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Boosted dark matter is a promising method for probing light dark matter, with a well-developed
computational framework for spin-independent scattering already existing. The spin-dependent case, on the
other hand, lacks a coherent treatment. We therefore give the first comprehensive derivation of the spin-
dependent scattering cross section for boosted dark matter, finding that certain effects can lead to enhanced
experimental sensitivity compared to the conventional contact interaction. For example, when the transfer
momentum is sufficiently large, the time component of the dark matter current contributes significantly to
the proton structure factor. Also, even without a light mediator, we find a residual momentum dependence
in the quark-nucleon matching operation that can contribute similarly. We promote this endeavor by
deriving direct limits on sub-GeV spin-dependent scattering of boosted dark matter from terrestrial data.
We find that the exclusion limits from the boosted structure factor differ by as much as six orders of
magnitude from those calculated using nonrelativistic structure factors.
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I. INTRODUCTION

Observations in cosmology and astrophysics have sup-
ported the presence of dark matter (DM) [1]. Its features,
such as mass and interactions are however still unknown.
One of the most promising experimental avenues is to
search for the small energy depositions from the DM
elastically scattering in sensitive detectors on the Earth.
Strict constraints exist on the cross section for DM heavier
than 1 GeV. As the detection limits reach the neutrino floor,
we must look for other strategies to explore the surviving
parameter space of DM or find some means to detect DM
beyond ordinary considerations [2].
A crucial aspect of the theoretical study of DM detection

is the elastic scattering process between DM and the nuclei,
which determines detection rates. We can classify the

hypothetical DM-nucleon interactions into the spin-inde-
pendent and spin-dependent cases. There is already an
impressive range of existing constraints on the DM-nucleon
cross section in the MeV-to-GeV mass range, ranging from
rare processes involving the emission of photons or
“Migdal” electrons from the recoiling atom [3–6], and the
small flux of boosted dark matter (BDM) arising from
interactions between DM and cosmic rays, the Sun, or
mesons [7–19]. That said, although there is a well-developed
framework for spin-independent scattering of BDM, a
thorough treatment for spin-dependent scattering is lacking.
Since weakly interacting massive particles (WIMPs)

are heavy, they are estimated to be rotating around our
galaxy at a nonrelativistic velocity of several hundred
kilometers per second, and with a minimum escape
velocity υesc ∼ 544 km=s. Therefore nonrelativistic expan-
sions of the DM-nucleon scattering amplitude in powers of
the DM-nucleon relative velocity are appropriate for evalu-
ating the cross section [20]. Though the nonrelativistic
expansion or the effective field theory is reliable in dealing
with WIMP scattering, the neglect of higher-order terms is
problematic in some circumstances. For example, in a novel
detection of sub-GeV dark matter, called cosmic ray dark
matter (CRDM) [8,12,13,19,21–24], this simple expansion
is not reliable. This is because that the incident dark matter
is boosted to be relativistic, and the momentum transfer q is
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comparable to the DMmass in the sub-GeV region, thus the
dropped higher-order terms could be significant [25] in the
DM-nuclei scattering.
In this work, we focus on spin-dependent boosted dark

matter scattering. We assume dark matter is a Majorana
fermion for the sake of comparison. This is due to the fact
that the Majorana-type DM always occurs in the most
popular models of physics beyond the Standard Model,
such as those featuring supersymmetry [26] or extra
dimensions [27]. It is worth noting that our calculation is
not limited to Majorana DM, which can be easily extended
to Dirac fermion or scalar DM. Previous calculations of
spin-dependent WIMP scattering have started from WIMP-
nucleon currents and used the nuclear-structure function to
convert the result to the nuclei. However, nuclear structure
calculations can be improved with recent advances in
nuclear interactions and computing capabilities. We can
thus demonstrate the difference between the WIMP-nuclei
scattering and boosted DM scattering on the target.
Furthermore, we find another source of the momentum
transfer effect in the contact interaction, where the finite size
proton accounts for the momentum dependent behavior.

II. COMPUTATIONAL FRAMEWORK

In order to demonstrate the subtlety of BDM spin-
dependent scattering, we firstly sketch the ordinary com-
putation of the WIMP spin-dependent cross section. At low
momentum transfer q, the Lagrangian for the interaction
between DM and quarks can be evaluated using chiral
effective field theory [28,29]. In the neutron or proton-only
case, the differential scattering cross section can be rewritten
as [30]

dσSD

dq2
¼ σSDχN

3μ2Nv
2

π

2J þ 1
SAðqÞ; ð1Þ

in which μN is the reduced mass of the DM-nucleon system,
and σχN is the scattering cross section between a DM
particle and a single proton or neutron at zero momentum
transfer. v is the WIMP velocity in the rest frame of the
detector, and J is the initial ground-state angular momentum
of the nuclei. The total expected nonrelativistic spectrum of

the detection rate dR=dEr is dR
dEr

¼ 2ρχ
mχ

R
dσSD

dq2 vfðvÞd3v. mχ

is the mass of the DM, ρχ is the local DM density, and fðvÞ
is the velocity distribution in the rest frame of the detector.
q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ErmN
p

is the transfer momentum. If we assume a
standard isothermal WIMP halo, then v0 ¼ 220 km=s,
ρχ ¼ 0.3 GeV=ðc2 × cm3Þ, vesc ¼ 544 km=s, and Earth
velocity vE ¼ 232 km=s. If we generalize the WIMP into
BDM, the Maxwell-Boltzmann distribution is replaced by
the incoming DM flux dΦχ=dEχ .

