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We compute a one-loop electron-photon vertex with fully off-shell external momenta in an arbitrary
covariant gauge and space-time dimension. There exist numerous efforts in literature where a one-loop off-
shell vertex is calculated by employing the standard first-order Feynman rules in different covariant gauges
and space-time dimensions of interest. The tensor structure which decomposes this three-point vertex into
the components transverse and longitudinal to the photon momentum gets intertwined in this first-order
formalism. The Ward-Takahashi identity is explicitly invoked to untangle the two pieces and the results are
expressed in a preferred basis of 12 spin amplitudes. We propose a novel approach based upon an efficient
combination of the first- and second-order formalisms of quantum electrodynamics to compute this one-
loop vertex. Among some conspicuous advantages is the fact that this less known second-order formalism
separates the spin and scalar degrees of freedom of an electron interacting electromagnetically. More
noticeably, the longitudinal and transverse contributions naturally disentangle from the onset in our
approach. Moreover, this decomposition leads to identities between one-loop scalar Feynman integrals with
higher powers in the propagators and shifted space-time dimensions that can be used to prove the Ward-
Takahashi identity at one-loop order without the need to evaluate any Feynman integral. Additionally, this
natural decomposition allows us to establish the gauge independence of the Pauli form factor through
explicit cancellations of scalar Feynman integrals that depend on the gauge parameter. These cancellations
naturally lead to a compact expression for the Pauli form factor in arbitrary dimensions. Wherever

necessary and insightful, we make comparisons with earlier works.

DOI: 10.1103/PhysRevD.107.073008

I. INTRODUCTION

Solving any quantum field theory (QFT) is equivalent to
computing its Green’s functions. Three- and four-point
interaction vertices are the defining Green’s functions of
any QFT within the standard model of particle physics.
These vertices appear at the level of the Lagrangian. The
simplest three-point vertex in quantum electrodynamics
(QED) involves a photon interacting with a fermion, a
charged lepton (like electron), or a quark. Therefore, the
fermion-photon vertex not only orchestrates the dance of
events when purely electromagnetic interactions are
involved but it also plays a crucial role in unraveling the
internal structure of hadrons. Though this structure and
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dynamics of hadrons are predominantly determined by
quantum chromodynamics (QCD), it is generally probed
through electromagnetic interactions of photons with elec-
trically charged quarks which compose all hadrons. One
such example is provided by hadron electromagnetic form
factors. The quark-photon vertex not only ensures charge
conservation at zero photon momentum transfer through
the vector Ward-Takahashi identity (WTI) but its labyrin-
thine details also explain how the asymptotic limit of these
form factors is faithfully approached for large momentum
transfer of the probing photons.

A popular approach to study nonperturbative effects in a
QFT in continuum is through the infinite set of Schwinger-
Dyson equations (SDEs) which constitute the defining
equations of motion of a QFT. Their intricate mathematical
structure is such that the SDE of the two-point Green’s
function is coupled to that of the three-point Green’s
function through an integral equation, the one of the
three-point function is in turn entangled with that of the
four-point function ad infinitum. Any practical attempt to
look for a nonperturbative solution is generally made by
proposing a reliable Ansatz for the relevant interaction
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vertices to truncate the infinite tower of these coupled
equations to a finite solvable number. It is only natural to
assume that any nonperturbative construction, say that of
the fermion-photon vertex, must agree with its perturbative
expansion in the weak coupling regime. Thus the pertur-
bative knowledge of this vertex can be used as a guiding
tool for constructing such an Ansatz. In literature, several
such studies can be found, spanned over the last four
decades. We note the following for example:

(1) In [1], a one-loop QED vertex was computed in the
Feynman gauge and four space-time dimensions,
i.e., D = 4. A convenient choice of the basis vectors
was adopted therein such that the corresponding
coefficients are free of kinematic singularities.

(ii)) In Ref. [2], a one-loop vertex was reported in the
asymptotic limit of momenta where momentum
squared in one of the fermion legs is much greater
than in the other.

(ii1)) The work of Ball and Chiu in Ref. [1] was extended
to an arbitrary covariant gauge in Ref. [3]. The
appearance of unwanted kinematic singularities for
this general choice of an arbitrary covariant gauge
was observed. However, this shortcoming was easily
cured by redefining two of the basis vectors as a
superposition of the previous set of these vectors.

(iv) In three space-time dimensions, D = 3, this vertex
for massless and massive fermions in an arbitrary
covariant gauge was calculated in Refs. [4] and [5],
respectively.

(a) For scalar QED, the one-loop vertex in arbitrary
covariant gauge and dimensions was reported
in Ref. [6].

(v) A complete calculation of the quark-gluon vertex in
an arbitrary covariant gauge and dimensions was
carried out in detail in [7]. All spinor QED results
can be derived from the general expressions present
therein through an appropriate choice of the color
factors and selecting D as desired.

(vi) In Ref. [8], numerical and analytical expressions for
the transverse and longitudinal form factors of the
quark-gluon vertex in different kinematical regimes
are presented. Again, one can deduce QED results
from there.

Following Ref. [1], subsequent works commence with
the WTI which relates the full fermion-photon vertex
I'(p, p’, k) with the full fermion propagator S(p) not only
at every order of perturbation theory but even more
generally, nonperturbatively:

k-T(p,p'.k)=5"(p") =S (p), (1)

where k is the incoming momentum of the photon, p is that
of the fermion, and p’ is the outgoing momentum of the
latter. This identity readily allows us to decompose the
vertex into two components, the so-called longitudinal

piece I} (p,p'.k) and the remaining part I7(p, p’, k)
which is transverse to the photon 4-momentum )

U(p.p' k) =T (p. p'. k) + Tp(p. p' k). (2)
where I7.(p, p', k) satisfies the following restrictions:

k-Tr(p.p'.k)=0.  Th(p,p.0)=0.  (3)
The longitudinal part I'; (p, p’, k) alone satisfies the WTIL.
Starting from the limiting form of the WTI, namely, the
Ward identity

(p. p.0) = %s#m. 4)

Ball and Chiu proposed how to construct the longitudinal
component; see [1] for the details and the explicit form of
the vertex. We choose to call it the Ball-Chiu vertex and
adopt the following notation:

TL(p. p' k) =Tyc(p. p'. k). (5)

We would like to emphasize that neither the method of its
construction nor the final form of the vertex is unique.
However, it has become a standard practice to decompose
the vertex in this manner:

(p.p' k) =Tpe(p. p' k) + T4 (p. p' k). (6)

All one-loop results for the vertex are then presented by
ensuing the following strategy:

(1) The vertex in a particular kinematic configuration,
gauge, and dimensions is calculated at the one-
loop level.

