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A theoretical description of photon-pair production in polarized positron-electron annihilation is
presented. Complete one-loop electroweak radiative corrections are calculated taking into account the exact
dependence on the electron mass. Analytical results are derived with the help of the SANC system. The
relevant contributions to the cross section are calculated analytically using the helicity amplitude approach.
The cases of unpolarized and longitudinally polarized fermions in the initial state are investigated.
Calculations are realized in the Monte Carlo integrator MCSANCee and generator ReneSANCe which
allow one the implementation of any experimental cuts used in the analysis of eþe− annihilation data of
both low and high energies.
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I. INTRODUCTION

The comprehensive long-term program of next gener-
ation eþe− colliders proposes a large potential improve-
ment in ultraprecise measurements of electroweak (EW)
parameters and the creation of modern tools for adequate
luminosity estimates. Future eþe− colliders such as FCC-
ee [1], ILC [2], CEPC [3,4], and CLIC [5] will have a total
luminosity 2–3 orders of magnitude larger than the Large
Electron–Positron Collider (LEP) total luminosity and the
possibility of using polarizing beams that could provide an
additional probe of the accuracy test of the Standard Model
as well as in the search for new physics. The determination
of the luminosity at lepton colliders is a necessary task, since
the normalization of measured cross sections is an observ-
able quantity of immediate phenomenological interest. At
future colliders, the relative uncertainty of the integral
luminosity measurement on the order of 10−3 − 10−4 seems
feasible in terms of existing technologies [6].
In practice, this problem is solved by choosing three

specific reference processes which generate large statistics,
are as free as possible from systematic ambiguities, and are

predicted by a theory with suitable accuracy, e.g., small
and large angle Bhabha scattering, lepton-pair production
in eþe− collisions, and large angle eþe− annihilation to
photon pairs.
The main result of this work is the calculation of the

complete one-loop EW radiative corrections (RCs) taking
into account the exact dependence of the eþe− annihilation
to photon pair on the electron mass

eþðp1; χ1Þ þ e−ðp2; χ2Þ → γðp3; χ3Þ
þ γðp4; χ4Þðþγðp5; χ5ÞÞ; ð1Þ

and arbitrary longitudinal polarization of initial particles.
Here pi are the 4-momenta and χi are the helicities of the
corresponding particles. We calculate all analytical expres-
sions for the EW form factors and helicity amplitudes in the
SANC system from the Lagrangian and do not use any
external packages.
The photon-pair production plays a central role in the

determination of the luminosity for the following reasons:
events have two collinear photons at large angles providing
a clean signature; the theoretical accuracy for the Bhabha
process and the s-channel is limited by an uncertainty in the
hadronic contribution Δαhadr5 ðsÞ to the vacuum polarization
Πγγ, but in the case of the process under consideration the
hadronic contribution to the vacuum polarization enters
only at the two-loop level and the theoretical accuracy of
Δαhadr5 ðsÞ is approximately of an order of 10−6 [7].
Process eþe− → γγ was first investigated in the classical

papers [8,9], and later in [10]. It has also been studied at the
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one-loop level in connection with experiments at future
eþe− colliders; this was done for the first time in [11].
Monte Carlo tools for photon-pair production are generators
MCGPJ [12] and BabaYaga@NLO [7,13–15]. The recent
version of the MC BabaYaga@NLO contains one-loop
calculations and also provides an enhancement of leading
logarithmic (LL) QED contributions due to multiphoton
emission and the impact of photonic and fermion-loop
corrections at next-to-next-to-leading order [7].
In the present paper, the calculations in the framework

of SANC are carried out at the one-loop level within the
OMS (on mass shell) renormalization scheme in Rξ and in
the unitary gauge as a cross-check. Loop integrals are
expressed in terms of the standard scalar Passarino-Veltman
functions [16]. To parametrize the ultraviolet divergences,
dimensional regularization was used. Numerical results
were obtained by the MC generator ReneSANCe [17] and
integrator MCSANCee. To date, theoretical uncertainties by
SANC have been investigated for the complete one-loop and
leading higher-order EW corrections and took into account
polarization in the initial and final states for the following
processes: Bhabha scattering [18], eþe− annihilation to
ZH and Zγ [19], s-channel [20], Møller scattering [21],
and polarized μe scattering [22].
This paper consists of four sections. We describe the

methodology of calculations of polarized cross sections at
the complete one-loop EW level in the massive basis within
the helicity approach in Sec. II. The evaluation of theo-
retical uncertainties for unpolarized FCCee, CEPC, polar-
ized ILC, CLIC future experiments, and the results of a
comprehensive comparison of the independent MC codes
for cross-checking are presented in Sec. III. A summary is
drawn in Sec. IV.

