
Electroweak sphaleron in a magnetic field

Jaakko Annala * and Kari Rummukainen †

Department of Physics and Helsinki Institute of Physics, University of Helsinki,
PL 64 (Gustaf Hällströmin katu 2), Helsinki FI-00014, Finland

(Received 3 February 2023; accepted 5 April 2023; published 24 April 2023)

Using lattice simulations we calculate the rate of baryon number violating processes, the sphaleron rate,
in the Standard Model with an external (hyper)magnetic field for temperatures across the electroweak
crossover, focusing on the broken phase. Additionally, we compute the Higgs expectation value and the
pseudocritical temperature. The electroweak crossover shifts to lower temperatures with an increasing
external magnetic field, bringing the onset of the suppression of the baryon number violation with it. When
the hypermagnetic field reaches the magitude BY ≈ 2T2 the crossover temperature is reduced from 160 to
145 GeV. In the broken phase for small magnetic fields the rate behaves quadratically as a function of the
magnetic flux. For stronger magnetic fields the rate reaches a linear regime which lasts until the field gets
strong enough to restore the electroweak symmetry where the symmetric phase rate is reached.
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I. INTRODUCTION

The results from the ATLAS and CMS experiments at
the LHC are in complete agreement with the Standard
Model of particle physics: a Higgs boson with a mass of
≈125 GeV has been discovered [1,2], and no evidence of
beyond-the-Standard-Model physics has been observed. If
the electroweak-scale physics is fully described by the
Standard Model, then the electroweak symmetry breaking
transition in the early Universe was a smooth crossover
from the symmetric phase at T > Tc, where the expectation
value of the Higgs field was approximately zero, to the
broken phase at T < Tc where it is finite, reaching the value
246=

ffiffiffi
2

p
GeV at zero temperature.

The infrared problems inherent in high-temperature
gauge theories [3,4] make the physics nonperturbative.
The overall nature of the transition was resolved already in
the 1990s using lattice simulations [5–8], which indicated
that the transition is first order with Higgs masses
≲72 GeV, and crossover otherwise. More recently, the
precise thermodynamics of the crossover at the physical
Higgs mass was analyzed in Ref. [9] (see also [10]), and
e.g. the crossover temperature was determined to be
Tc ¼ 159.6� 1.5 GeV.

The chiral anomaly of the electroweak interactions lead
to the non-conservation of the baryon and the lepton
number [11]. In electroweak baryogenesis scenarios [12,13]
the baryon number of the Universe arises through processes
at a first order electroweak phase transition, and a smooth
crossover makes these ineffective. Thus, in electroweak
baryogenesis the origin of the baryon asymmetry must be
due to beyond-the-Standard-Model physics (for reviews,
see e.g. [14,15]).
The Chern-Simons (CS) number for weak SU(2) gauge

is defined as

NW
CSðtÞ≡ g2

32π2

Z
t

0

dt
Z

d3xϵαβγδTrFαβFγδ; ð1Þ

where Fαβ is the field strength tensor of SU(2), g is the
SU(2) gauge coupling and ϵαβγδ is the totally antisymmetric
tensor. Analogous to SU(2), the hypercharge U(1) CS
number is given by

NY
CSðtÞ≡ g02

32π2

Z
t

0

dt
Z

d3xϵαβγδBαβBγδ; ð2Þ

where g0 is the hypercharge gauge coupling. The chiral
anomaly couples the baryon and lepton numbers to the
change in the Chern-Simons numbers as

ΔB ¼ ΔL ¼ 3ΔNCS; ð3Þ

where

NCSðtÞ≡ NW
CSðtÞ − NY

CSðtÞ: ð4Þ

*jaakko.annala@helsinki.fi
†kari.rummukainen@helsinki.fi

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 073006 (2023)
Editors' Suggestion

2470-0010=2023=107(7)=073006(15) 073006-1 Published by the American Physical Society

https://orcid.org/0000-0002-1967-2398
https://orcid.org/0000-0003-2266-4716
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.073006&domain=pdf&date_stamp=2023-04-24
https://doi.org/10.1103/PhysRevD.107.073006
https://doi.org/10.1103/PhysRevD.107.073006
https://doi.org/10.1103/PhysRevD.107.073006
https://doi.org/10.1103/PhysRevD.107.073006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


For SU(2), the Chern-Simons number is topological, and
there exists infinitely many classically equivalent but
topologically distinct vacua that cannot be continuously
transformed into one another without crossing an energy
barrier. The sphaleron is a saddle point finite energy
solution of the classical field equations separating two
topologically distinct vacua [16,17]. The CS number is an
integer for vacuum field configurations and a half integer
NW

CS ¼ 1
2
þ n; n ∈ Z for sphaleron configurations [17].

In contrast, the U(1) field has trivial topology and
without an external (hyper)magnetic field its CS number
in vacuum vanishes. However, in an external magnetic field
the vacuum is degenerate with respect to the U(1) CS
number which can obtain any value in contrast to the SU(2)
case where it is an integer [18,19]. This can lead to baryon
and lepton number change on its own [18–23].
Close to thermal equilibrium the evolution of the CS

number is diffusive and is described by a diffusion constant
known as the sphaleron rate

Γ ¼ lim
V;t→∞

hNCSðtÞ2i
Vt

: ð5Þ

In the absence of hypermagnetic fields the contribution of
the U(1) can be neglected due to it having little effect on
the form of the phase transition [5,9,24] and the spha-
leron rate [17,25–27]. In this framework the sphaleron
rate has been studied extensively with analytical and
numerical lattice methods. The general behavior is that
in the broken phase the rate is suppressed by the energy of
the sphaleron Γbrk ∼ α4WT

4e−Esph=T [28,29] and in the
symmetric phase the rate is unsuppressed behaving as
Γsym ∼ lnð1=αWÞα5WT4 [30–35], where αW ¼ g2=ð4πÞ. In
the Standard Model with the physical Higgs mass the
sphaleron rate was recently measured using lattice simu-
lations across the crossover from the symmetric phase to
deep in the broken phase [36]. The temperature where the
transitions decouple, i.e. the baryon number freezes, was
found to be ≈132 GeV, substantially below the crossover
temperature ≈160 GeV.
The presence of a U(1) hypercharge magnetic field can

affect both the thermodynamics of the crossover and the
sphaleron rate. Large scale magnetic fields exist in the
Universe which may have primordial origin, see e.g.
reviews [37,38]. Primordial magnetic fields could have
been generated before the electroweak transition corre-
sponding to hypermagnetic fields before the transition
which turn into the Uð1Þem magnetic fields after the
transition. The magnitude of such fields are largely uncon-
strained [39]. However, see [40] for recent stronger con-
straints at larger scales.
When the U(1) is taken into account the spherical

symmetry of the sphaleron reduces to axial symmetry and
the sphaleron has a magnetic dipole moment. (It has been
shown to be formed frommagnetic monopole-antimonopole

pair and a loop of electric current [41].) Thus the minimum
energy of the sphaleron can be lowered by an external
magnetic field. In a small external field analytical estimates
give a simple dipole interactionΔEsph ¼ −B⃗ext · μ⃗sph [42]. In
addition the form of the phase transition is modified by an
external magnetic field [43] which has an effect on the
sphaleron rate through the transition.
At zero temperature the classical sphaleron energy has

been computed on the lattice for a wide range of magnetic
field values [44]. The situation is complicated by the
appearance of Ambjorn-Olesen phase for large magnetic
field values. At a critical field value Bc1 ¼ m2

