ 24

ð33 − 2NfÞ
ð1 − dÞχ4; ð20Þ

in the limiting situation of massless quarks in the energy
momentum tensor of QCD given by Eq. (8).
The term LBγ

mag in the Lagrangian given by Eq. (1),
describes the interaction of the baryons with the electro-
magnetic field and is given as [101–103]

LBγ
mag ¼ −ψ̄ iqiγμAμψ i −

1

4
κiμNψ̄ iσ

μνFμνψ i; ð21Þ

where, ψ i corresponds to the ith baryon. The tensorial
interaction of baryons with the electromagnetic field given
by the second term in the above equation is related to the
anomalous magnetic moments of the baryons. We choose
the magnetic field to be uniform and along the z axis and
take the vector potential to be Aμ ¼ ð0; 0; Bx; 0Þ. The
number and scalar densities of the proton have contribu-
tions from the Landau energy levels and the neutrons have
contributions to their number and scalar densities due to the
anomalous magnetic moment, in the presence of a magnetic
field [101,102]. The expressions for the number and scalar
densities of the proton in the presence of a uniform
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magnetic field (chosen to be along z direction) and
accounting for the anomalous magnetic moments for the
nucleons are given as [104–106]

ρp ¼ eB
4π2

�XνðS¼1Þ
max

ν¼0

kðpÞf;ν;1 þ
XνðS¼−1Þ
ðmaxÞ

ν¼1

kðpÞf;ν;−1

�
ð22Þ

and

ρsp ¼
eBm�

p

2π2

264XνðS¼1Þ
max

ν¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

p
2 þ 2eBν

q
þΔpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
p
2 þ 2eBν

q
× ln

����� kðpÞf;ν;1 þEðpÞ
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
p
2 þ 2eBν

q
þΔp

�����
þ
XνðS¼−1Þ
max

ν¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

p
2 þ 2eBν

q
−Δpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
p
2 þ 2eBν

q ln

����� kðpÞf;ν;−1 þEðpÞ
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
p
2 þ 2eBν

q
−Δp

�����
375

þ ρsp
ðDSÞ; ð23Þ

where kðpÞf;ν;�1 are the Fermi momenta of protons for the
Landau level, ν for the spin index, S ¼ �1, i.e., for spin up
and spin down projections for the proton. These Fermi
momenta are related to the Fermi energy of the proton as

kðpÞf;ν;S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðpÞ
f

2 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
p
2 þ 2eBν

q
þ SΔp

�
2

r
: ð24Þ

The number density and the scalar density of neutrons are
given as

ρn ¼
1

4π2
X
S¼�1

�
2

3
kðnÞf;S

3 þ SΔn

�
ðm�

n þ SΔnÞkðnÞf;S

þ EðnÞ
f

2

�
sin−1

�
m�

n þ SΔn

EðnÞ
f

�
−
π

2

��
ð25Þ

and

ρsn ¼
m�

n

4π2
X
S¼�1

�
kðnÞf;SE

ðnÞ
f − ðm�

n þ SΔnÞ2 ln
���� kðnÞf;S þ EðnÞ

f

m�
n þ SΔn

�����
þ ρsn

ðDSÞ: ð26Þ

The Fermi momentum, kðnÞf;S for the neutron with spin
projection, S [S ¼ �1 for the up (down) spin projection]

is related to the Fermi energy for the neutron, EðnÞ
f as

kðnÞf;S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðnÞ
f

2 − ðm�
n þ SΔnÞ2

q
: ð27Þ

In the Eqs. (22)–(27), the parameter Δi is related to the
anomalous magnetic moment for the nucleon, i (i ¼ p, n)

asΔi ¼ − 1
2
κiμNB, where κi occurring in the second term in

the Lagrangian density given by Eq. (21), is the value of the
gyromagnetic ratio of the nucleon corresponding to the
anomalous magnetic moment of the nucleon. In the present
study of magnetized (nuclear) matter, the meson fields are
treated as classical in the mean field approximation, and
nucleons as quantum fields and the self energies of the
nucleons include the contributions from the Dirac sea. In
addition to using the mean field approximation, where the
meson fields are replaced by their expectation values, we
also use the approximations that ψ̄ iψ j ¼ δijhψ̄ iψ ii≡ δijρ

s
i

and ψ̄ iγ
μψ j ¼ δijδ

μ0hψ̄ iγ
0ψ ii≡ δijδ

μ0ρi, where ρsi and ρi
are the scalar and number density of baryon of species i
(corresponding to neutron and proton in the present
investigation). Using the scalar densities of the nucleons
in the presence of magnetic field, the values of the scalar
fields, σ, ζ, and δ are obtained by solving their coupled
equations of motion, for given values of the baryon density,
isospin asymmetry parameter and magnetic field. The last
terms in Eqs. (23) and (26) correspond to the contributions
of the Dirac sea for the scalar densities of proton and
neutron. The magnetized Dirac sea contribution to the
nucleon self-energy has been calculated by summing over
the tadpole diagrams arising due to the interaction of the
nucleons with the scalar field σ within theWalecka model in
the weak magnetic field approximation [99]. Generalizing
to include the interactions of the nucleons to the strange ζ
and the nonstrange isovector δ scalar fields as well, in
addition to the interaction with the nonstrange σ field, for
the chiral effective model used in the present investigation,
the contribution due to the magnetized Dirac sea to the self-
energy of the ith nucleon (i ¼ p, n) is given as

Σi ¼
X

α¼σ;ζ;δ

gαi2

4π2m2
α

�ðqiBÞ2
3m�

i
þ fΔiBÞ2m�

i þ ðjqijBÞðΔiBÞg

×

�
1

2
þ 2 ln

�
m�

i

mi

��
; ð28Þ

where qi is the charge and Δi ¼ − 1
2
κiμNB is related to the

anomalous magnetic moment of the baryon i (p and n in the
present investigation).
The interactions of the DðD̄Þ and BðB̄Þ mesons with

the baryons and the scalar mesons are obtained by genraliz-
ing the chiral SU(3) model to the charm and bottom
sectors [48–51,53]. For the chiral SU(3) model, the baryon
as well as meson octets can be written in terms of the 3 × 3
Gell-Mann matrices, as Φ ∼ λaϕ

a, Φ ¼ B;P; X; Vμ; Aμ.
However, when the model is generalized to SU(4) to include
the charm hadrons, the meson multiplets (being 15-plet) can
be expressed as 4 × 4Gell-Mannmatrices (λa, a ¼ 1;…15),
but the baryonmultiplet, being a 20-plet, can not bewritten as
a square matrix of the same order as mesonmultiplets.When
chiral SU(3) model is generalized to the charm (and bottom)
sectors, the baryons are represented by the tensor, Bijk,
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which is antisymmetric in the first two indices. The baryon-
pseudoscalar meson interaction term (the Weinberg-
Tomozawa term) is then written as

LWT ¼ −
1

2
½B̄ijkγ

μððΓμÞlkBijl þ 2ðΓμÞljBilkÞ�: ð29Þ

For the nuclear matter as considered in the present study, the
relevant entries of the baryon tensor are B121 ¼ −B211 and
B122 ¼ −B212, corresponding to p and n, respectively. The
masses of the open charm (bottom)mesons are obtained from
the interaction Lagrangian,

Lint ¼ LWT þ LSME þ L1strange þ Ld1 þ Ld2 ; ð30Þ
where the first term is theWeinberg-Tomozawa term,LSME is
the scalar exchange term, and L1strange, Ld1 and Ld2 are the
range terms. The scalar meson exchange term is obtained
from explicit symmetry breaking term given by (10), with

the generalizations: Ap ¼ 1=
ffiffiffi
2

p
m2

πfπdiagð1; 1; 2m
2
KfK

m2
πfπ

− 1;
2m2

DfD
m2

πfπ
− 1Þ and Ap ¼ 1=

ffiffiffi
2

p
m2

πfπdiagð1; 1; 2m
2
KfK

m2
πfπ

− 1;
2m2

DfD
m2

πfπ
− 1; 2m

2
BfB

m2
πfπ

− 1Þ, and the scalar meson multiplet

for the SU(4) and SU(5) cases is given as X ¼
diagððσ−δÞffiffi

2
p ; ðσþδÞffiffi

2
p ; ζ; ζcÞ and X¼diag

�
ðσ−δÞffiffi

2
p ;ðσþδÞffiffi

2
p ;ζ;ζc;ζb

�
,

respectively, where ζc ∼ hc̄ci and ζb ∼ hb̄bi. The range
terms are obtained from the interaction terms [51],

