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We present a universal democratic Lagrangian for the bosonic sector of ten-dimensional type II
supergravities, treating “electric” and “magnetic” potentials of all Ramond-Ramond (RR) fields on equal
footing. For type IIB, this includes the five-form whose self-duality equation is derived from the
Lagrangian. We also present an alternative form of the action for type IIB, with manifest SLð2;RÞ
symmetry.
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I. INTRODUCTION

A large part of our knowledge on string theory comes
from its low-energy limit—10d supergravities. The rich
symmetry structures of the latter theories are governed by
generalized geometry [1–5] (see also [6,7]; for a review,
see, e.g., [8]) operating not only with metric tensor but also
form fields. It is therefore very useful to have descriptions
of supergravities that manifest a large number of underlying
symmetries of string theory. We start investigation in this
direction by developing a new Lagrangian formulation for
type II supergravities adapted to generalized geometry.
That is, they treat the electric and magnetic degrees of
freedom in equal footing for the RR sector. This formu-
lation we put forward in this work comes with a large
number of new symmetries that will be explored in more
detail elsewhere.
The action formulation for type IIB supergravity is

not straightforward due to the presence of the self-dual
field [9–11] and many treatments [5,12–19] use the so-
called pseudoaction, where one imposes the self-duality
equation on top of the Euler-Lagrange equations. The
(twisted) self-duality condition is known to be hard to
incorporate in the Lagrangian theory, even a free one.
While some formulations of self-dual fields depart from
manifest Lorentz covariance [20–24], several covariant
approaches were developed [25–32] and Lagrangians for
type IIB supergravity were introduced using these
approaches [33–37]. In particular, a democratic and man-
ifestly SLð2;RÞ invariant type IIB action was constructed

in the PST formulation in [36]. An analogous democratic
construction in the type IIA case was done in [38].
We present here a new Oð10; 10Þ-adapted approach

that treats all RR fields and their duals in a democratic
manner [36,39] and is universal for both type II super-
gravities. We also derive an action for type IIB case with
manifest SLð2;RÞ symmetry.

II. TYPE II SUPERGRAVITY ACTION
IN THE Oð10;10Þ-ADAPTED FORM

We follow the exposition from [5] which uses the
interpretation of the Ramond-Ramond fields in terms of
Oð10; 10Þ-spinors [40].
We consider 10-dimensional spacetime with a metric of

Lorentzian signature. In addition, we assume the presence
of a closed 3-form flux H. In this setup, we can then define
the following operations on the space of (inhomogeneous)
differential forms.
First, there is a natural pairing (Mukai pairing), valued in

the top-degree differential forms, given by

ðα; βÞ ≔ ð−1Þbdeg α
2

cðα ∧ βÞtop; ð1Þ

where b·c denotes the integer part of a number, deg α is the
degree of the differential form α and ð·Þtop stands for the top
form part. Then, we define the “reflection” operator ⋆ and
the “differential” D by

⋆α ¼ ð−1Þbdeg α
2

cþdeg α � α; Dα ¼ dαþH ∧ α; ð2Þ

where � is the Hodge star for the Lorentzian metric. These
operations satisfy the following easy-to-check properties:

(i) ⋆2 ¼ 1 (⋆ serves as a natural replacement of � in the
context of Ramond-Ramond fields),

(ii) the pairing ðα;⋆βÞ is symmetric in α and β (this
serves as a replacement for α ∧ �β),

(iii) D2 ¼ 0 (D replaces the de Rham differential),
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(iv)
R
Mðα; DβÞ ¼ −

R
MðDα; βÞ if M has no boundary,

and
(v) DðfαÞ ¼ fDαþ df ∧ α, for any function f.
If B is a 2-form, we can define the operation eB by

eBα ¼
X
n

1

n!
B ∧ … ∧ B|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n

∧ α: ð3Þ

Conjugating the operator D ¼ dþH by eB we then get

eBðdþHÞe−B ¼ dþ ðH − dBÞ: ð4Þ

Since H is locally exact, we can always locally relate the
operator D to the ordinary d in this way.
In particular, suppose that α satisfies Dα ¼ 0. Locally,

writing H ¼ dB, we get 0 ¼ Dα ¼ e−BdðeBαÞ, which
implies that eBα is closed and hence we can write
eBα ¼ dβ þ c, where c is a constant [41]. Thus

α ¼ e−Bdβ þ e−Bc ¼ Dðe−BβÞ þ e−Bc: ð5Þ

In particular, if α has no degree zero component and is
D-closed, then it is also locally D-exact.