W=e the
ground state becomes a nontrivial vortex structure and at a
second critical value Bc2 ¼ m2

H=e the electroweak sym-
metry is restored [45–48]. The sphaleron energy is found to
decrease until at the second critical field value when the
symmetry is restored the energy vanishes [44]. At finite
temperature around the electroweak scale previous studies
have not been able to find the aforementioned vortex
phase [43].
Elaborate methods have been developed to compute the

sphaleron rate on the lattice accurately [29,49–51]. We
employ the dimensionally reduced effective theory of the
Standard Model and perform the first dynamical simula-
tions of the sphaleron rate which includes the U(1) field and
compute the sphaleron rate for different magnitudes for the
external hypermagnetic field over the electroweak cross-
over with focusing on the behavior in the broken phase.
The structure of the paper is as follows. In Sec. II we

describe the effective theory and its lattice formulation that
we will use in our simulations. In Sec. III the methods used
to measure the sphaleron rate from the lattice is described.
In Sec. IV we present the results and finally in Sec. V we
conclude.

II. EFFECTIVE THREE-DIMENSIONAL THEORY

In our simulations we use dimensionally reduced three-
dimensional effective theory of the Standard Model. The
method of dimensional reduction is made possible due to
the fact that in finite temperature the fields are naturally
expressed in terms of three-dimensional Matsubara modes
having thermal masses around πT. This and the fact that
Standard Model couplings are sufficiently small around the
electroweak scale gives rise to a parametric hierarchy of
scales in the Euclidean path integral πT, gT, g2T, called
superheavy, heavy and light scales, respectively. This
allows us to integrate out the superheavy and heavy modes
by well defined perturbative methods. All the fermionic
modes are integrated out since their Matsubara frequencies
ωf ¼ ð2nþ 1ÞπT are all proportional to πT. In addition all
temporal bosonic modes ωb ¼ 2πnT, n ≠ 0 are also
integrated out. Thus we are left with a 3D purely bosonic
effective theory with the soft scales g2T. The soft scales
have to be studied regardless with nonperturbative methods
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due to the infrared problem in thermodynamics of Yang-
Mills fields [52]. The resulting (super-)renormalizable
Lagrangian reads

L ¼ 1

4
TrFijFij þ

1

4
BijBij

þ ðDiϕÞ†Diϕþm2
3ϕ

†ϕþ λ3ðϕ†ϕÞ2; ð6Þ

where

Fij ¼ ∂iAj − ∂jAi − g3½Ai; Aj�; Ai ¼
1

2
σaAa

i ;

Bij ¼ ∂iBj − ∂jBi;

Di ¼ ∂i þ ig3Ai þ ig03Bi=2: ð7Þ

Here Ai,Bi are the 3D SU(2) and U(1) gauge fields; g3, g03
are the dimensionful SU(2) and U(1) couplings and ϕ is a
complex scalar doublet.
The dimensionful parameters of the 3D theory

g3; g03; λ3; m
2
3 are mapped to Standard Model parameters

αS, GF, mH, mW , mZ, mt and the temperature T via a
perturbatively computable functions. All the details of the
construction of the effective 3D theory and the mapping
of parameters can be found in Refs. [53–55]. The accuracy
of the 3D effective theory has been estimated to be
∼1% [53–57].
We choose the SU(2) coupling g23 to set the scale and use

a set of dimensionless couplings defined by

x≡ λ3
g23

; y≡m2
3

g43
; z≡ g023

g23
: ð8Þ

The three parameters and the scale are plotted in Fig. 1 in
the relevant temperature range (a code for computing these
parameters can be found in zenodo [58]). As seen from the
plot only the parameter y varies significantly over temper-
ature and it is the natural choice for the temperature variable
of the system. In [9] the crossover temperature (defined as
the peak of the susceptibility of the Higgs condensate) was
found to be few GeV below the temperature where y ¼ 0.
We find y ¼ 0 at T ¼ 162.9 GeV, which is slightly differ-
ent from [9] due to using an updated value for the top mass.

A. Lattice action

The 3D effective theory in purely bosonic and straight-
forward to put on the lattice. For convenience we write the
Higgs field as

Φ ¼ 1

g23
ððϕ̃ÞðϕÞÞ≡ 1

g23

�
ϕ�
2 ϕ1

−ϕ�
1 ϕ2

�
; ð9Þ

which transforms under the SUð2Þ × Uð1Þ gauge trans-
formation as

ΦðxÞ → GðxÞΦe−iθðxÞσ3 ; ð10Þ

where σ3 is the third Pauli matrix and GðxÞ is an element of
SU(2). Now the lattice action that corresponds to the
continuum theory (6) can be written as

S ¼ βG
X
x

X
i<j

�
1 −

1

2
TrPij

�
þ βY

X
x

X
i<j

1

2
α2ij

− βH
X
x

X
i

1

2
TrΦ†ðxÞUiðxÞΦðxþ iÞe−iαiðxÞσ3

þ β2
X
x

1

2
TrΦ†ðxÞΦðxÞ þ β4

X
x

�
1

2
TrΦ†ðxÞΦðxÞ

�
2

;

ð11Þ

where

PijðxÞ ¼ UiðxÞUjðxþ îÞU†
i ðxþ ĵÞU†

jðxÞ; ð12Þ

αijðxÞ ¼ αiðxÞ þ αjðxþ îÞ − αiðxþ ĵÞ − αjðxÞ: ð13Þ

Here UiðxÞ; αiðxÞ are the SU(2) and noncompact U(1) link
variables, respectively, and Pij; αij are their corresponding
plaquettes. The lattice parameters βG; βY; βH; β2; β4 are