The structure factor SAðqÞ plays a crucial role in
determining the event rate of spin-dependent scattering
process in both relativistic and nonrelativistic process,

SAðqÞ ¼
1

4πG2
v

X
sf;si

X
Mf;Mi

jhfjLSD
χ jiij2; ð2Þ

in which the sum sf; si ¼ �1=2 is over Majorana fermion
spin projections, and the sum Mf, Mi is over the projec-
tions of the total angular momentum of the final and initial
states Jf, Ji. We assume the heavy mediator is a vector so
that Gv ∼ 1=m2

V. It is easy to include the scalar mediator
scenario. Usually, the heavy mediator does not lead to a
momentum transfer effect in the scattering process.
However, we find there is still a residual momentum
transfer effect through the matching procedure from quark
to proton. The structure factor has three contributions: the
spatial current, temporal current, and interference compo-
nent current. Fortunately, we find that the wave functions
of the spatial current and the temporal current are orthogo-
nal to each other, making their interference terms vanish.
One can write the structure factor as

SAðqÞ ¼ S0AðqÞ þ STðqÞ; ð3Þ
where S0AðqÞ denotes the contribution from the spatial
current couplings and STðqÞ is the time component
contributions. Evaluating the Lagrangian density between
the initial and final state, the spatial contribution is

hfjLSD
χ jii ¼ −

Gvffiffiffi
2

p
Z

d3re−iq·rχ̄fγγ5χiJAi ðrÞ; ð4Þ

in which e−iq·rχ̄fγγ5χi ¼ hχfjjðrÞjχii is the matrix element
of the current of the DM and JAi ðrÞ ¼

P
q Aqψ̄qγγ5ψq

denotes the hadronic current [28]. For the response of the
nuclei, the spin-dependent dark matter interaction couples
dominantly to a single nucleon. but also to pairs of
nucleons. Then the quark currents are replaced by their
expectation value in the nucleon, leading to a 1b axial-
vector current at one-nucleon level. The DM interaction
couples to nucleon pairs at order q3. This leads to a 2b
axial-vector current. However, the error of the 2b current
level results is too large, Thus the 1b current results are
used in this work for the simplicity. The structure factor
S0AðqÞ can be decomposed as a sum over multipoles L with
reduced matrix elements of the longitudinal L5

L, transverse
electric T el5

L , and transverse magnetic T mag5
L projections of

the axial-vector currents

S0AðqÞ ¼
X
L≥0

jhJfjjL5
LjjJiij2 þ

X
L≥1

ðjhJfjjT el5
L jjJiij2

þ jhJfjjT mag5
L jjJiij2Þ: ð5Þ
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For fast-moving DM, the projections of the axial-vector
currents will not be changed but become dependent on the
momentum of the incident DM particle

S0Aðq; pi; pfÞ

¼ 1

2

�X
L≥0

1

EfEi
ð2p3

fp
3
i þ pf · pi þm2

χÞjhJfjjL5
LjjJiij2

þ
X
L≥1

1

EfEi
ðp1

fp
1
i þ p2

fp
2
i þ pf · pi þm2

χÞ

×
�
jhJfjjT el5

L jjJiij2 þ jhJfjjT mag5
L jjJiij2

��
: ð6Þ

We can also get the time component contribution to the
structure factor1

STðqÞ ¼
1

4EiEf

1

4E0
iE

0
f

1

2π

�
4

�
2EiEf −

q2

2
− 2m2

χ

�

×

�
2E0

iE
0
f −

q2

2
− 2m2

N

�

þ 4
mN

q2 þm2
π

�
2EiEf −

q2

2
− 2m2

χ

�
ðE0

i − E0
fÞmNq0

þ
�

mN

q2 þm2
π

�
2
�
2EiEf −

q2

2
− 2m2

χ

�
q2

2
q20

�
: ð7Þ

We can make some general comments about the boosted
structure factor before concluding this section. The spatial
and time components of the structure factor for semi-
relativistic kinematics are not a function of q only, but
instead the incoming dark matter momentum pi or kinetic
energy Tχ. To obtain an effective structure factor, we need
to integrate out the phase space of incoming momentum

SeffðqÞ ¼
Z

dTχ
dΦχ

dTχ
SðTχ ; qÞ: ð8Þ

This is equivalent to the conventional Maxwell-Boltzmann
velocity integral when the incoming DM momentum
reduces to the nonrelativistic regime.
To get some feeling for this modification, we choose

two specific collisions to obtain the corresponding struc-
ture factors for the demonstration. The first one is
pi ¼ ðEi; 0; 0; piÞ, pf ¼ ðEf;pf;0;0Þ, p0

i ¼ ðmN; 0; 0; 0Þ,
p0
f ¼ ðE0

f;−pf; 0; piÞ. In this case, the final direction of
scattering DM is perpendicular to the collision axis
(vertical ejection). And the structure factors (with a
superscript tag ⊥) are

