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We consider the motion of a massive particle in a static, weakly curved spacetime where the gravitational
field is taken to be quantized. We find that Newton’s law of free fall is modified by quantum-gravitational
corrections, in addition to the known special-relativistic and post-Newtonian modifications. The quantum-
gravitational corrections take the form of stochastic noise in the particle trajectory, where the statistical
properties of the noise depend on the quantum state of the gravitational field.
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I. INTRODUCTION

In 1666, while England was locked down during an
epidemic of the plague, a young Isaac Newton spent his
quarantine rather fruitfully, wandering about apple
orchards. There, legend has it that, occasioned by the fall
of an apple, he discovered his universal law of gravitation.
Of course, for all its successes, Newton’s law is incomplete.
We know from special relativity that Newtonian free fall
admits corrections in powers of v2=c2, and we know from
general relativity that there are post-Newtonian corrections
that go roughly as powers of GM=r. We can also anticipate
quantum corrections, once gravity is treated as an effective
field theory. Such corrections would be expected on
dimensional grounds to go as powers of ℏG

c3r2. Indeed, a
famous calculation [1–3] of the one-loop quantum-gravi-
tational modification to the Newtonian potential, analogous
to radiative corrections to Coulomb’s law in quantum
electrodynamics, predicts a correction of exactly this form;
several other authors have performed similar calculations,
though there are some discrepancies in the details [4–8].
The one-loop correction to the Newtonian potential is

exceedingly small ∼ðlPr Þ2 and is surely unmeasurable.
However, loops are not the only way that the quantization
of gravity can be manifested: There can also be tree-level
effects arising from the existence of very unclassical
quantum states. That is, if the quantum state of the
gravitational field is (loosely speaking) very far from being
a coherent state, there could be tree-level processes that
cannot be understood within the context of classical
gravity. Consider by analogy the experimental evidence
for the quantization of light. This comes not just from loop
effects as in the Lamb shift, but also from tree-level
phenomena such as the Compton effect, photon anticorre-
lation, and sub-Poissonian photon statistics [9,10]. In these
instances, the quantum state of the radiation field is often an

eigenstate of the number operator or perhaps a squeezed
state, i.e., some state that does not correspond to a field
configuration of classical electrodynamics.
Similarly, we can look for signatures of quantum gravity

that are pronounced in special states of the gravitational
field. It is important to emphasize that just because we
observe a world in which gravity appears to behave
classically does not mean that the gravitational field is in
a coherent state. While it is true that the expectation value
of the field operator in a coherent state is the classical field
configuration, there are infinitely many other states that are
not coherent states for which that is also true. To see this,
suppose we are given a unitary displacement operator
Dα¼expðαa†−α�aÞ [11]. Then, because ½a;Dα� ¼ αDα,
the expectation value of the field mode operator ϕ ∼ aþ a†

is the same in the stateDαjΨi as in the coherent stateDαj0i,
for any arbitrary state jΨi that satisfies hΨjϕjΨi ¼ 0.
Naturally arising noncoherent states of the gravitational
field include thermal states and squeezed states. Thermal
states of the gravitational field could originate from
evaporating black holes or from the cosmic gravitational
wave background. Squeezed gravitational states could be
produced by inflation [12–14] and even more simply by
ordinary classical sources nonlinearly coupled to gravity.
Recently, the implications of the quantization of grav-

ity on the geodesic deviation between two free falling
masses were analyzed [15–17]. It was found that quantiza-
tion of the spacetime metric induces noise (random
fluctuations) in the geodesic separation of pairs of falling
particles. The statistical properties of the noise—its stan-
dard deviation, autocorrelation function, etc.—depend on
the quantum state of the gravitational field; for certain
states, notably squeezed states, the noise amplitude is
greatly enhanced so that it might even be possible for this
fundamental noise to be experimentally observable in the
fluctuations of the mirror separation of gravitational wave
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detectors. Mathematically, in place of the deterministic
geodesic deviation equation, we now have a stochastic
Langevin-like equation. This is indeed a general phenome-
non: As Feynman and Vernon showed [18], when two
quantum systems are coupled, integrating out one system
causes the second system’s dynamics to become stochastic
even in its classical limit. Intuitively, that is because the
final state of the system that was integrated out must be
summed over.
Here, we will apply the formalism developed in [15–17]