FIG. 1. The temperature dependence of the dimensionless
effective 3D theory parameters using the Standard model para-
meters GF ¼ 1.1663788 × 10−5 GeV−2, mH ¼ 125.25 GeV,
mZ ¼ 91.1876 GeV, mW ¼ 80.377 GeV, mt ¼ 172.69 GeV,
αS ¼ 0.1179 [59].
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related to the continuum parameters by perturbatively
computable functions computed in [60]. In addition we
employ the partial OðaÞ improvements on these rela-
tions [61,62]. Notably, βG ¼ 4=ðg23aÞ þ 0.6674… with a
being the lattice spacing. Rest of the lengthy relations can
be found in Appendix A.
Now the lattice observable h1

2
TrΦ†Φi is related to the

MS renormalized 3D continuum value hϕ†ϕi by [60]

hϕ†ϕi
g23

¼ ZgZm

��
1

2
TrΦ†Φ

�
−
ΣβG
8π

−
3þ z̄
16π2

ðlogð3βG=2Þ þ 0.6679…Þ
�
; ð14Þ

where Zg, Zm and z̄ are defined in Appendix A. Finally, the
3D expectation value is related to the physical SM Higgs
expectation value v as

v2=T2 ¼ 2hϕ†ϕi=T: ð15Þ

B. Hypermagnetic field on the lattice

A flux of magnetic field perpendicular to the x3 axis,

g03ΦB ¼
Z

dx1dx2B12ðxÞ; ð16Þ

can be imposed to the lattice by modifying the periodic
boundary conditions of the U(1) link variables αi [43].
Requiring the action to be periodic quantizes the total
flux g03ΦB=2 ¼ 2πnb, nb ∈ N. Without this restriction
there would be boundary defects and the translational
invariance would be lost. One possible way to add a flux
of magnitude g03ΦB=2 ¼ 2πnb is by modifying the boun-
dary conditions as

α1ðn1; 0; n3Þ − α1ðn1; L2; n3Þ ¼ 2πnbδn1;1; ð17Þ

for each n3 in a lattice with extent L1L2L3. We define a
dimensionless parameter describing the average magnetic
flux density as

b≡ g03B
3D
Y

g43
¼ 4πnb

L1L2

�
1

g23a

�
2

; ð18Þ

where B3D
Y ≡ΦB=ðL1L2Þ is the magnetic flux density

which is related to the four-dimensional density as
B3D
Y ≃ B4D

Y =
ffiffiffiffi
T

p þOðg02Þ. The dimensionless parameter
then relates to the 4D flux approximately as B4D

Y ¼
ðg0=g4ÞbT2 þOðg03Þ. We cannot use the effective 3D
theory to simulate arbitrarily large magnetic fields due to
the external magnetic field affecting higher dimensional
operators invalidating the effective theory, so we require
b ≪ 2π2 [43].

III. MEASURING THE SPHALERON RATE

A. Real time evolution

In itself the effective 3D theory (6) does not describe
dynamical phenomena, such as the sphaleron process. As
shown by Arnold, Son and Yaffe [30], the classical
equations of motion suffer from ultraviolet divergences
which prevent taking the continuum limit on the lattice.
However, in SU(2) gauge theory the dynamics of the soft

modes (k≲ g2T), which are relevant for sphaleron tran-
sitions, are fully overdamped and to leading logarithmic
accuracy 1= lnð1=gÞ the evolution can be described by
Langevin equation with Gaussian noise ξai (in A0 ¼ 0

gauge) [31,32,49,63]:

∂tAi ¼ −
1

σel

∂H
∂Ai

þ ξai ; ð19Þ

hξai ðx; tÞξbj ðy; t0Þi ¼ 2σelTδijδabδ3ðx − yÞδðt − t0Þ; ð20Þ

where H=T ¼ S with S defined in (11). Here σel ≃
0.9239T [64] is the non-Abelian color conductivity
of SU(2).
It can be shown that any diffusive field update algorithm,

for example the heat bath update, is equivalent to Langevin
evolution [33]. This is advantageous because heat bath
update is computationally much more efficient. The
Langevin time t for SU(2) can be related to performing
n full random order heat bath update sweeps as Δt ¼
1
4
σela2n and the leading corrections are observed to be

small [33,65]. The heat bath approach enables us to take a
well-defined continuum limit on the lattice.
The Higgs field evolves parametrically much faster than

the SU(2) gauge field [65]. Thus, the Higgs field almost
equilibrates in the background of the instantaneous SU(2)
field. This can be achieved by updating the Higgs field
much more often than the SU(2) field. We use a mixture of
overrelaxation and heat bath updates, see [66] for details of
the algorithms used. We increased the number of Higgs
updates until the lattice observables of interest stayed
constant resulting to around 50 more Higgs updates per
gauge field update (similarly as in [67]).
Finally, in the broken phase the U(1) field also evolves

faster than the SU(2) gauge field for wavelengths relevant
for sphaleron transitions. The size of the sphalerons
∼ðg2TÞ−1 is given by the SU(2) dynamics. Because the
U(1) gauge coupling g02 is much smaller than the SU(2)
coupling g2, the U(1) modes with wavelength λ ∼ ðg2TÞ−1
behave as weakly coupled nondamped modes evolving
with timescale τ ≈ λ. This is in contrast to the overdamped
SU(2) evolution with timescale ∝ ðλ2Þ. Thus, on the lattice,
the sphaleron rate should be independent of the U(1) update
rate provided it is frequent enough in comparison with the
SU(2) updates. Indeed, we have tested this behavior with a
few simulations with different heat bath update frequencies
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for the U(1) field and found no significant effect to the
sphaleron rate, as seen from Fig. 2. In our final analysis we
use equal update frequency for SU(2) and U(1) fields.
We note that in the broken phase the magnetic field

remains unscreened and very long-range magnetic fields
evolve very slowly in comparison with other fields (mag-
netohydrodynamics). These modes have very small effect
on the sphalerons, and indeed if there is no external (hyper)
magnetic field the contribution from the U(1) sector is
usually ignored [29,36,51].
In the symmetric phase the SU(2) and U(1) Chern-

Simons numbers are effectively decoupled and evolve
independently. The U(1) Chern-Simons number is not
topological, and there is no characteristic length scale
for its evolution when the external magnetic field is present.
It is not clear how to accurately capture the full quantum
dynamics in numerical lattice simulations in this case.
However, this is not a problem for the analysis of the
sphaleron rate in the broken phase, and, as will be discussed
in Sec. IV, the effect of the U(1) remains subleading in
comparison with the SU(2) rate in the symmetric phase.