II. COMPLETE ONE-LOOP CROSS SECTION

The cross section of the process of the longitudinally
polarized positron eþ and electron e− beams with the
polarization degrees Pþ

e and P−
e , respectively, can be

written as follows:

σðPeþ ; Pe−Þ ¼
1

4

X
χ1;χ2

ð1þ χ1PeþÞð1þ χ2Pe−Þσχ1χ2 ; ð2Þ

where χ1ð2Þ ¼ −1ðþ1Þ correspond to the particle i with the
left (right) helicity.
The complete one-loop cross section of the process can

be split into four parts

σone-loopχ1χ2 ¼ σBornχ1χ2 þ σvirtχ1χ2ðλÞ þ σsoftχ1χ2ðλ; ω̄Þ þ σhardχ1χ2ðω̄Þ: ð3Þ

Here, σBorn is the Born cross section, σvirt is the contribution
of virtual (loop) corrections, σsoftðhardÞ is the soft (hard)
photon emission contribution (the hard photon energy
Eγ > ω̄). The auxiliary parameters λ (“photon mass”)

and ω̄ are canceled after summation. The cancellation is
controlled numerically by calculating the cross section at
several values of the λ and ω̄ parameters. Note that in
calculations of one-loop RCs we can separate QED and
pure weak interaction effects.
We apply the helicity amplitude approach to all four

components of the one-loop cross sections.
The Born cross section of the eþ þ e− → γ þ γ process

has the following form:

σBornχ1χ2 ¼ πα2
1

4βe

X
χ3;χ4

Z
1

−1
d cos θ13jHBorn

χ1χ2χ3χ4 j2Θcuts; ð4Þ

where βe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

e=s
p

, ϑ13 is the angle between the p1

and p3 in the c.m. system,Θcuts is equal to 0 in the region of
phase space excluded by kinematic cuts and is equal to 1
otherwise.
The contribution of virtual corrections is

σvirtχ1χ2 ¼ πα2
1

4βe

X
χ3;χ4

Z
1

−1
d cos θ13

× 2ReðHBorn
χ1χ2χ3χ4H

virt�
χ1χ2χ3χ4ÞΘcuts: ð5Þ

The soft photon contribution is factorized in front of the
Born cross section and given in Eq. (14).
The cross section for the hard photon bremsstrahlung is

given by the expression

σhardχ1χ2 ¼
α3

192πs2βe

Zs−2
ffiffi
s

p
ω̄

0

ðs − s0Þds0
Z1
−1

d cos θ3

Z2π
0

dϕ3

×
Z1
−1

d cos θ5

Z2π
0

dϕ5jHhard
χ1χ2 j2Θcuts; ð6Þ

where s0 ¼ ðp3 þ p4Þ2,

jHhard
χ1χ2 j2 ¼

X
χ3;χ4;χ5

jHhard
χ1χ2χ3χ4χ5 j2: ð7Þ

Here, ϑ5 is the angle between p1 and p5 in the laboratory
frame, ϑ3 is the angle between 3-momenta p3 and p5 in the
rest frame of the ðp3p4Þ compound, and ϕ3 is the azimuthal
angle of the p3 in the rest frame of ðp3p4Þ compound.

A. The Born and virtual contributions

To describe the contribution of the virtual loop correc-
tions, we decompose the matrix element into polarization-
independent form factors and structures that depend only
on external particles and contain complete polarization
information. Of course, such a decomposition is not
necessary at the Born (tree) level, where the form factors
by the SANC convention are equal to 1 or 0.
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The first step is the calculation of the covariant amplitude
(CA) and form factors (F i). In the system SANC we
calculate the CA of the annihilation to vacuum, i.e.,
2f2b → 0, and then turn over to the selected channel.
Then the helicity amplitudes (HAs) will be constructed.

1. Covariant amplitude for the Born and virtual parts

The covariant one-loop amplitude corresponds to the
result of the straightforward standard calculation of all
diagrams contributing to a given process at the tree (Born)
and one-loop levels. The CA is represented in a certain
basis made of strings of Dirac matrices and/or external
momenta (structures) contracted with polarization vectors
of bosons εðpiÞ. The CA can be written in an explicit form
using scalar form factors F i. All masses, kinematic
invariants and coupling constants, and other parameter
dependencies are included into these form factors, but

tensor structures with Lorenz indices made from strings of
Dirac matrices are given by the basis.
Using the multichannel approach, we have found a

complete massive basis and covariant amplitude. The
covariant amplitude for the processes we are interested
in can be obtained from Eq. (8) by exploiting crossing
symmetry. We found 40 structures for the CA. By applying
algebraic transformations, we simplified the number of
structures down to 24. Using photon transversality, we
obtained six ratios for vector and five for axial form factors
F i. The final answer for the basis is eight structures for the
tensor and four structures for the pseudotensor. In accor-
dance with this, the next-to-leading order (NLO) EW RCs
to the process 2f2γ → 0 can be parametrized in terms of 14
scalar form factors and the corresponding basic matrix
elements, eight vector and four axial ones.
For the covariant amplitude we have