(i1) Accordingly, a one-loop fermion propagator is also
computed within the same set of requirements.

(iii) Using the last result, Iy (p, p’, k) is evaluated at the
one-loop level: T%°P(p, p' k).

(iv) A one-loop transverse vertex is obtained by simply
subtracting the longitudinal vertex from the full
vertex:

1-loop __ 1y 1-loop _ yw 1-loop
I =1 e .

(v) This result is finally projected onto the transverse
basis proposed in [1] or [3] and the transverse form
factors are identified for each basis vector.

The procedure outlined above is cumbersome though
straightforward. There is a plethora of available research
dedicated to constructing increasingly refined, reliable, and

'Our metric in the Minkowski space is ¥ =diag(—,+,+,+),
while the Dirac gamma matrices satisfy the anticommutation
relation {y*,y*} = =2p"*.
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physically meaningful Ansdtze, taking perturbation theory
as a guide where key elements of a QFT, such as gauge
invariance and renormalization, are satisfied order by order
in a systematic manner. A comprehensive list of articles is
difficult to be provided without intentionally overlooking
some of the several efforts in the literature. However, a
selected list of references akin to the work we present here
is [9-19].

All of the one-loop results we have discussed so far are
obtained solely through employing the standard first-order
formalism of QED. In this article, we weave this approach
with a relatively less scrutinized second-order formalism,
Refs. [20-23]. Explicit calculations presented here con-
vincingly reveal that an adequate merger of both the
first- and the second-order formalisms is particularly
advantageous and efficient in the following aspects:

(1) Vertex decomposition.—We shall observe in the next
section that the electron-photon vertex V¥(p, p’, k)
decomposes naturally into its longitudinal and trans-
verse pieces at one-loop order without requiring a
Ball-Chiu like decomposition2:

Vi(p,p'. k) =Vi(p.p' k) + Vi(p.p' k). (7)

where V% satisfies the transversality condition,
k-Vr(p,p'.k) =0, (8)

while the longitudinal piece V/ satisfies the WTI at
the same level of approximation,

k-Vi(p.p'.k) = e[Z(p) —Z(#)].  (9)

where X(p) is the fermion self-energy and e is the
usual QED coupling. We believe that this feature of a
natural decomposition of the full vertex into its
longitudinal and transverse components would con-
tinue to persist at higher orders of the electromagnetic
coupling. However, only an explicit calculation will
be able to confirm this statement.

(2) Expeditious computation.—By employing an astute
concoction of the first- and second-order formal-
isms, we are able to select efficient routes to not only
expedite the complete computation of a one-loop
vertex in arbitrary gauge and dimensions but also
write it in a much more compact and concise form.
However, in order to make a swift comparison with
other results in the literature, we can always project
our result onto the Ball-Chiu [1] or Kizelersii-
Pennington [3] basis.

An added advantage of using this combined analysis is to

keep track of those terms which identically vanish when

*From now on, we shall adopt the notation V* for the one-loop
vertex instead of I'* which we will reserve for the full vertex.

external momenta go on-shell at all intermediate stages of
this calculation. Both in the longitudinal and the transverse
components of the vertex the terms which are explicitly
irrelevant on-shell are ordered conveniently, e.g., the
operator (p + m) remains on the far right whereas
(p —m) is present on the left. Therefore, when on-shell
conditions (' + m)us(p) =0 and a,(p)(p—m) =0 are
imposed, they vanish. After eliminating these terms and
using the on-shell symmetries of the Feynman integrals, we
explicitly see the instantaneous cancellations of the inte-
grals that depend explicitly on the covariant gauge param-
eter £, e.g., in the evaluation of the on-shell Pauli form
factor. These cancellations naturally lead to a compact
expression for it in an arbitrary space-time dimension in
terms of scalar integrals with (i) higher powers of scalar
propagators and (ii) shifted dimensions. It hints towards a
possible analogous simplification in the evaluation of the
anomalous magnetic moment of the charged fermion at
higher orders of perturbation theory.

The article is organized as follows: Sec. II contains a
summary of the second-order formalism. In Sec. III, we apply
a convenient combination of first- and second-order formal-
isms to the fermion-photon vertex to decompose it into its
longitudinal and transverse components. In Sec. 1V, we
provide explicit confirmation of the fact that the longitudinal
part of the vertex is indeed longitudinal, i.e., it satisfies the
WTI. We express it in terms of Feynman integrals. Then in
Sec. V, transverse contributions of the vertex which were
previously obtained in Sec. III, are written in terms of
Feynman scalar integrals. Employing these expressions,
and the results obtained in Sec. IV for the longitudinal part
of the vertex, we also provide the coefficients of the Ball-
Chiu basis in terms of scalar integrals. In Sec. VI we calculate
the Pauli form factor in D dimensions, explicitly showing its
independence of the covariant gauge parameter £ by can-
cellations of the scalar integrals that depend on this parameter
in the longitudinal and transverse contributions of the vertex.
A compact expression for the Pauli form factor in terms of
scalar integrals is obtained. Making use of this gen-
eral expression, special cases, i.e., D =4 and D = 3, are
reviewed, recovering the known results in the literature.
Concluding remarks with prospects for future endeavors are
provided in Sec. VII. The manuscript is complemented with
three appendixes which contain supplemental information.
Appendix A provides an explicit difference between the Ball-
Chiu and our construction of the longitudinal vertex in
perturbation theory. Naturally one is related to the other
through the addition of a transverse piece. Appendixes B
and C detail expressions of the transverse and longitudinal
vertices, respectively, at one-loop order, and the scalar
integrals involved with relevant identities relating them.