B. Calibrated cooling

Topology is not well defined on a discrete lattice, and a
naive discretization of the CS number leads to ultraviolet
noise which ruins the sphaleron rate measurement.
However, for sufficiently fine lattice spacing the sphaleron
is large in lattice units with a length scale of order
1=ðg2TÞ [34]. This makes it possible to use methods which
filter out the ultraviolet noise and allows us to accurately
integrate the CS number. One of these methods is the
calibrated cooling [29,68], which we employ here with the
modification that we use gradient flow for all fields and
integrate both the SU(2) and the U(1) CS numbers.
Crucially, in the broken phase we track the difference of
the CS numbers (4). Periodically we cool all the way to the

vacuum and check that the vacuum-to-vacuum integration
result is close to an integer and remove any residuals in
order to avoid the accumulation of errors.
Parametrizing the SU(2) links asUiðxÞ¼exp½iθai ðxÞσa=2�

the gradient flow can be written as

∂UiðxÞ
∂τ

¼ −i
σa

2
UiðxÞ

∂S
∂θaðxÞ ; ð21Þ

∂αiðxÞ
∂τ

¼ −
∂S

∂αiðxÞ
; ð22Þ

∂ΦðxÞ
∂τ

¼ −
∂S

∂ΦðxÞ ; ð23Þ

where τ is the flow time. Evolving the fieldswith the gradient
flow equations removes ultraviolet fluctuations smoothing
the fields with a smoothing radius related to the flow time by
r ¼ ffiffiffiffiffi

6τ
p

a in three dimensions [69].
With these methods we can integrate the CS number

accurately from a real time trajectory generated by heat
bath updates. In the symmetric phase the SU(2) CS number
diffuses rapidly between vacua. In the broken phase the
SU(2) and U(1) gauge fields mix and the diffusion of the
difference of the Chern-Simons numbers,NCS¼NW

CS−NY
CS,

slows down dramatically, jumping between integer values.
This can be seen in Fig. 3, where the CS number is
measured somewhat below the crossover temperature.
Interestingly, the SU(2) and U(1) Chern-Simons numbers
are not suppressed individually, only their difference is.
This is precisely the quantity which couples to the baryon
and lepton number.

FIG. 2. Comparing the obtained sphaleron rate with different
U(1) update frequencies. On the y axis the ratio of U(1) updates
per SU(2) update. The dependence is observed to be negligible
with our statistical accuracy.

FIG. 3. Real time CS trajectory in the broken phase at T ¼
153 GeV in an external magnetic field b ¼ 0.196. SU(2) NCS
trajectory (yellow), U(1) NCS trajectory (red) and their difference
(blue). It is clear that the difference becomes frozen at low
temperatures.
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Finally, from the real time trajectory we can compute
the sphaleron rate. We use the cosine transform method
described in [70].

C. Multicanonical method

Near the crossover temperaturewemeasure the sphaleron
rate using the real-time simulationmethods discussed above,
but deep in the broken phase the rate gets strongly sup-
pressed and normal methods become impractical. At any
reasonable amount of simulation time only few transitions
take place, if any. Thus in the broken phase we have to use
special multicanonical methods to compute the rate. Details
of the method can be found in [29,51,65]. The computation
consists of two parts. The multicanonical method is used to
measure the probabilistic suppression of the sphaleron at the
height of the potential barrier, i.e. the NCS distribution
between two integer vacua PðNCSÞ. In a nonzero magnetic
field we need to use theNCS given by (4) so that in a vacuum
it is an integer. Dynamical simulations are performed to
compute the rate of tunneling over the top of the barrier. The
tunneling rate is computed by measuring jΔNCS=Δtj from
dynamical simulations when the trajectory crosses the
sphaleron barrier NCS ¼ 1

2
. This needs to be compensated

by a dynamical prefactor d¼P
trajδtunnel=ðNcrossNtrajÞwhere

δtunnel ¼ 0 if the trajectory does not get to a new vacuum and
δtunnel ¼ 1 if it does, and Ncross is the number of times NCS
crosses the barrier. This is needed due to the fact that the
dissipative update is noisy, which can result in multiple
crossing of the barrier in a one trajectory. With these
ingredients the sphaleron rate is given by

Γ ¼ PðjNCS − 1
2
j < ϵ

2
Þ

ϵV

�				ΔNCS

Δt

				
�
d; ð24Þ

where ϵ ≪ 1 (we used ϵ ¼ 0.04).

IV. RESULTS

We investigated the lattice spacing dependence of the
sphaleron rate with an external hypermagnetic field for a
few temperatures in the symmetric and broken phase. The
parameters were chosen such that the external magnetic
field had the same value, see Table I.

In the symmetric phase and close to the crossover in the
broken phase the lattice spacing dependence on the
sphaleron rate is small, see the top most plot in Fig. 4.
This is similar to what was observed in previous studies
without U(1) [51].
In the broken phase for large lattice size and small lattice

spacing even the multicanonical method becomes very
inefficient, making the measurement of the Chern-Simons
number evolution impractical at large lattices. This prevents
us from obtaining sufficient range in lattice spacings for a
reliable continuum limit deep in the broken phase.
Nevertheless, our limited results show only a mild lattice
spacing dependence, as shown in Fig. 4. In the following
most of our results have been obtained at single lattice
spacing g23a ¼ 1=2.
Similar inefficiency was noted in previous works where

the U(1) field was omitted [51]. In our case the problem
appears to be worse, presumably due to the additional noise
of the combined SU(2) and U(1) Chern-Simons number
observable.
We investigated the finite volume effects on the spha-

leron rate in an external magnetic field with b ¼ 0.196 for a
few different volumes L3a3 with L ¼ 8=g23; 13.9=g

2
3; 16=g

2
3.

The chosen temperatures were in the symmetric and in the
broken phase near the crossover so that we could still use
nonmulticanonical simulations. Similar to the previous
studies we do not observe systematic volume dependence
above L ¼ 8=g23. In pure SU(2) theory it was found that
L ¼ 8=g23 is close to the smallest volume where the finite
size effects are negligible [34].
Due to the small observed lattice spacing dependence

and no significant finite size effects at L ¼ 8=g23, we
present the results for the lattice parameters g23a ¼ 1=2,

TABLE I. Lattice spacings, volumes, magnetic flux and mag-
nitude of the external magnetic field used when investigating the
lattice spacing dependence.