A ¼ v̄ðp1Þ
�
Strv;1μν ðvfF v;1ðs; t; uÞÞ þ

X8
j¼2

Strv;jμνF v;jðs; t; uÞ þ
X4
i¼1

Stra;iμν γ5F a;iðs; t; uÞ
�
uðp2Þεγνðp3Þεγμðp4Þ;

with the structures

Strv;1μν ¼ s
ðm2

e − tÞðm2
e − uÞ

�
−ði=K2 þmeÞτ6μν þ 2i

1

m2
e − u

�
τ7μν − τ9μν −

1

2
ð=p3 − =p4Þτ10μν

��
;

Strv;2μν ¼ i=K2

�
2

s
τ3μν þ τ10μν

�
;

Strv;3μν ¼ −i
�
=K2ðk2t τ3μν − τ4μνÞ þ

1

2
kt½τ1μν þ 2imeðτ5μν þ sktτ10μνÞ�

�
;

Strv;4μν ¼ i

�
1

2
τ1μν þ 2=K2ktτ3μν þ ð−=K2 þ imeÞτ5μν þ imesktτ10μν

�
;

Strv;5μν ¼ 4ime

s
=K2τ

3
μν þ

s
2
τ6μν þ =p4τ

7
μν − =p3τ

9
μν − ðm2

e þ tÞτ10μν;

Strv;6μν ¼ −τ0μν −
2

s
imeτ

1
μν −

1

2
ðm2

e − tÞτ6μν − 2kt

�
2

s
ime=K2τ

3
μν − τ5μν −

ð3m2
e − tÞ
2

τ10μν

�
;

Strv;7μν ¼ s
2

�
2

s
τ3μν þ τ10μν

�
;

Strv;8μν ¼ τ4μν − kt

�
τ5μν þ

m2
e − t
2

τ10μν

�
;

Stra;1μν ¼ −i
�
=K2τ

6
μν þ

4

s
kt=K2τ

3
μν −

�
kt − i

2me

s
=p4

�
τ7μν þ ðkt þ ime=p3Þτ9μν

�
;

Stra;2μν ¼ i=K2

�
2

s
τ3μν þ τ10μν

�
;

Stra;3μν ¼ −
1

2
τ2μν − i=K2ðk2t τ3μν − τ4μνÞ;

Stra;4μν ¼ −
1

2
τ2μν þ i=K2ktð2ktτ3μν þ τ5μνÞ; ð8Þ
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where v̄ðp1Þ, uðp2Þ, and me are the bispinors and the mass
of the external fermions, respectively, εγνðp3Þ and εγμðp4Þ
denote the photon polarization vector; the vector and axial
gauge boson-to-fermion couplings are denoted by vl and
al, respectively, F v;j and F a;i stand for the scalar form
factors and

=K2 ¼
1

2
ð=p3 − =p4 þ =p2 − =p1Þ:

The Born matrix element can also be decomposed in basis
of structures. Such a decomposition is pretty simple with
our choice of normalization: F v;1 ¼ 1 and F v;j ¼ 0jj≥2,
F a;i ¼ 0ji≥1.
To obtain a compact form of the amplitude structures, we

choose ten auxiliary strings

τ0μν ¼ γμ=p3pν
2 þ =p4γ

νpμ
1;

τ1μν ¼ s½γνðkupμ
1 − ktðpμ

2 − pμ
4ÞÞ− γμðkupν

2 − ktðpν
1 − pν

3ÞÞ�;
τ2μν ¼ ðme=K2 − itÞ½γνðpμ

1 þ ktp
μ
3Þ þ γμðpν

2 þ ktpν
4Þ�;

τ3μν ¼ pμ
3p

ν
4; τ4μν ¼ pμ

1p
ν
2; τ5μν ¼ pμ

1p
ν
4 þ pν

2p
μ
3;

τ6μν ¼ γμγν; τ7μν ¼ γνpμ
3; τ9μν ¼ γμpν

4; τ10μν ¼ δμν:

where kI ¼ m2
e−I
s , with I ¼ t, u (usual Mandelstam

invariants).
In Eq. (8), we keep the fermion mass in order to

maintain photon transversality without mass approxima-
tion. Moreover, in the mass-containing denominators of
Strv;1μν , the mass cannot be neglected because these denom-
inators correspond to the propagators of fermions that emit
external photons and thus lead to mass singularities.
The basic matrix elements, Strjμν, are chosen to be

explicitly transversal in the photonic 4-momentum. That
is, for all of them the following relations hold:

Strjμνðp3Þν ¼ 0 and Strjμνðp4Þμ ¼ 0: ð9Þ

We have checked that the form factors F v;j and F a;i are
free of gauge parameters and ultraviolet singularities; all
calculations are made in the Rξ gauge. The analytical
expressions of the form factors are too cumbersome to be
presented in this paper.