S0⊥A ðqÞ ¼ 4m2
χ þ q2

4m2
χ þ 2q2

X
L≥0

jhJfjjL5
LjjJiij2

þ 4m2
χ þ q2

4m2
χ þ 2q2

X
L≥1

jhJfjjðT el5
L þ T mag5

L ÞjjJiij2; ð9Þ

S⊥T ðqÞ ¼
1

8π

1

2m2
χ þ q2

1

2m2
N þ q2

×

�
q4 −

1

2

q6

q2 þm2
π
þ
�

1

q2 þm2
π

�
2 q8

16

�
: ð10Þ

Another collision is pi ¼ ðEi; 0; 0; piÞ, pf ¼ðEf;0;0;−piÞ,
p0
i ¼ ðmN; 0; 0; 0Þ, p0

f¼ðE0
f;0;0;2piÞ, which is the back-

ward scattering in case of the heavy target nuclei. Then the
structure factors (with a superscript tag ⊲) are

S0⊲A ðqÞ ¼ 4m2
χ

4m2
χ þ q2

X
L≥0

jhJfjjL5
LjjJiij2

þ
X
L≥1

jhJfjjðT el5
L þ T mag5

L ÞjjJiij2; ð11Þ

S⊲T ðqÞ ¼ 0: ð12Þ

The differences between nonrelativistic and boosted struc-
ture factors are shown in Fig. 1 in which the DM mass are
chosen as mχ ¼ 1 MeV (left) and mχ ¼ 100 MeV for the
comparison. The upper two panels are the results of
vertical ejection of dark matter at the 1b current level.
The black solid lines show the structure factor of the
WIMP DM. The red solid lines show the new structure
factors obtained by considering both the time component
and the spatial contribution of the axial current in the case
of boosted scattering between the DM and the nuclei. The
pink dotted lines are the spatial component contribution
and the blue dotted lines are the time component con-
tribution. The lower two panels are the results of backward
scattering at the 1b current level. Similar to the upper
panels, the red solid lines show the new structure factor
which only comes from the spatial contribution. Form the
numerical results shown in the figure, we can see that when
the DM mass become much less than the GeV WIMP, the
structure factors are suppressed (see the left 1 MeV panels)
in the small transfer momentum region. This is due to the
momentum dependent coefficients in Eq. (6). Though the
time component contribution are negligible in the small
transfer momentum region, it can be dominant in the large
transfer momentum region and it can enhance the factors to
a big value when q is sufficiently large. Note that this time
component contribution dominant region is beyond the
ordinary detection region of the recoil energy (u ≪ 1) in
typical DM detectors.

1Note that we choose the time component contribution at
the nucleon level to account for the nuclear contributions to the
structure factor. A detailed deviation can be found in the
Appendix C.
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Themomentum dependent coefficients generally suppress
the spatial contribution of the new structure factor. The upper
left panel shows that the spatial contribution is about one-
half of theWIMP structure factor. However, in the backward
scattering, the spatial contribution of the new structure factor
can be three orders of magnitude lower thanWIMP structure
factor. The reason can be easily derived from the momentum
dependent coefficients in Eqs. (9)–(12). For example, the
longitudinal L5

L in Eq. (11) is greatly suppressed when the
DM mass is negligible compared to transfer momentum.
This implies that the large angle scattering provides a much
greater suppression factor than vertical eject scattering. As
shown in the following section, the large angle scattering

will become significantly important in the study of the
boosted dark matter.
In addition, the structure factors are derived form the

four-fermion compact interactions. As a result, it is natural
to disregard the momentum dependence of the DM, i.e.,
FDM ¼ 1. In spin-dependent scattering, however, the
matching between quarks and nucleons gives residual
momentum dependence via pion exchange b1 ¼ mNa1=
ðm2

π þ q2Þ. We give a detailed calculation of the nucleon
matrix elements and a detailed description of b1 in
Appendix C. Such an effect does not come from the light
mediator exchange but rather the finite size effect of protons
and neutrons.

FIG. 1. Structure factors SpðuÞ for Xe131 as a function of u ¼ q2b2=2, the harmonic-oscillator lengths are b ¼ 2.2905 fm. The upper
two panels with mχ ¼ 1 MeV (left) and mχ ¼ 100 MeV (right) are the results of vertical ejection of dark matter at the 1b current level.
The black solid lines show the structure (WIMP) factor of the WIMP DM case. The red solid lines show the new structure (BDM) factor
obtained by considering both the time component and the spatial contribution of the axial current in the case of boosted scattering
between the DM and the nuclei. The pink dotted lines are the spatial component contribution and the blue dotted lines are the time
component contribution. The lower two panels with mχ ¼ 1 MeV (left) and mχ ¼ 100 MeV (right) are the results of backward
scattering at the 1b current level. The black solid lines show the structure (WIMP) factor of the WIMP DM case. The red solid lines show
the new structure (BDM) factor obtained by considering both the time component and the spatial contribution of the axial current in the
case of boosted scattering between the DM and the nuclei. Note that the time component is zero and the total contribution comes from
the spatial part.
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III. BENCHMARK MODEL: COSMIC-RAY
BOOSTED DARK MATTER