II. SECOND-ORDER FORMALISM FOR QED

The second-order formalism for QED is based on
Feynman rules displayed in Fig. 1 which were formally
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FIG. 1. Second-order rules for spinor QED.

derived in [21]. It provides an efficacious correspondence
between spinor and scalar QED. This formalism has been
used to compute fermion loops and amplitudes involving
external fermions; see [21] and references therein. In this
article, we apply this strategy to achieve similar success in
the off-shell evaluation of the QED vertex. The only
difference is the additional spin factor o** = [y*,y*] that
appears in the QED vertex. It disentangles explicit con-
tributions of the electromagnetic interaction of the fer-
mionic particle into scalar and spin degrees of freedom with
appropriate usage of Gordon-like identities. In addition to
the rules of Fig. 1, whenever a fermionic loop appears in a
Feynman diagram, an extra factor of —1/2 must be
included in the amplitude. Though the structure of the
first-order and the second-order rules are different, the
computed amplitude of a QED process following both
formalisms is equivalent.

As mentioned before, one can derive the second-order
rules from the first order [21] by formally rewriting the
product of the fermion propagator S(p + k) with the first-
order vertex ey* as

—(p+1+ A*

where

Aﬁ,k = BI;:,k + B’;’k =e(2p + k) + ec'k,,

Cp=er'(p+m).,  Dy=q +m (11)

Here, D;l represents the scalar propagator, and B, ; is the
three-point vertex of the second-order rules which naturally

H v

k1 ko
p

FIG. 2. Subdiagram that produces the contribution to the four-
point scalar vertex of the second-order formalism.

separates the scalar and spin electromagnetic interactions.
Thus a product of a propagator and a vertex in a first-order
Feynman diagram can be decomposed into a second-order
contribution, and a leftover first-order term given by the
operator C.

Now, the four-point scalar vertex that appears in the
second-order rules arises when there are two consecutive
pairs of a fermion propagator and a first-order vertex in a
Feynman diagram, as shown in Fig. 2. An amplitude
constructed from a first-order Feynman diagram that contains
a subdiagram as the one shown in Fig. 2 is proportional to
e®S(p + ki + ky)y*S(p + ky)y*. According to Eq. (10), it
can be decomposed as

AM

AI/
2S(p + ki + k)y*S(p + ky)yt = 2k T etk )
D, kv, Dpik,

Since

Al/
oy = ey — (v — o), (13)
Dp+k

Eq. (12) acquires the following form:

e*S(p +ky + ky)y*S(p + ky)r*

v H
_ Bp+k|,k2 A[H»lq —e? " + ot

Dy, ks, Dpik,

. (14)
Dp+k|+k2

Thus, the multiplication of fermion propagators and first-
order vertices on the left-hand side of this equation
generates a term that is proportional to ##¥ and has one
less power of the scalar propagator. It readily gets identified
as a four-point scalar vertex.

Following the procedure where fermion propagators and
first-order vertices are written according to Eq. (10) and
applying identity (13), any amplitude constructed from the
first-order rules can be obtained equivalently and conven-
iently from the second-order rules given in Fig. 1. The
proof of this equivalence can be found in Ref. [21]. We now
proceed to show how this systematic procedure can gen-
erate a natural decomposition of the QED vertex into its
longitudinal and transverse pieces.
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III. THE QED VERTEX AT ONE-LOOP
FROM THE COMBINATION OF THE FIRST-
AND SECOND-ORDER FORMALISMS

Figure 3 depicts the Feynman diagram for the vertex
function V# at one loop within the first-order formalism.
Following the standard Feynman rules, its mathematical
expression is

63 D
V) = [ S+ S0 + D180,
(15)

where the photon propagator A, (/) in an arbitrary covar-
iant gauge £ is given by

Bul) = (ma-(1-0%). a6)

Using Eq. (10), the vertex V# of Eq. (15) becomes

dl Abiiil) (A
VE(p', :e/, ﬂ( ”**)( ’*)Ayz, 17
(p'.p) 2" \D,.)\D, w(D), (17)

which can be written as

VE(p'. p)
_ e/ d”l y/,(BI;H—Z,kB;,I i Bl;;+z,kclz3 1 e2 J’”V”)
i(27z’)D Dp’+le+l Dp’HDerl Dp’+l
x A, (1), (18)

after application of identity (13) and the definitions given in
Eqgs. (11). Here V* is expressed as a combination of first-
and second-order vertices, with the corresponding scalar
propagators of the Feynman diagram of Fig. 3. The
numerator of the third term on the right-hand side of
Eq. (18) can be rearranged as

_BD-3+&p+2(1 - &)

YA (1) = i . (19)
where we have used the following identity:
1-D-¢
PPy = (20)

The result that stems from expression (19) will form part of
the longitudinal vertex as we show later. On the other hand,
the second term on the right-hand side of Eq. (18) can be
split into longitudinal and transverse pieces by commuting
y” with B, . Using the identity |

2

7’)B¢;+1,k i

p
FIG. 3. One-loop vertex V¥#(p’, p) in the first-order formalism.
7B, =By —2e PR+ 2ektyY, (21)

the numerator of the second term acquires the form

P RH v
4 Bﬂ+l,kcp A/w

= e(By 7’7" = 2e ™ Jy" + 2ek” y'y¥) A, (¢ + m)

2 2(1 -
= -p-gp+ 2y 2079

'y
— k- I']) + (5 = D = &0k, | (p + m), (22)

where we have made use of identity (20). It can be readily
observed that only the term proportional to (2p + k + 2[)*
pertains to the longitudinal vertex; the other terms are trans-
verse. A similar procedure allows us to rewrite the numerator
of the first term on the right-hand side of Eq. (18) as follows:

v’ B;-H,k B, A, = B’;7+l,k v’ By, A, —2e kB, Ay,
+ 2eky" By | A, (23)
Since

2p -1
WBmAm=j§Pp+<1—D+f—<1—a . )4,

1
KB A, = 2 [B’;’lk—k 2e(k - Iy* — k"))
2p -1+ 12
~el1-9 2 )
e
kpBI;),ZApU = l_2 |:k . (2p + l) + Gﬁalakﬁ

—(1—§)k-1<2pl—;l 1)} (24)

we can now make use of these detailed identities to cast
Eq. (23) in the following form:

BY A, = % 2[(p + p' 4 20)F 4 ok |y + 4(p - ky¥ — pPE) + 261 - ky* — IPK) + 4(r" K] + k*])

+2(k- Iy = 1)+ (1 =D+ &[(p + p' +2D)F + 6"%k,]]

1-—
12

-2

Spll(p+ p + 20 + o[+ 20l kp - b — p- 1} (25)
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Again we have an unambiguous separation between the longitudinal and transverse components of the vertex. The former
correspond to the terms proportional to (p + p’)p, I*p, (p + p’)] and I#], while the transverse parts form the remaining terms.
According to Egs. (19),(22), (25), the longitudinal and transverse components, V/; and V77, respectively, defined in Eq. (7), read as

dPl 1

o 3 ! " _ Y] _ I’

Vi e/i(zﬂ)D{Dp/Hpr {2(p+p +2pp+ (1 =D+&)(p+p)r+2(1-D+ I
i

P

. D-3 1=&)¥
“2(1=9p+ 0+ 20 P (=D -0l + 20 m)| 4 2 2 O g
P+ P+l
dP1 1 2(1-¢)
_ .3 _ _ o — . a
Vi=e /i(27r)D Dp’+1Dp+112 { {(5 D=c)oha + P (4T~ ly”l)} (- m) + 205k
T A(p - kp = pl) + 25k byt — 1)+ (1= D+ )+ 4G + R) + 2k Ip¥ — 1K)
2= 2 ok 4 4 (= Lk M)}- 27)

From the expression above for V7., one can readily infer that it satisfies the transversality condition k - V; = 0. However,
it is less obviously discernible that V/ satisfies the WTI given in Eq. (9). However, we set out to show this explicitly in the
next section.

IV. V/ AND THE WARD-TAKASHI IDENTITY

In order to demonstrate that the longitudinal vertex V% given by Eq. (26) indeed satisfies the WTI at the one-loop level, a
natural starting point is to contract it with the photon momentum k,,:

dPl 1
. — o3 —_D— . / . —_D— . / .
evi=e [ i(zﬂ)D{Dwalz[<1 D=k (p+ p)+2k-(m + ) + (3 =D = E)k- (p + p') + 2k 1]
D-3+¢ 1-¢ 2 2\ o/ . D2 (2 AV RS B /)
DL k+Dp/+leHl4 2(p* +m*)p" - 1421 p'PP = (p”* +m*)p-1-21-pl ]l}- (28)

Perhaps the most efficient way to proceed is to reduce the vector and tensor integrals involved into scalar integrals. We can
then make use of the known identities connecting these scalar integrals to simplify the resulting expression and rearrange it
in a convenient manner so that the final terms can readily be identified with the expressions which define electron self-
energy. One way to achieve this goal is to employ the tensor reduction algorithm described first in Ref. [24] and later also
used in Refs. [25,26]. It allows us to write any multiloop tensor integrals in terms of scalar integrals:

/ le lﬂ — _pﬂ JD+2 _ plﬂ JD+2
iﬂ:D/2 Dp’+le+112a 1.2,a 2.1.a

d®l I 1
/ DR DD = 2 T 2P P I 2 PG (P P ) TR (29)
P P

where

J(?bL(p’p/)_/dglz a lb 2¢ (30)
- inP2 Dy Dy ¢

Using this tensor reduction algorithm multiple times, Eq. (28) can be rearranged in the following form:

073008-6
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k'VL:

63
(4n)?
—2k- pIP32 =2k plIRE IR |+ (2=D)[(p? = pAIPSE = IPiT 4 2k plIRSt 4 4k pIPTY
+(1=8)[(p? = p)I D35 + (PP +m?)(2p2 0555 +4p - p'ID33) — (p? +m) ID{3 +2p - p'I05 +4p2 TP ) p
+(2=D)[(p? = p2) IR+ IP2 42k pIP3t 44k plIDTY
+(1=9)[(p2 = p)IRIT + (p? +m2)UPI3 +2p - PRI +4p2I5 1) = (% + m?)(2p2I553 +4p- pUS|3)
+(D=3+8I0)7 ). (31)

{m(1=D=8)[(p? = )01 =2k pI33 =2k PR+ (3= D =)0 = p)I0,

All the scalar integrals appearing in Eq. (31) can be expressed as a linear combination of the master integrals J?, |, J¢ .
JE 11> J?OJ, and J? 1.0 by implementing the well-established and widely employed integration by parts technique (IBP)
[27,28] as well as dimensional recurrence relations [29-31]. These methods, aided with the symbolic programming package

LiteRed

and

[32,33], yield the following practically useful identities:
T80 =000 = (% = pP)I0) = 2k pIV5] = 2k plISTY. (32)
I810+ (m? + p2)IGy = =2p%((p? = pP)IT3T = JDTT + 2k plI33T + 4k - pIP3 Y, (33)
I810+ (P +m)IP, = 2p7((p? = pP)I2T + 0T + 2k pI3 + 4k plU ], (34)

(2-D)JB, o= [(4=D)p* + (D =2)m?|JB, | +2p*[(p* — p*)I751 + (P> + m?)(2p*I035 + 4p - p'IV33)

= (P2 +m)UTT3+2p - IS5 +4pPIT050)) (35)

(2=D)Jg, o = (4= D)p?+ (D = 2)m’|JPy, +2p7((p” = p*)J21T = (P + m*)(2p*I335 +4p - pI3T)

+(p? +m?) T3+ 2p - P55 +4pRIT)] (36)