to the case of Newtonian free fall. Instead of considering
the geodesic deviation of two particles in flat space, we will
consider a single particle falling in the background of a
weak, static gravitational field, as seen by an observer at
rest with respect to the background. After taking some care
with fixing the gauge, the perturbations of the gravitational
field will be treated quantum mechanically. As we will see,
the quantum aspects of the computation map directly to the
previous case. Integrating out the quantized gravitational
field and taking the classical limit for the particle yield its
equation of motion. We find (27) that Newton’s law is
augmented by special-relativistic, post-Newtonian, and
quantum-gravitational corrections. In particular, there are
random fluctuations in the force on the particle, the
statistical properties of which depend on the quantum state
of the gravitational field. Thus, Newton’s apple would not
fall straight down but would be subject to minute quantum
jitters, which can be thought of heuristically as arising from
the random bombardment of the apple by gravitons. The
scale of the fluctuations depends on the quantum state but is
likely to be too small to measure.

II. SETUP

We are interested in quantum-gravitational corrections to
free fall; we will have in mind Newton’s apple falling in the
earth’s gravitational field as seen by a terrestrial observer.
(We will neglect not only air resistance but also the rotation
of the earth.) Before taking into account quantum effects,
let us consider the dynamics of a massive nonrelativistic
particle in a vacuum region of a weakly curved static
spacetime. Since the spacetime is static, we can write the
line element as

ds2 ¼ −ð1þ 2ϕþ 2ϕ2 þ 2ψ þ � � �Þdt2

þ ðð1 − 2ϕÞδij þ gð4Þij þ � � �Þdxidxj; ð1Þ

where ∂t is the timelike Killing vector, none of the metric
components depends on t, and we have g0i ¼ 0. Here, ϕ2,

ψ , and gð4Þij are the leading post-Newtonian corrections to
the metric.
The linearized Einstein equations consist, to leading

order, of the single equation

−∇2ϕ ¼ 4πGT00; ð2Þ

which is the Poisson equation for a Newtonian potential ϕ.
The geodesic equation in the nonrelativistic limit _t ∼ 1,
_xi ≪ 1 gives Newton’s universal law of gravitation:

F⃗ ¼ m ̈x⃗ ¼ −m∇⃗ϕ: ð3Þ

Our goal is to find the modification to this law, when the
spacetime metric is quantized.
The coordinates chosen to write the line element are a

convenient choice to exhibit the static nature of the back-
ground. They do not, however, form the proper reference
frame of an observer at rest on the ground. The proper
reference frame of such an observer is an orthonormal
tetrad eμ0, e

μ
j at the observer’s worldline, with the timelike

basis vector always equaling the observer’s four-velocity:
eμ0 ¼ uμ. The extension of such a tetrad to a local
coordinate system is naturally generated by the exponential
map on the spacelike members of the observer’s tetrad.
Each such geodesic can be labeled by the proper time of the
observer at its initial point. This naturally becomes the time
coordinate in these coordinates.
For a freely falling observer, this construction results in

Fermi-normal coordinates. A static observer (that is, one
following an integral curve of the timelike Killing vector
field) is not on a geodesic however, and his or her nonzero
acceleration results in a slight modification to the evolution
of the tetrad along the observer’s worldline. Instead of the
tetrad being parallel transported, it undergoes Fermi-
Walker transport:

uμ∇μeνb ¼ ðuνaσ − aνuσÞeσb; ð4Þ

where Latin letters represent tetrad indices, and aμ is the
rate of change of uμ relative to parallel transport. The local
coordinate system thus constructed ðτ; ξiÞ has a few notable
features:

(i)
ffiffiffiffiffiffiffi
ξiξ

i
p

is the proper distance of the point ðτ; ξiÞ from
the observer ðτ; 0Þ.

(ii) The only nonzero first derivative of the metric at
ξi ¼ 0 is ∂μgττ ¼ −2aμ.

(iii) The second derivatives of the metric at ξi ¼ 0 can be
written in terms of the acceleration and components
of the Riemann tensor.

The line element in these coordinates reads

ds2 ¼ −ð1þ 2ajξj þ 2ajakξjξk þ Rτjτkξ
jξkÞdτ2

þ 4

3
Rτjklξ

jξkdxldτ

þ
�
δjk þ

1

3
Rmjknξ

jξk
�
dxmdxn þOðξ3Þ; ð5Þ
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where aμ and Rμνρλ are evaluated at the origin. When
aμ ¼ 0, one can confirm that this reduces to the metric in
Fermi normal coordinates.

