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I. INTRODUCTION

In its current formulation, string theory is not a back-
ground independent theory, that is to investigate dynamics
of a string one first has to specify the data defining
background fields. For consistency of the two-dimensional
theory these must satisfy field equations of supergravity.
It is now clear that the total space of vacua of the string is
degenerate in the sense that there exists a symmetry making
different supergravity solutions indistinguishable by the
string. Among such duality symmetries the most well
known probably is the perturbative T duality symmetry,
which transforms target (hence “T” in the name) space-time
fields such that the string partition function remains the
same [1–3]. The transformation is performed along a
bosonic isometry of the background and at the field theory
level is manifested in terms of the so-called Buscher rules
[4] (see [5] for a review). When fermionic isometries are
present, i.e., a given background is supersymmetric, tree-
level string theory can be shown to admit an isometry called
fermionic T duality. This first has been constructed in [6] to
provide an interpretation of a duality relating amplitudes of

N ¼ 4 SYM and its Wilson loops (see [7] for a review).
For 2d sigma models with target space-time being a coset
space these symmetries have been generalized to a trans-
formation along a superalgebra in [8,9] (see also [10,11]
for the recent sigma-model results). Bosonic non-Abelian
T duality has found numerous applications as a solution
generating technique (see [12] for a review).
Recently Buscher rules for non-Abelian fermionic T

duality transformation of a general background beyond
coset spaces was formulated in [14]. The transformation of
the d ¼ 10 type II supergravity fields is superficially the
same as in the Abelian case [6]. For the transformed dilaton
ϕ and the R-R bispinor F αβ̂ encoding gauge invariant field
strengths we have

F 0 ¼ F þ 16 i
ϵ ⊗ ϵ̂

C
;

ϕ0 ¼ ϕþ 1

2
log C; ð1Þ

where ϵα; ϵ̂α̂ is a pair of Killing spinors that specify a
fermionic isometry direction in N ¼ 2 supersymmetric
theory [13]. What changes in the non-Abelian case is the
prescription for the parameter C,

∂mC ¼ iKm − ibmnK̃n;

∂̃
mC ¼ −iK̃m; ð2Þ

where

Km ¼ ϵγ̄mϵ − ϵ̂γ̄mϵ̂; ð3Þ

K̃m ¼ ϵγ̄mϵþ ϵ̂γ̄mϵ̂: ð4Þ
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Note that vanishing of K̃m is the Abelian constraint for
the Killing spinors, ½δϵ;ϵ̂; δϵ;ϵ̂� ¼ −K̃mPm by virtue of the
supersymmetry algebra. Thus in the non-Abelian case C
acquires dual coordinate dependence, as well as a con-
tribution from the NSNS 2-form field bmn. Usual coor-
dinates xm, that we here refer to as geometric, together with
the set of coordinates x̃m, that we here refer to as dual,
parameterize the space-time of double field theory. This
theory has been first introduced in [15,16] as a proper T
duality covariant description of string theory backgrounds
and has been further developed in [17–19]. Fields of the
theory depend on the full set of coordinates ðxm; x̃mÞ given
the section condition ∂m • ∂̃m• ¼ 0 is satisfied. Bullets
denote any field of the theory. Double field theory is
covariant under local generalized diffeomorphism trans-
formations, that include standard diffeomorphisms, gauge
transformations of the Kalb-Ramond field, T duality trans-
formation and a set of local transformations, that in
particular include β-shifts of [20,21]. For doubled torus
the dual coordinates x̃m have the meaning of the closed
string winding modes.
Hence, given the dependence of the function C on both

dual and standard coordinates, non-Abelian fermionic T
duality in general results in solutions of double field
theory. Examples include non-Abelian fermionic T duals
of empty Minkowski space-time and of Dp-brane sol-
utions [14]. In general we observe three classes of
solutions: (i) real backgrounds that depend on dual time;
(ii) complex backgrounds, that solve supergravity equa-
tions; and (iii) nongeometric complex backgrounds. Note
that the non-Abelian Killing spinors anticommute to give
the vector K̃m, and thus together they form a closed
superisometry subalgebra. Hence, the full non-Abelian T
duality transformation may be defined, consisting of two
steps: the RR-field and the dilaton shift as in (41) and
further (formal) Abelian T duality along K̃m. Due to the
actual dependence on the corresponding coordinate, the
T duality transformation is formal in the sense, that
this is a reflection in the doubled space of DFT. Under
this full T duality the first class of solutions actually
become complex solutions to supergravity equations,
as the transformation includes timelike T duality.
Backgrounds of the second class become dependent only
on geometric coordinates and again solve supergravity
equations. The most tricky are the backgrounds of the
third class, that depend on combinations x� x̃ in such a
way that the section constraint is satisfied. This means
that there exists a DFT coordinate frame where the
combination becomes geometric, however in this frame
the background cannot be described in terms of space-
time metric and gauge fields. Such backgrounds have
been called non-Riemannian in [22]. We refer to these
as genuinely nongeometric actually adding such back-
grounds to those, that cannot be T dualized to ordinary
geometric solutions of supergravity [23].