A. Ramond-Ramond fields

In type II string theory, the (field strengths of the)
Ramond-Ramond fields correspond to either purely even
(in type IIA) or purely odd (IIB) inhomogeneous differ-
ential forms F satisfying

DF ¼ 0; ð6Þ

⋆F ¼ F: ð7Þ

The self-duality condition (7) ensures that only half of
the degrees of freedom are present. This makes the contact
with the original description of the RR sector, where in
type IIA one has a 0-form (called the Romans mass),
2-form, and a 4-form, while in the IIB case one has a
1-form, 3-form, and an (anti-)self-dual 5-form. For sim-
plicity, we will make the usual restriction and set the
Romans mass to zero. [Otherwise we would run into some
cohomological complications, stemming from the extra
term in (5).] We thus have

F ¼ F2 þ F4 þ F6 þ F8 þ F10; ðIIA caseÞ ð8Þ

F ¼ F1 þ F3 þ F5 þ F7 þ F9: ðIIB caseÞ ð9Þ

Let us now describe the potentials for the Ramond-
Ramond fields. First, choose a cover of M by contractible
open sets U i. Then the potentials are given by a collection
of purely odd (in type IIA case) or purely even (IIB)
differential forms Ai on U i, which satisfy DAi ¼ DAj on

overlaps U i ∩ Uj. The DAi’s then glue together into a
globally defined field strength F. When varying the
potentials, we assume that on overlaps we have
δAi ¼ δAj, and so the variation corresponds to a globally
defined form δA—correspondingly, we have δF ¼ DδA.
Similarly, the gauge transformations are given by
δAi ¼ Dc, with c a globally defined differential form.
In particular, since F ¼ DA, the Eq. (6) is automatically

satisfied. Our aim is now to derive the second equation (7)
from an action principle.

B. Remark

Let us briefly comment on the more conceptual view-
point of the above constructions. First, differential forms
can be regarded as spinors (or more precisely spinor half-
densities) of Spinð10; 10Þ, while purely even and purely
odd forms correspond to chiral spinors. The pairing can be
interpreted as the invariant spinor pairing. The operator D
corresponds to the generating Dirac operator of [42–44].
The choice of Lorentzian metric breaks the group
Spinð10; 10Þ down to Spinð9; 1Þ × Spinð1; 9Þ. Self-dual
and anti-self-dual differential forms [in the sense of (7)]
live in ð16; 16Þ and ð16; 16Þ of this subgroup. The reflec-
tion operator ⋆ coincides with the chirality operator for
Spinð9; 1Þ ⊂ Spinð10; 10Þ [45].

C. The RR-sector action

We start from the following action for RR fields:

SRðA;R; aÞ ¼
1

2

Z
M
½ðF þ aQ;⋆ðF þ aQÞÞ þ 2ðF; aQÞ�;

ð10Þ

where

F ¼ DA; Q ¼ DR; ð11Þ

a is a scalar field, and R is of the same type as A: a
collection of even/odd forms for type IIB/IIA supergravity.
R does not have to be globally defined, similarly to A. The
equations of motion are given by the vanishing of

EA ≔ D½⋆ðF þ aQÞ þ aQ�; ð12Þ

ER ≔ D½að⋆ðF þ aQÞ − FÞ�; ð13Þ

Ea ≔ ðð1 − ⋆ÞðF þ aQÞ; QÞ: ð14Þ

The action is invariant under the usual gauge transforma-
tions δA ¼ DΛ and δR ¼ DΩ. We also have the symmetry
(analogous to PST formulation, see, e.g., [46,47])

δA ¼ −ada ∧ Σ; δR ¼ da ∧ Σ; δa ¼ 0: ð15Þ
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Finally, any shift of a which does not violate the condition
ðdaÞ2 ≠ 0 (see below) can be compensated by a change in A
and R such that the action remains invariant [50,51].

D. Derivation of self-duality

The equations of motion in particular imply

0 ¼ ER − aEA ¼ da ∧ ð⋆ − 1ÞðF þ aQÞ: ð16Þ
If ðdaÞ2 ≠ 0 everywhere, this implies [48]

⋆ðF þ aQÞ ¼ F þ aQ: ð17Þ

Plugging this back in EA ¼ 0 we get

da ∧ DR ¼ 0: ð18Þ

This in turn implies that locally

R ¼ DΩþ da ∧ Ψ; ð19Þ

where Ω and Ψ are some (inhomogeneous) differential
forms. Thus, R is locally pure gauge and can be gauged
away. Note, that the field a also does not contain any
physical degrees of freedom, as can be seen from its off-
shell shift symmetry. [49] Hence, if the spacetime is
topologically trivial, all the degrees of freedom are encoded
in F ¼ DA, which satisfies the self-duality condition (7). If
the topology is nontrivial, one still obtains the self-dual
combination F þ aQ, but there might be finitely many
residual degrees of freedom associated to the topology.
Note also, that the Lagrangian is invariant with respect to
the symmetry (15) only up to boundary terms [52], and a
global transformation to aQ ¼ 0 everywhere is not always
allowed. Given that F þ aQ is invariant with respect to the
transformation (15) and closed due to (18), it is more
natural to think of the degrees of freedom being encoded in
F þ aQ rather than F. A consequence of this will be
discussed in the Conclusions.