A. Gauge-fixing the metric perturbation

Let us consider perturbations about a given background

gμν ¼ gð0Þμν þ hμν; ð6Þ
where gð0Þ solves Einstein’s equations sourced by a static
fixed Tμν (i.e., contains post-Newtonian corrections to all
orders), and h solves linearized vacuum Einstein’s equa-
tions on this curved background. The gauge conditions
∇μhμν ¼ 0 ¼ h are a valid choice for vacuum perturbations
in regions where the Ricci tensor of the background
vanishes, which happens everywhere outside the source.
In this gauge, the linearized Einstein equations are

1

2
∇α∇αhμν þ Rρμσνhρσ ¼ 0; ð7Þ

and there is residual gauge freedom parametrized by vector
fields ξμ that satisfy ∇α∇αξμ ¼ 0 ¼ ∇αξ

α. For a flat
background, one fixes this residual gauge freedom by
imposing hj0 ¼ 0, which (along with the equations of
motion) implies h00 ¼ 0.
Such a gauge choice is not always possible on a

curved background. The equation of motion for hj0 is
∇αð∇αhμνÞeμj eν0þ2Rρjσ0hρσ¼0. This, in general, includes
terms involving hij and ∂νhij. If the condition hj0 ¼ 0 were
to hold, the equation of motion for hj0 would impose a
nontrivial constraint on hij, but there are not enough
degrees of freedom left in ξμ to both satisfy the constraint
and make hj0 vanish. Said another way, the obstruction to
choosing a gauge where hj0 ¼ 0 is the presence of
inhomogeneous terms in the equation of motion for hj0.
However, for a static background, the inhomogeneous
terms are at most Oð∂jϕ∂kϕÞ. Thus, there is a consistent
gauge choice where hj0 is also at most Oð∂jϕ∂kϕÞ and is
thus subleading when compared to hjk.
In flat space, it is argued that since the vanishing of ∂μhμν

renders h00 nondynamical, and the vanishing of hj0 makes
its equation of motion a Laplace equation, h00 vanishes for
suitable boundary conditions. From the preceding discus-
sion, it is no surprise then that a similar argument goes
through at leading order, and subleading corrections to h00
appear only at Oð∂jϕ∂kϕÞ. Thus, to leading order, we will
still be able to work in the transverse-traceless (TT) gauge:

∇μhμν ¼ 0; ð8Þ

gμνhμν ¼ 0; ð9Þ

h0μ ¼ 0þOðð∂kϕÞ2Þ: ð10Þ

B. Action

The action for a freely falling point particle of massm0 is

Spp¼−m0

Z ffiffiffiffiffiffiffiffiffiffi
−ds2

p

¼−m0

Z
dτ

�
ð1þ2ajξjþ2ajakξjξkþR0j0kξ

jξkÞ

þ4

3
R0jklξ

jξk _ξlþ
�
δjkþ

1

3
Rmjknξ

jξk
�
_ξm _ξnþOðξ3Þ

�1
2

;

ð11Þ

where we have inserted the metric as written in the
observer’s reference frame. Since we have in mind non-
relativistic, Newtonian free fall, we will be expanding the
square root order by order in the three parameters _ξ, ϕ, h.
All three are independent of each other, and we will keep
the first order term in each beyond the standard Newtonian
nonrelativistic action. Since aj and the Riemann compo-
nents above are to be evaluated at the origin, we can use the
coordinates introduced in (1) and make the appropriate
basis transformation to the observer’s tetrad. In fact, since
the observer’s four-velocity is precisely ∂t and we have the
freedom to choose a spacelike tetrad at the origin, we can
align the observer’s tetrad with the ðt; xiÞ coordinate basis.
Keeping the leading order in each correction,

Spp ¼ m0

Z
dt

�
1

2
_ξ2 þ 1

8
_ξ4 − ϕ −

1

2
ϕ2

−
3

2
ϕ_ξ2 − ψ þ 1

4
ḧjkξjξk

�
: ð12Þ

This point particle action contains the leading post-
Newtonian term atOðϕ2;ψÞ, the leading special-relativistic
correction atOðv4;ϕv2Þ, and the leading contribution from
the perturbation at OðhÞ.
We also need the action for linearized gravity. In TT

gauge, the Einstein-Hilbert action about an arbitrary
vacuum background reduces to