The specific way in which the definition of C (2) was
modified by the extra K̃m terms is based on the analysis of
the DFT constraints and equations of motion and is in
consistency with the sigma-model analysis for (super)coset
target spaces. The dilaton equation was checked in [14],
and the prescription was further supported by explicit
examples. Here we provide proofs that all DFT equations
of motion hold, including the generalized metric and the
R-R fields equations.
The organization of this paper is simple: in Sec. II after a

brief review of the DFT formalism we prove that the
equations of motion are satisfied after the duality trans-
formation. This is followed by some examples in Sec. III.

II. EQUATIONS OF MOTION

Previously in [14], it has been shown that the dilaton
equation of motion is invariant under the duality trans-
formation. Here we extend the proof to DFT equations for
the generalized metric HMN , which encodes the NS-NS
sector, and for the O(10,10) spinor jF i representing the
R-R sector. In our approach to DFT we follow [18,19],
where the covariant action for NS-NS fields and the full
covariant action including the R-R sector were constructed.
Let us briefly go through the relevant conventions. The
action of double field theory can be written as

S ¼ SNSNS þ SRR

¼
Z

d10xd10x̃

�
e−2dRðH; dÞ þ 1

4
ð=∂χÞ†S=∂χ

�
; ð5Þ

where the NS-NS degrees of freedom are encoded by the
invariant dilaton d and the generalized metricHMN with its
spin representative S ∈ Spinð10; 10Þ, while the R-R field
strengths are contained in the O(10,10) spinor variable χ. In
general the fields are allowed to depend on the full doubled
set of coordinates XM ¼ ðxm; x̃mÞ, assuming that the
section constraint is satisfied:

ηMN
∂M • ∂N• ¼ 0; ηMN ¼

�
0 δm

n

δn
m 0

�
: ð6Þ

In what follows we will always assume that the non-
Abelian fermionic T duality acts on solutions to the
ordinary supergravity equations, and hence the initial fields
do not depend on the dual coordinates x̃m. Non-Abelian
fermionic T dual backgrounds may depend on the dual
coordinates, however as we have shown in [14] the section
constraint always holds.
The metric gmn and the Kalb-Ramond field Bmn are

encoded in the generalized metric HMN that is an element
of the coset Oð10; 10Þ=Oð1; 9Þ × Oð9; 1Þ:
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HMN ¼
�
gmn − bmpgpqbqn bmpgpl

−gkpbpn gkl

�
: ð7Þ

The dilaton ϕ together with g ¼ det gmn forms the so-called
invariant dilaton

d ¼ ϕ −
1

4
log g; ð8Þ

which transforms as a scalar under DFT symmetries. The
DFT curvature scalar RðH; dÞ has been first introduced
in [24] as trace of the Ricci curvature RMNðH; dÞ,

RMN ¼ 1

4
ðδPM −HP

MÞKPQðδQN þHQ
NÞ

þ 1

4
ðδPM þHP

MÞKPQðδQN −HQ
NÞ; ð9Þ

where

KMN ¼1

8
∂MHKL

∂NHKLþ2∂M∂Nd

þð∂L−2ð∂LdÞÞHKL

�
∂ðMHNÞK−

1

4
∂KHMN

�

þ1

4
ðHKLHPQ−2HKQHLPÞ∂KHMP∂LHNQ: ð10Þ

Note that here we are using the tensor KMN in the form of
[25] which gives the same Ricci curvature as that of [19],
however proves to be more convenient in explicit calcu-
lations. The corresponding Ricci scalar has the form