L1st range ¼ TrðuμXuμX þ XuμuμXÞ; ð31Þ

Ld1 ¼
d1
4
ðB̄ijkBijkðuμÞlmðuμÞmlÞ; ð32Þ

and

Ld2 ¼
d2
2
½B̄ijkðuμÞlmððuμÞmkBijl þ 2ðuμÞmjBilkÞ�: ð33Þ

In the above equations, u occurring in the expressions
of uμ and Γμ given by Eqs. (3) and (4) is given as,
u ¼ expð i

σ0
λaπ

aγ5Þ, where λa are the 4 × 4 (5 × 5) Gell-
Mann matrices with a ¼ 1;…15 (a ¼ 1;…24) for the
generalization to the case of SU(4) [SU(5)] model. The
masses of the open charm (D�; D0; D̄0) and the open bottom
(B�; B0; B̄0) mesons in magnetized (nuclear) matter are
modified due to their interactions with the nucleons and
the scalar fields [101,102]. The in-medium masses are
obtained by solving their dispersion relations, which are
obtained from the Fourier transformations of their equations
of motion. These are given as

−ω2 þ k⃗2 þm2
FðF̄Þ − ΠFðF̄Þðω; jk⃗jÞ ¼ 0; ð34Þ

whereΠFðF̄Þ, denotes the self energy of themesonFð≡D;BÞ,
F̄ð≡D̄; B̄Þ in the medium. Explicitly, the self energies for the
D and D̄ are given as [101]

ΠDðω; jk⃗jÞ ¼
1

4f2D
½3ðρp þ ρnÞ � ðρp − ρnÞÞ�ω

þ m2
D

2fD
ðσ0 þ

ffiffiffi
2

p
ζ0c � δ0Þ

þ
�
−

1

fD
ðσ0 þ

ffiffiffi
2

p
ζ0c � δ0Þ þ d1

2f2D
ðρsp þ ρsnÞ

þ d2
4f2D

ððρsp þ ρsnÞ � ðρsp − ρsnÞÞ
�
ðω2 − k⃗2Þ;

ð35Þ
and

ΠD̄ðω; jk⃗jÞ¼−
1

4f2D
½3ðρpþρnÞ�ðρp−ρnÞ�ω

þ m2
D

2fD
ðσ0 þ

ffiffiffi
2

p
ζ0c�δ0Þ

þ
�
−

1

fD
ðσ0 þ

ffiffiffi
2

p
ζ0c�δ0Þþ d1

2f2D
ðρspþρsnÞ

þ d2
4f2D

ððρspþρsnÞ�ðρsn−ρsnÞÞ
�
ðω2− k⃗2Þ; ð36Þ

where the � signs refer to the D0 and Dþ, respectively, in
Eq. (35) and to the D̄0 andD−, respectively, in Eq. (36). For
theBmeson doublet (Bþ,B0) and B̄meson doublet (B−, B̄0),
the self energies are given by [102]

ΠBðω; jk⃗jÞ ¼ −
1

4f2B
½3ðρp þ ρnÞ � ðρp − ρnÞ�ω

þ m2
B

2fB
ðσ0 þ

ffiffiffi
2

p
ζ0b � δ0Þ

þ
�
−

1

fB
ðσ0 þ

ffiffiffi
2

p
ζ0b � δ0Þ þ d1

2f2B
ðρps þ ρns Þ

þ d2
4f2B

ð3ðρsp þ ρsnÞ � ðρsp − ρsnÞÞ
�
ðω2 − k⃗2Þ;

ð37Þ
and

ΠB̄ðω; jk⃗jÞ ¼
1

4f2B
½3ðρp þ ρnÞ � ðρp − ρnÞ�ω

þ m2
B

2fB
ðσ0 þ

ffiffiffi
2

p
ζ0b � δ0Þ

þ
�
−

1

fB
ðσ0 þ

ffiffiffi
2

p
ζ0b � δ0Þ þ d1

2f2B
ðρps þ ρns Þ

þ d2
4f2B

ð3ðρsp þ ρsnÞ � ðρsp − ρsnÞ
�
ðω2 − k⃗2Þ;

ð38Þ
where the � signs refer to the Bþ and B0, respectively, in
Eq. (37) and to the B− and B̄0 mesons, respectively, in
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Eq. (38). The terms in the self-energies refer to the leading
Weinberg-Tomozawa term and the subleading terms (the
scalar exchange term and the range terms) in chiral perturba-
tion expansion. The parameters d1 and d2 are fitted from the
KN scattering lengths [51]. In Eqs. (35)–(38), σ0ð¼ σ − σ0Þ,
ζ0bð¼ ζb − ζb0Þ, and δ0ð¼ δ − δ0Þ are the fluctuations of σ,
ζb, and δ, from their vacuum expectation values.
The masses are given as m�

FðF̄Þ ¼ ωðjk⃗j ¼ 0Þ, which

depend (through the self energies) on the values of the
scalar fields (σ, ζ, and δ) as well as the number and scalar
densities of the nucleons. In the presence of a magnetic
field, the lowest Landau level (LLL) contributions are taken
into account for the chargedD�ðB�Þmesons. The effective
masses of the open charm and bottom mesons are thus
given as

meff
D� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

D�
2 þ eB

q
; meff

D0ðD̄0Þ ¼ m�
D0ðD̄0Þ;

meff
B� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

B�
2 þ eB

q
; meff

B0ðB̄0Þ ¼ m�
B0ðB̄0Þ; ð39Þ

wherem�
FðF̄Þ is the mass of the open charm (bottom) meson

obtained as solution of the dispersion relation given by
Eq. (34).
The mass shift of the heavy quarkonium states arises

from the medium modification of the scalar gluon con-
densate in the leading order and is given as [56–59]

ΔmΨðϒÞ ¼
1

18

Z
djkj2

	���� ∂ψðkÞ
∂k

����2
 jkj
jkj2=mcðbÞ þ ϵ

×

�	
αs
π
Ga

μνGμνa



−
	
αs
π
Ga

μνGμνa



0

�
; ð40Þ

which, using Eq. (20), gives the mass shift of the heavy
quarkonium state as [50,51]

ΔmΨðϒÞ ¼
4

81
ð1 − dÞ

Z
djkj2

	���� ∂ψðkÞ
∂k

����2
 jkj
jkj2=mcðbÞ þ ϵ

× ðχ4 − χ0
4Þ; ð41Þ

where 	���� ∂ψðkÞ
∂k

����2
 ¼ 1

4π

Z ���� ∂ψðkÞ
∂k

����2dΩ: ð42Þ

In Eq. (41), d is a parameter introduced in the scale
breaking term in the Lagrangian, χ and χ0 are the values
of the dilaton field in the magnetized medium and in
vacuum, respectively. The wave functions of the quarko-
nium states, ψðkÞ, are assumed to be harmonic oscillator
wave functions, mcðbÞ is the mass of the charm (bottom)
quark, and ϵ ¼ 2mcðbÞ −mψðϒÞ is the binding energy of the
charmonium (bottomonium) state of mass, mψðϒÞ. It might

be noted here that the leading order mass formula [given by
Eq. (40)] was derived using the binding of the heavy quark
and antiquark in the heavy quarkonium state to be
Coulombic. This is a good approximation for the ground
state but not realistic for the excited states [59] as the mass
shift formula contains derivatives of the wave function,
which measure the dipole size of the system. The wave
functions for the charmonium and bottomonium states are
assumed to be harmonic oscillator type, with the strengths
of the potential determined from the rms radii of the
quarkonium states. The mass shifts of the heavy quarko-
nium states are thus obtained from the values of the dilaton
field, χ [using Eq. (41)].
The Dirac sea contributions are included in the scalar

densities of the nucleons, which occur in the equations of
motion of the scalar fields, σ, ζ and δ. For given values of
the baryon density, ρB, the isospin asymmetry parameter,
η ¼ ðρn − ρpÞ=ð2ρBÞ (with ρn and ρp as the neutron and
proton number densities), the magnetic field, B (chosen to
be along z direction), the fields (σ, ζ, δ, and χ) are solved
from their coupled equations of motion. Within the chiral
effective model, the masses of the open charm and bottom
mesons are given by Eq. (39), which are obtained from the
solutions of the dispersion relations given by Eq. (34) for
jk⃗j ¼ 0, with additional Landau level contributions for the
charged mesons.