Using these identities, Eq. (31) simplifies to

e’ D-2
k-V, = D m(l_D_f)(JoD.l,l _J?,o,l)+—25[J(I)),1,0+(m2_P2)J0D,1,1}1”
(47[)2 2p
D-2
=S R+ (7 = )R o ()

Since fermion self-energy X(p) at one-loop in an arbitrary covariant gauge £ and dimensions D is given by [22]

2

(471)%

D-2
) = oy {1 = D=0+ 520+ (0 = VR U} (38)

it can be readily inferred that V/ satisfies the WTIL, Eq. (9), as expected.
To wind up this section, let us write down the expression for V4 in terms of Feynman scalar integrals. Using Eq. (26) and
the tensor reduction algorithm, V’Z reads as

073008-7
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3

e
V= G {(D=1=8)p+ PP U+ I2130) + 200, (p+ pYpr = 40033 P + B0
+ (2= D) + 2005 (P + prp) + 4TV + 40 ]
+(1=D =GP, (p+ P =20053p" = 20573 p") (7 + m) + (D =3+ &)J, 7
+ (1=&)(p? + m2) [0 3" + 405 prp + 4I5S p"p + 20055 (pp + po)]
— (1= 8)(p+ PV UL+ 4p - pIBTY + 4P 005 + 2088 (p - pp+ 2]} (39)

In the basis {p*, p',y*, p"p, p"p', p"*p, pp'} it can be rewritten as follows:

&
Vi = (4][)% {m(l —¢- D)(Jll).l,l - 2111).;})1’” +m(l-¢- D)(JID,I,I - ZJQTL})P'”

+[2=D)PIT 4+ (D =3+ 8Py, + (m? + p?)(1 = &I} 3]

+[2=D)(UP, =3IP5 + 4T + (L=, —IDI5 =I5 +4mP a5 = 2p - plIBTs) phy

+ (D =2)(JPT =205 + (1 =& UDT +2m D55 —4p - I3y

+[2=D)(IP, =I5 =200+ 20D + (1= &P, — TP + 04T - 4p2IT33

=250 2w+ p? = p - p I

(D =2)UBF =408 + (1= UBE = 22085+ 40+ p2 = p- )2 ). (40)

The scalar integrals sprinkled all over Eq. (40) contain higher powers of propagators and have shifted space-time
dimensions. These are explicitly detailed in Appendix B as a linear combination of elementary master integrals whose
solutions are well known in literature in various space-time dimensions D. We can now proceed to carry out a similar
analysis for the transverse vertex in the next section. As the details have already been outlined, we will merely present the

results.

V. V4. AND THE BALL-CHIU BASIS

One-loop transverse vertex V7. is given by Eq. (27). On applying a tensor reduction algorithm it can be written in terms of
scalar Feynman integrals as follows:

3

e
Vi = ant {(2(1 — D3P K= p k') g+ IDSS (P K = P ky )+ 20015 (p K = p - kvt )P
+ 2005 (p K= P k)P ) + (4= D)+ (1= &) (IP) | = 20713)]0"k,) (7 + m)

FRIB + (D=0 = (1= UPH +2p - a2 + 4p2rP5d = I ok
~ (6= DYZ3 + (1= )@p2I5LE + 4p - IR TS = JB D)okl
+2[=2JP | + 20073 + (1= &)(IP[3 +2p - plIDSs + 4p2 P45 — I (p K — k- pr*)
2020813+ (1= &) p2I51E + dp - s = IRk~ o' k) | (41)
An alternative and more commonly adopted approach is to express the vertex V¥ by expanding it out in the Ball-Chiu basis,
Refs. [1,3,7]:
4 8

V= "LL 4y T (42)

i=1 i=1

where L/ and T% are the longitudinal and the transverse basis vectors. L/ are
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Ly=(p+p)Vr+7)
Ly =0c"(p+p)"  (43)

and

T\ =p' kp*—p-kp",

T =(p'-kp* = p-kp") (¥ + p)

T4 = Kyt — ke,

Ty =~(p" kp" = p-kp")o” pupy.

TS = 0"%k,.

TG = (p” = p*)r' = (p + P')'K,

T = —%(p’2 =)l +p) + (P + p)]

+ (' + p)'o™ pipy.

T = r'c™ pepp + p"'p — Py (44)
In order to provide a direct verification of our readily
available and compact results, we can compare our findings
with those reported in [7] by projecting onto the above

basis. Starting from the expressions for the longitudinal V/
|

63

(477)%

gy (P V(P p)us(p) =

and transverse V¥ vertices given in Egs. (40) and (41), the
coefficients 4; and 7; of Eq. (42) can be identified in terms
of scalar integrals as detailed in Appendix C. These results
for the complete one-loop vertex in arbitrary gauge and
dimensions are completely equivalent to the ones evaluated
in [7].

VI. THE PAULI FORM FACTOR F,(k?)

The Pauli form factor F,(k?) is defined through the on-
shell matrix element of the vertex as follows:

iy (p")V*(P', p)us(p)
= et () |F\ (R + 5 Fa(R)ok, [ (p).  (43)

where F;(k*) represents the Dirac form factor, and the
Dirac spinors u,(p) and @y (p’) satisfy

iy (p')(p' +m) = (p+muy(p) =0. (46)

Using Eq. (39), the matrix element of the longitudinal
vertex V4 reads as

iy (p){2m(p + PV (27513 = 1Py ) + 2m(1 = D+ &)(p + p)I51

+ @2 =D)UPTIr" = 2m(p + PV (2IFTT+IID] + (D =3+ &)JP) 1 r*

—(p+p)2m(m* —p-p')

where Eq. (46) has been used together with the relation
J2, =J2,..validunder on-shell condition p? = p = —m?,
In this section all the scalar integrals are taken on-shell, which
means that the relation p> = p’> = —m? is satisfied. After

applying Gordon’s identity,

iy (P)(p + PV 4 0"kyuy(p)
= 2mity (p')y*u(p), (48)

Eq. (47) becomes

ity (P )V (p'. p)ug(p)