In the CRDM scenario, DM is boosted by energetic
galactic cosmic rays, and it subsequently becomes a fast-
moving particle which is one component of cosmic rays.
Following scattering in detectors, new limits on the DM-
nucleon scattering cross section below 1 GeV can be
obtained. CRs transfer kinetic energy to the static DM
particle, making it form an energetic flux. The DM flux in
this situation resembles the neutrino flux scattering from
outer space, allowing neutrino detectors, such as
MiniBooNE et al. to give constraints on the CRDM
parameter space. This relativistic DM flux can be obtained
via the collision rate of CRs with DM per unit kinetic energy
of CRs (Ti) and DM (Tχ) in a differential volume dV

d2ΓCRi→χ

dTidTχ
¼ ρχ

mχ

dσχi
dTχ

dΦLIS
i

dTi
dV; ð13Þ

where the flux is taken in the local interstellar (LIS)
population of the CRs [31], and i stands for the specific
species of the cosmic rays. Integrating this over the relevant
volume and CR energies yields a boosted DM flux

dΦχ

dTχ
¼

Z
Ω

dΩ
4πd2

Z
Tmin
i

dTi
d2ΓCRi→χ

dTidTχ
;

¼ Deff
ρχ
mχ

X
i

Z
Tmin
i

dTi
dσχi
dTχ

dΦLIS
i

dTi
: ð14Þ

Since incoming proton CRs are highly relativistic, the
structure factor reduces to 1. When the CRDM particle
travels from the upper atmosphere to the detector, the
scattering with dense matter attenuates the flux to zero,
which explains why CRDM searches are sometimes blind to
large cross sections: large scattering cross sections generally
give a large CRDM flux, however this also leads to a
significant attenuation of the flux. The degradation of the
energy of the CRDM component can be expressed via

dTχ

dx
¼ −

X
N

nN

Z
Emax
r

0

dσχN
dEr

ErdEr: ð15Þ

Here, Er refers to the energy loss by a CRDM particle in a
collision with a nuclei N. dσχN=dEr is the differential cross
section of DM scattering on dense matter.
Effectively, we can find the CRDM flux at the depth z

from the flux at the upper atmosphere via

dΦχ

dTz
χ
¼

�
dTχ

dTz
χ

�
dΦχ

dTχ
¼ 4m2

χez=l

ð2mχ þ Tz
χ − Tz

χez=lÞ2
dΦχ

dTχ
; ð16Þ

where dΦχ=dTχ needs to be evaluated at

Tχ ¼ T0
χðTz

χÞ ¼ 2mχTz
χez=lð2mχ þ Tz

χ − Tz
χez=lÞ−1: ð17Þ

Here l denotes the mean free path of the DM particles,
which can be calculated using the scattering cross section
and the density of ordinary matter on the Earth,

l−1 ≡X
N

nN

Z
Emax
r

0

dEr
dσχN
dEr

; ð18Þ

Note that Eq. (16) is valid for the attenuation with a
constant cross section. It is only a qualitative description of
the differential cross section studied in this paper. The
quantitative numerical calculation is implemented accord-
ing to our model.
CRDM particles can transfer the energy to a target nuclei

inside the detector, triggering detection events, just as with
ordinary DM direct detection. Therefore there is a natural
bridge to reinterpret existing data in the CRDM context.
The equivalence between their event rate gives rise to a
constraint on the critical values of mass and coupling. For
WIMP DM, it can read from experiment directly, while for
CRDM

R ¼
Z

T2

T1

dEr
1

mT

Z
∞

Tz;min
χ

dTz
χ
dΦχ

dTz
χ

dσχT
dEr

; ð19Þ

where T1 and T2 are the analysis window for the detectors,
and the DM differential flux can be regarded as a
modification of the velocity distribution fðvÞ. The differ-
ential event rate is composed of the flux and differential
cross section, and the flux dΦχ=dTz

χ is evaluated at the
detector after considering attenuation processes. dσχT=dEr

is the differential cross section of DM-nuclei elastic
scattering. Note that the mean free path l is calculated
in the integrand for every Monte Carlo sample. One can
easily check that the dominant component S0A of the
structure factor can be written as a function of the energy
Tz
χ of the incident DM

S0A ¼ 4ðTz
χ þmχÞ2 − q2

4ðTz
χ þmχÞ2

X
L≥0

jhJfjjL5
LjjJiij2

þ q2 þ 4m2
χ

4ðTz
χ þmχÞ2

X
L≥1

ðjhJfjjT el5
L jjJiij2

þ jhJfjjT mag5
L jjJiij2Þ: ð20Þ

Integrating the event rate, we can obtain a relationship
between experimental data and theoretical models. In our
numerical study, the package DarkSUSY [32,33] is used for
simulating CRDM detection. The spin-dependent cross
section with the new structure factor are coded in the
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version DarkSUSY-6.3.1 [34]. And we checked with our own
modified code based on DarkSUSY-6.3.1, of which the results
are consistent.
The numerical results of our calculation are shown in the

Fig. 2, from which we may conclude the following:
(1) The upper limits for the two instances considered

are the same in the mχ ≳ 0.1 GeV regime because
the BDM structure factor recovers the WIMP
structure factor when the DM mass is heavier than
1 GeV. We can see that the exclusion regions are
distinct below 0.1 GeV, where the BDM limits
become much weaker due to the suppression factor
added in Eq. (20). Notably, BDM limits can be as
much as six orders of magnitude weaker than the
results of WIMP structure factor below the MeV
mass region. One can analytically derive from
Eq. (6) that this much weaker limits mainly come
from the large angle scattering of the CRDM, as
shown in the above section. The detailed calcula-
tions of structure factors can be found in the
Supplemental Material.