SEH ¼ 1

64πG

Z
d4xðhjk∇α∇αhjk − 2hjkRjmknhmnÞ: ð13Þ

For a weakly curved background, the leading action in the
chosen gauge is of course identical to the flat space action,
with corrections at Oðh2∂jϕÞ:

SEH ¼ 1

64πG

Z
d4xðhjk□hjkÞ: ð14Þ

Adding together the linearized Einstein-Hilbert action and
the point particle action and integrating by parts to remove
second derivatives in time,
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S ¼ −
1

64πG

Z
d4xð∂αhjk∂αhjkÞ

þm0

Z
dt

�
1

2
_ξ2 þ 1

8
_ξ4 − ϕ −

1

2
ϕ2

−
3

2
ϕ_ξ2 − ψ −

1

2
_hjk _ξ

jξk
�
: ð15Þ

We can break hij into a sum over discrete modes within a
box of volume V

hijðt; x⃗Þ ¼
1ffiffiffiffiffiffiffi
ℏG

p
X
k⃗;s

qk⃗;sðtÞeik⃗·x⃗ϵsijðk⃗Þ; ð16Þ

where q is the mode amplitude, and ϵ is the polarization
tensor. Focusing on a single mode of frequency ω and
dropping a polarization [17], we find

L ¼ m0

�
1

2
_z2 þ 1

8
_z4 −

3

2
ϕ_z2 − ϕ −

1

2
ϕ2 − ψ

�

þ 1

2
mð _q2 − ω2q2Þ − g _q _z z; ð17Þ

where we have relabeled the particle’s position as zðtÞ and
definedm≡ V

16πℏG2 and g≡ m0

2
ffiffiffiffiffi
ℏG

p . This Lagrangian describes

a particle derivatively coupled to a harmonic oscillator, qðtÞ.
The termswe have omitted for simplicity, including the other
polarization, can also be calculated [19,20].

III. QUANTIZATION

Having obtained the action, we are ready to quantize the
theory. We will at first treat both the particle and the
gravitational field quantum mechanically; after integrating
out gravity, we will take the classical limit for the particle.
Our approach here is essentially identical to the one
developed in [16,17]. That approach differs from standard
calculations in effective field theory in two significant
ways. First, the initial state of the gravitational field will be
arbitrary, rather than the vacuum state typically (though not
always) chosen in effective field theory; we imagine that
there is some initial quantum gravitational state that is
given to us by astrophysical sources. Second, as a result of
the interaction with the particle, the final state of the
particle-field system is typically an entangled state; intui-
tively, the falling particle can absorb gravitons as well as
emit them through spontaneous and stimulated emission.
This means, in particular, that there is no definite final state
for the gravitational field, and we will have to sum over
final states of the field. Consequently, we cannot integrate
out gravity by, as it were, doing a path integral over
gravitational field configurations to obtain an effective
theory for the particle. Instead, the best we can do is to
determine the probabilities (not amplitudes) for the particle
to be in various final states. The problem of integrating out
a system for which the final state is summed over was

treated in detail by Feynman and Vernon [18], and its
application to stochastic gravity was studied by Hu and
collaborators [21–23].
Suppose then that the gravitational field is initially in a

state jΨi. The object of interest is the transition probability
for the particle to go from state A to state B in some time T.
Here, A and B could correspond to wave packets localized
in position, but as we will see, the dynamics will not depend
on what A and B actually are. We have

PΨðA → BÞ ¼
X
jfi

jhf; BjÛðTÞjΨ; Aij2; ð18Þ

where U is the unitary time-evolution operator that can be
obtained from the Hamiltonian. Inserting a complete set of
position eigenstates, we have

PΨðA → BÞ ¼
Z

dzidz0idzfdz
0
fϕ

�
Aðz0iÞϕBðz0fÞϕ�

BðzfÞϕAðziÞ

×
X
jfi

hΨ; z0ijÛ†ðTÞjf; z0fihf; zfjÛðTÞjΨ; zii;

ð19Þ
where ϕAðzÞ is the position-space wave function in the state
A, etc. Taking the Legendre transform of (17), we find that
the Hamiltonian is