;
" (4n)t
xag(p'){[(2 - D)Jﬁﬁ +(D=34+8J7, + falr
= far0"katus(p). (49)

where

J£I§+4m(m2—p-p’)]?fg—mlﬁﬁ]}ux(p), (47)

[
for == mlIP{3 =2(m* = p- p')J33;
—A(m* = p- p")J315 = 20515 = 2mIt)
+4m(D = 2)J5{1 +2m(4 = D)JD 3
—2m(2 - D)J531. (50)

Similarly, we can evaluate the on-shell matrix element of the
transverse vertex V; using Eq. (41):

ﬁs/(p/>Vl7{(p/, p)us(p)

3

= G P + Lok (p). (1)

where
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for = (1= &mIY{5 = 2(m* = p- )33,

—4(m*~p-p )J?.T,Z‘ - 21?.?%} —2mJ?,,
+2(6 - D)mJY |3,
fir =4k pJPy | —4k- pIP3t +2(4 = D)k- plt
=2k p(1 = OUTT3 +2p - P53 +4p*ITT5
= I (52)
According to Eq. (45), supplemented with the results of

Egs. (49) and (51), the Pauli form factor F, (k?) in any space-
time dimension D reads as

4e2m?
(4n)€

which agrees with Eq. (4.30) of Ref. [7] after all the scalar
integrals are represented as a linear combination of on-shell
master integrals.

It is important to notice the cancellation of the scalar
integrals that are weighted by the factor 1 — ¢ in the Pauli
form factor, implying its explicit gauge independence.

Fy(k?) = 22T+ 2-D)JIFT+IDD]. (53)

A. F,(k?) in D=4 dimensions
For D =4, Eq. (53) for the Pauli form factor yields

2 2
k) = -2

[2J§.1,1 +J§,2,1 _Jg,l.l]’ (54)

where a = ¢?/(4r). The combination of scalar integrals
above can be computed easily by a direct application of
Feynman parametrization without the need to use the
expressions given in Appendix B to transform it in terms
of master integrals. Thus it can be shown that

200 1 1=x x?+xy—x
=—— |/ d d 55
ﬂA x% Ty @t oy )

where ¢ = k*/m?. After a convenient change of variables
y = x(1/y — 1) in the second integral, and interchanging
the order of integration, the equation above becomes

Fy(k?) :%K dym. (56)

Since

/1d y_l/ldl (57)
o PTra-y 2)y TTrol-y

Eq. (56) for the Pauli form factor in D = 4 dimensions
becomes

1 d
Fy(k?) == .

—_—, 58
2z Jo 1+cy(1—-y) G8)

which agrees with the standard textbook result [34].

B. F,(k*) in D=3 dimensions

For D = 3, Eq. (53) for the Pauli form factor reads as
4e>m?

Fy(k?) = ()"

(2‘];,1,1 - 2‘];]‘,1

=J]21)- (59)

In this case, the first scalar integral is infrared divergent. To
regularize this divergence, a fictitious photon mass m, is
introduced in the photon propagator. Thus, after Feynman
parametrization, we have

x2—-x-y)

1- x
2
2(K) 4ﬂm/ dx/ o (00
where ¢ = k*/m? as before, and
A=(x+y) +cxy+(1-x—y)k* «k=m,/m. (61)

These integrals are easily evaluated when ¢ = 0, which
defines the anomalous magnetic moment of the electron in
three dimensions. After computing the integrals involved,
Eq. (60) gives F(k* =0)=F,

F, zgfm [3(;<—1)+ <2—;K> 1n<2;:’<>}, (62)

which agrees with Eq. (16) of Ref. [35]. It reaffirms that in
three dimensions usual QED does not yield a well-defined
electron anomalous magnetic moment. However, it can be
cured by adding a Chern-Simon’s term to the original
Lagrangian as discussed in Ref. [35].

VII. SUMMARY AND CONCLUSIONS

The second-order formalism of QED is based on the
Feynman rules depicted in Fig. 1. It allows conceptual and
clear decoupling between scalar and spin degrees of free-
dom in an electromagnetic interaction of charged fermions.
Any QED amplitude, constructed from these rules, is
equivalent to the one obtained from the standard first-order
formalism. This equivalence is established by rewriting the
product of the tree-level fermion propagator and the
fermion-photon vertex as illustrated in Eq. (10), and
applying identity (13).

In this article, a hybrid perspective to study the Green’s
functions in QED, such as the vertex V¥, is proposed. As
the name suggests, it blends together the first- and second-
order formalisms. It can be employed to obtain a more
instructive Dirac and tensor structure of the Green’s
functions. For the vertex, the combined analysis yields a
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natural separation between its longitudinal and transverse
components. Before any attempt to perform the Feynman
integrals is made, these components are given in Egs. (26)
and (27). There, the transversality condition for V7% is
clearly observed while the longitudinal part is demonstrated
to satisfy the WTL

After the tensor reduction method is applied to the tensor
Feynman integrals in Eq. (26) for V/, and the contraction
with the photon momenta k/, 1s done, useful identities
between scalar integrals with higher powers in the propa-
gators and shifted dimension can be deduced. These
identities are displayed in Egs. (32)—(36). The complicated
scalar integrals that appear on the left-hand side conspire in
such a way as to obtain simple relations of master integrals
with at most two propagators. Employing these identities
one can demonstrate the WTI holds at one-loop order for
the component V/; of the vertex given in either Egs. (26),
(39), or (40).

The longitudinal and transverse separation that is
obtained from the combination of the first- and second-
order formalism also allows us to show explicitly, with
minimum effort, the independence of the Pauli form factor
F, from the gauge parameter & In fact, the form factor in
any dimension has the compact expression obtained in
Eq. (53) in terms of scalar integrals. As shown in Sec. VI,
in dimensions D = 4 and D = 3, this combination of the
scalar integrals can be easily evaluated to recover known
results in the literature.