A. Pseudoscalar-vector meson (PV) mixing

In the presence of a magnetic field, there is mixing
between the spin 0 (pseudoscalar) meson and spin 1
(vector) mesons, which modifies the masses of these
mesons [78,79,84–88,107]. The PV mixing leads to a drop
(rise) in the mass of the pseudoscalar (longitudinal com-
ponent of the vector) meson. The mass modifications have
been studied using a phenomenological Lagrangian density
of the form [86–88],

LPVγ ¼
gPV
mav

eF̃μνð∂μPÞVν; ð43Þ

for the heavy quarkonia [78,81,85–87], the open charm
mesons [79], and the strange (K and K̄) mesons [107]. In
Eq. (43), mav ¼ ðmV þmPÞ=2, mP and mV are the masses
for the pseudoscalar and vector charmonium states, and F̃μν

is the dual electromagnetic field. In Eq. (43), the coupling
parameter gPV is fitted from the observed value of the
radiative decay width, ΓðV → Pþ γÞ. Assuming the spatial
momenta of the heavy quarkonia to be zero, there is
observed to be mixing between the pseudoscalar and the
longitudinal component of the vector field from their
equations of motion obtained with the phenomenological
PVγ interaction given by Eq. (43). The physical masses of
the pseudoscalar and the longitudinal component of the
vector mesons, including the mixing effects, obtained by
solving their equations of motion, are given as [86–88]
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mðPVÞ
P;V jj ¼

1

2

 
M2þþ c2PV

m2
av
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

−þ
2c2PVM

2þ
m2

av
þ c4PV
m4

av

s !
; ð44Þ

whereM2þ¼m2
Pþm2

V ,M
2
− ¼ m2

V −m2
P, and cPV ¼ gPVeB.

The effective Lagrangian term given by Eq. (43) has been
observed to lead to the mass modifications of the longi-
tudinal J=ψ and ηc due to the presence of the magnetic
field, which agree extremely well with a study of these
charmonium states using a QCD sum rule approach
incorporating the mixing effects [85,86].
The PV mixing effects for the open charm mesons (due

to D −D� and D̄ − D̄� mixings) [79], in addition to the
mixing of the charmonium states (due to J=ψ − ηc, ψ 0 − η0c
and ψð3770Þ − η0c mixings) [78,79], as calculated using the
phenomenological Lagrangian given by Eq. (43), have
been observed to lead to an appreciable drop (rise) in the
mass of the pseudoscalar (longitudinal component of the
vector) meson. These were observed to modify the partial
decay width of ψð3770Þ → DD̄ [78,79], with the modifi-
cations being much more dominant due to the PV mixing in
the open charm (D −D� and D̄ − D̄�) mesons.
For the bottom sector, due to a lack of data on radiative

decays, V → Pγ, the modifications in the masses of the
pseudoscalar and vector mesons (Q1Q̄2 bound states) due
to the PV mixing effects have been estimated from the
mixing of spin with the external magnetic field [81], using
the Hamiltonian [84,88],

Hspin−mixing ¼ −
X2
i¼1

μi ·B; ð45Þ

which describes the interaction of the magnetic moments of
the quark (antiquark) with the external magnetic field. In
the above, μi ¼ gjejqiSi=ð2miÞ is the magnetic moment of
the ith particle, g is the Lande g factor [taken to be 2 (−2)
for the quark (antiquark)], qi, Si, mi are the electric charge
(in units of the magnitude of the electronic charge, jej),
spin, and mass of the ith particle [86,88]. This interaction
leads to a drop (increase) of the mass of the pseudoscalar
(longitudinal component of the vector meson) given as [84]

ΔMPV ¼ ΔE
2

ðð1þ Δ2Þ1=2 − 1Þ; ð46Þ

where Δ¼2gjeBjððq1=m1Þ−ðq2=m2ÞÞ=ΔE, ΔE¼mV−mP
is the difference in the masses of the pseudoscalar and
vector mesons. It was observed in Ref. [81] that the partial
decay widths ϒð4SÞ → BB̄ in the presence of an external
magnetic field, calculated using a field theoretical model of
composite hadrons, has significantly larger contributions
from the PV mixng effects from the open bottom mesons
(B − B� and B̄ − B̄� mixings) as compared to the mixing of
the bottomonium states,ϒð4SÞ and ηbð4SÞ. As we shall see
later, the inclusion of the Dirac sea contributions are

observed to lead to significant modifications to the meson
masses, especially when the AMMs of the nucleons are
taken into consideration, which, in turn, has significant
effects on the partial decay widths of the charmonium
(bottomonium) states to the open charm (bottom) mesons.
In the following section, we shall briefly describe the field
theoretical model used to calculate the heavy quarkonium
partial decay widths [77–81].

III. PARTIAL DECAYWIDTHS OF CHARMONIUM
(BOTTOMONIUM) STATE TO DD̄ðBB̄Þ

In this section, we briefly describe the field theoretical
model of composite hadrons [108–110] used to study the
partial decay widths of the vector heavy quarkonium states
to open heavy flavor mesons in magnetized (nuclear)
matter, specifically, the decay widths of the charmonium
state ψð3770Þ and the bottomonium state ϒð4SÞ, which are
the lowest states which decay toDD̄ and BB̄ in vacuum. As
the matter produced in the noncentral ultrarelativistic heavy
ion collisions (where strong magnetic fields are created) is
dilute, the quarkonium decay widths are studied for
vacuum (ρB ¼ 0) and for ρB ¼ ρ0 in the presence of a
magnetic field. The model used for the calculation of the
decay widths describes the hadrons as comprising of quark
(and antiquark) constituents. The constituent quark field
operators of the hadron in motion are constructed from the
constituent quark field operators of the hadron at rest, by a
Lorentz boosting. Similar to the MIT bag model [111],
where the quarks (antiquarks) occupy specific energy levels
inside the hadron, it is assumed in the present model for the
composite hadrons that the quark (antiquark) constituents
carry fractions of the mass (energy) of the hadron at rest (in
motion) [108,109]. With explicit constructions of the
charmonium (bottomonium) state and the open charm
(bottom) mesons, the decay width of the heavy quarkonium
state to open heavy flavor mesons is calculated using the
light quark antiquark pair creation term of the free Dirac
Hamiltonian for constituent quark field [77]. The salient
features of the field theoretic model for composite hadrons
are presented in the Appendix.
The relevant part of the quark pair creation term is

through the qq̄ðq ¼ u; dÞ creation for decay of the char-
monium (bottomonium) state, Ψ (ϒ), to the final state, DD̄
(BB̄). The pair creation term is given as

Hq†q̃ðx; t¼ 0Þ¼QðpÞ
q ðxÞ†ð−iα ·▽þβMqÞQ̃ðp0Þ

q ðxÞ; ð47Þ

where Mq is the constituent mass of the light quark
(antiquark). The subscript q of the field operators in
Eq. (47) refers to the fact that the light antiquark, q̄, and
light quark, q, are the constituents of the DðBÞ and D̄ðB̄Þ
mesons with momenta p and p0, respectively, in the final
state of the decay of the charmonium (bottomonium)
state, Ψð3770Þðϒð4SÞÞ.
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Assuming the initial and final state mesons to be bound
by a harmonic oscillator potential, the explicit construc-
tions for the vector quarkonium states ψð3770Þ (corre-
sponding to 1D state) and ϒð4SÞ, at rest (with spin
projection m) are given as [77,80,112]

jψmð3770Þð0Þi ¼ 1

4
ffiffiffiffiffiffi
3π

p
Z

dkuψð1DÞðkÞcriðkÞ†

× urðσm − 3ðσ · k̂Þk̂mÞecsið−kÞvsjvaci;
ð48Þ

with

uψð1DÞðkÞ ¼
�
16

15

�
1=2

π−1=4ðR2
ψð1DÞÞ7=4k2

× exp

�
−
1

2
Rψð1DÞ2k2

�
; ð49Þ

and

jϒmð4SÞð0⃗Þi ¼
Z

dk1birðk1Þ†u†ruϒð4SÞðk1Þ

× σmb̃s
ivsð−k1Þjvaci; ð50Þ

with

uϒð4SÞðk1Þ ¼ −
1ffiffiffi
6

p
ffiffiffiffiffi
35

p

4

�R2
ϒð4SÞ
π

�
3=4
�
1 − 2R2

ϒð4SÞk
2
1

þ 4

5
R4
ϒð4SÞk

4
1 −

8

105
R6
ϒð4SÞk

6
1

�
× exp

�
−
1

2
R2
ϒð4SÞk

2
1

�
: ð51Þ

In Eqs. (48) and (50), cir†ðbir†Þ creates a charm (bottom)
quark of spin r and color i, c̃isðb̃isÞ creates a charm (bottom)
antiquark of spin s and color i, Sm ≡ 1

2
σm gives the spin

projection of the charm (bottom) quark (antiquark), and ur
and vs are the two component spinors for the quark and
antiquark. The value of the harmonic oscillator strength for
the charmonium state ψð3770Þ is fixed from its rms radius,
rrms ¼ 1 fm, to be R−1

ψð3770Þ ¼ 370 MeV [51,59], and for

the bottomonium state, ϒð4SÞ, it is fixed from the value of
the leptonic decay width [ϒð4SÞ → eþe−] of 0.272 keV to
be R−1