2. Helicity amplitudes for the Born and virtual parts

Using C, P, and Bose symmetries, we write down four
sets of HAs. The presence of the electron masses gives
additional terms proportional to the factorme, which can be
considered significant in calculations at low energy,

Hvirtþþ−þ ¼ −Hvirt
−−−þðA¼ 1Þ; Hvirtþþþ− ¼ −Hvirt

−−−þðA¼ −1Þ;
Hvirt

−−þ− ¼Hvirt
−−−þðA¼ −1Þ;

Hvirt
−−−þ ¼ −

ffiffiffi
s

p
8

cþc−
�
sme cosϑ13F v;3 þ

ffiffiffiffiffiffi
λee

p �
me

�
8

z13z14
F v;1 þF v;3 − 4F v;4

�
− 2F v;6 þF v;8 −AmeðF a;3 þF a;4Þ

��
;

ð10Þ

Hvirt
−þ�� ¼Hvirt

−þ−−ðA ¼ 1Þ; Hvirt
þ−�� ¼Hvirt

−þ−−ðA ¼ −1Þ;

Hvirt
−þ−− ¼ 1

2
sinϑ13

�
s

�
F v;2 −

s
8
ð1þ cos2ϑ13ÞF v;3 þA cosϑ13

�
F a;1 þ s

4
ðF a;3 þF a;4Þ

��

−
ffiffiffiffiffiffi
λee

p �
s cosϑ13

�
1

4
F v;3 −

1

2
F v;4 þme

s
F v;6

�
−A

�
F a;1 −F a;2 þ s

8
½ð1þ cos2ϑ13ÞF a;3 þ 2cos2ϑ13F a;4�

���
;

ð11Þ

Hvirtþ−−þ ¼ Hvirt
−þþ−ðA ¼ −1Þ;

Hvirt
−þ−þ ¼ Hvirt

−þþ−ðA ¼ 1; c− → −cþÞ; Hvirtþ−þ− ¼ Hvirt
−þþ−ðA ¼ −1; c− → −cþÞ;

Hvirt
−þþ− ¼ 1

8
sinϑ13sc−

�
s
�
1

2
c−F v;3 þ A

�
4

s
F a;1 þ F a;3 þ F a;4

��

−
ffiffiffiffiffiffi
λee

p �
4

z13z14
F v;1 þ F v;3 − 2F v;4 þ 4me

s
F v;6 þ A

�
1

2
c−F a;3 − cosϑ13F a;4

���
; ð12Þ

S. BONDARENKO et al. PHYS. REV. D 107, 073003 (2023)

073003-4



Hvirt
−−−− ¼ −HvirtþþþþðV ¼ 1Þ; Hvirt

−−þþ ¼ −Hvirtþþþþðc− ↔ cþ; V ¼ −1Þ;
Hvirtþþ−− ¼ Hvirtþþþþðc− ↔ cþ; V ¼ −1Þ;

Hvirtþþþþ ¼ −
ffiffiffi
s

p
8

�
s

�
V

�
8me

z13z14
F v;1 − 2cþF v;6

�

þ cosϑ13

�
me

�
8

s
F v;2 − ð4 − cþc−ÞF v;3 þ 4F v;4

�
− 4F v;5 þ 2F v;8

��

þ
ffiffiffiffiffiffi
λee

p �
me

�
8

z13z14
F v;1 þ 8

s
F v;2 − ð4 − 3cþc−ÞF v;3 þ 4cos2ϑ13F v;4

�

− 4ð1þ c−ÞF v;5 − 2cþF v;6 − 4F v;7 þ 2F v;8

��
; ð13Þ

where c� ¼ 1� cosϑ13,
ffiffiffiffiffiffi
λee

p ¼ sβe, z13 ¼ ðm2
e − uÞ, and

z14 ¼ ðm2
e − tÞ.

Only form factor F v;1 contains infrared divergent
Passarino-Veltman functions regularized by the auxiliary
parameter λ.
While all form factors are proportional to α, the same

expressions can be used to obtain Born HBorn
χ1χ2χ3χ4 just by

symbolic substitution F v;1 to unity and all other form
factors to zero.

B. Real photon emission corrections

The real corrections consist of soft and hard radiative
contributions. To estimate the bremsstrahlung, an new
procedure SANC system was created, based on a formalism
first described in [20]. The soft bremsstrahlung has Born-
like kinematics, while the phase space of hard radiation has
an extra particle, photon.