As a final remark the longitudinal and transverse
decomposition obtained in this work are in agreement with
the expressions obtained in Ref. [7].
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APPENDIX A: THE DIFFERENCE BETWEEN
THE BALL-CHIU VERTEX AND V¢
AT ONE LOOP

The results of Eq. (40) suggest the following vector
structure for the expanded longitudinal part I"; of the full
fermion-photon vertex I'*:

I = a,p! 4+ ayp™ + asy* + agp*p + asp'py’

+agp™p+ a;p"yp, (A1)
where the scalar coefficients a; at one loop are given by
Eq. (40). These coefficients are not entirely independent.
Since, according to the WTI,

k-Tp =S8 (p") =57 (p).
S (p) = F(p*)r + G(p?). (A2)
the following relations must be satisfied:

- G(p?),

’

ark-p+axk-p' =G(p?)
as +ask - p +ask- p' = F(p"?)

—asy + ask - p +agk - p' = —F(p?). (A3)

On-shell, these relations are reduced to

a, = a, as +as = ag + ay,

az + k- p(as = a;) = F(m?). (A4)

The definition of I'; in (Al) differs from the Ball-Chiu
vertex [1],

G(p”) - G(p*) F(p?) + F(p?) v

FI;BC: p/z_pz (p+p/)ﬂ+ 2
vty F(p"?)—F(p*
+ (p+p’)"—( ,3 2( ), (A5)
2 pe=p

by a transverse piece, which can be written in terms of the
coefficients a; as follows:

o, =T = The

a4y =4y 5y 44— A5z, Ao —d7 5y
= T1—|- T2+ T3
p/2_p2 2 2
a4+(15—(16—a7~
T (46)

where

T/f :k.p/p#_k.pp/ﬂ’

T =k-pr' + p'p - p'p.
TS =k-py"+ phy—phy.

T, =[k-p'(p'w+p'p)—k-p(pp+prp)). (A7)

In terms of the transverse Ball-Chiu basis defined in
Eq. (44), they read as

- - 1

P=T Ti= (14T,
~ 1

T = (1A T,

5 =T

(A8)
Equation (A6) can be rewritten as follows in terms of scalar
Feynman integrals at one-loop:

4
ST =8V =) 5T, (A9)

i=1
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where

2m(D —1+¢&)
8 :W(Jfﬁ—ffﬁ),

(A10)

52 =3[0~ DYy~ 30043 + 4705+ 2213
=200 + (1 =&UP, =I5 - IP50
— 301+ 4P ITs +Ap - plURTS
—2(m*+p - p')J253)]. (A11)

5= 512~ D)(Ry — IP3T — RS + 204
— 4 + (1 =P = I3+ T4
=301 +2(m> = p-p' +2p*)J055
—4(m*—p-p' 4+ p)IE5 —4p2 )] (AL2)

2
p/2 _ P2
+ (=D =200

= 2(m? + PP - IR}

5y = {(D-2) (g3 - 20018 = aB13 + 2081)

(A13)

APPENDIX B: SCALAR INTEGRALS

In this section the Feynman scalar integrals that appear in
the longitudinal and transverse parts of the vertex, V4 and
V4 respectively, in terms of master integrals are provided.
Using the IBP technique [27,28] and the dimensional
recurrence relations [29-31], with the aid of the symbolic
programming package LiteRed [32,33], the scalar integrals

read as
|

al") = (D -2)p,,

1
D2
Jizn = 25, [p-P'IG =PI + (P =p- D)0

+ (pP(m* = k- p)—m?p-p)JP, ], (B1)
1
J?ﬁ = 2_ﬂ1[_p2JOD.1,l +p-pIP0 =k pIT
+ (k- p'p* — k- pm?)JP, ], (B2)
1
i = 25, [~k - pI8y .+ k- plIPy = K2ID
—k*(m* = p-p)J?, ], (B3)

I = D24 {(sz -p'=m*k-p)Jg,

+[p?(m* —k-p)—m*p-p'lIT,

[ + R2p2p™ = 2m2(pp - pf

+pXp-p =20 —k(mP—p- p/)JlD.l,O}’
(B4)

JD+4 _ 1

1 1 1
20 =D 2p (o} >JoD,1,0 +a} )J0D,1,1 + a_g )J113.0,1
1

i i
+a4(1)JlD.l,0+ag )JlD,l,l)v (B5)
1 2 2 2
J%r,g = 4P (a(l )J(l)),l.o +a§ )JOD,l.l —|—a<3 )J?,OJ
12
2 2
+ P o+ alaP ), (B6)
where
pr=p*p?—(p-p)
pr = (P* +m?)(p* + m?*)k> —m*(p” = p*)*,  (B7)

and

&) = —p(p- P2+ (D =2)p*+ (1 =D)p- plp*} + m{p2[(D=1)p-p' = (D =2)p?] = (p- p')2}.
o) = —m{(p-p') + (D =2)p*p? = (D= 1)p- p'p?} = p*{(p- P') + P2[(1 = D)p - p' + (D = 2)p"]},

—

o) = (D=2)p*p” + (p- pPI(D=4)p-p'+ p?| + p[(p - p)* =3(D=2)p - p'p” + (D =2)p"]

+m*{p*[(1=D)p-p'+(D=2)p*|+p-p'[Dp-p' + (1-D)p?]}.
af = mz{Dpz(p P+ [(D-2)p*—4D-1)p*p-p'+D(p-p')?p*+ (D - 2)1?219’4}

+m*{p*[(1-D)p-p'+(D-2)p*|+p-p'[Dp-p' + (1-D)p"]}
+p?p*{p*[A=D)p-p' +(D=2)p*|+p-p'[Dp-p' + (1 -D)p?]},
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o =(D=2)pi[p- p'p?+ p*(p- p' = 2p") — k2],
@

ay’ ==p*p*k{(D=2)(p p')* + p*[(1=D)p-p'+ p?I} + m*{=(p- p')* + p*[(D-1)p-p' = (D-2)p"]}

+ mz{(3 -D)p°p? +2(p-p')p*+pPp-P'R2(ID-2)(p-p')*+ (7-5D)p-p'p? +2(D—-2)p"