(2) It is worth noting that the detection of the recoil
energy Er necessitates a very tiny u, yet the transfer
momentum q is sufficient. The maximum Er
(40 KeV), for example, indicates that q is at about
100 MeV. These results reveal that the new spatial

contribution to the structure factor is critical in the
evaluation of the spin-dependent scattering between
DM and nuclei.

(3) Another point to note is that the exclusion regions are
similar whether or not there is a light mediator
between DM and the target nuclei. This can be seen
in the WIMP structure factor, although the boost
effects on the other hand somewhat cancel it out. The
contact interaction leads to a constant cross section,
and the exclusion region is horizontal (as shown in
the results of Borexino [8]). Our results indicate two
distinct regions of momentum dependence: the shape
of the lower limits is comparable to those from the
WIMP structure factor but with an overall difference
of two orders of magnitude when mχ ≳ 40 GeV;
below 40 MeV, the exclusion region is modified to a
considerably larger value canceling the momentum
dependence.

The value mχ dominates the suppression factor when
mχ ≳ 40 GeV, according to numerical results, whereas
Tz
χ dominates in the mχ ≲ 40 GeV region. This is owing

to the fact that the typical transfer momentum q is around
4 ∼ 100 MeV. This means the confined quarks in the
nucleon can cause the physics of DM detection to differ
significantly from the ordinary nonrelativistic scenario.
Equivalently, the finite nuclear size effects lead to momen-
tum dependence in the scattering.

IV. CONCLUSION

The ongoing search for dark matter is of critical
importance to modern physics. In this paper, we provide
the first comprehensive treatment of spin-dependent scat-
tering of BDM, a type of dark matter where the usual
nonrelativistic approximations are not reliable.
We found that when the DM is light, the spatial

contribution of the boosted structure factor can be much
smaller than the WIMP structure factor, while the time
component contribution can boost the proton structure
factor when the momentum transfer is large enough. We
also discovered that, even in the absence of a mediator
between dark matter and nuclei target, finite nuclear size
effects lead to a residual momentum transfer effect. The
complexity in the calculations of the novel boosted
structure factor arises because it not only depends on
the transfer of momentum q but also the incoming DM
momentum.
This new structure factor was applied to the CRDM

scenario, providing novel insight into light DM detection.
In particular, we showed that the exclusion limits can differ
by as much as six orders of magnitude from those
calculated using the ordinary nonrelativistic paradigm.
Our findings would give conceivable hints on the future
search for the light dark matter.

FIG. 2. Limits on the spin-dependent cross section from
Xenon1T data. The red area shows the exclusion results using
the boosted structure factor derived in this work; the dark gray
contour shows the results from the nonrelativistic structure factor.
The difference between the two is evidently significant, especially
for light DM. For comparison, the limits from the direct detection
experiments CDMS light [35], PICO60 [36], and PICASSO [37],
Borexino (we can refer to the purple line in Fig. 3 of Ref. [8]) as
well as from delayed-coincidence searches in near-surface de-
tectors by Collar [38] are also shown in the plot.
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APPENDIX A: AXIAL-VECTOR CURRENT
OF INCOMING DARK MATTER PARTICLES

We adopt the two-component spinor conventions from Ref. [39] in our calculation. The general axial-vector current of
Majorana fermion is given by

jμðxÞ ¼ ūðpf; sfÞγμγ5uðpi; siÞ;

¼ ð yf x†f Þ
�

0 σμ

−σ̄μ 0

��
xi

y†i

�
;

¼ ð−x†fσ̄μxi: þ yfσμy
†
i Þ;

¼ −χ†sf
ffiffiffiffiffiffiffiffiffi
pf:σ

p
σ̄μ

ffiffiffiffiffiffiffiffiffi
pi:σ

p
χsi

þ χ†sf
ffiffiffiffiffiffiffiffiffiffiffi
pf · σ̄

p
σμ

ffiffiffiffiffiffiffiffiffi
pi:σ̄

p
χsi ; ðA1Þ

where x, x†, y, and y† are the two-component spinors and si;f ¼ � 1
2
. The relevant basis of two-component spinors χs are

eigenstates of 1
2
p:s. In the nonrelativistic limit,

jμðxÞ ¼ −4sisfmχZ
μ
−si;−sfðpf; piÞ þmχZ

μ
sf;siðpf; piÞ; ðA2Þ

with

Zμ
sisfðpi; pfÞ ¼

8><
>:

δsisf þ
�

pi
2mi

þ pf
2mf

�
:saτasi;sf μ ¼ 0

saατasisf þ
�

pα
i

2mi
þ pα

f

2mf

�
δsisf þ

�
pβ
i

2mi
−

pβ
f

2mf

�
iϵαβγsaγτasisf μ ¼ α ¼ 1; 2; 3;