ϒð4SÞ as 638.6 MeV [55,80].
The states for the open charm and bottom mesons

(F≡D, B, F̄≡ D̄; B̄) with finite momenta are constructed
in terms of the constituent quark field operators, obtained
from the quark field operators of these mesons at rest
through a Lorentz boosting [110]. These are given as

jFðpÞi ¼ 1ffiffiffi
6

p
�
R2
F

π

�
3=4
Z

dk exp

�
−
R2
Fk

2

2

�
×Qr

iðkþ λ2pÞ†u†r eqsið−kþ λ1pÞvsdk; ð52Þ

jF̄ðp0Þi ¼ 1ffiffiffi
6

p
�
R2
F

π

�
3=4
Z

dk exp

�
−
RF

2k2

2

�
× qriðkþ λ1p0Þ†u†rQ̃s

ið−kþ λ2p0Þvsdk; ð53Þ

where, for the heavy charm quark, Q≡ c, q ¼ ðd; uÞ
correspond to the states ðDþ; D−Þ and ðD0; D̄0Þ, respec-
tively, and, for heavy bottom quark, Q≡ b, q ¼ ðu; dÞ
correspond to the open bottom mesons ðB−; BþÞ and
ðB̄0; B0Þ, respectively. In Eqs. (52) and (53), λ1 and λ2
are the fractions of the mass (energy) of the open charm
(bottom) meson at rest (in motion), carried by the con-
stituent light [q ¼ ðd; uÞ] antiquark (quark) and the con-
stituent heavy charm (bottom) quark (antiquark), with
λ1 þ λ2 ¼ 1. The values of λ1 and λ2 are calculated by
assuming the binding energy of the hadron as shared
by the quark (antquark) to be inversely proportional to
the quark (antiquark) mass [77,80,109]. Taking the con-
stituent masses of the u and d quarks to be same
(Mu ¼ Md ¼ Mq), the energies of qðq̄Þ, (q ¼ u, d), and
Q̄ðQÞ, with Q ¼ ðc; bÞ in F̄ðFÞ meson are then given
as [109]

ω1¼Mqþ
μ

Mq
×BE and ω2 ¼MQþ μ

MQ
×BE; ð54Þ

with μ is the reduced mass of the light heavy, Qq̄ðqQ̄Þ
system, given as 1=μ ¼ 1=MQ þ 1=Mq withMQ andMq as
the constituent masses of the heavy (Q) quark and
light (q) quark, respectively, BE is the binding energy,
BE ¼ mFðF̄Þ −MQ −Mq, and, λi ¼ ωi

mFðF̄Þ
, i ¼ 1, 2 are the

energies carried by the light quark (antiquark) and heavy
antiquark (quark). The motivation for the assumption that
the contributions from the quark (antiquark) to the binding
energy of the hadron to be inversely proportional to the
mass of the quark (antiquark) as in Eq. (54) is as follows. In
fact, in general, the contributions to the binding energy of
the bound state composed of particles of 1 and 2, with
massesm1 andm2, are assumed to be given as μ=mi, i ¼ 1,
2, multiplied by the binding energy of the bound state,
where μ is the reduced mass of the system, calculated
from 1=μ ¼ 1=m1 þ 1=m2. In other words, the contribu-
tions from the particles to binding energy are inversely
proportional to their masses, and the total binding energy is
the sum of the individual contributions, i.e., BE ¼
ððμ=m1Þ þ ðμ=m2ÞÞ × BE ¼ BE, as it should be. The
reason for making this assumption comes from the example
of hydrogen atom, which is the bound state of the proton
and the electron. As the mass of proton is much larger as
compared to the mass of the electron, the binding energy
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contribution from the electron is μ
me

× BE ≃ BE of hydro-
gen atom, and the contribution from the proton is μ

mp
× BE,

which is negligible as compared to the total binding energy
of hydrogen atom, since mp ≫ me. With this assumption,
the binding energies of the heavy-light mesons, e.g., D and
D̄mesons as well as for B and B̄mesons, mostly arise from
the contribution from the light quark (antiquark).
The decay width of the quarkonium state, M, for the

decay processM → FF̄, with ðM;F;F̄Þ≡ðψð3770Þ;D;D̄Þ;
ðϒð4SÞ;B;B̄), is calculated from the matrix element of the
light quark-antiquark pair creation part of the free Dirac
Hamiltonian, between the intial quarkonium state and the
final state mesons for the reaction M → FðpÞF̄ðp0Þ as
given by

hFðpÞjhF̄ðp0Þj
Z

Hq†q̃ðx; t ¼ 0ÞdxjMmð0⃗Þi

¼ δðpþ p0ÞAMðjpjÞpm; ð55Þ

where the expression for AMðjpjÞ is written in the
Appendix. The decay width is calculated to be

ΓðM→FðpÞF̄ð−pÞÞ¼ γ2ψ
8π2

3
jpj3p

0
FðjpjÞp0

F̄ðjpjÞ
mM

AMðjpjÞ2;

ð56Þ

with p0
FðF̄ÞðjpjÞ ¼ ðm2

FðF̄Þ þ jpj2Þ1=2, and, jpj, the magni-

tude of the momentum of the outgoing FðF̄Þ meson is
given as

jpj ¼
�
mM

2

4
−
mF

2 þmF̄
2

2
þ ðmF

2 −mF̄
2Þ2

4mM
2

�
1=2

: ð57Þ

In the above, the masses of the FðF̄Þ and heavy quarko-
nium state are the in-medium masses in the magnetized
nuclear matter calculated in the chiral effective model, with
additional contributions from lowest Ladau levels for the
charged open charm (bottom) mesons, as given by
Eqs. (39) and (41). The parameter, γM, in the expression
for the quarkonium decay width, is a measure of the
coupling strength for the creation of the light quark
antiquark pair, to produce the FF̄ final state. This parameter
is adjusted to reproduce the vacuum decay widths of
ψð3770Þ to DþD− and D0D̄0 [77] for the charm sector
and ϒð4SÞ → BþB− and ϒð4SÞ → B0B̄0 [80] for the
bottom sector.
When we include the PV mixing effect, the expression

for the decay width is modified to

ΓPVðM → FðpÞF̄ð−pÞÞ

¼ γ2M
8π2

3

��
2

3
jpj3 p

0
FðjpjÞp0

F̄ðjpjÞ
mM

AMðjpjÞ2
�

þ
�
1

3
jp̃j3 p

0
Fðjp̃jÞp0

F̄ðjp̃jÞ
mPV

M
AMðjp̃jÞ2

��
: ð58Þ

where, p̃ is the expression of p [given by Eq. (57)], with

mM →
�
mPV

M

�
. In Eq. (58), the first term corresponds to the

transverse polarizations for the quarkonium state, M,
whose masses remain unaffected by the mixing of the
pseudoscalar and vector charmonium states. The second
term in (58) corresponds to the longitudinal component,
whose mass is modified due to the mixing with the
pseudoscalar meson in the presence of the magnetic field.

IV. RESULTS AND DISCUSSIONS

We discuss the results obtained due to the effects of
Dirac sea contributions for the nucleons and the PV mixing
on the decay widths of charmonium state, ψð3770Þ → DD̄
as well as ϒð4SÞ → BB̄, in magnetized isospin asymmetric
nuclear matter. The decay widths are calculated using a
field theoretical model of composite hadrons for ψð3770Þ
and ϒð4SÞ, the lowest quarkonium states, which decay to
DD̄ and B̄B in vacuum. As the created matter produced in
peripheral ultrarelativistic heavy ion collision experiments,
e.g., at RHIC, BNL, and at LHC, CERN, is extremely
dilute, we study the effects of the magnetic field on the
quarkonium partial decay widths at zero density and at
ρB ¼ ρ0, for symmetric as well as asymmetric magnetized
nuclear matter. In magnetized nuclear matter, the medium
modifications of the quarkonia decay widths are obtained
from the mass modifications of the initial (quarkonia states)
and the final (open charm and bottom mesons) calculated
using a chiral effective model [from Eqs. (39) and (41)],
including the effects of Dirac sea of the nucleons, with
additional LLL contributions for the charged D�ðB�Þ
mesons, which further undergo mass modifications due
to pseudoscalar meson-vector meson (PV) mixing in the
presence of a magnetic field, [given by Eqs. (44) and (46)
for the charm and bottom sectors]. As has already been
mentioned, the open charm and bottom meson masses are
obtained from interactions with the nucleons and scalar
mesons (σ, ζ, and δ) and mass shifts of the quarkonium
states are obtained from the modifications of a scalar
dilaton field, χ, which mimics the gluon condensates of
QCD in the chiral effective model. The scalar fields and the
dilaton field are solved from their coupled equations of
motion, for given values of the baryon density, ρB, isospin
asymmetry parameter, η, and the magnetic field, B. In the
present study, the AMMs of the nucleons are considered,
which are observed to be important for the mass mod-
ifications, especially, when the Dirac sea effects are taken
into account.
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There is observed to be enhancement of the quark
condensates [calculated from the scalar fields σ and ζ
using Eq. (18)] with increase in the magnetic field, due to
Dirac sea contributions for zero density as well as for ρB ¼
ρ0 (when AMMs of nucleons are not considered) both for
symmetric (η ¼ 0) and asymmetric (with η ¼ 0.5) nuclear
matter, an effect called magnetic catalysis (MC). However,
when the AMMs of nucleons are taken into account, there
is observed to be inverse magnetic catalysis (IMC) for
ρB ¼ ρ0, both for symmetric as well as asymmetric (with
η ¼ 0.5) nuclear matter in presence of a magnetic field. The
Dirac sea contributions have appreciable effects on the
meson masses and hence, on the decay widths of
ψð3770Þ → DD̄ and ϒð4SÞ → BB̄. The quarkonium decay
widths in magnetized (nuclear) matter were studied using a
field theoretical model of composite hadrons [78], includ-
ing the effects of the mixing of the charmonium (botto-
monium) states [ψð3770Þ − ηcð2SÞ [ϒð4SÞ − ηbð4SÞ]
mixings] [78,81] as well as the PV mixing of the open
charm (bottom) mesons [DðBÞ −D�ðB�Þ and D̄ðB̄Þ −
D̄�ðB̄�Þ mixings] [79,81], in addition to the Landau level
contributions for the charged D�ðB�Þ mesons. The Dirac
sea contributions to the self energies of the nucleons are
observed to lead to important modifications on the decay
widths, which were not considered in Refs. [78,79,81] for
the mass modifications of the initial and final state mesons,
hence on the quarkonia decay widths.
Including the effects of the Dirac sea of the nucleons, the