Hðq; p; z; πÞ ¼
�
p2

2m
þ π2=2þ gpπz=m

m0ð1 − 3ϕðzÞÞ
�

×
�
1 −

g2z2

mm0ð1 − 3ϕðzÞÞ
�−1

þ 1

2
mω2q2

þm0

�
ϕþ 1

2
ϕ2 þ ψ

�
; ð20Þ

where π and p are the canonical momentum conjugates of z
and q, respectively. Note that in writing (20), we have
discarded the relativistic _z4 term in (17), for simplicity.
Using the Hamiltonian, we can express each of the
amplitudes in (19) in canonical path-integral form:

hqf; zfjÛðTÞjqi; zii

¼
Z

DπDzDpDq

× exp

�
i
ℏ

Z
T

0

dtðπ _zþ p _q −Hðq; p; z; πÞÞ
�
: ð21Þ

Performing the Gaussian path integral over π yields

hqf; zfjÛðTÞjqi; zii

¼
Z

D̃ze
i
ℏ

R
dtm0ð12_z2−3

2
ϕ_z2−ϕ−1

2
ϕ2−ψÞ

×
Z

DpDq exp

�
i
ℏ

Z
T

0

dtðp _q −Hzðq; pÞÞ
�
; ð22Þ
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where D̃z is a measure in which some z-dependent pieces
have been absorbed. Here, we have also defined

Hzðq; pÞ≡ ðpþ gz_zÞ2
2m

þ 1

2
mω2q2: ð23Þ

Despite the slightly different setup, this expression is
precisely the same as equation (35) in [17], and we can
simply follow that derivation to its end. In short, we
compute the path integrals over p and q in (22) by
expressing them as a probability amplitude that is easiest
to evaluate canonically, then sum over the final states in
(19), and finally, integrate over all modes. Having done so,
we will have completely integrated out the gravitational
degrees of freedom, leaving a probability expressed entirely
in terms of the particle degree of freedom, z:

P ∼
Z

D̃zD̃z0e
i
ℏ

R
dtm0ð12_z2−3

2
ϕ_z2−ϕ−1

2
ϕ2−ψÞ

× e−
i
ℏ

R
dtm0ð12 _z02−3

2
ϕ0 _z02−ϕ0−1

2
ϕ02−ψ 0ÞFΨ½z; z0�; ð24Þ

where primed functions have z0 as their argument:
ϕ0 ¼ ϕðz0Þ, etc. The above expression is a double path
integral because it corresponds to a probability rather than
to an amplitude. Note that exponents are complex con-
jugates of each other, but the probability does not factorize
into an amplitude times its conjugate because of the
presence of FΨ, the Feynman-Vernon influence functional.
This encodes the entirety of the effect of the quantum
gravitational field, which recall was initially in the state jΨi
on the particle degree of freedom.
For many interesting classes of states (the vacuum,

coherent states, thermal states, squeezed states), the influ-
ence functional can be computed exactly [17]. Now, as
shown by Feynman and Vernon [18], a generic feature is
that the absolute value of the influence functional can be
written in a very suggestive form. Using an identity that is
essentially the infinite-dimensional generalization of

e
b2
4a ¼ R

dye−ay
2þby, we can write the absolute value of F

as a statistical average:

jFΨj ¼ exp
�
−

m2
0

32ℏ2

Z
T

0

Z
T

0

dt dt0 AΨðt; t0ÞðXðtÞ − X0ðtÞÞðXðt0Þ − X0ðt0ÞÞ
�

¼
Z

DN exp

�
−
1

2

Z
T

0

Z
T

0

dt dt0 A−1
Ψ ðt; t0ÞNðtÞNðt0Þ þ i

ℏ

Z
T

0

dt
m0

4
NðtÞðXðtÞ − X0ðtÞÞ

�
; ð25Þ

where X ¼ d2

dt2 ðz2Þ and X0 ¼ d2

dt2 ðz02Þ. The right-hand side
can be interpreted as a statistical average over a random
function NðtÞ, with a zero-mean Gaussian probability
distribution. Thus,NðtÞ is a noise function whose statistical
properties are encoded in the autocorrelation function
AΨðt; t0Þ ¼ ⟪NΨðtÞNΨðt0Þ⟫. This can be explicitly evalu-
ated for many interesting classes of states. For the vacuum,
we find