4=ðag23Þ V=a3 nb b

5.6 163 2 0.196
8 163 1 0.196
10 203 1 0.196
12 243 1 0.196

FIG. 4. Sphaleron rate with few different lattice spacings
4=ðag23Þ ¼ 5.6, 8, 10, 12 in an external magnetic field
b ¼ 0.196, see Table I. Top most plot at T ¼ 157 GeV close
to the crossover using a normal simulation. Bottom plot at
T ¼ 150 GeV deep in the broken phase with multicanonical
simulation. Both showing a linear and constant fits.
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V ¼ 163a3 when deep in the broken phase where we need
to use the multicanonical simulations. With these param-
eters the lattice is still small enough for us to get reliable
measurements of the CS number. This enables us to get
good statistics with reasonable computational effort. Due to
the magnetic field flux being quantized as (18) the flux
quanta are quite large for small volumes and we can only
obtain a few different values of the magnetic flux for the
multicanonical simulations. Thus in addition we present
results for the lattice parameters g23a ¼ 1=2, V ¼ 323a3

using nonmulticanonical simulations as deep as possible in
to the broken phase.
For all nonmulticanonical runs we simulated 2 × 106

time steps; and for all multicanonical simulations we
generated 12 × 103 trajectories and generated ∼3 × 106

realizations to estimate the CS number distribution PðNCSÞ.

A. Zero magnetic field

Let us first present the results for zero external magnetic
field since we find slightly different results as in previous
works. We measure the sphaleron rate from simulations
with and without the dynamical hypercharge U(1) field. We
do not observe any systematic difference between the
results, see Fig. 5. This justifies the omission of the
U(1) field when there is no external magnetic field, as
done e.g. in [36]. Below we discuss results with the U(1)
field included.
The Higgs field expectation value is observed to be very

close to the perturbative result [10,66] even without taking
a continuum limit, see b ¼ 0 points in Fig. 6. For the Higgs
expectation value it is straightforward to check the con-
tinuum limit because the Chern-Simons number measure-
ment can be omitted. We measured the Higgs expectation

value on lattice spacings g23a ¼ 1=2, 1=3 and 1=4 on a few
temperature values and found the continuum limit to match
the perturbative result.
In the symmetric phase the measured sphaleron rate is

approximately constant, with the value

Γsym=T4 ¼ ð6.23� 0.05Þ × 10−7 ≈ ð13.9� 0.1Þα5W; ð25Þ

with αW ≈ 0.03389 at the electroweak scale.1 In the broken
phase the rate is well fitted by a pure exponential and we
obtain

lnðΓbrk=T4Þ¼ð0.86�0.01ÞT=GeV−ð153.1�0.9Þ: ð26Þ

Using the linear fit we can estimate when the sphaleron
processes freeze out. This happens when the Hubble
rate HðTÞ becomes comparable to the sphaleron rate
ΓðT�Þ=T3� ¼ αðv=T�ÞHðT�Þ. The function αðv=T�Þ (where
v is the Higgs expectation value) is well approximated by a
constant α ¼ 0.1015 in the relevant temperature range.
Furthermore, HðTÞ2 ¼ g�π2T2=ð90M2

PlÞ where the effec-
tive number of degrees of freedom is well approximated by
g� ¼ 106.75 over the electroweak scale. The Hubble rate is
seen in Fig. 5 as the green line. With these we find the
freeze-out temperature T� ¼ 133.5� 0.97 GeV.
The freeze-out temperature is slightly higher than the

value obtained in Ref. [36]. The differences are due to using
FIG. 5. Sphaleron rate in the absence of the external magnetic
field in theories with and without the U(1) field. Data points
marked with squares are obtained using the multicanonical
method. Fits are performed using the data that include U(1).
The perturbative line is from [71] with their nonperturbative
correction removed.

FIG. 6. Higgs expectation value with different values for the
magnetic field, with V ¼ 323a3. The lines are added for clarity,
they are not fits. The expectation value becomes negative in the
symmetric phase due to additive renormalization factors, see (14).
The gray contours are the zero magnetic field symmetric [10] and
broken phase [66] perturbative results.

1The numerical factor in front of α5W includes contributions
from logarithmic factors ln αW [31]. This form is presented for
easier comparisons with earlier work.
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an updated value for the top mass and the fact that the
previous simulations did not fully implement the partial
OðaÞ improvement of the lattice parameters (see
Appendix A). Because neither of the computations have
been able to obtain a reliable continuum limit, the lack of
improvement has an effect on the final results.2

The main effect of both the improvement and the
updated top mass is to effectively reduce the parameter
y. The new top mass changes y by an approximately
constant shift 0.02, whereas the partial OðaÞ improvement
modifies y in a temperature-dependent manner, so that
close to the pseudocritical temperature at T ≈ 160 GeV the
effect is small but at T ∼ 140 GeV it reduces y by ∼0.09.
The net effect is that the sphaleron rate at b ¼ 0, Fig. 5,
reaches a given value at slightly higher temperatures than in
Ref. [36]: for example, the almost-symmetric phase value
lnΓ=T4 ¼ −16 is reached at T ¼ 158.8 GeV in [36] and
we obtain T ¼ 159.4 GeV here. Deep in the broken phase
the shift is slightly larger, value lnΓ=T4 ¼ −30 is obtained
at T ¼ 141.9 GeV and T ¼ 143.1 GeV, in [36] and here,
respectively. This difference is well within estimated
systematic errors.

B. Nonzero magnetic field

Let us now look at the results for nonzero external
magnetic field. We ran simulations with g23a ¼ 1=2 and
volume V ¼ 163a3 with magnetic flux quantum nb ¼ 0, 1,
2, 3, 4 yielding b in range from b ¼ 0 to 0.785 with a step of
Δb ¼ 0.196. To get a smaller step size for bwe additionally
performed simulations with g23a ¼ 1=2 and volume V ¼
323a3 (without multicanonical simulations due to problems
discussed above) with magnetic flux quantum nb ¼ 0, 1, 2,
3, 4 and 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 yielding a range
b ¼ 0 to 1.178 with Δb ¼ 0.049.
The form of the electroweak crossover is changed by the

external magnetic field. This can be clearly seen from
plotting the Higgs expectation value against the temper-
ature with different magnitudes for the magnetic field, see
Fig. 6. The crossover temperature can be seen to shift to
smaller temperatures. To get a better picture on the effect of
the magnetic field on the crossover let us look at the
susceptibility of the Higgs field. We define the crossover or
pseudocritical temperature Tc as the location of the
maximum in the dimensionless susceptibility

χϕ†ϕðTÞ ¼ VTh½ðϕ†ϕÞV − hϕ†ϕi�2i; ð27Þ

where ðϕ†ϕÞV ¼ 1=V
R
V ϕ

†ϕ is the volume average. We
use the interpolating function defined in [9] to estimate the
location of the peak. The susceptibility with different
magnitudes of the magnetic field are shown in Fig. 7.