E. The full action

The full pseudoaction for the bosonic sector of both type
II supergravities can be given as (following the conventions
of [5]):

Ŝ ¼ SNS þ ŜR; ð20Þ

SNS ¼
1

2κ2

Z ffiffiffiffiffiffi
−g

p
e−2φ

�
Rþ 4ðdφÞ2 − 1

12
H2

�
; ð21Þ

ŜR ¼ � 1

8κ2

Z
ðF;⋆FÞ: ð22Þ

Here H is a field strength of the Kalb-Ramond 2-form field
B, φ is the dilaton, andR is the Ricci scalar for the metric g.
In the last expressions we have upper/lower sign for

type IIA/IIB case. In order to pass from the pseudoaction
to the action we simply replace ŜR (22) with SR (10). The
full action is then given as:

S ¼ 1

2κ2

Z � ffiffiffiffiffiffi
−g

p
e−2φ

�
Rþ 4ðdφÞ2 − 1

12
H2

�

� 1

8
fðF þ aQ;⋆ðF þ aQÞÞ þ 2ðF; aQÞg

�
: ð23Þ

Here again, the upper/lower sign corresponds to type IIA/
IIB supergravity. In this formulation the SLð2;RÞ sym-
metry of type IIB supergravity is not explicit. We will
proceed now to derive another form of the action, adapted
to the SLð2;RÞ symmetry.

III. TYPE IIB SUPERGRAVITY ACTION
IN THE SLð2;RÞ-ADAPTED FORM

If in type IIB case we pass to the Einstein frame and
rename (and rescale) the variables, we obtain the following
pseudoaction [16].

Ŝ ¼ 1

2κ2

Z ffiffiffiffiffiffi
−g

p �
R − 2½ðdϕÞ2 þ e2ϕðdlÞ2� − 1

3
e−ϕH2

−
1

3
eϕðH0 − lHÞ2 − 1

60
M2

	
−

1

96κ2

Z
C ∧ H ∧ H0;

ð24Þ
where the field content is now given by a metric g, two
scalars ϕ and l, two 2-forms B and B0 with curvatures H
and H0, respectively, and a 4-form C with curvature
F ¼ dC. Finally, we set M ≔ F þ 1

2
ðB ∧ H0 − B0 ∧ HÞ.

The group SLð2;RÞ acts on the complex scalar τ ≔ lþ
ie−ϕ by fractional linear transformations; similarly H0 and
H form an SLð2;RÞ-doublet.
We can now introduce the new type IIB action

S ¼ 1

2κ2

Z ffiffiffiffiffiffi
−g

p �
R − 2½ðdϕÞ2 þ e2ϕðdlÞ2� − 1

3
e−ϕH2

−
1

3
eϕðH0 − lHÞ2

	
þ SSD: ð25Þ

replacing only the sector of the pseudoaction containing the
self-dual gauge field C supplemented with interactions
involving both 2-forms B and B0 with (Q ¼ dR):

SSD ¼ 1

2κ2

Z
½ðF þ aQÞ ∧ �ðF þ aQÞ þ 2F ∧ aQ

− 2ð1þ �ÞðF þ aQÞ ∧ X þ X ∧ �X�; ð26Þ

where X ¼ 1
2
ðB ∧ H0 − B0 ∧ HÞ is the SLð2;RÞ symmetric

Chern-Simons interaction contribution [53]. The equations
of motion are given by the vanishing of
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EA ≔ d½�ðF þ aQÞ þ aQ − ð1 − �ÞX�; ð27Þ

ER ≔ d½að�ðF þ aQÞ − F − ð1 − �ÞXÞ�; ð28Þ

Ea ≔ Q ∧ ð� − 1ÞðF þ aQþ XÞ: ð29Þ

In particular, we get

0 ¼ ER − aEA ¼ da ∧ ð� − 1ÞðF þ aQþ XÞ: ð30Þ

Assuming ðdaÞ2 ≠ 0 (almost) everywhere, we obtain

�ðF þ aQþ XÞ ¼ F þ aQþ X: ð31Þ

Plugging this back inEA ¼ 0weget da ∧ dR ¼ 0 (hereR is
only a four-form), which locally implies that