masses of the open charm [113], the bottom meson
mesons [114], and the heavy quarkonia states [115] have
been studied in magnetized (nuclear) matter. The inclusion
(exclusion) of the AMMs of nucleons give rise to the IMC
(MC) for ρB ¼ ρ0, which lead to very different behaviors
for the masses of the quarkonium states ψð1DÞ and ϒð4SÞ,
with a drop (increase) in the mass, with an increase in the
magnetic field, when the PV effects are not taken into
account [115]. For the open heavy flavor mesons, there is
observed to be a monotonic increase with magnetic field
when the AMMs are not taken into account, whereas there
is obserevd to be an initial increase followed by a drop in
these masses when the magnetic field is further increased,
and the behavior remains similar when the PV mixing
effects are also taken into account [113]. The decay width
of the quarkonium state ψð1DÞ [ϒð4SÞ] (decaying at rest)
toDD̄ (BB̄) depends on the magnitude of the momentum of
the outgoing open heavy flavor mesons, jpj, given by
Eq. (57) in terms of the in-medium masses of the quarko-
nium state and the open heavy flavor mesons. The
dependence of the quarkonium decay width on jpj is
through a polynomial term multiplied by an exponential
term, as can be seen from the expression of the decay width
given by Eq. (58), in which the expression AM½jpj given by
Eq. (A12)] is in the form of an exponential as well as
polynomials, TM

i , whose explicit expressions are written
down in the Appendix. As we shall see there is observed to

be a significant difference in the decay width of
ϒð4SÞ → BB̄, for ρB ¼ ρ0, for both symmetric and asym-
metric nuclear matter, when the AMMs are taken into
account, as compared to when these are ignored. This is due
to the different behaviors of the masses of the quarkonium
and open charm (bottom) mesons, due to the different
behaviors of the scalar fields, corresponding to (inverse)
magnetic catalysis, in the presence (absence) of the AMMs
of the nucleons. The effects of the Dirac sea contributions
are seen to be more significant for the ϒð4SÞ → BB̄, with
observation of nodes at high values of the magnetic field,
for both the charged and neutral BB̄ final state decay
widths.
In Fig. 1, we plot the decay widths of ψð3770Þ → DD̄

for ρB ¼ 0 including the Dirac sea (DS) contributions for
the nucleons as well as effects from the PV mixing in the
presence of a magnetic field. In Fig. 1(a) shows the decay
widths of (I) ψð3770Þ → DþD−, (II) ψð3770Þ → D0D̄0,
and sum of these subchannels, in the absence of the PV
mixing of the charmonium states as well as open charm
mesons. In the absence of the DS contributions, for ρB ¼ 0,
the masses of the charmonium and the neutral open charm
mesons remain at their vacuum values, but the masses of
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FIG. 1. Decay widths of (I) ψð1DÞ→DþD−, (II) ψð1DÞ→
D0D̄0, and (III) the sum of these two channels (I) and (II), as
functions of eB=m2

π , for ρB ¼ 0 with the AMMs of nucleons
taken into account. The effects due to the Dirac sea (DS)
contributions are included. The effects of the D −D�

(D̄ − D̄�) mixing on these decay widths are shown in (b) and
(d), without and with the additional effect from ψð1DÞ − η0c
mixing, respectively. The results are compared with the
cases when the AMMs of nucleons are not considered (shown
as dotted lines).
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charged mesonsD� have positive shifts in the presence of a
magnetic field due to the lowest Landau level (LLL)
contributions. Hence, when the Dirac sea effects are
neglected, the decay width with the D0D̄0 final state stays
at its vacuum value, whereas the decay width of
ψð3770Þ → DþD− decreases with increase in the magnetic
field (due to the increase in the masses of the charged D�
mesons) and becomes zero at and larger than a certain value
of magnetic field (when the decay is no longer kinemat-
ically possible). In the presence of the Dirac sea contribu-
tions, but when the PV mixing effects are not taken into
account, the masses of the neutral open charm mesons and
charmonium states are observed to have negligible depend-
ence on the magnetic field [113,115]. However, there is
increase in the masses of the chargedD� mesons due to the
lowest Landau level (LLL) contributions, which leads to a
drop in the decay width for the charged open charm meson
pair final state in the presence of a magnetic field, whereas,
the decay width of charmonium to neutral DD̄ is observed
to drop marginally with increase in the magnetic field, in
the absence of PV mixing, as can be seen from panel (a) in
Fig. 1. The contributions due to PV mixing have been
observed to be significant in Refs. [78,79]. The Dirac sea
contributions are taken into account using the summation
of the tadpole diagrams, using weak field approximation
for the nucleon propagator [99], and, in the presence of
AMMs of the nucleons, the solutions do not exist for the
scalar fields for eB ≥ 4m2

π, for ρB ¼ 0 in this approxima-
tion. The effects of AMMs on the charmonium decay
widths, for this range of magnetic field where the solutions
for the scalar fields and hence the masses of the open and
hidden charm mesons exist, are observed to be quite small,
as compared to the case when the AMMs are neglected
(shown as the dotted lines). The mixings of theD −D� and
D̄ − D̄� mesons lead to drop in the masses of the open
charm pseudoscalar mesons, and this is observed as a
significant enhenacement of the decay width in the neutral
DD̄ channel, as can be observed in panel (b) in Fig. 1.
However, the DðD̄Þ −D�ðD̄�Þ mixings are not observed to
affect the decay channel with DþD− final state, the reason
for this is due to the fact that the PVeffects on the masses of
the charged D� mesons become appreciable for higher
values of magnetic fields (eB ≥ 3m2

π) [113], and, for these
values of the magnetic field, the decay to the chargedDD̄ is
no longer kinematically possible, due to the positive
Landau level contributions leading to increase in the
masses of the charged D� mesons. In the presence of
the ψð1DÞ − ηcð2SÞ mixing (which leads to an increase in
the mass of the longitudinal component of ψð1DÞ), but
without accounting for the mixing in the open charmmeson
sectors, there is observed to be a rise in the decay widths for
both the sub channels for high values of magnetic field,
as can be seen from panel (c) in Fig. 1. When both the
mixings (for the charmonium as well as open charm

mesons) are considered, there is observed to be significant

rise in the charmonium decay width to the neutral DD̄, as
well as, an increase for the charged DD̄ channel at higher
values of the magnetic field, as can be seen in panel (d)
of Fig. 1.
The decay widths of ψð1DÞ → DD̄, along with the

decay widths for the subchannels (I) ψð1DÞ → DþD−

and (II) ψð1DÞ → D0D̄0, are shown for ρB ¼ ρ0, account-
ing for the Dirac sea contributions to the scalar densities of
the nucleons as well as with the PV mixing effects from the
charmonium states [ψð1DÞ − η0c mxing]. These are shown
without and with the PV effects for the open charm
(DðD̄Þ −D�ðD̄�Þ mixing) mesons, for symmetric (η ¼ 0)
nuclear matter, in Figs. 2 and 3, respectively. When the
AMMs of the nucleons are considered, the Dirac sea
contributions are observed to modify the decay width of
charmonium to the neutral DD̄ appreciably at high mag-
netic fields, for η ¼ 0 in the absence of PV mixing of open
charm mesons. However, the additional PV mixing for the
charmonium states [ψð1DÞ − η0c mixing], is observed to
only modify the decay widths marginally, as can be seen
from panels (b) and (d) of Fig. 2. There is observed to be
significant rise in the decay widths when the PV mixing in
open charm sectors, is taken into account, as can be seen
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FIG. 2. Decay widths of (I) ψð1DÞ → DþD−, (II) ψð1DÞ →
D0D̄0, and (III) the sum of these two channels (I) and (II), as
functions of eB=m2