From this we clearly see that the pseudocritical temperature
is shifted to smaller temperatures and the crossover region
gets wider in the sense of widening the peak of the
susceptibility. The pseudocritical temperature against the
magnitude of the magnetic field can be seen in Fig. 8. With
small field magnitudes it behaves quadratically after which
it quickly reaches linear regime. At b ¼ 1 (B4D

Y ≈ 2T2) the
crossover temperature has decreased from 160 down to
145 GeV.
Let us finally look at how the sphaleron rate is affected

by a nonzero external magnetic field.
We measure the SU(2) and U(1) diffusion rates sepa-

rately, and in Fig. 9 we show an example of the behavior of
the rates through the crossover at b ¼ 0.884. The U(1)
diffusion rate ΓY=T4 is seen to stay constant through the
transition. In the high-temperature symmetric phase NW

CS
and NY

CS evolve independently, and the evolution of

FIG. 7. The dimensionless susceptibility with different magni-
tudes for the magnetic field, with V ¼ 323a3. The lines are from
fitting the interpolating function (defined in [9]) to the data.

FIG. 8. Pseudocritical temperature against the magnitude of the
magnetic field.

2We note that the analysis of the thermodynamics of the
Standard Model crossover in Ref. [9] implements the continuum
limit, but the sphaleron rate is not measured.
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NW
CS − NY

CS (with rate Γ=T4) is slightly faster than the
evolution of each of the components alone. In the broken
phase the Chern-Simons numbers are strongly correlated,
and the pure SU(2) rate ΓW is no longer strongly suppressed
but reaches a plateau at small temperatures. Only the
physically relevant combination NW

CS − NY
CS becomes fro-

zen. The dashed vertical line at T ¼ 145 GeV in Fig. 9 is
the point where the measured rate matches the one from the
pure SU(2) case. This is seen to happen systematically
around 2 GeV below the pseudocritical temperature regard-
less of the magnitude of the magnetic flux b.
The full diffusion rate (4) is plotted against the temper-

ature for different values of the magnetic field in Fig. 10.
(For clarity, we do not plot all values of b that were
simulated.) In the symmetric phase the SU(2) sphaleron
rate is unaffected by the presence of the external magnetic
field and the data is compatible with the b ¼ 0 case in
Eq. (25). However, the U(1) rate increases with increasing
b, and so does the physically relevant Γ. This is discussed in
more detail below.
In the broken phase for small field values the slope at

which the rate drops is compatible with the slope obtained
from the b ¼ 0 fit. For larger magnetic field values we do
not have enough data to verify this with confidence, but as
shown in Fig. 10 the suppression of the rate continues to
drop at approximately the same rate as at b ¼ 0, only the
temperature is shifted to lower values. The shift in temper-
ature is roughly according to the shift in the pseudocritical
temperature, as seen in Fig. 8. For the largest magnetic field
we simulate, b ¼ 1.178 (B4D

Y =T2 ≈ 2.3) the sphaleron rate
suppression is shifted approximately to 22 GeV lower
temperatures from the b ¼ 0 case.
The change in the sphaleron rate when the external field

is increased can be understood to arise from two effects: the
Higgs field expectation value decreases, and the sphaleron

interacts with the field through its magnetic dipole
moments. Both of these effects reduce the sphaleron
barrier. To isolate the effects arising from the sphaleron
dipole moment from the effects of changing Higgs expect-
ation value we plot the sphaleron rate against the Higgs
expectation value in Fig. 11. It can be observed that at
larger magnetic field values the Higgs expectation value
can become quite large before the onset of the suppression
of the rate.

FIG. 9. Example of diffusion rates of the pure SU(2) CS
number, pure U(1) CS number and their difference (4) for
magnetic field magnitude b ¼ 0.884. Black dotted vertical line
is the pseudocritical temperature.

FIG. 10. Sphaleron rate against temperature. Circle data points
are from V ¼ 323a3, diamond data points from V ¼ 163a3 and
square data points from multicanonical simulations. Gray dotted
lines have the same slope as the fit of b ¼ 0 (black) and are
shifted according to the shift of the pseudocritical temperature
seen in Fig. 8. Black horizontal line is the b ¼ 0 symmetric
rate fit.

FIG. 11. Sphaleron rate against the Higgs expectation value.
The Higgs expectation value can get quite large before the rate
gets suppressed.
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Finally, in Fig. 12 we show how the sphaleron rate
depends on the magnetic field at constant Higgs expect-
ation value. This enables the comparison with the semi-
analytical results in Ref. [42], where the change in the
Higgs expectation value was neglected. The rates at
constant Higgs expectation value are obtained by interpo-
lating the data shown in Fig. 11. For small field values the
rate behaves quadratically until around b ≃ 0.2 it reaches a
linear regime. The linear regime ends when the field gets
strong enough to start restoring the electroweak symmetry
where the rate eventually reaches the b ¼ 0 SU(2) sym-
metric phase value (25), see left plot in Fig. 12.
Qualitatively similar behavior is seen when plotting

the sphaleron rate with constant temperature, see Fig. 13.

At small magnetic fields the change in lnΓ is proportional
to b2, turning into approximately linear behavior at
intermediate b until finally reaching the symmetric phase
value where the rate flattens to constant. Comparing Figs. 6
and 11, we can observe that the “restoration” of the rate
happens before the Higgs field is fully restored.
To compare the simulation results to a semianalytical

estimate we did the analysis presented in Ref. [42] (where
they used nonphysical Higgs mass) but now with Standard
Model parameters. Details of the computation can be found
in Appendix B. From the analytical computation we get the
sphaleron energy as a function of the external magnetic
field. Assuming that for small fields the change in energy is
due to a simple dipole interaction ΔE ¼ −μ⃗sph · B⃗

4D
c and

FIG. 12. Left: the rate with constant Higgs expectation value. Vertical dotted line corresponds to the magnetic field value where the
expectation value hϕ†ϕi=T ¼ 0.21 is obtained at the pseudo critical temperature (i.e. to the right of the line we are getting in to the
symmetric phase). The horizontal gray line is the symmetric b ¼ 0 sphaleron rate (25). Right: comparing the difference of the rate
Δ lnΓ=T4 from simulations (black) to the analytical estimate (orange). We also plot the energy difference of the sphaleron configuration
(blue) obtained from the analytical computation, see Appendix B.