RðH; dÞ ¼ 4HMN
∂M∂Nd − ∂M∂NHMN

þ 4∂MHMN
∂Nd − 4HMN

∂Md∂Nd

þ 1

8
HMN

∂MHKL
∂NHKL

−
1

2
HMN

∂MHKL
∂KHNL: ð11Þ

The R-R potentials of the type II supergravity theories
are encoded in the O(10,10) spinor:

jχi ¼
X
p

1

p!
Cm1…mp

ψm1…ψmp j0i: ð12Þ

Here the gamma matrices ðψa;ψaÞ of Spin(10, 10) are
defined in the usual way (up to rescaling)

fψa;ψbg ¼ δa
b; ð13Þ

and the Clifford vacuum is defined as usual as ψaj0i ¼ 0.
In the covariant spinorial notations the field strengths for
the R-R potentials read

jFi≡ j=∂χi ¼
X
p

1

p!
Fm1…mp

ψm1 � � �ψmp j0i: ð14Þ

To define Dirac conjugation one introduces the matrix
A ¼ ðψ0 − ψ0Þðψ1 − ψ1Þ � � � ðψ9 − ψ9Þ, that gives

hFj ¼ h=∂χj ¼
X
p

1

p!
h0jAψmp � � �ψm1Fm1…mp

: ð15Þ

Finally, the kinetic operatorK ¼ A−1S is written in terms of
the Spin(10, 10) image of the generalized metric, and it also
contributes to the variation with respect to HMN .
Here one should be careful regarding which R-R

potentials enter the action and hence the equations of
motion. Indeed, one distinguishes at least two sets of R-R
field strengths: those that transform under T duality as
components of an O(10, 10) spinor, denoted Fm1…mp

and
those that are gauge invariant denoted Fm1…mp

. In spinorial
notations these two are related as follows

jF i ¼ eϕe−
1
2
BjFi; B ¼ 1

2
bmnψ

mψn: ð16Þ

Note that the above is not a covariant expression as bmn
does not transform as component of a spinor and has
rather complicated nonlinear transformations involving the
space-time metric. We also include the factor eϕ to obtain
precisely the field strengths F , which transform linearly
under non-Abelian fermionic T duality.
Now we are ready to check the invariance of the full set

of DFT equations under NAfTD. The equations read

R ¼ 0;

RMN þ e2dEMN ¼ 0;

=∂KjF i ¼ 0; ð17Þ

where K defines duality relations via jF i ¼ −KjF i and
the symmetric R-R energy-momentum tensor EMN is
defined as

EMN ¼ −
1

16
HPðMhFjΓNÞPjFi: ð18Þ

Invariance of the dilaton equation, that is the first line
in (17) has been shown in [14]. The R-R fields equation,
that is the last line in (17), is simply the integrability
condition for the duality relation, given =∂=∂ ¼ 0 on the
section condition. Since non-Abelian fermionic T duality
does not spoil the duality relations between the R-R p-form
fields, the same equation as above holds for δF. Hence, the
transformation of the R-R field equations under T duality
vanishes.
To show invariance of the remaining Einstein equation of

DFT we must show
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δRMN þ δðe2dEMNÞ ¼ 0; ð19Þ

where δ denotes the non-Abelian fermionic T duality
transformation. The reason why the transformation of
e2d must be considered together with the transformation
of the energy-momentum tensor will become clear momen-
tarily. Before that, let us write the transformation of the
Ricci tensor

δRMN ¼ 1

2
δKMN −

1

2
HM

PHN
QδKPQ;

δKMN ¼ 2∂M∂Nδd − 2∂LδdHKL
∂ðMHNÞK

þ 1

2
∂LδdHKL

∂KHMN: ð20Þ

Explicitly substituting fermionic T duality rules (2), we
obtain the following for the transformation of the compo-
nents of generalized Ricci tensor:

C2δRmn ¼ −
i
2
C∇ðmKnÞ −

1

2
KmKn þ 1

2
K̃mK̃n;

C2δRm
n ¼ C2δRmkbnk þ

i
2
CKkHknlgml þ iC∇mK̃n

þ KmK̃n − KnK̃m

þ i
2
CK̃kHklpbnqgmpglq − iC∇½kKm�bnk;

C2δRmn ¼ C2δRklbmkbnl þ
i
2
CKkHkmlbnpglp

þ iC∇lK̃mbnl þ KmK̃kbkn − KkK̃mbkn

þ i
2
∇ðmKnÞ −

1

2
K̃mK̃n þ

1

2
KmKn; ð21Þ

where we have used the Killing vector condition
∇ðmK̃nÞ ¼ 0. In what follows for concreteness we stick
to the type IIB theory, whose supersymmetry transforma-
tions read

δψm ¼ ∇mϵ −
1

4
=Hmϵ −

eφ

8

�
=Fð1Þ þ =Fð3Þ þ

1

2
=Fð5Þ

�
γ̄mϵ̂

δψ̂m ¼ ∇mϵ̂þ
1

4
=Hmϵ̂þ

eφ

8

�
=Fð1Þ − =Fð3Þ þ

1

2
=Fð5Þ

�
γ̄mϵ;