π , for ρB ¼ ρ0 and η ¼ 0 with the AMMs of
nucleons taken into account. The effects due to the Dirac sea (DS)
contributions are shown in (b) and (d), without and with the
ψð1DÞ − η0c mixing, respectively. The results are compared with
the cases when the AMMs of nucleons are not considered (shown
as dotted lines).
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from Fig. 3. The effects of the isospin asymmetry is
observed to be much less dominant as compared to the
effects due to the Dirac sea contributions and the PV
mixing effects. The AMMs of the nucleons however do
play an important role, and the Dirac contribution effects
lead to inverse magnetic catalysis (IMC) when the AMMs
are considered, whereas there is observed to be magnetic
catalysis (MC) when the AMMs are neglected. Due to the
opposite behavior of the scalar fields (proportional to the
light quark condensates), the behaviors of the open charm
mesons are quite different without and with the inclusion of
the AMMs of the nucleons, at ρB ¼ ρ0, for symmetric as
well as asymmetric nuclear matter in the presence of a
magnetic field.
In Fig. 4, the decay widths of ϒð4SÞ → BB̄, along with

the subchannels corresponding to the final states (I)
charged and (II) neutral BB̄ are shown for ρB ¼ 0, taking
into account the Dirac sea contributions. In Fig. 4(a), in the
absence of the PV mixings for the bottomonium states
(ϒð4SÞ − ηbð4SÞ) as well as for the open bottom mesons
(B − B� and B̄ − B̄�), due to the positive contributions to
B� masses from Landau levels, one observes a drop in the
width of the decay to BþB− final state with increase in the
magnetic field, which becomes (and remains) zero for
eB ≥ 5m2

π . On the other hand, the decay width for the
neutral BB̄ final state shows a steady increase with the
magnetic field, reaching a value of 45.16 MeV at eB ¼
10m2

π from the vacuum value of around 10 MeV. There is
observed to be a significant increase in the decay widths,
more dominant for the BþB− final state, due to the PV
mixing in the BðB̄Þ − B�ðB̄�Þ mesons, as can be seen in

Fig. 4(b). With further rise in the magnetic field, there is
observed to be a drop in the decay widths of both the sub-
channels, reaching zero value (corresponding to the nodes),
for the values of eB of around 7.5 and 11 m2

π for the
subchannels (I) and (II), respectively. Similar behaviors of
the decay widths are observed when the PV mixng in the
bottomonium sector is also taken into account [shown in
Fig. 4(d)]. However, the PV mixing effects in the open
bottom sector are observed to be much more appreciable as
compared to the PV mixing effect in the bottomonium
sector, as can be seen in panels (c) and (d) of Fig. 4. The
observation of the nodes (vanishing of the decay widths)
arises due to the dependence of the decay widths [given by
Eq. (58)] on the magnitude of the momentum of the
outgoing BðB̄Þ meson [given by Eq. (57)] as a polynomial
term multiplied by a gaussian contribution, and the node
occurs when the polynomial part becomes zero. The nodes
arise from taking into consideration the internal structure of
the mesons in terms of the quark and antiquark constitu-
ents [51,72,78,81]. On the other hand, a phenomenological
interaction, Lint ∼ϒμðB̄ð∂μBÞ − ð∂μB̄ÞBÞ, without account-
ing for the internal structure of the mesons, leads to the
decay widths, which increase monotonically with increase
in jpj.
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FIG. 4. Decay widths of (I) ϒð4SÞ → BþB−, (II) ϒð4SÞ →
B0B̄0, and (III) the sum of these two channels (I) and (II),
as functions of eB=m2

π , for ρB ¼ 0 with the AMMs of nucleons
taken into account. The effects due to the Dirac sea (DS)
contributions are included. The effects of the B − B� (B̄ − B̄�)
mixing on these decay widths are shown in (b) and (d), without
and with the additional effect from ϒð4SÞ − ηbð4SÞ mixing,
respectively. The results are compared with the cases
when the AMMs of nucleons are not considered (shown as
dotted lines).
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FIG. 3. Same as Fig. 2, with additional mass modifications of
the open charm mesons from D −D� and D̄ − D̄� mixing effects.
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In Fig. 5, the decay widths are shown for ρB ¼ ρ0 for
symmetric nuclear matter, without accounting for the mix-
ings in the open bottom sector. In Figs. 5(a) and 5(c), these
are plotted for the cases of without andwithϒð4SÞ − ηbð4SÞ
mixing, and, without accounting for the Dirac sea effects.
The decay widths are observed to have significant contri-
butions with inclusion of Dirac sea effects, when the AMMs
of the nucleons are taken into account, as can be seen
fromFig. 5(b) and 5(d), respectively. There is observed to be
an initial rise and then a drop and vanishing of the decay
widths at around eB ¼ 10m2

π , for both the subchannels [(I)
ϒð4SÞ → BþB− and (II)ϒð4SÞ → B0B̄0], when the AMMs
are taken into account. As the magnetic field is further
increased, there is observed to be increase in these
decay widths. As can be observed in panels (b) and (d) in
Fig. 5, including the Dirac sea effects, when the AMMs of
the nucleons are ignored (shown as dotted lines), there is
observed to be a drop in the decaywidth (I)ϒð4SÞ → BþB−,
which becomes zero for eB ∼ 6m2

π, whereas the decaywidth
for the neutral BB̄ final state shows a steady, but slow
decreasewith rise in themagnetic field, without andwith the
ϒð4SÞ − ηbð4SÞmixing effect taken into consideration. The
effects on the decay widths of ϒð4SÞ → BB̄ from the PV
mixing of the bottomonium states are observed to be
marginal as compared to the effects from Dirac sea

contributions, as can be seen from Fig. 5. In the presence
of Dirac sea effects and AMMs of nucleons, when the
ϒð4SÞ − ηbð4SÞ mixing is also taken into account, there is
observed to be a nonsmooth behavior of the decay widths in
both charged and neutralDD̄ channels at around eB ∼ 7m2

π

[as can be seen in panel (d) of Fig. 5]. This behavior of the
decay widths (which depend on jpj) arises from dependence
of the mass of the bottomonium state, Υð4SÞ (hence of jpj)
with the magnetic field, which is observed to be nonsmooth
at around this value of eB [115].
In Fig. 6, the decay widths are shown accounting for the

BðB̄Þ − B�ðB̄�Þmixings. In the absence of DS effects, there
is observed to be appreciable effect due to these mixings
which are observed to lead to only marginal modifications,
when the ϒð4SÞ − ηbð4SÞ mixing is also considered [see
Figs. 6(b) and 6(d) as compared to Figs. 6(a) and 6(c)].
There is observed to be a node in the decay width for the
BþB− final state at around eB ∼ 7m2

π in the absence of DS
effects, without and with the PV mixing effects taken into
account, as can be seen from Figs. 6(a) and 6(c). In the
presence of DS effects, the initial rise is followed by a drop
leading to vanishing of the decay width and again an
increase as the magnetic field is further increased. The
nodes are observed for values of eB around 6.3 (8.2) and
9 (10.5) m2

π , for the charged (neutral) BB̄ final states when
the AMMs of the nucleons are taken into account. The DS
effects are observed to be much larger at higher values of
the magnetic fields, when the AMMs are considered.
In Fig. 7, the decay widths are shown for ρB ¼ ρ0 for

asymmetric (with η ¼ 0.5) nuclear matter, accounting for
the mixings in the bottomonium as well as the open bottom
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FIG. 5. Decay widths of (I) ϒð4SÞ → BþB−, (II) ϒð4SÞ →
B0B̄0, and (III) the sum of these two channels (I) and (II), as
functions of eB=m2