FIG. 13. How the rate changes with the magnitude of the magnetic field with constant temperature T ¼ 144 GeV on the left and
T ¼ 155 GeV on the right. The vertical dotted line is the value of b where the constant temperature of the plot is the pseudocritical
temperature. The horizontal gray line is the symmetric b ¼ 0 sphaleron rate (25).
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that the change to the rate Δ lnΓ=T4 ≡ lnΓðbÞ=T4 −
lnΓðb ¼ 0Þ=T4 is purely due to the change in energy,
the change in the rate is approximately

Δ lnΓ=T4 ∼ ln

�
sinhðΔE=TÞ

ΔE=T

�
: ð28Þ

In Ref. [42] it was assumed that the change in lnΓ is
directly proportional to the change of the minimum energy
for the sphaleron, i.e. Δ lnΓ=T4 ∝ ΔE=T. Our result in
Eq. (28) takes into account the random orientations of the
magnetic dipoles at finite T. At small fields Eq. (28) gives
Δ lnΓ=T4 ∼ ðΔE=TÞ2=6, and turns into ∼ linear behavior
at larger field values.
For small external field values Eq. (28) is close to what

we obtain from our simulations; however, the simple dipole
approximation quickly becomes invalid, see Fig. 12. Our
results above indicate that at small magnetic fields the
dominant effect on the sphaleron rate arises from the
magnetic dipole moment of the sphaleron, and the change
in the Higgs expectation value is subleading.
Finally, let us look at the behavior of the sphaleron rate in

the symmetric phase. Here the SU(2) rate does not show any
systematic dependence on themagnetic field, see right plot in
Fig. 14. Only theU(1) rate is affected by themagnetic field in
the symmetric phase.Despite the ambiguities associatedwith
the U(1) field evolution in the symmetric phase as discussed
in Sec. III A, we investigate the U(1) rate in our simulations
and the dependence on the magnetic field fits very well the
expectedB2

4D behavior [20], see Fig. 14. As seen in Fig. 9 the
U(1) rate ΓY=T4 is approximately constant over temperature
and we obtain a fit ΓY=T4 ¼ ð0.5� 0.01Þ × 10−3g06B2

4D
(with g02 ≃ 0.12237). Comparing this to results obtained
from classical simulations of U(1)-Higgs theory (scalar

QED) performed in [20,21] our rate is ∼4 times slower;
comparing withmagnetohydrodynamics our rate is∼3 times
faster. Given the ambiguities in the update algorithm the
qualitative agreement between the results is good.

V. CONCLUSION

Using lattice simulations of an effective 3D theory of the
Standard Model we have computed the baryon violation
(sphaleron) rate over the electroweak crossover deep into
the broken phase with an external magnetic field. Both the
baryon violation rate and the form of the electroweak
crossover is changed due to an external magnetic field. We
have argued that the fully dissipative Langevin-type update
is accurate to leading logarithmic order in g2W in the
broken phase.
For zero external field we computed the rate with and

without the U(1) fields included and found no difference
between the results. The zero external field results differ
slightly from previous results [36], see (25) and (26) for
our results. The difference is due to us using an updated
value for the top mass (which affects the mapping between
the physical and the effective 3D theory parameters) and
the fact that the previous computations did not fully
implement the partial OðaÞ improvement. Nevertheless,
the difference is well within the uncertainties of the
calculation.
The baryon violation rate is affected by an external

magnetic field due to multiple factors. The sphaleron has a
dipole moment and its energy can be lowered. With an
external field also the U(1) contributes to the baryon
violating rate. With an external field the combination of
the SU(2) and U(1) CS numbers couple to the baryon
violating current and in the broken phase it is precisely this
combination that gets suppressed.

FIG. 14. Left: diffusion rate of the U(1) CS number with different external magnetic fields (blue) compared with the results from
classical simulations and expected rate from magnetohydrodynamics [20,21]. The shown rate is computed at T ¼ 168 GeV; however,
we do not find any systematic temperature dependence with the temperatures simulated. Right: pure SU(2) rate (gray) and the full rate
(black) in the symmetric phase. The horizontal line is the b ¼ 0 SU(2) symmetric rate fit (25) and the blue dashed line is the sum of the
latter and the fit from the left plot. The SU(2) rate ΓW=T4 stays approximately constant with increased magnetic field.
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To get a picture of how the electroweak transition is
affected by an external magnetic field we computed the
Higgs expectation value and its susceptibility. As the
magnetic field is increased, the crossover shifts to lower
temperatures and the transition region broadens. This shifts
onset of the suppression of the sphaleron rate to lower
temperatures. In the broken phase the rate increases with
the external magnetic field. For small fields it increases
quadratically before switching over to a linear regime. The
linear regime stops after the field becomes strong enough to
restore the electroweak symmetry where the rate reaches
the symmetric phase value.
For small external fields we performed a semianalytical

computation for the sphaleron energy in an external field
(following [42]) and used a simple dipole approximation to
estimate the change in the sphaleron rate. For small field
values the semianalytical result and our simulations are in
relatively good agreement, see Fig. 12. This shows that for
small fields the sphaleron dipole moment has the biggest
effect on the rate. However, for larger fields the simple
dipole approximation quickly becomes invalid and non-
linear effects become important.
In the symmetric phase the SU(2) and U(1) Chern-

Simons numbers evolve independently. There are ambi-
guities in how to perform real-time lattice simulations of
the U(1) field evolution in the symmetric phase. However,
from our simulations we find no significant effect of the
magnetic field on the pure SU(2) rate which behaves as
∝T4 and is compatible with the zero external field
value (25). The U(1) part of the rate is found to increase
with the magnetic field with the expected behavior ∝B2

4D.

Full results of our simulations are available as tables at
Zenodo [58].

ACKNOWLEDGMENTS

The authors acknowledge the support from the Academy
of Finland Grants No. 345070 and No. 319066. Part of the
numerical work has been performed using the resources at
the Finnish IT Center for Science, CSC.