δλ ¼ =∂φϵ −
1

2
=Hϵþ eφ

2
ð2=Fð1Þ þ =Fð3ÞÞϵ̂;

δλ̂ ¼ =∂φϵ̂þ 1

2
=Hϵ̂ −

eφ

2
ð2=Fð1Þ − =Fð3ÞÞϵ; ð22Þ

where

=FðnÞ ¼
1

n!
Fm1…mn

γm1…mn;

=Hm ¼ 1

2
Hmnkγ

nk: ð23Þ

Proof for the type IIA theory goes along precisely the
same lines.
Let us now return to the energy-momentum tensor and

define

ẼMN ¼ e2dEMN

¼ −
1

16

1ffiffiffi
g

p HPðMhF je−1
2
BΓNÞPe

1
2
BjF i: ð24Þ

Now we see, that the factors eϕ precisely cancel those
coming from the transition to gauge invariant field
strengths. The remaining overall factor 1ffiffi

g
p will be used

to turn the epsilon symbol coming from the Dirac con-
jugation matrix A into the epsilon tensor. The only
complication here is the exponents of B, which can be
rewritten nicely using the Baker-Campbell-Hausdorf for-
mula e−

1
2
BXe

1
2
B ¼ X − 1

2
½B;X � þ 1

8
½B; ½B;X �� þ � � �. For

that we denote Γ̃MN ¼ e−
1
2
BΓMNe

1
2
B and write its compo-

nents explicitly for further convenience:

Γ̃mn ¼ Γmn;

Γ̃m
n ¼ Γm

n − Γmkbkn;

Γ̃mn ¼ Γmn þ 2Γk½mbn�k þ Γklbkmbln: ð25Þ

Hence, we have for the tensor ẼMN :

Ẽmn ¼ −
1

16
gkðmhF jΓnÞ

kjF i;

Ẽm
n ¼ Ẽmkbnk −

1

32
hF jΓnkgmk þ ΓmkgnkjF i;

Ẽmn ¼ Ẽl
ðmbnÞl þ Ẽklðbmkbnl − gmkgnlÞ: ð26Þ

Now the strategy to prove that the Einstein equation of DFT
holds upon a non-Abelian fermionic T duality is to first
write the transformation of the generalized Ricci tensor
δRMN in the same form as above. What remains then is to
simply check the cancellation of δRmn against the first line
of (26) and the corresponding terms of δRm

n against the
last two terms in the second line of (26).
To do so, let us first show that the third line in C2δRm

n
of (21) vanishes. For that we use (22) to write

−iC∇½kKm�¼−2iCðϵγ½m∇k�ϵ− ϵ̃γ½m∇k�ϵ̃Þ

¼−
iC
2

�
ϵγ½m=Hk�ϵþ1

2
ϵγ½m

�
F 1þF 3þ

1

2
F 5

�
γk�ϵ̃

þ ϵ̃γ½m=Hk�ϵ̃þ1

2
ϵ̃γ½m

�
F 1−F 3þ

1

2
F 5

�
γk�ϵ

�

¼−
iC
2
ðϵγqϵþ ϵ̃γqϵ̃ÞHkmq¼−

iC
2
K̃qHq

km;

ð27Þ
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where in the second equation we used symmetry properties
of gamma matrices, ϵ̃γmF 1;5γ

kϵ ¼ ϵγkF 1;5γ
mϵ̃ and

ϵ̃γmF 3γ
kϵ ¼ −ϵγkF 3γ

mϵ̃. With that we finally obtain the
transformation of the generalized Ricci tensor under non-
Abelian fermionic T duality:

C2δRmn ¼ −
i
2
C∇ðmKnÞ −

1

2
KmKn þ 1

2
K̃mK̃n;

C2δRm
n ¼ C2δRmkbnk þ

i
2
CKkHknlgml þ iC∇mK̃n

þ KmK̃n − KnK̃m;

C2δRmn ¼ C2δRkðmbnÞk þ C2δRklðbmkbnl − gmkgnlÞ:
ð28Þ

Comparing this to (26) we see that to prove preservation
of the Einstein equation after non-Abelian fermionic T
duality we only have to show that the following is true:

iC∇ðmKnÞ þ KmKn − K̃mK̃n

þ 1

8
gkðmδhF jΓnÞ

kjF i ¼ 0;

i
2
CKkHknlgml þ iC∇mK̃n þ KmK̃n − KnK̃m

−
1

32
δhF jΓnkgmk þ ΓmkgnkjF i ¼ 0: ð29Þ

The rest will follow as a consequence. For concrete
calculations let us proceed with type IIB theory, for which
we have