A0ðt; t0Þ ¼
4ℏG
π

Z
∞

0

dωω cosðωðt − t0ÞÞ: ð26Þ

This is formally divergent but can be regulated by meas-
urement sensitivity cutoffs. The power spectrum of the
fluctuations, SðωÞ ¼ R

dte−iωtAðt; 0Þ, can also be evalu-
ated. For the vacuum, we find SvacðωÞ ¼ 4Gℏω, while for a
uniformly squeezed state with squeezing parameter r, we
have SsqueezedðωÞ ∼ 4Gℏωðcoshð2rÞÞ [17]; it is this expo-
nential enhancement in the noise for squeezed states that
makes them so phenomenologically interesting [24].
Inserting (25) into (24) (we neglect the phase of FΨ,

which is responsible for radiation reaction effects), we find
that the transition probability is a triple path integral over
exponentials. Two of the path integrals, over z and z0, are
the usual ones that appear in a quantum-mechanical
probability. By taking a saddle point over these (and

demanding that the two resulting equations be the same),
we can take a classical limit. We find the generalization of
Newton’s law:

̈z ¼ −
dϕ
dz

þ 1

2
ϕ
dϕ
dz

−
dψ
dz

þ N̈Ψz: ð27Þ

But note that this still leaves a third path integral, over N.
That remaining path integral indicates the presence of a
statistical average.

IV. DISCUSSION

We can express our equation of motion in vector form:

F⃗ ¼ m ̈x⃗

¼ −m∇⃗ϕ|fflfflffl{zfflfflffl}
Newton

−m
3

2
_x⃗2 ̈x⃗|fflfflffl{zfflfflffl}

SR

þ 1

2
mϕ∇⃗ϕ −m∇⃗ψ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

GR

þmN̈Ψx⃗|fflffl{zfflffl}
QG

: ð28Þ

Here, we have reintroduced the relativistic term in the
Lagrangian by hand; essentially, we assumed that the
relativistic correction does not affect the quantum calcu-
lation to leading order. Our equation of motion, which
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generalizes (3), contains the leading corrections to
Newton’s law. We have the familiar special-relativistic
and post-Newtonian leading corrections, but, in addition,
we also have a noise term, originating in quantum gravity,
F⃗QG ¼ mN̈Ψx⃗ (more precisely, this force does not have to
be aligned with x⃗ but can involve a noise tensor acting on
x⃗ [20]). The noise term, being a random function, has a
fundamentally different character from the other terms in
the equation of motion: This is now a stochastic differential
equation rather than a deterministic one. The statistical
properties of NΨ depend on jΨi, the state of the gravita-
tional field; as mentioned, they can be computed exactly for
many classes of states.
There is a similar effect in electrodynamics. Consider the

classical motion of a point particle interacting with a
quantized electromagnetic field. The Lorentz force law is
corrected by radiation reaction classical interactions as well
as a stochastic term coming from the state-dependent
quantum fluctuations of the electromagnetic field.
Together, these lead to an Abraham-Lorentz-Langevin
equation [25]. There are, however, some key differences
with the gravitational case. First, the interaction term in the
Lagrangian is different in form (qA⃗ · v⃗ versus mhij _ξ

i _ξj).
Consequently, in the electromagnetic case, the noise
appears in the equation of motion as an inhomogeneous
term, akin to a stochastic driving force, whereas in the
gravitational case, the noise term appears homogeneously
as a stochastic parametric oscillation. Another difference is
that the electromagnetic noise term arises even for an
isolated point charge, while in the gravitational case, one
has to consider at least a pair of particles even when the
gravitational is quantized.
It is interesting that themass of the particle drops out of the

equation of motion (27) even when quantum-gravitational
fluctuations are taken into account. Thus, the weak equiv-
alence principle continues to hold, at least when the gravi-
tational backreaction of the falling particle is neglected.Now,
the principle of equivalence is of coursewhat ledEinstein to a
geometric view of gravity. That our stochastic free fall
equation does not involve the mass of the falling particle
therefore suggests the following interpretation. Each reali-
zation of the noise corresponds to the particle falling in a
spacetime with a distinct geometry. The probability of each
such geometry is given by the corresponding probability for
the realization, with the probabilities having a Gaussian
distribution. It is as if each realization of the noise is a distinct
world, in the many-worlds sense.
We can look for phenomenological consequences of the

fluctuations in the geometry. Consider Galileo’s experi-
ment, in which one drops a massive particle from rest
starting at some height z0 and then measures the time taken
for it to reach the ground at z ¼ 0. Classically, the
Newtonian trajectory is zclðtÞ ¼ z0 − 1