1. Soft photon bremsstrahlung

The soft photon contribution contains infrared divergen-
ces and has to compensate the corresponding divergences
of one-loop virtual QED corrections. It is factorized in front
of the Born cross section. It depends on the auxiliary
parameter which separates the kinematic domains of the
soft and hard photon emission in a given reference frame.
The polarization dependence is contained in σBorn.
The explicit form is

σsoftχ1χ2ðλ; ω̄Þ ¼ −NσBornχ1χ2

2

βe

�
2½βe − k ln x2� ln 2ω̄

λ

− ln xþ k½ln2xþ Li2ð1 − 1=x2Þ�
�
; ð14Þ

where

N ¼ α

2π
Q2

e; rs ¼
m2

e

s
; k¼ 1− 2rs; x¼ 1ffiffiffiffi

rs
p 1þ βe

2
:

Here, Ls ¼ ln s
m2

e
− 1.

2. Hard photon bremsstrahlung

Spin effects of hard photon bremsstrahlung for photon-
pair production using the method of helicity amplitudes
were investigated in [23,24]. In the presented results, we
used our universal massive module for hard photon
bremsstrahlung for lþl−γγγ → 0 by appropriately unfolding
it in channel lþl− → γγγ, where 0 stands for vacuum, and
all masses are not neglected.
The field strength bivector is an antisymmetric tensor

and can naturally be expressed as an element of the
Clifford algebra of Dirac matrices by contracting
with γ½μγν� ¼ γμ ∧ γν.
Let us consider a photon with 4-momentum k2 ¼ 0 and

polarization vector ε. The Maxwell bivector (contracted
with Dirac matrices) is

F≡ Fμνγ
μγν ¼ =k ∧ =ε:

The Maxwell equation becomes =kF ¼ 0. It is also evident
that gauge transformation ε → εþ Ck leaves the bivector F
unaffected.
The axial gauge can be defined by the additional

condition ε · g ¼ 0 with some (massive) vector g.
Solving it together with ε · k ¼ 0, we obtain a polarization
vector in the axial gauge

=ε ¼ ≺=gF≻1

g · k
; ≺A≻1 ≡ Tr½Aγμ�γμ;

=εðg1Þ − =εðg2Þ ¼ −
Tr½=g1=g2F�

ðg1 · kÞðg2 · kÞ
=k; Tr ¼ 1

4
Tr:

Changing the vector g leads to gauge transformation.
The helicity amplitude for hard photon bremsstrahlung is

organized as a sum of three cyclically-symmetric terms

ONE-LOOP RADIATIVE CORRECTIONS TO PHOTON-PAIR … PHYS. REV. D 107, 073003 (2023)

073003-5



Hhard ¼ 2
ffiffiffi
2

p
ðH3 þH4 þH5Þ;

H3 ¼ H5j5→3→4→5; H4 ¼ H5j5→4→3→5: ð15Þ

So it is enough to consider only the single term. The
Maxwell bivector for helicity states can be factorized
Fχ5
5 ¼ uχ55 v̄

χ5
5 , and the corresponding term decays into

building blocks,

H5
ξ1ξ2χ3χ4χ5

¼ Rξ1
χ1ð1ÞRξ2

χ2ð2Þ

×
−S5

χ5Bχ1χ2χ3χ4 þ C5χ1χ5G
5
χ5χ2χ3χ4

z23z24
;

S5
χ5 ¼

Tr½=p1=p2F5�ffiffiffi
2

p
z15z25

;

B5
χ1χ2χ3χ4 ¼ v̄1ð≺F3=p2F4≻1 − =p2≺F3F4≻0;4Þu2;

C5χ1χ5 ¼
v̄1u5
z15

;

G5
χ5χ2χ3χ4 ¼ v̄5ð≺F3=p2F4≻1 − =p2≺F3F4≻0;4Þu2; ð16Þ

with the abbreviations ui≡uχiðpiÞ, v̄i≡ v̄χiðpiÞ, Fj≡
FχjðpjÞ, zij ¼ 2pi · pj, and ≺A≻0;4 ¼ Tr½A� þ Tr½Aγ5�γ5,
where the rotation matrices Rχi

ξi
ðiÞ is defined below.

We work in the chiral representation of gamma matrices
and exploit Weyl spinors. To decompose the Dirac spinors
into Weyl components, we use the following notation:

=p ¼
�

p̌

p̂

�
; u ¼

� jui
ju�

�
;

F ¼
�
F̌

F̂

�
; v̄ ¼ ðhv̄j; ½v̄jÞ:

For the massless particle with momentum pi, we have
p̌i ¼ jii½ij, p̂i ¼ ji�hij. For the massive particle with
p2
i ¼ m2

i , we use the projection on the light cone of some
auxiliary momentum. To evaluate the term H5 of the
amplitude, we find that one of the most economical choices
is to use p5,

k̂i ¼
p̂ip̌5p̂i

2pi ·p5

; k̂i ¼ ji�hij; jii ¼ p̌ij5�
½ij5� ; ji� ¼ p̂ij5i

hij5i :