π , for ρB ¼ ρ0 and η ¼ 0 with the AMMs of
nucleons taken into account. The effects due to the Dirac sea (DS)
contributions are shown in (b) and (d), without and with the
ϒð4SÞ − ηbð4SÞ mixing, respectively. The results are compared
with the cases when the AMMs of nucleons are not considered
(shown as dotted lines).
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FIG. 6. Same as Fig. 5 with additional mass modifications of
the open bottom mesons from B − B� and B̄ − B̄� mixing effects.
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sector. In Figs. 7(a) and 7(c), these are plotted without DS
effects, which are observed to show similar behavior as for
the symmetric nuclear matter shown in Fig. 6; however, the
values for eB ¼ 0 are much higher for the asymmetric
nuclear matter as compared to the symmetric matter. In the
absence of the DS contributions, for zero magnetic
field [80], the different mass modifications of the botto-
monium state and open bottom mesons (and hence of
values of pj), in the asymmetric and symmetric nuclear
matter, lead to the difference in the decay widths of
ϒð4SÞ → BB̄. The effects from the PV mixings for the
open bottom mesons are observed to dominate over the
effects due to the mixing in the bottomonium sector, both in
the symmetric and asymmetric nuclear matter.
The magnetic field effects considered on the decay width

of the charmonium (bottomonium) state ψð1DÞ → DD̄
ðϒð4SÞ → BB̄Þ in the present work, are due to the Dirac
sea effects of the nucleons, the effects from ψð1DÞ − η0c
ðϒð4SÞ − ηbð4SÞÞ, D −D� ðB − B�Þ, and D̄ − D̄� ðB̄ −
B̄�Þ mixings and Landau level contributions for the
charged, D�ðB�Þ mesons. The Dirac contributions are
observed to lead to significant modifications to the quar-
konium decay widths. The decay of Ψð3770Þ to the D0D̄0

is observed to have much larger contribution from the Dirac
sea effects as compared to the decay width for the charged
DþD− final state. The effects of the Dirac sea contributions
are observed to be more significant for the ϒð4SÞ → BB̄
(as compared to the decay width of ψð1DÞ → DD̄). With
Dirac sea effects, there is observed to be a significant
difference in the decay width of ϒð4SÞ → BB̄ in magnet-
ized nuclear matter, for ρB ¼ ρ0, for the cases of ignoring
(including) the AMMs of the nucleons, when the (inverse)

magnetic catalysis is observed. The strong magnetic field
created at the early stage should have observable conse-
quences on the production of the hidden and open charm
mesons arising from ultrarelativistic heavy ion collision
experiments.

V. SUMMARY

To summarize, we have studied the decay widths of the
charmonium states ψð1DÞ to DD̄ and of the upsilon state
ϒð4SÞ → BB̄ in magnetized (nuclear) matter, accounting
for the Dirac sea contributions for the self-energies of the
nucleons within a chiral effective model. The open charm
(bottom) mesons are calculated from their interactions with
the nucleons and the scalar mesons, whereas the quarko-
nium masses are calculated within a chiral effective model
from the medium change of a scalar dilaton field, which
mimics the gluon condensates of QCD. There is observed
to be magnetic catalysis effect, i.e., enhancement of the
quark condensates (given in terms of the scalar fields) with
rise in magnetic field, for ρB ¼ 0, for both the cases of
accounting and ignoring the AMMs of the nucleons.
However, for ρB ¼ ρ0, there is observed to be inverse
magnetic catalysis (IMC) when the AMMs of the nucleons
are taken into account. The effects from PV mixing
[ψð1DÞ − η0c, D −D� and D̄ − D̄� mixings for the charm
sector andϒð4SÞ − ηbð4SÞ, B − B� and B̄ − B̄� mixings for
the bottom sector] in the presence of the magnetic field are
also taken into account, in addition to the Landau con-
tributions for the charged open charm (bottom) mesons.
The effects of the Dirac sea as well as PV mixings are
observed to be quite significant on the heavy quarkonium
decay widths. These should have observable consequences
on the production of heavy quarkonium states and open
heavy flavor mesons, as these are created at the early stage
of the noncentral ultrarelativistic heavy ion collision experi-
ments, when the magnetic field can be still be large.
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APPENDIX: MODEL FOR COMPOSITE
HADRONS

The model describes hadrons comprising of quark (and
antiquark) constituents. The field operator for a constituent
quark for a hadron at rest at time, t ¼ 0, is written as

ψðx; t ¼ 0Þ ¼ ð2πÞ−3=2
Z

½UðkÞurqrðkÞ expðik · xÞ

þ VðkÞvsq̃sðkÞ expð−ik · xÞ�dk
≡QðxÞ þ Q̃ðxÞ; ðA1Þ
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FIG. 7. Same as Fig. 6, with η ¼ 0.5.
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where UðkÞ and VðkÞ are given as

UðkÞ¼
�

fðjkjÞ
σ ·kgðjkjÞ

�
; VðkÞ¼

�
σ ·kgðjkjÞ
fðjkjÞ

�
: ðA2Þ

The functions fðjkjÞ and gðjkjÞ satisfy the constraint [108],
f2 þ g2k2 ¼ 1, as obtained from the equal time anticom-
mutation relation for the four-component Dirac field
operators. These functions, for the case of free Dirac field
of mass M, are given as

fðjkjÞ ¼
�
k0 þM
2k0

�
1=2

; gðjkjÞ ¼
�

1

2k0ðk0 þMÞ
�

1=2
;

ðA3Þ

where k0 ¼ ðjkj2 þM2Þ1=2. In the above, M is the con-
stituent quark/antiquark mass. In Eq. (A1), ur and vs are the
two component spinors for the quark and antiquark,
respectively, satisfying the relations u†rus ¼ v†rvs ¼ δrs.
The operator qrðkÞ annihilates a quark with spin r and
momentum k, whereas q̃sðkÞ creates an antiquark with
spin s and momentum k, and these operators satisfy the
usual anticommutation relations,

fqrðkÞ;qsðk0Þ†g¼fq̃rðkÞ; q̃sðk0Þ†g¼ δrsδðk−k0Þ: ðA4Þ

The field operator for the constituent quark of hadron
with finite momentum is obtained by Lorentz boosting the
field operator of the constituent quark of hadron at rest,
which requires the time dependence of the quark field
operators. Similar to the MIT bag model [111], where the
quarks (antiquarks) occupy specific energy levels inside the
hadron, it is assumed in the present model for the composite
hadrons that the quark/antiquark constituents carry frac-
tions of the mass (energy) of the hadron at rest (in
motion) [108,109]. The time dependence for the ith
quark(antiquark) of a hadron of mass mH at rest is given as

QiðxÞ ¼ QiðxÞe−iλimHt; Q̃iðxÞ ¼ Q̃iðxÞeiλimHt; ðA5Þ

where λi is the fraction of the energy (mass) of the hadron
carried by the quark (antiquark), with

P
i λi ¼ 1. For a

hadron in motion with four momentum p, the field
operators for quark annihilation and antiquark creation,
for t ¼ 0, are obtained by Lorentz boosting the field
operator of the hadron at rest, and are given as [110]

QðpÞðx; tÞ ¼
Z

dk

ð2πÞ3=2 SðLðpÞÞUðkÞQðkþ λpÞ

× exp½iðkþ λpÞ · x − iλp0t� ðA6Þ

and

Q̃ðpÞðx; tÞ ¼
Z

dk

ð2πÞ3=2 SðLðpÞÞVð−kÞQ̃ð−kþ λpÞ

× exp½−ið−kþ λpÞ · xþ iλp0t�: ðA7Þ

In the above, λ is the fraction of the energy of the hadron,
carried by the constituent quark (antiquark). In Eqs. (A6)
and (A7), LðpÞ is the Lorentz transformation matrix, which
yields the hadron at finite four-momentum p from the
hadron at rest, and is given as [109]

Lμ0 ¼ L0μ ¼
pμ

mH
; Lij ¼ δij þ

pipj

mHðp0 þmHÞ
; ðA8Þ

where μ ¼ 0, 1, 2, 3 and i ¼ 1, 2, 3, and the Lorentz
boosting factor SðLðpÞÞ is given as

SðLðpÞÞ ¼
�ðp0 þmHÞ

2mH

�
1=2

þ
�

1

2mHðp0 þmHÞ
�
1=2

α⃗ · p⃗;

ðA9Þ

where α⃗ ¼ ð0σ⃗ σ⃗
0
Þ, are the Dirac matrices. The Lorentz

transformations used to obtain the constituent quark and
antiquark operators for hadron at rest to hadron with
momentum, p, as given by Eqs. (A6) and (A7) have the
effect of addition of the hadron fractional momentum, λp,
as a translation to the constituent quark (antiquark)
momentum, kð−kÞ [110]. This is similar to the quasipo-
tential approach, where the Lorentz transformation plays
the role of a translation [116]. Using the composite model
picture with Lorentz transformations as considered in the
present work, the various properties of hadrons, e.g., charge
radii of the proton and pion, the nucleon magnetic
moments [108,109] have been studied.
The pair creation term of the Dirac Hamiltonian density,