−
1

4

1ffiffiffi
g

p gkðmhF jΓnÞ
kjF i ¼ FmF n þ 1

2
Fm

pqF npq

þ 1

2 × 4!
Fm

pqrsF npqrs −
1

2
gmn

X
i¼1;3

jF ðiÞj2;

−
1

8

1ffiffiffi
g

p hF jΓnkgmk þ ΓmkgnkjF i ¼ Fm
npFp

þ 1

6
Fm

npqrFpqr: ð30Þ

Towrite the transformation of the R-R field strengths in a
similar form let us recall trace identities for the gamma
matrices relevant for the type IIB case:

1

16
Tr½Cγμγ̂ν�¼δν

μ;

1

16
Tr½Cγμν̄ργκλ̄σ�¼3!δκ

μ
λ
ν
σ
ρ¼−

1

16
Tr½Cγμ̄νρ̄γκλ̄σ�;

1

16
Tr½Cγμ̄1μ2μ̄3μ4μ̄5γν1ν̄2ν3ν̄4ν5 �¼5!δμ1…μ5

ν1…ν5 þϵμ1…μ5
ν1…ν5

¼−
1

16
Tr½Cγμ1μ̄2μ3μ̄4μ5γν1ν̄2ν3ν̄4ν5 �:

ð31Þ

From these we derive

1

16
Tr½Cγ̂μ̄F � ¼ F μ;

1

16
Tr½Cγμ̄νρ̄F � ¼ −F μνρ;

1

16
Tr½Cγμ̄1μ2μ̄3μ4μ̄5F � ¼ F μ1…μ5 : ð32Þ

Lets us start with terms linear in δF in the first line
of (29) for which we have

−
i
2
C−1∇ðmKnÞ þ 1

2

�
δF ðmF nÞ þ 1

2
δF ðm

pqF nÞpq

þ 1

2 × 4!
δF ðm

pqrsF nÞpqrs −
1

2
gmn

X
p¼1;3

δF i1…ipF i1…ip

�
:

ð33Þ

The most convenient way to proceed is by expressing the
first term via the R-R field variations using the equa-
tions (22):

−
i
2
∇ðmKnÞ ¼ −iðϵγ̂ðn∇mÞϵ − ϵ̃γ̂ðn∇mÞϵ̃Þ

¼ −
i
8

�
ϵγ̂ðn

�
F ð1Þ þ F ð3Þ þ

1

2
F ð5Þ

�
γ̂mÞϵ̃

þ ϵ̃γ̂ðn
�
F ð1Þ − F ð3Þ þ

1

2
F ð5Þ

�
γ̂mÞϵ

�

¼ −
i
2

�
ϵγ̂ðnϵ̃FmÞ þ 1

2
ϵγ̂pqðnϵ̂FmÞ

pq

þ 1

2 × 4!
ϵγ̂p1…p4ðnϵ̂FmÞ

p1…p4

−
1

2
gmn

X
p¼1;3

ϵγ̂i1…ip ϵ̃F i1…ip

�
; ð34Þ

where in the second equation we used properties of
the Majorana spinors ϵ and ϵ̂ and symmetrization in the
indices ðmnÞ such as ϵγðm=HnÞϵ ¼ 0 to eliminate terms
with the NS-NS field strength. The basic properties we use
here are

ϵγmϵ̃ ¼ ϵ̃γmϵ;

ϵγmnkϵ̃ ¼ −ϵ̃γmnkϵ;

ϵγm1…m5 ϵ̃ ¼ ϵ̃γm1…m5ϵ: ð35Þ

Now taking into account that δF i1…ip ¼ iC−1ϵγ̂i1…ip ϵ̂
we finally arrive at
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−
i
2
C−1∇ðmKnÞ ¼ −