ðA3Þ

where τa are the matrix elements of the Pauli matrices. We use the symbol τ rather than σ to emphasize that the indices of the
Pauli matrices τa are spin labels si, sf. Then one can easily get the time component of dark matter axial current

j0ðxÞ ¼ −4sisfmχ

�
δ−si;−sf þ

�
pi
2mχ

þ pf
2mχ

�
:saτa−si;−sf

�
þmχ

�
δsi;sf þ

�
pi
2mχ

þ pf
2mχ

�
:saτasi;sf

�
: ðA4Þ

We can see that the momentum term is subleading in case of a low velocity and the mass terms cancel each other after
summation of the spins. However, it is also evident that the time component of the axial current of dark matter becomes
significant in the relativistic limit

j0ðxÞ ¼ −χ†sf
ðEf þmχÞσ:pi þ ðEi þmχÞσ:pfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEf þmχÞðEi þmχÞ

p χsi : ðA5Þ

Thus, the time component of the axial current cannot be neglected in the calculation of the cross sections when the
incoming dark matter is relativistic.
Next we give the proof of orthogonality of spatial and time component. The time and spatial components of axial current

of dark matter are shown, respectively,

j0 ¼ −x†ðpf;sfÞxðpi;siÞ þ yðpf;sfÞy
†
ðpi;siÞ; ðA6Þ

ji ¼ x†ðpf;sfÞσxðpi;siÞ þ yðpf;sfÞσy
†
ðpi;siÞ: ðA7Þ
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The interference of time component and spatial component

1

2

X
si;sf

�
−x†ðpf;sfÞxðpi;siÞ þ yðpf;sfÞy

†
ðpi;siÞ

��
x†ðpi;siÞσxðpf;sfÞ þ yðpi;siÞσy

†
ðpf;sfÞ

�

¼ 1

2

X
si;sf

− x†ðpf;sfÞpi:σσxðpf;sfÞ − x†ðpf;sfÞmχσy
†
ðpf;sfÞ þ yðpf;sfÞmχσxðpf;sfÞ þ yðpf;sfÞpi:σ̄σy

†
ðpf;sfÞ

¼ 1

2
Tr½ð−pf:σpi:σσ −m2

χσ þm2
χσ þ pf:σ̄pi:σ̄σÞ�

¼ 0: ðA8Þ

APPENDIX B: THE SPATIAL COMPONENT
OF THE STRUCTURE FACTOR S0AðqÞ

We begin our calculation from the scattering amplitude

hfjLSD
χ jii ¼ −

Gvffiffiffi
2

p
Z

d3re−iq·rχ̄fγγ5χiJAi ðrÞ: ðB1Þ

The currents are expanded in terms of spherical unit
vectors [40]:

χ̄fγγ5χie−iq·r ¼ le−iq·r ¼
X

λ¼0;�1

lλe
†
λe

−iq·r; ðB2Þ

with spherical unit vectors with a z axis in the direction of q

e�1≡ ∓ 1ffiffiffi
2

p ðeq1 � ieq2Þ e0 ≡ q
jqj ; ðB3Þ

l�1 ¼∓ 1ffiffiffi
2

p ðl1 � il2Þ lλ¼0 ≡ l3: ðB4Þ

We can also expand the product e†λe
−iq·r in Eq. (B2) in a

multipole expansion [40]. This leads to

hfjLSD
χ jii¼−

Gvffiffiffi
2

p hJfMfj
�X

L≥0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2Lþ1Þ

p
ð−iÞLl3L5

L0ðqÞ

−
X
L≥1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2Lþ1Þ

p
ð−iÞL

X
λ¼�1

lλ

×
h
T el5

L−λðqÞþλT mag5
L−λ ðqÞ�

�
jJiMii ðB5Þ

in which jJiMii, jJfMfi denote the initial and final states
of the nuclei, q ¼ jqj.
The electric longitudinal, electric transverse, and mag-

netic transverse multipole operators are defined by

L5
LMðqÞ ¼

i
q

Z
d3r½∇½jLðqrÞYLMðΩrÞ�� · JAðrÞ; ðB6Þ

T el5
LMðqÞ ¼

1

q

Z
d3r½∇ × jLðqrÞYM

LL1ðΩrÞ� · JAðrÞ; ðB7Þ

T mag5
LM ðqÞ ¼

Z
d3r½jLðqrÞYM

LL1ðΩrÞ� · JAðrÞ; ðB8Þ

with spherical Bessel function jLðqrÞ. The vector spherical
harmonics are given by

YM
LL01ðΩrÞ ¼

X
mλ

hL0m1λjL01LMiYL0mðΩrÞeλ: ðB9Þ

Since JAðrÞ ¼ P
A
i¼1 J

A
i ðrÞδðr − riÞ, the multipole opera-

tors can be written as a sum of one-body operators:

L5
LMðqÞ ¼

i
q

XA
i¼1

½∇½jLðqriÞYLMðriÞ�� · JAi ðriÞ;

¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
XA
i¼1

½ ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
jLþ1ðqriÞYM

LðLþ1Þ1ðriÞ

þ
ffiffiffiffi
L

p
jL−1ðqriÞYM

LðL−1Þ1ðriÞ� · JAi ðriÞ; ðB10Þ

T el5
LMðqÞ ¼

1

q

XA
i¼1

½∇ × jLðqriÞYM
LL1ðriÞ� · JAi ðriÞ;

¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
XA
i¼1

� ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
jL−1ðqriÞYM

LðL−1Þ1ðriÞ

−
ffiffiffiffi
L

p
jLþ1ðqriÞYM

LðLþ1Þ1ðriÞ
�
· JAi ðriÞ; ðB11Þ

T mag5
LM ðqÞ ¼

XA
i¼1

jLðqriÞYM
LL1ðriÞ · JAi ðriÞ: ðB12Þ

The structure factor SAðqÞ is obtained from jhfjLSD
χ jiij2 by

summing over the final DM spin and over the DM final-
state angular momentum projections and by averaging over
the initial configurations. It is thus useful to work with
reduced matrix elements that do not depend on projection
numbers:
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hJfMfjOLMjJiMii ¼ ð−1ÞJf−Mf

�
Jf L Ji

−Mf M Mi

�
hJfjjOLjjJii; ðB13Þ

with 3j coefficients and where O is a tensor operator of rank L. This gives for the sum and average [40]

1

2ð2Ji þ 1Þ
X
sf;si

X
Mf;Mi

jhfjLSD
χ jiij2 ¼ πG2

v

ð2Ji þ 1Þ
X
sf;si

�X
L≥0

l3l�3jhJfjjL5
LjjJiij2 þ

X
L≥1

�
1

2
ðl · l� − l3l�3ÞðjhJfjjT el5

L jjJiij2

þ jhJfjjT mag5
L jjJiij2Þ −

i
2
ðl × l�Þ3ð2RehJfjjT el5

L jjJiihJfjjjT mag5
L jjJii�Þ

��
; ðB14Þ

where we have assumed that the DM spin is 1=2, and the
cross terms vanish due to the orthogonal properties of the
3j coefficients.
For the sum over DM spin projections one has for μ,

ν ¼ 1; 2; 3

−
X
si;sf

lμl�ν ¼
X
si;sf

χ̄sfðpfÞγμγ5χsiðpiÞχ̄siðpiÞγ5γνχsfðpfÞ;

¼
X
si;sf

ðχsfδ ðpfÞχ̄sfα ðpfÞðγμγ5Þαβχsiβ ðpiÞ

× χ̄siγ ðpiÞðγ5γνÞγδÞ; ðB15Þ

in the nonrelativistic limit

X
s

χsαðpÞχ̄sβðpÞ ≈
1

2
ðγ0 þ 1Þαβ; ðB16Þ

thus

−
X
si;sf

lμl�ν ¼
1

4
½2Trðγ0γμγ5γ5γνÞ þ 2Trðγμγ5γ5γνÞ�

¼ 1

2
Trðγμγ5γ5γνÞ ¼ −2δμν: ðB17Þ

Then

1

2ð2Ji þ 1Þ
X
sf;si

X
Mf;Mi

jhfjLSD
χ jiij2

¼ G2
v

2

4π

ð2Ji þ 1Þ
�X
L≥0

jhJfjjL5
LjjJiij2

þ
X
L≥1

ðjhJfjjT el5
L jjJiij2 þ jhJfjjT mag5

L jjJiij2Þ
�
: ðB18Þ

Finally

SAðqÞ ¼
X
L≥0

jhJfjjL5
LjjJiij2 þ

X
L≥1

ðjhJfjjT el5
L jjJiij2

þ jhJfjjT mag5
L jjJiij2Þ: ðB19Þ

In case of a fast moving dark matter, the completeness
relation is

X
s

χsαðpÞχ̄sβðpÞ ¼
�
pμγ

μ þmχ

2Ep

�
αβ

: ðB20Þ

Then

−
X
si;sf

lμl�ν ¼
X
sisf

pfργ
ρ þmχ

2Epf

γμγ5
piσγ

σ þmχ

2Epi

γ5γν

¼ 1

Epf
Epi

½−pμ
fp

ν
i − pν

fp
μ
i þ ðpf · pi þm2

χÞg�μν�:

ðB21Þ

Similarly
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1

2ð2Ji þ 1Þ
X
sf;si

X
Mf;Mi

jhfjLSD
χ jiij2 ¼ G2

v

4

4π

ð2Ji þ 1Þ
�X
L≥0

1

Epf
Epi

ð2p3
fp

3
i þ pf:pi þm2

χÞjhJfjjL5
LjjJiij2

þ
X
L≥1

1

Epf
Epi

ðp1
fp

1
i þ p2

fp
2
i þ pf:pi þm2

χÞjhJfjjðT el5
L þ T mag5

L ÞjjJiij2
�

ðB22Þ

and

SAðqÞ ¼
1

4πG2
v

X
sf;si

X
Mf;Mi

jhfjLSD
χ jiij2 ¼ 1

2

�X
L≥0

1

Epf
Epi

ð2p3
fp

3
i þ pf:pi þm2

χÞjhJfjjL5
LjjJiij2

þ
X
L≥1

1

Epf
Epi

ðp1
fp

1
i þ p2

fp
2
i þ pf:pi þm2

χÞjhJfjjðT el5
L þ T mag5

L ÞjjJiij2
�
: ðB23Þ

The collision between dark matter and nuclei can be
chosen in a frame that the incident dark matter with a
energy Tz

χ is moving along the Z axis, as shown in
the Fig. 3. The recoil direction of the nuclei can be easily
got from

cos θ ¼ q
2p3

i
: ðB24Þ

Then for the isotropic incident flux, substituting the recoil
angle θ into Eq. (B23) and integrating all the direction of
the flux, the structure factor can be written as