APPENDIX A: CONTINUUM TO LATTICE
PARAMETERS WITH IMPROVEMENTS

We use the partial OðaÞ improvements computed
in [61,62] (these are partial since there is an additive
correction to the parameter y that has not been computed to
date). We choose the desired values of x, y, z and g23a that
we want to simulate and then compute the relevant
counterterms given by

Z−1
g ¼ 1þ g23a

4π

�
π

3
þ 6ξþ Σ

24

�
; ðA1Þ

Zb ¼ 1þ z
g23a
4π

�
π

3
−

ξ

12
þ Σ
24

�
; ðA2Þ

Z−1
m ¼ 1þ g23a

4π

�
ð9 − 24xþ 3zÞ ξ

4
þ ð3þ zÞ Σ

24

�
; ðA3Þ

δx ¼ g23a
4π


�
1 − 6xð3þ zÞ þ 48x2 þ 1

2
ð1þ zÞ2

�
ξ

4

− xð3þ zÞ Σ
12

�
; ðA4Þ

where Σ ¼ 3.175911… and ξ ¼ 0.152859… are constants.
We then construct the lattice action with the relations
between the continuum parameters and the lattice param-
eters βG; βY; βH; β2; β4 [60]

βY ¼ βG
z̄
; βH ¼ 8

βG
; β4 ¼

β2H
βG

x̄; ðA5Þ

β2
βH

¼ 3þ 8ȳ
β2G

− ð3þ 12x̄þ z̄Þ Σ
4πβG

−
1

2π2β2G

��
51

16
−
9z̄
8
−
5z̄2

16
þ 9x̄ − 12x̄2 þ 3x̄ z̄

�

×

�
ln

�
3

2
βG

�
þ 0.09

�

þ 4.9 − 0.9z̄þ 0.01z̄2 þ 5.2x̄þ 1.7x̄ z̄

�
; ðA6Þ

using the modified parameters

βG ¼ 4

g23a
Z−1
g ¼ 4

g23a
þ 0.6674…; ðA7Þ

x̄ ¼ xþ δx
Zg

; ȳ ¼ y
Zm

Z2
g
; z̄ ¼ z

1

ZgZb
: ðA8Þ

Then the lattice observables are related to the continuum
values with the parameters x, y, z by a multiplicative
correction (and possible renormalization factors). For exam-
ple, the lattice observable h1

2
TrΦ†Φi is related to the MS

renormalized 3D continuum value hϕ†ϕi by Eq. (14).

APPENDIX B: SMALL FIELD
ANALYTICAL ESTIMATE

In this appendix we present details on the analytical
computation in a small external field.We follow the analysis
performed in [42].
When the U(1) field is included the sphalerons spherical

symmetry is reduced into an axial symmetry. With the
physical value for the weak mixing angle θW the angular
dependence of the solution is found to be mild [27] at zero
magnetic field. The expansion parameter, with external
magnetic field B4D

c , is effectively θWB4D
c =gv2 and the

angular dependence becomes relevant for larger magnetic
fields. For small fields it suffices to use simpler ansatz that
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is spherically symmetric [26]. The ansatz depends on four
functions fðξÞ; f0ðξÞ; f3ðξÞ; hðξÞ of dimensionless radial
coordinate ξ≡ gvr, where vðTÞ is the temperature depen-
dent Higgs expectation value. The energy functional of the
sphaleron using the ansatz (see [26,42]) in a constant
external hypermagnetic field B4D

c is E ¼ E0 − Edip with

E0¼
4πv
g

Z
∞

0

dξ

�
8

3
f02þ4

3
f023 þ

1

2
ξ2h02þ 4g2

3g02
f020

þ 8

3ξ2



2f23ð1−fÞ2þ½fð2−fÞ−f3�2þ

g2

g02
ð1−f0Þ2

�

þh2

3
fðf0−f3Þ2þ2ð1−fÞ2gþ λ

4g2
ξ2ðh2−1Þ2

�
; ðB1Þ

and

Edip ¼
Z

∞

0

dξ
8π

3gg0v
½−2ξf00 þ 2ð1 − f0Þ�B4D

c : ðB2Þ

The field equations for the ansatz functions turn out as

h00 þ 2

ξ
h0 −

2h
3ξ2

½2ð1− fÞ2 þ ðf0 − f3Þ2�−
λ

g2
ðh2 − 1Þh¼ 0;

f00 þ 1− f
ξ2

½2fðf − 2Þ þ 2f3 þ 2f23� þ
1

4
ð1− fÞh2 ¼ 0;

f000 þ
2ð1− f0Þ

ξ2
−

g02

4g2
ðf0 − f3Þh2 ¼ 0;

f003 −
2

ξ2
½3f3 þ fðf − 2Þð1þ 2f3Þ�−

h2

4
ðf3 − f0Þ ¼ 0:

ðB3Þ

The ansatz functions are subject to the following boundary
conditions

f; h→ 1; f3; f0 → 1−
sin2θWξ2

8gv2
B4D
c ; as ξ→∞;

f; h; f3 → 0; f0 → 1; as ξ→ 0: ðB4Þ
It is convenient to make a change of variables,

giðξÞ ¼ fiðξÞ þ sin 2θW
ξ2

2gv2
ðB5Þ

for i ¼ 0, 3, so that the boundary conditions for the new
functions at infinity are simply gi → 1 as ξ → ∞.
Furthermore, we use a change of variables x≡ξ=ð3þξÞ
which maps ξ → ∞ to x → 1. Finally we use the standard
model values for the parameters λ; g; g0 at the electro-
weak scale.
With the above we have all the ingredients to com-

pute the change to the sphaleron energy for small fields
in the spherical approximation. From the set of coupled
differential equations (B3) we solve the functions

f; h; g0; g3 numerically using a fourth order collocation
method implemented in [72]. Equations (B3) are divergent
at the boundaries and thus we solve the system only in
range ½ϵ1; 1 − ϵ2� where the ϵi are small offsets. Despite the
divergences in the equations the solutions are completely
regular near the boundaries and we just linearly extrapolate
them to boundary values. The accuracy of this simple
procedure is sufficient for our comparison purposes. A set
of solved functions is plotted in Fig. 15 for zero magnetic
field and for one example of a nonzero magnetic field.
Typical range of ½ϵ1; 1 − ϵ2� is [0.0006, 0.913], but even
large variations of these values does not significantly
change the solutions or the energy computed from them.
The energy of the sphaleron configuration is obtained by

numerically integrating over the energy functional while
omitting the constant external magnetic field terms which
wouldmake theexpressiondivergent.Theenergyasa function
of the magnetic field is plotted in Fig. 16. Assuming that the
change in energyΔE≡ EðB ¼ 0Þ − EðBÞ is due to a simple

FIG. 15. Examples of numerical solutions for the functions
f; h; g0; g3 for zero and non-zero magnetic field.

FIG. 16. Energy of the sphaleron configuration (computed
using the spherical approximation) in terms of the magnitude
of the magnetic field.
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dipole interaction ΔE ¼ −μ⃗sph · B⃗
4D
c and that the change of

the rate Γ is only due to this energy difference
Γ ∼ expðΔE=TÞΓ0, where Γ0 is the rate without magnetic
field. Averaging over the space of orientations for the dipole
the change to the rate is roughly

Δ lnΓ=T4 ∼ ln


Z
dΩ
4π

exp

�
−
μsphB4D

c

T
cos θ

��

≃ ln
sinhðΔE=TÞ

ΔE=T
: ðB6Þ
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