The Dirac solutions in terms of spinors for ki are

uþi ¼
� jii

mi
½ij5� j5�

�
; u−i ¼

� mi
hij5i j5i
ji�

�
; v̄þi ¼

�
hij; mi

½ij5� ½5j
�
; v̄−i ¼

�
mi
hij5i h5j; ½ij

�
:

The explicit expressions of the amplitude components H are written as follows:

B5
χ1χ2χ3χ4 ¼

"
me½v̄1ju2�h3j4i2 h3jp2j4�ðhv̄1j3i½4ju2� þ ½v̄1j4�h3ju2iÞ

½3jp2j4ið½v̄1j3�h4ju2i þ hv̄1j4i½3ju2�Þ mehv̄1ju2i½4j3�2

#
χ3χ4

;

G5
χ5χ2χ3χ4 ¼

"
me½v̄5ju2�h3j4i2 h3jp2j4�ðhv̄5j3i½4ju2� þ ½v̄5j4�h3ju2iÞ

½3jp2j4ið½v̄5j3�h4ju2i þ hv̄5j4i½3ju2�Þ mehv̄5ju2i½4j3�2

#
χ3χ4

;

S5
χ5 ¼

�
− ½1j2�

½1j5�½2j5� − h1j2i
h1j5ih2j5i

�
χ5

; C5χ1;χ5 ¼
1

z15

"
h1j5i 0

0 ½1j5�

#
χ1χ5

;

hv̄ijuji ¼
" hijji mj

hij5i
hjj5i

mi
h5jji
h5jii 0

#
χiχj

; ½v̄ijuj� ¼
"

0 mi
½jj5�
½ij5�

mj
½5ji�
½5jj� ½ijj�

#
χiχj

:

From the momentum pi ¼ fEi; px
i ; p

y
i ; p

z
ig with p2

i ¼ m2
i there can be built two massless vectors ki� ¼

fjp⃗ij;−px
i ;−p

y
i ;−p

z
ig and ki♭ ¼ pi −

m2
i

2pi·ki�
ki� , with k2i� ¼ k2

i♭
¼ 0. The corresponding spinors ji�i and ji♭i allow evaluating

the rotation matrix

Rχi
ξi
ðiÞ ¼

2
64

½i♭j5�
½ij5�

mihi�j5i
hi�ji♭ihij5i

mi½i�j5�
½i�ji♭�½ij5�

hi♭j5i
hij5i

3
75:
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III. NUMERICAL RESULTS

In this section, we firstly present comparison of the result
obtained by means of the SANC system with the tree-level
results for Born and hard photon bremsstrahlung of the
CalcHEP [25] and WHIZARD [26–28] codes. Also, the
NLO QED RCs are compared with the BabaYaga
code [29] and weak corrections with those published in [7].
In the second part of the section, we show the predictions

for NLO EW RCs obtained by the SANC program.
If not specified separately, the following set of input

parameters is used:

α−1ð0Þ ¼ 137.035999084;

MW ¼ 80.379 GeV; ΓW ¼ 2.0836 GeV:

MZ ¼ 91.1876 GeV; ΓZ ¼ 2.4952 GeV;

MH ¼ 125.0 GeV; me ¼ 0.51099895 MeV;

mμ ¼ 0.1056583745 GeV; mτ ¼ 1.77686 GeV;

md ¼ 0.083 GeV; ms ¼ 0.215 GeV;

mb ¼ 4.7 GeV; mu ¼ 0.062 GeV;

mc ¼ 1.5 GeV; mt ¼ 172.76 GeV:

The angular cut for at least two photons jcosϑγj < 0.9
with ϑγ ¼ ϑ13;ϑ14; ϑ15 are imposed. All three photons must
have c.m. energy greater than ω̄.
In practical calculations we used ΓW ¼ ΓZ ¼ 0.

A. Comparison with other codes

Firstly, we have compared the results for the Born
cross section for several c.m. energies (

ffiffiffi
s

p ¼ 250; 500;
1000 GeV) and the degree of initial beam polarization.
The agreement in five digits was found, so we omitted the
corresponding table.
Secondly, we have compared the results for the hard

photon bremsstrahlung cross section for the same c.m.
energies with the CalcHEP and WHIZARD codes. The
results are given within the αð0Þ EW scheme in Table I. For
the cross sections, an additional cut on the photon energy in
c.m. system Eγ ≥ ω ¼ 10−4

ffiffiffi
s

p
=2 is applied. At least two

photons lie in jcosϑγj < 0.9. The comparison demonstrates

very good (within four to five digits) agreement with the
above-mentioned codes.
We also compared the NLO QED calculations between

the SANC and BabaYaga codes. In Tables II and III, we
present a tuned comparison of the integrated cross sections
produced for two c.m. energy regions: low (

ffiffiffi
s

p ¼ 1 and
10 GeV) and high (

ffiffiffi
s

p ¼ 91, 160, 240, and 365 GeV)
energies with original setups and cuts (for details, see
Refs. [7,29]).
Tables II and III show perfect agreement of the NLO

QED results (within the statistical errors) and we consider
these corrections are under control.
To compare the weak part of the NLO RCs, we have

produced energy and angular distributions of the relative
corrections

δ ¼ σ1-loop=σBorn − 1;%

which are presented in Fig. 1. In the upper panel, the
separate contributions for virtual Z and W boson contri-
butions and their sum are shown as a function of unpo-
larized beams. In the lower panel the angular distributions
for several c.m. energies are given.
The obtained RCs show very good qualitative agreement

with those given in Fig. 3 of [7].