SAðqÞ ¼
4ðTz

χ þmχÞ2 − q2

4ðTz
χ þmχÞ2

X
L≥0

jhJfjjL5
LjjJiij2

þ q2 þ 4m2
χ

4ðTz
χ þmχÞ2

X
L≥1

jhJfjjðT el5
L þ T mag5

L ÞjjJiij2:

ðB25Þ

APPENDIX C: THE TIME COMPONENT
OF THE STRUCTURE FACTOR STðqÞ

Time component of the Lagrangian density between the
initial and final state is

hfjLSD
χ jii ¼ Gvffiffiffi

2
p χ̄fγ0γ5χiJA0 : ðC1Þ

The one-nucleon time component of axial-current matrix
element is [41]

h½N�p0
f; s

0
fjJA0 ðxÞj½N�p0

i; s
0
ii ¼ ŪNðp0

f; s
0
fÞ

1

2
½ða0 þ a1τ3Þγ0γ5 þ ðb0 þ b1τ3Þq0γ5�UNðp0

i; s
0
iÞ; ðC2Þ

in which UN is a nucleon spinor, p0
f, p

0
i are the one-shell

four momenta and s0f, s0i are the spin labels, qμ ¼
ðp0

f − p0
iÞμ. Note that q2 is not qμqμ but −qμqμ. The a0,

a1 are completely determined by the Aq and three number
Δq (for q ¼ u, d and s quarks) defined as

Δqsμ ¼ hpf; sfjψ̄qγ
μγ5ψqjpf; sfi; ðC3Þ

in which the matrix element is for the proton, and sμ is
the spin vector defined in the usual way [42]. Specifically,
the couplings of the isoscalar part and isovector part are

a0 ¼ ðAu þ AdÞðΔuþ ΔdÞ þ 2AsΔs; ðC4Þ

a1 ¼ðAu − AdÞðΔu − ΔdÞ: ðC5Þ

The b coefficients can be estimated from the partially
conserved axial-vector current (PCAC) [43], just as they
are for the axial weak current. b0 and b1 are called isoscale
and isovector coefficients, the second term is from the
exchange of virtual mesons. The isoscalar mesons are
heavy enough to set b0 ≃ 0 and pion exchange induces an
isovector coefficient

FIG. 3. A collision of the incident dark matter and the nuclei
along the Z axis.
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b1 ¼
mNa1

q2 þm2
π
: ðC6Þ

Next, the time component of the axial-current matrix at
nucleon level should be translated into the nuclear matrix
elements. This simply takes the form [40]

hfjLSD
χ jii ¼ Gvffiffiffi

2
p

Z
d3re−iq·rχ̄fγ0γ5χiρðrÞ; ðC7Þ

in which ρðrÞ is the charge distribution density of axial
current in a nuclei. However, as far as we know, the axial
charge distributions in the nuclei still lack experimental
data. Thus in our paper, we take the one nucleon time
component contributions to account for the contributions at
nuclear level for the simplicity. Summing the final state and
averaging the initial state, we have

1

4

X
s0f;s

0
i

X
sf;si

jhfjLSD
χ jiij2 ¼ 1

4EiEf

1

4E0
iE

0
f

G2
v

2

�
ða0 þ a1τ3Þ2

�
2EiEf −

q2

2
− 2m2

χ

��
2E0

iE
0
f −

q2

2
− 2m2

N

�

þ 2ða0 þ τ3Þðb0 þ b1τ3Þ
�
2EiEf −

q2

2
− 2m2

χ

�
ðE0

i − E0
fÞmNq0

þ ðb0 þ b1τ3Þ2
�
2EiEf −

q2

2
− 2m2

χ

�
q2

2
q20

�
; ðC8Þ

which are referred to as “proton-only.” It is defined by the couplings a0 ¼ a1 ¼ 1; τ3 ¼ 1. Thus, in the case of protons only,

1

4

X
s0f;s

0
i

X
sf;si

jhfjLSD
χ jiij2 ¼ 1

4EiEf

1

4E0
iE

0
f

G2
v

2

�
4

�
2EiEf −

q2

2
− 2m2

χ

��
2E0

iE
0
f −

q2

2
− 2m2

N

�

þ 4
mN

q2 þm2
π

�
2EiEf −

q2

2
− 2m2

χ

�
ðE0

i − E0
fÞmNq0 þ

�
mN

q2 þm2
π

�
2
�
2EiEf −

q2

2
− 2m2

χ

�
q2

2
q20

�
;

ðC9Þ

STðqÞ ¼
1

4πG2
v

X
s0f;s

0
i

X
sf;si

jhfjLSD
χ jiij2 ¼ 1

4EiEf

1

4E0
iE

0
f

1

2π

�
4

�
2EiEf −

q2

2
− 2m2

χ

��
2E0

iE
0
f −

q2

2
− 2m2

N

�

þ 4
mN

q2 þm2
π

�
2EiEf −

q2

2
− 2m2

χ

�
ðE0

i − E0
fÞmNq0 þ

�
mN

q2 þm2
π

�
2
�
2EiEf −

q2

2
− 2m2

χ

�
q2

2
q0

�
: ðC10Þ
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