HQ†Q̃ðxÞ ¼ QðxÞ†ð−iα ·▽þ βMÞQ̃ðxÞ; ðA10Þ

is used to describe the decay of the heavy charmonium
(bottomonium) state,M at rest to open heavy flavor mesons
FðpÞ and F̄ðp0Þ. The operators for the light (q ¼ u, d)
quark and antiquark creation in the above term, thus belong
to different hadrons, F and F̄ with four-momenta p and p0,
respectively. The light quark pair creation term of the
Hamiltonian density is used to describe the decay of a
heavy charmonium state (Q̄Q), Q ¼ b, c to DðBÞ and
D̄ðB̄Þ states, which are bound states of Qq̄ and Q̄q
respectively, with light (u, d) quark antiquark pair creation.
We evaluate the matrix element of the quark-antiquark pair
creation part of the Hamiltonian, between the initial
charmonium (bottomonium) state and the final state, FF̄,
F≡ ðD;BÞ, using explicit constructions for the initial and
final state mesons,
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hFðpÞjhF̄ðp0Þj
Z

Hq†q̃ðx; t ¼ 0ÞdxjMmð0⃗Þi

¼ δðpþ p0ÞAðMÞðjpjÞpm: ðA11Þ
With hfjSjii ¼ δ4ðPf − PiÞMfi, we have Mfi¼
2πð−iAMðjpjÞpm for evaluation of the matrix element of
the quark-antiquark pair creation part of the Hamiltonian,
between the initial charmonium state and the final state FF̄,
F ¼ ðD;BÞ state as given by Eq. (A11), As the DðBÞ
and D̄ðB̄Þ mesons are nonrelativistic, we shall assume
SðLðpÞÞ and SðLðp’ÞÞ to be unity. We shall also take
the approximate forms (with a small momentum expansion)
for the functions fðjkjÞ and gðjkjÞ of the field opera-
tor as given by gðjkjÞ ¼ 1=ð2k0ðk0 þMÞÞ1=2 ≃ 1=ð2MÞ,
and fðjkjÞ ¼ ð1 − g2k2Þ1=2 ≈ 1 − ððg2k2Þ=2Þ [77].
The expression for the decay width of M → FF̄ is

obtained as given by Eq. (56). The expression for
AMðjpjÞ in the decay width is given as

AMðjpjÞ ¼ 6cM exp½ðaMbM2 − R2
Fλ

2
2Þp2�

·

�
π

aM

�
3=2
�
TM
0 þ TM

1

3

2aM
þ TM

2

15

4a2M

þ TM
3

105

8a3M
þ TM

4

105 × 9

16a4M

�
; ðA12Þ

where aM, bM are given as [77] aM ¼ 1
2
R2
M þ R2

F;
bM ¼ R2

Fλ2=aM, and cM, for M ≡ ψð3770Þ, and M≡
ϒð4SÞ are given as

cψð3770Þ ¼
1

4
ffiffiffiffiffiffi
3π

p
�
16

15

�
1=2

·π−1=4 ·ðR2
ψð3770ÞÞ7=4 ·

1

6
·

�
R2
D

π

�
3=2

and

cϒð4SÞ ¼
1

6
ffiffiffi
6

p
� ffiffiffiffiffi

35
p

4

��R2
ϒð4SÞ
π

�3=4

·

�
R2
B

π

�
3=2

;

respectively. In the above expressions, RM and RF refer to
the strengths of the harmonic oscillator wave functions for
the charmonium state, ψð3770Þ [bottomonium state
ϒð4SÞ], and the FðF̄Þ, F ¼ D, B mesons.
The expressions for TM

i for M ≡ ðΨð3770Þ;ϒð4SÞ, are
given as

Tψð3770Þ
0 ¼ 2b2ψð3770Þð1 − λ2Þp2 þ 2b2ψð3770Þg

2ðp2Þ2ðbψð3770Þ − λ2Þðð3=2Þb2ψð3770Þ − ð2þ λ2Þbψð3770Þ þ 2λ2 − ð1=2Þλ22Þ;
Tψð3770Þ
1 ¼ g2p2½14bψð3770Þ3 − b2ψð3770Þðð32=3Þ þ ð37=3Þλ2Þ þ bψð3770Þðð28=3Þλ2 − ð1=3Þλ22Þ�;

Tψð3770Þ
2 ¼ g2½7bψð3770Þ − ð2=3Þλ2 − ð4=3Þ�;

TM
3 ¼ 0; TM

4 ¼ 0: ðA13Þ

Tϒð4SÞ
0 ¼ 1

2
ðbϒð4SÞ − 1Þðbϒð4SÞ − λ2Þð3bϒð4SÞ þ λ2 − 4Þg2jpj2

×

�
1 − 2R2

ϒð4SÞb
2
ϒð4SÞjpj2 þ

4

5
R4
ϒð4SÞb

4
ϒð4SÞjpj4 −

8

105
R6
ϒð4SÞb

6
ϒð4SÞjpj6

�
Tϒð4SÞ
1 ¼ g2

6
ð9ðbϒð4SÞ − 1Þ − 2ð3bϒð4SÞ − λ2 − 2ÞÞ

þ
g2jpj2R2

ϒð4SÞ
3

½ð−5bϒð4SÞ þ 3Þð3bϒð4SÞ þ λ2 − 4Þðbϒð4SÞ − λ2Þ
− 9b2ϒð4SÞðbϒð4SÞ − 1Þ þ 2bϒð4SÞð3bϒð4SÞ − λ2 − 2Þð3bϒð4SÞ − 2Þ�

þ
4g2jpj4R4

ϒð4SÞb
2
ϒð4SÞ

15

�
ð7bϒð4SÞ − 5Þð3bϒð4SÞ þ λ2 − 4Þðbϒð4SÞ − λ2Þ

þ 9

2
ðbϒð4SÞ − 1Þb2ϒð4SÞ − bϒð4SÞð5bϒð4SÞ − 4Þð3bϒð4SÞ − λ2 − 2Þ

�
−
8g2jpj6R6

ϒð4SÞb
4
ϒð4SÞ

105

�
1

2
ð9bϒð4SÞ − 7Þð3bϒð4SÞ þ λ2 − 4Þðbϒð4SÞ − λ2Þ

þ 3

2
b2ϒð4SÞðbϒð4SÞ − 1Þ − 1

3
bϒð4SÞð3bϒð4SÞ − λ2 − 2Þð7bϒð4SÞ − 6Þ

�
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Tϒð4SÞ
2 ¼ 1

3
g2R2

ϒð4SÞð−9bϒð4SÞ − 2λ2 þ 5Þ

þ 4

5
g2R4

ϒð4SÞjpj2
�
b2ϒð4SÞð7bϒð4SÞ − 5Þ þ 1

6
ð3bϒð4SÞ þ λ2 − 4Þðbϒð4SÞ − λ2Þð7bϒð4SÞ − 3Þ

−
2

15
bϒð4SÞð3bϒð4SÞ − λ2 − 2Þð21bϒð4SÞ − 10Þ

�
þ 4

5
g2R6

ϒð4SÞjpj4b2ϒð4SÞ

�
−
1

7
b2ϒð4SÞð9bϒð4SÞ − 7Þ − 4

15
bϒð4SÞðbϒð4SÞ − λ2Þð3bϒð4SÞ þ λ2 − 4Þ

−
1

3
ðbϒð4SÞ − 1Þðbϒð4SÞ − λ2Þð3bϒð4SÞ þ λ2 − 4Þ þ 2

105
bϒð4SÞð3bϒð4SÞ − λ2 − 2Þð45bϒð4SÞ − 28Þ

�
;

Tϒð4SÞ
3 ¼ 2g2

15
R4
ϒð4SÞð15bϒð4SÞ þ 2λ2 − 5Þ

þ 4

5
g2R6

ϒð4SÞjpj2
�
−
4

5
b3ϒð4SÞ − ðbϒð4SÞ − 1Þb2ϒð4SÞ −

2

21
bϒð4SÞðbϒð4SÞ − λ2Þð3bϒð4SÞ þ λ2 − 4Þ

−
1

21
ðbϒð4SÞ − 1Þðbϒð4SÞ − λ2Þð3bϒð4SÞ þ λ2 − 4ÞÞ þ 2

105
bϒð4SÞð3bϒð4SÞ − λ2 − 2Þð27bϒð4SÞ − 10Þ

�
;

Tϒð4SÞ
4 ¼ −

4g2R6
ϒð4SÞ

35 × 9
ð21bϒð4SÞ þ 2λ2 − 5Þ: ðA14Þ

In the expressions for the decay widths of the ψð3770Þðϒð4SÞ) state, decaying toDD̄ðBB̄Þ, the parameter, γM is introduced,
which refers to the production strength of DD̄ðBB̄Þ from decay of Ψð3770Þðϒð4SÞÞ through light quark pair creation. This
parameter is chosen so as to reproduce the vacuum decay widths for the decay channels M → FþF− and M → F0F̄0.
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