B. Born, one-loop cross sections and relative corrections

In this part of the section, we give our results for the
Born, one-loop cross sections and relative corrections [30].
They were calculated with the parameters (III) and the

TABLE I. The triple tuned comparison between the SANC (first
line), CalcHEP (second line), and WHIZARD (third line) results
for the hard bremsstrahlung contributions to unpolarized eþe− →
γγðγÞ process.ffiffiffi
s

p
, GeV 250 500 1000

SANC 4.467(2) 1.177(1) 0.3095(1)
CalcHEP 4.465(1) 1.177(1) 0.3096(1)
WHIZARD 4.465(1) 1.180(1) 0.3097(1)

TABLE II. The tuned comparison of the Born and NLO QED
integrated cross sections produced by the SANC and BabaYaga
codes at low energies.ffiffiffi
s

p
, GeV 1 10

Born, nb
SANC 137.532(1) 1.3755(1)
BabaYaga 137.53 1.3753

NLO QED, nb
SANC 129.46(2) 1.2623(3)
BabaYaga 129.45 1.2620

TABLE III. Tuned comparison of the Born and NLO QED
integrated cross sections produced by the SANC and BabaYaga
codes at high energies.ffiffiffi
s

p
, GeV 91 160 240 365

Born, pb
SANC 39.822(1) 12.884(1) 5.7252(1) 2.4758(2)
BabaYaga 39.821 12.881 5.7250 2.4752

NLO QED, pb
SANC 41.04(1) 13.289(3) 5.907(1) 2.556(1)
BabaYaga 41.043 13.291 5.9120 2.5581
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following set of the electron ðPe−Þ and positron ðPeþÞ beam
polarization:

ðPe− ; PeþÞ ¼ ð0; 0Þ; ð0.8; 0.3Þ; ð−0.8; 0.3Þ: ð17Þ

1. Energy dependence

In Tables IV–VI, the results of the integrated Born
and one-loop cross sections in pb and the relative
corrections in percent are presented separably for NLO
QED and weak RC. The results are given for the c.m.

energies
ffiffiffi
s

p ¼ 250; 500; 1000 GeV and for degrees (17)
of the initial particle polarization in the αð0Þ EW scheme.
As it is seen from the tables, the cross sections and the

weak RCs are sensitive to the degree of the initial beam
polarization while the QED RCs are rather flat. For c.m.
energy

ffiffiffi
s

p ¼ 250 GeV the weak RCs are negative and
relatively small compared to QED RCs (approximately 5–6
times). As for c.m. energy

ffiffiffi
s

p ¼ 1000 GeV the weak RCs
become compatible with the QED RCs in the unpolarized
case (6.9% vs −5.1%) and even larger (6.9% vs −8.6%) for
polarization ðPe− ; PeþÞ ¼ ð−0.8; 0.3Þ but with the opposite
sign. This means that the weak RCs dominates at high
energies and must be taken into account.
To demonstrate the interference of the QED and weak

RCs, we plotted the energy scan. Figure 2 shows the

FIG. 1. Upper plot: the integrated relative contributions of Z
and W bosons to weak RCs. Lower plot: the differential relative
weak RCs for c.m. energies at FCCee.

TABLE IV. Born cross section σ (pb), NLO QED and weak
relative correction δ (%) for the c.m. energy

ffiffiffi
s

p ¼ 250 GeV and
the set (17) of the polarization degree of the initial particles.

Pe− ; Peþ 0, 0 0.8, 0.3 −0.8, 0.3
σBorn, pb 4.2617(1) 3.2388(1) 5.2845(1)
σQED, pb 4.535(2) 3.4488(5) 5.619(1)
δQED, % 6.42(4) 6.48(1) 6.32(2)
σweak, pb 4.2481(1) 3.2345(1) 5.2544(1)
δweak, % −0.32ð1Þ −0.13ð1Þ −0.57ð1Þ

TABLE V. The same as in Table IV but for the c.m. energyffiffiffi
s

p ¼ 500 GeV.