R ¼ dωþ da ∧ ψ ; ð32Þ

for some 4-forms ω and ψ , and so we can gauge it away.
Let us check that the equations of motion for B and B0

given by the new action coincide with the original ones.
Varying (26) with respect to B, we get a term

EB ¼ 2H0 ∧ ½ð1þ �ÞðF þ aQÞ þ �X�
þ 2d½B0 ∧ ðð1þ �ÞðF þ aQÞ þ �XÞ�: ð33Þ

Using the self-duality (31), the vanishing of Q, and the
identity 2H0 ∧ X ¼ B0 ∧ dX, this reduces to

8H0 ∧ ðF þ XÞ: ð34Þ

Similarly, the contribution to the equation of motion forB0 is

−8H ∧ ðF þ XÞ: ð35Þ

Thismatcheswith the original variation, providedwe choose
the normalization as in (26).
Note that the action (26) is also gauge invariant under the

familiar gauge transformations:

δB ¼ dΛ; δB0 ¼ dΛ0; δC ¼ 1

2
ðΛ0 ∧ H − Λ ∧ H0Þ:

ð36Þ
An important observation is that the self-duality equation
can be amended by interactions with other fields via
the mechanism put forward in [51], that is, adding to the
Lagrangian a term ð1þ �ÞðF þ aQÞ ∧ Y, to modify the
self-duality equation (31) as:

ð� − 1ÞðF þ aQþ X þ YÞ ¼ 0; ð37Þ

similarly to the addition of interactions with B and B0
encoded in X. This suggests an immediate way to incor-
porate the quadratic fermion interactions (the expression

for the fermionic bilinear correction Y to the self-duality
equation is given, e.g., in [17]).

IV. CONCLUSIONS

We constructed a novel Lagrangian (23) for type II
supergravities which is universal for both type IIA and
type IIB. The fundamental fields of the RR sector are
collections of odd/even forms for type IIA/IIB, described
by a democratic Lagrangian using the formulation of [50].
We also constructed a Lagrangian where only the self-dual
field of the type IIB theory is treated as in [32], manifesting
the SLð2;RÞ symmetry also present in the nondemocratic
pseudoaction. One interesting question would be to look
for a formulation adapted to both Oð10; 10Þ and SLð2;RÞ
symmetries. This might require to reformulate the scalar
and the two-form of the NS-NS sector in a democratic
manner, introducing dual (eight- and six-form) potentials
for them.
As discussed, e.g., in [36,54], the democratic formu-

lation is useful also for coupling branes to the supergravity.
One can perform dimensional reduction of the actions

presented here to arrive at novel democratic Lagrangians of
maximal supergravities in different lower dimensions
d ¼ 11 − nðn > 1Þ, with EnðnÞ duality symmetries (see,
e.g., [18,55,56] and references therein).
Another application of the actions presented here would

be to use the extra symmetries involved in them compared
to the pseudoactions (together with supersymmetry) to
constrain higher-order α0-corrections to the string effective
action (see [57,58] and references therein). The unique
quartic invariant of the self-dual four-form field in ten
dimensions was already identified in [51] (see also [46]
where the quartic vertex in the perturbative expansion was
found in PST formulation), allowing to define a large class
of full nonlinear theories of self-interacting chiral four-form
(see also [59]). These findings can have a direct application
to the type IIB case. Higher-order interactions are less
constrained for a single chiral form, but can be much more
constrained given theOð10; 10Þ–adapted structure works at
higher orders.
An interesting aspect of type IIB supergravity was

discussed in [60]. A resolution of the puzzle related to
the on-shell value of the action on product manifolds was
suggested, which is related to a boundary term, specific to
the background. Another potential resolution can be
derived from the Lagrangian (26). There, a solution [61]
of the equations of motion with a background spacetime
M5 × X5 can be given by F being proportional to the
volume form of M5 and aQ being proportional to the
volume form of X5, with the same coefficient, so that F þ
aQ is self-dual, solving the Eq. (17). Then, the on-shell
value of the action is given by the second term F ∧ aQ in
the Lagrangian (26) and is proportional to the volume of the
space-time. Note, that aQ is closed on-shell and therefore
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F ∧ aQ becomes a boundary term on-shell, satisfying the
same conditions as the topological term added in [60],
except that now this term is already encoded in the 10d
covariant action and is not background-specific.
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