-p(D+1)(p-p')*+2(1=2D)p-p'p” +(1 +D)p’4]}’

o) = —p?pPR{(D=2)(p- 'Y+ p2[p* + (1= D)p- ]} = m*k*{(p - p')? + (D =2)p* + (1= D)p - p']p?}

+ m2{2p2(p PV +p-p'p?2(D=2)p*+ (T=5D)p*p - p' +2(D =2)(p- p')’]
= p*(D+1)p*+2(1-2D)p*p-p'+ (1+ D)(p-p')’| - (D - 3)p2p’6},
df) = —m*{p*[(D—1)p-p' = (D=2)p?| + p- p/[-Dp- p' + (D —1)p?]}
+ i p*[(1=D)p-p'+(D=2)p”| +p-p'[Dp-p' +(1-D)p"|}
+ mz{(D =3)p°p”? +(p-p')’p?[=2Dp - p' + (1 + D)p"”]
+pH(D+1)(p-p')? +2(4=3D)p-p'p? +2(D~1)p"]
+p*[=2D(p-p')’ +10(D = 1)(p - p')*p” +2(4 =3D)p - p'p"* + (D - 3)P’6}},
af) = p?pPKP{(D=2)(p* = p- p)(p - ') + PPt = DpPp - p' + (D =2)(p- p'] + pPp*}
+m*{(p-p'2Dp* + (6=5D)p?p - ' +2(D=2)(p- p')]
+p?[(D=3)p° + (6 =TD)p*p - p' +2(7D = 8)p*(p - p')* + (6 = 5D)(p - p')’]
P21 +D)p* + (6 =7TD)p*p - p' +2D(p - p')’] + (D - 3)p2p’6}
+ mz{—pz(p pV[D(p*=2p-p)+4p-p]

+ p?p-p'[(3=2D)p® + (9D = 10)p*p - p' = 12(D =2)p*(p- p')* +2(D =2)(p - p')’]

+ p*[(D+2)p®—6(D+1)p*p-p'+ (9D —10)p*(p- p')* = D(p- p')*] + p*p"°[(D +2)p* + (3 -2D)p - P’]}

—mR{p*[(D-1)p-p'=(D=2)p"] +p-p'[-Dp-p'+(D-1)p”]}.

(B8)

According to the identities (33)—(36), the remaining scalar integrals, J2 4, JP14, 724 and JP14, can be expressed as a

) 2o 3,00 Y1310 Y312 132>
linear combination of the others as

1 1 p12 +m2
Jiii [2]9/2 IS0+ JRoa = 2k pJ35 1 =0T = (PP = PPN

3,1,1 - Ak - pl Zp/Z 2,1,1
JD+4 _ 1 JD+2 ( 2 /Z)JD+2 2k /JD+4 1 ]D p2 + m2 JD
31T g [ Pm=P ) ian PJ221 227010 2 0.1
1 1
D+4 2 2
3~1+,2 - 4[)/2([72 T mz) —4p - p/(p/2 4 m2> [2[7/2 [(D —4)p/ - (D - Z)m ]‘I?,O.l - (D - Z)JOD,I,O}

—(p? = pH)IE T = (PP +mH) (DTS 4 2p - plIETS) + 2P (P + mz)Jé),le} ’

1 1
‘]lD,:-;'_,‘Z1 = 4P .p/<p2 4 m2) _4p2<p/2 +m2) |:2—]72{[(D _4)p2 - (D - 2)’nz]‘](?,l,] - (D - 2)JOD.],()}

(0 = PP S 2pP(p + AR 4 (pP 4 mE)(IPE 4 2p - pvs’,z@] .
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APPENDIX C: BALL-CHIU COEFFICIENTS
Using the results given in Egs. (40) and (41), the coefficients 4; in Eq. (42) read as

1
M ==(D=2) [2]?0‘1 +(p? - pz)J?L1 - ZJ?I% +@Bp*=2p-p' - p’z)Jfﬁ +@p-p - 4p2).l?3+"1‘

o

+2p-p = PP = pRIBE PP —dp - p +2p?) R 4 p - IR
I
5 (1= {2000, + (7 = p2P s+ 2m + p? 4+ pPVDIE + (2p - p' = P = pP)SE
+4(m’p* —mPp - p' = pp-p 4+ PPNV + (3% = pP = 2p - )R]
£ 22 p - pl =P+ PP p = mpR = 2p2pR 4 e pRYIBEE AP + 7 = pe pl) = mp - p)IRTA
i
2= {(D=2)(p2 = p2)ID1, + Bp> =2 p' = P2)IDLT +4(p - p' = PPV
+(p*+2p - p = 3p) 0+ (207 =275 + 4P = p - p)IRN ]
(1=9(p* = P"WP1s + (P2 = P)IVI2 + 2 p' = p? = p?)I05]
+4(mPp? —m’p - p' = pp-p + PPV + (PP = 2p - P+ PPN
£ 2 p? = pPp - pl = p o p ppP)BS A p = P+ P = pe )R}
m(D—1+¢)

== (P = PR 2 p = PR 2007 = p e P2

while the coefficients z; correspond to

o =20 pg- a8
e LG IR S R R
(1= U3 —20m> + PP = B3+ (02 = p)IB53 +20m2 4+ p2)I2
& :%{(Z_D)Uﬁu 2P I H IS+ (1 =9 P =IPT35
=2 PR+ (2 P PRS2 4 P,
e =020 i i),

p*=p
s =(4=-D)mJ?, | +m(1-¢) [J?,u =203 +2(p ' =PI+ (PP =2p - '+ PS5 +2(p b —p’z)Jﬁtﬂ,

1
=3 {(D-20P5E-203t =83 2081

2
2m(1-=¢)
= a2 P =PRI (0 = PRI+ 27 = pe )R],

G = (6= D)y~ S5 = I+ (1=8) (I, =3I 3 I AP 1D —ap pa - apnatd). (C2)

All these coefficients agree with the results presented in [7] after changing to its conventions, replacing 1 — &£ by ¢, and
using the expressions of Appendix B to rewrite the coefficients in terms of master integrals.
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