Pe− ; Peþ 0, 0 0.8, 0.3 −0.8, 0.3
σBorn, pb 1.06542(1) 0.80972(1) 1.32112(1)
σQED, pb 1.1365(2) 0.8641(1) 1.4085(3)
δQED, % 6.67(2) 6.72(2) 6.62(2)
σweak, pb 1.04396(1) 0.81165(1) 1.25437(1)
δweak, % −2.01ð1Þ 0.24(1) −5.05ð1Þ

TABLE VI. The same as in Table IV but for the c.m. energyffiffiffi
s

p ¼ 1000 GeV.

Pe− ; Peþ 0, 0 0.8, 0.3 −0.8, 0.3
σBorn, pb 0.266353(1) 0.202429(1) 0.330279(1)
σQED, pb 0.28474(5) 0.21661(4) 0.3531(1)
δQED, % 6.90(2) 7.00 (2) 6.90(4)
σweak, pb 0.252650(1) 0.197583(1) 0.301040(1)
δweak, % −5.14ð1Þ −2.39ð1Þ −8.85ð1Þ

FIG. 2. The unpolarized NLO QED, weak and NLO EW
relative correction δ (%) for the c.m. energy range

ffiffiffi
s

p ¼
10–1000 GeV.

S. BONDARENKO et al. PHYS. REV. D 107, 073003 (2023)

073003-8



unpolarized QED, weak and summary (EW ¼ QEDþ
weak) relative correction δ (%) for the c.m. energy rangeffiffiffi
s

p ¼ 10–1000 GeV. In the calculations, only angular cuts
for at least two photons were applied. As one can see from
the picture, the QED RCs dominate in the energy range up
to

ffiffiffi
s

p ¼ 100 GeV. In the range
ffiffiffi
s

p ¼ 100–200 GeV, the
weak contribution is positive and increase the NLO RCs.
Then the weak relative corrections become negative and
start to reduce the total RCs to approximately 2% atffiffiffi
s

p ¼ 1000 GeV. One can see that, the weak corrections
change δEW drastically for high energies (starting approx-
imately from

ffiffiffi
s

p ¼ 200 GeV). It should also be stressed
that additional kinematical cuts such as, for example,
photon energy cut, reduce the magnitude of the QED
RCs and dominance of the weak RCs becomes stronger.

2. Left-right asymmetry

The left-right asymmetry is also calculated at c.m.
energies

ffiffiffi
s

p ¼ 250; 500; 1000 GeV, and the angular dis-
tributions are shown in Fig. 3.
The ALR is defined in the following form:

ALR ¼ σLR − σRL
σLR þ σRL

; ð18Þ

where σLR and σRL are the cross sections for 100%
polarized electron-positron e−Le

þ
R and e−Re

þ
L initial states.

As it is seen from the figure, the angular dependence of
the asymmetry is very weak at

ffiffiffi
s

p ¼ 250 GeV but become
stronger at

ffiffiffi
s

p ¼ 1000 GeV. This reaction does not have
any clearly seen resonance (in contrast with the s-channel
pair-lepton production, for example, where the Z boson
defines the peak of the cross section). The asymmetry does

not give any experimental information on the mixing angle
sin2 θW and just shows an order of parity violation.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have considered the complete one-loop
electroweak corrections to the process of the polarized
electron-positron annihilation into a photon pair within the
SANC system framework. The helicity amplitudes were
used for the Born and virtual parts as well as for the real
photon emission (soft/hard bremssrahlung) taking into
account the masses of the initial particles.
The numerical results were evaluated within the SANC

system framework in the αð0Þ scheme for c.m. energies
from 10 GeV to about 1000 GeV which are relevant for the
existing and future eþe− colliders. We reached excellent
agreement at the tree level for the Born and hard photon
bremssrahlung between SANC, CalcHEP and WHIZARD.
At the one-loop level for unpolarized beams we have

compared the obtained results with external codes. Firstly,
we performed a tuned comparison of the NLO QED
corrections with the BabaYaga code and found very
good numerical agreement. Secondly, we obtained good
qualitative agreement of the weak radiative corrections with
the figures given in the world literature.
We have presented the electroweak radiative corrections

impacting the Born and complete one-loop cross sections
as well as relative corrections at c.m. energies

ffiffiffi
s

p ¼ 250;
500; 1000 GeV. The results are given for unpolarized and
polarized cases and demonstrate the strong dependence of
the total/differential cross section and relative corrections on
the polarization effects.
We would like to emphasize that weak effects give large

negative—corrections and totally compensate the QED
radiative corrections at high energies and therefore must
be taken into account.
Analytical calculations for all parts of the cross section

were performed for the case of annihilation into vacuum in
the massive case 2f2γ → 0. This lays the foundation for
calculating all cross channels.
Considering the eþe− → γγ process as one for lumin-

ometry propose, one needs to take into account high-order
effects, such as leading multi-photon QED logarithms and
leading two-loop corrections. This is the forthcoming part
of our work on this process.
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