1

2

�
δF ðmF nÞ þ 1

2
δF ðm

pqF nÞpq þ 1

2 × 4!
δF ðm

pqrsF nÞpqrs −
1

2
gmn

X
p¼1;3

δF i1…ipF i1…ip

�
; ð36Þ

that precisely cancels against the remaining linear terms in the first line of (29).
Next, terms quadratic in the R-R field variation in the first line of (29) must cancel against K̃mK̃n − KmKn. To see that

we write

C−2

2
ð−KmKn þ K̃mK̃nÞ ¼ 2C−2ðϵγðmϵÞðϵ̃γnÞϵ̃Þ ¼ −

2

16 × 16
Tr½δF γðmδF TγnÞ�

¼ −
1

8 × 16
Tr

��
δF ð1Þ þ δF ð3Þ þ

1

2
δF ð5Þ

�
γðm

�
δF ð1Þ − δF ð3Þ þ

1

2
δF ð5Þ

�
γnÞ

�

¼ −
1

4

�
δF ðmδF nÞ þ 1

2
δF ðm

pqδF nÞpq þ 1

2 × 4!
δF ðm

pqrsδF nÞpqrs −
1

2
gmn

X
p¼1;3

δF i1…ipδF i1…ip

�
; ð37Þ

where in the second line we used Fierz identities and the fact that γm; γmnkpl are symmetric and γmnk is antisymmetric.
Next, check the linear part in the second line of (29). Similarly to (34), we express the covariant derivative in terms of the

BPS equations (22):

iC∇mK̃n ¼ 2gnpiCðϵγp∇mϵþ ϵ̃γp∇mϵ̃Þ

¼ iC
2
gnp

�
ϵγp=Hmϵ − ϵ̃γp=Hmϵ̃þ 1

2
ϵγp

�
F 1 þ F 3 þ

1

2
F 5

�
γmϵ̃ −

1

2
ϵ̃γp

�
F 1 − F 3 þ

1

2
F 5

�
γmϵ

�

¼ iC
2
Hm

nqKq −
iC
4

�
ϵγ̂pϵ̃Fm

np þ ϵγ̂mnpϵ̂Fp þ 1

6
ϵγ̂pqrϵ̂Fm

npqr þ
1

6
ϵγ̂mnpqrϵ̂Fpqr

�
: ð38Þ

Taking into account that δF i1…ip ¼ iC−1ϵγ̂i1…ip ϵ̂ we see these precisely are the remaining linear terms, but with the
opposite sign.
The remaining cancellation in (29) to be proven involves the quadratic terms in the second line:

C−2

2
ðKmK̃n − KnK̃mÞ ¼ 2C−2gnpðϵγ½mϵÞðϵ̃γp�ϵ̃Þ ¼ −

2gnp
16 × 16

Tr½δF γ½mδF Tγp��

¼ −
gnp

8 × 16
Tr

��
δF ð1Þ þ δF ð3Þ þ

1

2
δF ð5Þ

�
γ½m

�
δF ð1Þ − δF ð3Þ þ

1

2
δF ð5Þ

�
γp�

�

¼ −
1

4

�
δFm

npδFp þ 1

6
δFm

npqrδFpqr

�
: ð39Þ

Hence we have shown that the DFT equation of motion for
the generalized metric holds true after non-Abelian fer-
mionic T duality defined as (1).
This concludes our proof that non-Abelian fermionic T

duality preserves the DFTequations of motion. So a generic
supergravity solution becomes a solution of double field
theory after the non-Abelian fermionic T duality.

III. EXAMPLES WITH NONVANISHING b-FIELD

Some examples of transformed solutions have been
considered in [14], all of them with vanishing b-field. It
has been observed that non-Abelian fermionic T duals of
the Dp-brane solutions are characterized by the function C
that depends on coordinates along the brane world volume
only. This is a rather nontrivial observation, since the

Killing spinors to the contrary only depend on the harmonic
function of the transverse distance from the source brane.
However, this dependence is always canceled out by similar
contributions coming from the vielbein and its inverse,
leaving only linear dependence on the world-volume coor-
dinates and their duals. Let us now inspect what happens in
the case of backgrounds with no RR fields but nonvanishing
b-field. As an example of such a background we proceed
with the type II fundamental string, given by

ds2 ¼ H−1ð−dt2 þ dy2Þ þ dx2ð8Þ;

bty ¼ H−1 − 1; e−2ϕ ¼ He−2ϕ0 ;

H ¼ 1þ h
jxð8Þj6

: ð40Þ
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This is a 1=2-BPS solution and hence preserves half of the
total type II supersymmetry. The corresponding Killing
spinors for type IIA and IIB can be written collectively as

�
ϵ

ϵ̂

�
¼ H−1

4

�
ϵ0

ϵ̂0

�
; ð1þ Γ01OÞ

�
ϵ0

ϵ̂0

�
¼ 0;

O ¼
�Γ11; IIA;