2
gt2, and the arrival

time is τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2z0=g

p
. Let us calculate the effect of quantum

gravitational fluctuations on free fall. To do so, we first

neglect all the other corrections to Newton’s law, (27), so
that our equation reduces to ̈z ¼ −gþ N̈Ψz. Regarding the
quantum fluctuation in the trajectory as a small perturbation
over the classical trajectory, we write zðtÞ ≈ zclðtÞ þ zqðtÞ.
Then

̈zqðtÞ ≈ N̈ΨzclðtÞ: ð29Þ
Integrating twice, we find

zqðtÞ ≈ NΨzclðtÞ þ 2

Z
t
NΨðt0Þgt0dt0

−
Z

t
dt0

Z
t0

NΨðt00Þgdt00: ð30Þ

Since NΨ takes values from a Gaussian distribution with
zero mean, (25), we have ⟪NΨ⟫ ¼ 0, where ⟪·⟫ denotes a
statistical average over the distribution for NΨ, and hence,

⟪zqðtÞ⟫ ¼ 0: ð31Þ

That is, the average trajectory is the classical trajectory,
⟪zðtÞ⟫ ¼ zclðtÞ. We can also calculate the variance. Let us
evaluate the variance in the height at the time τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2z0=g
p

,
the classical free fall time at which zclðτÞ ¼ 0:

⟪zðτÞzðτÞ⟫ ¼ 4g2
Z

τ
t0dt0

Z
τ
⟪NΨðt0ÞNΨðt̃Þ⟫t̃dt̃

− 4g2
Z

τ
dt0

Z
t0

dt00
Z

τ
⟪NΨðt00ÞNΨðt̃Þ⟫t̃dt̃

þ g2
Z

τ
dt0

Z
t0

dt00
Z

τ
dt̃

×
Z

t̃
d˜̃t⟪NΨðt00ÞNΨð˜̃tÞ⟫: ð32Þ

However, terms of the type ⟪NΨðtÞNΨðt0Þ⟫ are just the
autocorrelation function AΨðt; t0Þ in the gravitational field
state jΨi. For the vacuum state, this is given by (26). The
integral over ω is divergent, and we will need to regulate
both the upper and the lower limits. Two natural cutoffs are
ωmax ¼ 2πc

z0
and ωmin ¼ 2π

τ . Intuitively, the upper limit
comes from our use of the dipole approximation; indeed,
the same limit shows up for the sensitivity of gravitational
wave detectors. The lower limit arises because our calcu-
lation is done over a time τ. Inserting (26) into (32), we find

⟪zðτÞzðτÞ⟫ ≈
4g2ℏG
πc5

�
1

ω2
− 3

cosðωτÞÞ
ω2

− 3τ
sinðωτÞ

ω

þ 5τ2 lnω − τ2CiðωτÞ
�����ωmax

ωmin

; ð33Þ

where the special function is given by CiðxÞ ¼
−
R∞
x dtðcos tÞ=t. We find roughly that, up to constants

of order unity,
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⟪zðτÞzðτÞ⟫ ∼
g2ℏGτ2

c5
ln

�
ωmax

ωmin

�

¼ g2ℏGτ2

c5
ln

�
cτ
z0

�

¼ gz0ℏG
c5

ln

�
2c2

gz0

�
: ð34Þ

Taking the square root yields the standard deviation in the
height at the classical arrival time, τ. Finally, we can
approximate the spread in arrival times by dividing the
standard deviation in the height by the average velocity at

time τ, which is j_zclðτÞj ¼ gτ. This scales as Δτ ∝
ffiffiffiffiffiffiffiffiffiffi
ln 2c2

gz0

q
,

which varies only by order unity even over many orders in

z0. For z0 of a meter, we find the standard deviation in the
arrival times to be about 10−43 s, or about a Planck time.
When the gravitational state is in a squeezed state, however,
the autocorrelation function is enhanced by a factor of ∼e2r
where r is the squeezing parameter. Thus, the standard
deviation in arrival times would also be enhanced expo-
nentially by a factor of er. It would, however, take a very
large r to make the variation in arrival times observable.
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