σ3; IIB:
ð41Þ

Here Γ11 is the 32 × 32 gamma matrix in 10 dimensions,
while the Pauli matrix σ3 acts on the column of two type IIB
spinors of the same chirality. Explicitly for the solution as
written above we have

ϵ0 ¼ ð1 − γ01̄Þη ¼ ð1 − γ0γ1Þη IIA; IIB;

ϵ̂0 ¼
� ð1þ γ0̄1Þη̄ ¼ ð1 − γ0γ1Þη̄ IIA;

ð1þ γ01̄Þη ¼ ð1þ γ0γ1Þη IIB;
ð42Þ

for an arbitrary constant 16-component spinors ðη; η̄Þ.
Notice γ01̄ ¼ −γ0̄1 ¼ γ0γ1.
Let us now enumerate all 32 spinors as in [14] intro-

ducing a basis fϵi; ϵ̂ig of 16-component spinors of
the opposite chiralities. Then we may write Killing spinors
ϵ0, ϵ̂0 of the type IIA string in the following most general
form

ϵ0 ¼
1

4
e−i

π
4H−1

4ð1 − γ01Þ
X8
i¼1

aiϵi;

ϵ̂0 ¼
1

4
ei

π
4H−1

4ð1 − γ01Þ
X8
i¼1

biϵ̂iþ8; ð43Þ

where the overall numerical prefactors have been chosen
for further convenience and coefficients ai and bi are
constant. This yields the following function C

C ¼ 1

2
ðAþ BÞðx1 þ x̃0Þ þ

1

2
ðA − BÞðx0 − x̃1Þ; ð44Þ

where we define

4A ¼
X8
i¼1

a2i ;

4B ¼
X8
i¼1

b2i : ð45Þ

As expected, the section condition of DFT is satisfied
even though there seemingly is a dependence on both a
coordinate and on its dual. As we have discussed

previously in [14] this simply means, that one can choose
such a coordinate frame in the doubled space, where C
depends only on a (new) coordinate and not on its dual.
Note however, that this does not guarantee that the back-
ground is geometric as there might not be possible to define
a space-time metric in such frame. This has been precisely
the case for one of the examples of [14].
Hence, one observes here several distinct possibilities:

(i) a background that depends on the dual time x̃0, which
appears to be real; (ii) a background with no dependence
on the dual time, which is always complex; and (iii) a
nongeometric background with dependence on a pair
xþ x̃, which can be rotated into a frame where no space-
time metric can be defined. For concreteness, let us
provide explicit examples of all these possibilities.
Conceptually, they repeat those already considered
in [14] and are here mainly to illustrate that the general
principle does not change for backgrounds with non-
vanishing b-field.

A. Real background example

To obtain a formally real background we set
a1 ¼ b1 ¼ 2, A ¼ B ¼ 1 that gives

C ¼ x1 þ x̃0: ð46Þ

In this case for the non-Abelian fermionic T dual back-
ground we obtain

e−2ϕ ¼ He−2ϕ0

x1 þ x̃0
;

m ¼ e−ϕ0

2ðx1 þ x̃0Þ3=2
;

F ð2Þ ¼
e−ϕ0

2HC3=2 dx
01;

F ð4Þ ¼
e−ϕ0

C3=2 ððdx34 − dx27 − dx89Þ ∧ ðdx56 − dx89Þ
þ ðdx23 − dx47Þ ∧ ðdx58 þ dx69 − dx47Þ
þ ðdx24 þ dx37Þ ∧ ðdx59 − dx68ÞÞ; ð47Þ

where we explicitly write only the RR field strength and the
dilaton as the remaining fields stay the same. We use the
obvious notation dxij ¼ dxi ∧ dxj. Notice that the 0-form
field strength F 0, normally called the Roman’s mass m,
acquires a dependence on a world volume and a dual
coordinate.

B. Real background example with zero mass

Nonvanishing Roman’s mass in the previous example
implies that upon timelike T duality the background is a
solution of the deformed, massive, type IIA theory.
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To arrive at solutions to the massless type II supergravity
we choose a1 ¼ b2 ¼ 2, A ¼ B ¼ 1, that gives:

e−2ϕ ¼ He−2ϕ0

x1 þ x̃0
;

F ð2Þ ¼ −
e−ϕ0

2C3=2 ½dx67 þ dx38 þ dx49 − dx25�;

F ð4Þ ¼
e−ϕ0

2C3=2

�
1

H
dx01 ∧ ðdx67 − dx25 þ dx38 þ dx49Þ

þ ðdx89 − dx34Þ ∧ ðdx26 þ dx57Þ

þ ðdx39 − dx48Þ ∧ ðdx27 − dx56Þ
�
: ð48Þ

C. Complex background example

To avoid dependence on the dual time x̃0 one may set,
e.g., a1 ¼ −ib1 ¼ 2, A ¼ −B ¼ 1 that gives C ¼ x0 − x̃1
and results in the following complex background

e−2ϕ ¼ He−2ϕ0

x0 − x̃1
;

m ¼ ie−ϕ0

2ðx0 − x̃1Þ32
;

F ð2Þ ¼
ie−ϕ0

2HC3=2 dx
01;

Fð4Þ ¼
ie−ϕ0

C3=2 ððdx34 − dx27 − dx89Þ ∧ ðdx56 − dx89Þ
þ ðdx23 − dx47Þ ∧ ðdx58 þ dx69 − dx47Þ
þ ðdx24 þ dx37Þ ∧ ðdx59 − dx68ÞÞ: ð49Þ

Again the Roman’s mass is nonvanishing and depends on
coordinates x0 and x̃1. As before, with a different choice of
the parameters ai and bi one can end up with a massless
background.

D. Non-geometric example

Finally, to arrive at a nongeometric background it is
enough to set either A or B to vanish, or more generally
keep jAj ≠ jBj. An example is provided by the function

C ¼ x1 þ x0 þ x̃0 − x̃1;

with the corresponding Killing spinor choice yielding
vanishing RR fields. Same as in [14], by nongeometric
we mean DFT solutions which cannot be bosonic T
dualized into any geometric background. Following the
nomenclature of [23] these belong to the so-called genu-
inely nongeometric class, to which we also include DFT
backgrounds, that either depend on dual coordinate or
become non-Riemannian in the sense of [22].

Non-Abelian fermionic T dualization of the type IIB
fundamental string background does not add new informa-
tion to the type IIA examples considered above. The same is
true for more simple backgrounds such as, e.g., Minkowski
space with Kalb-Ramond field given by a pure gauge term.

IV. SUMMARY

In this work we complete the proof that non-Abelian
fermionic T duality generates backgrounds that are always
a solution to equations of double field theory. As it has been
discussed previously in [14] non-Abelian T duality along a
superisometry consisting of a Killing spinor and a Killing
vector can be understood as a two-step process: (i) the
purely fermionic transformation according to the rule (1),
and (ii) Abelian bosonic T duality along the Killing vector.
Although this is a symmetry of the 2D sigma-model (see,
e.g., [9]) explicit examples show that in general one does
not end up with a supergravity background, however, the
result is always a solution to DFT equations.
Non-Abelian T duality along bosonic isometries can also

be decomposed in a similar fashion: (i) a shift of the b-field
linear in dual coordinates, and (ii) formal Abelian T dualities
along all direction [26]. As in the present case, the first step
alone produces solutions to double field theory equations that
depend on dual coordinates. However, the whole bosonic
NATD procedure always ends up with a (generalized)
supergravity solution, as all dual coordinates get dualized.
In contrast, in the fermionic case one finds examples that
depend on combinations x� x̃ of a geometric coordinate x
and its dual x̃. Given the section condition is satisfied, there
exists such DFT coordinate frame, where the involved
combination can be understood as a new geometric coor-
dinate, say x0 ¼ xþ x̃, the dual then would be x̃0 ¼ x − x̃.
However, in this case the space-timemetric gmn often cannot
be recovered, as the corresponding block of the generalized
metric is degenerate, and hence the background is non-
Riemannian in the sense of [22]. The lack of description of
such backgrounds in terms of a space-time metric settles it
outside of the set of supergravity solutions. To our knowl-
edge, no examples of a similar behavior are known in the
bosonic case, which would be interesting to search for.
Our discussion both here and in [14] has been restricted

by simple isometry superalgebras containing a single
fermionic generator and a single bosonic generator. The
word “non-Abelian” therefore refers to the property of the
Killing spinor, which does not commute with itself as it is
normally required for fermionic T duality. As we already
show in [14], such transformation can never generate a
real background, that is either one ends up with complex
valued fields, or with real fields and dependence on dual
time. In the latter case further timelike T duality turns the
fields complex. It is tempting to consider more general
setups, where the bosonic isometry subgroup is non-
Abelian and contains more generators. That should provide
enough freedom to generate real backgrounds by fermionic
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dualities. For alternative although similar approach see
[27]. Also such more complicated dualization schemes
might be useful for searches of self-duality of AdS4 ×
CP3 [28].
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