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String geometry theory is one of the candidates for a nonperturbative formulation of string theory. In this
paper, from the string geometry theory, we derive path integrals of perturbative superstrings on all string
backgrounds, G, (x) and B, (x), by considering fluctuations around the string background configurations,

which are parametrized by the string backgrounds.
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I. INTRODUCTION

String geometry theory is one of the candidates for a
nonperturbative formulation of string theory, based on a path
integral of string manifolds, which are a class of infinite-
dimensional manifolds [1]. String manifolds are defined by
patching open sets of the model space defined by introduc-
ing a topology to a set of strings. One of the remarkable facts
concerning string geometry theory is that the path integral of
the perturbative superstrings in the flat background is
derived including the moduli of super Riemann surfaces,
by considering fluctuations around the flat background in the
theory [1-3].

Moreover, configurations of fields in string geo-
metry theory include all configurations of fields in the
ten-dimensional supergravities, namely, string back-
grounds [4,5]. In particular, it was shown that an infinite
number of equations of motion of string geometry theory
are consistently truncated to finite numbers of equations of
motion of the supergravities; that is, string geometry
theory does not include string backgrounds as external
fields, as in the perturbative string theories. The dynamics
of string backgrounds are a part of the dynamics of the
fields in the theory. It is natural to expect to be able to
derive the path integral of perturbative strings on the string
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backgrounds by considering fluctuations around the cor-
responding configurations in string geometry theory.

For each background, one theory is formulated in the
case of a perturbative string theory, whereas perturbative
string theories on both flat and nontrivial backgrounds
should be derived from a single theory in the case of the
nonperturbative formulation of string theory. Actually,
the authors of Ref. [6] derived the path integrals of
perturbative strings on all string backgrounds, G,,(x),
B, (x), and ®(x), from the bosonic sector of string
geometry theory. This paper gives a supersymmetric
generalization of this fact.

Such a supersymmetric generalization is necessary in
order for the spectrum not to include a tachyon. On the other
hand, the supersymmetric action (2.2) is strongly con-
strained by 7 symmetry in string geometry theory, which
is a generalization of T duality among perturbative vacua in
string theory [7]. Moreover, all ten-dimensional supergrav-
ities are derived from the supersymmetric action (2.2), as we
described above. In this paper, we obtain further evidence
that the supersymmetric action (2.2) is correct by deriving
path integrals of type II perturbative superstrings on all string
backgrounds from the action.

The organization of the paper is as follows. In Sec. I, we
briefly review string geometry theory. In Sec. III, we set
string background configurations parametrized by the
string backgrounds G, (x) and B, (x), and set the classical
part of fluctuations representing strings. In Sec. IV, we
consider two-point correlation functions of the quantum
part of the fluctuations and derive the path integrals of the
perturbative superstrings on the string backgrounds. In the
Appendix, we obtain a Green function on the flat super-
string manifold.

Published by the American Physical Society
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II. REVIEW OF STRING GEOMETRY THEORY

String geometry theory is defined by a partition function

:/DGD(I)DBDAe‘S, (2.1)
where the action is given by
= / DEDzDXj, V-G (e—2‘1’ <R+4VI<I>VI<I>
I~ 1 &
-3 AP =) =33 1F,F). (22)

where I = {d. (u50)}, [H? = LGI I GERGLIHy 4 x
H J,3,3;» and we use the Einstein notation for the index I.
The equations of motion of this model can be consistently
truncated to those of all ten-dimensional supergravities,
namely, type IIA, type IIB, SO(32) type I, and SO(32) and
Eg x Eg heterotic supergravities; that is, this model includes
all superstring backgrounds. The action (2.2) consists of a
scalar curvature R of a metric Gy,y,, a scalar field @, p-
forms F ,and H = dB — @5, where By,y, is a two-form
field, w3 = tr(A A dA — A/\A/\A),andAisaNxN
Hermitian gauge field, whose field strength is given by F.
F, are defined by Y2 | F, = ¢™® A Y% | F}, where F;
are field strengths of (k — 1) form fields A,_;. For example,
Fs=F;—B, AF; + 1By A By A Fy. They are defined
on a Riemannian string manifold, whose definition was
given in Ref. [1]. The string manifold is constructed by
patching open sets in string model space E, whose
definition is summarized as follows. First, a global time
7 is defined canonically and uniquely on a super-Riemann
surface £ by the real part of the integral of an Abelian
differential uniquely defined on X [8,9]. We restrict X to a
constant 7 line and obtain Z|;. An embedding of X[, in R?
represents a many-body state of superstrings in R?, and is
parametrized by coordinates (E, X, (7),7), where E is a
supervierbein on X and X,
represents a representative of the superdiffeomorphism and
super-Weyl transformation on the world sheet. Giving a
super-Riemann surface X is equivalent to giving a super-
vierbein E up to superdiffeomorphism and super-Weyl
transformations. Dy represents all backgrounds except
for the target metric, where 7 runs IIA, 1IB, and I,
which represent type IIA chart, type IIB chart, and type
I chart, respectively. IIA Gliozzi-Scherk-Olive (GSO)
projection is taken in the asymptotic region of type IIA
chart, and the IIB GSO projection is taken in the asymp-
totic region of type IIB and type I charts, as in Ref. [1].
X’;)T(%S) =X+ 0%y + 367 F*, where y = 0,1, ...d — 1, w4
is a Majorana fermion and F* is an auxiliary field. We

() is a map from Z|; to R?.~

abbreviate Dy and (7,) of X’Lf)r(%), w’lf)ra(%) and F’lf)r (7).
The string model space E is defined by the collection of

string states by considering all £, all values of 7, and all
X, (7). How near the two string states is defined by how

near the values of 7 and X, (7). An e-open neighborhood
of [£, X, ,(%,),7,] is defined by

U([E.Xp,,(7,).7).€)

TS

= {855, @01y e P+ 1%, (X5, ()P < .
(2.3)

where E is a discrete variable in the topology of string
geometry. As a result, JE cannot be a part of a basis that
spans the cotangent space in Eq. (2.4), whereas fields are
functionals of E as in Eq. (2.5). The precise definition of
the string topology was given in Sec. Il in Ref. [1]. By this
definition, two arbitrary string states on a connected super-
Riemann surface in E are connected continuously. Thus,
there is a one-to-one correspondence between a super-
Riemann surface in R and a curve parametrized by 7 from
T=—o00 to T=o0 on E. That is, curves that represent
asymptotic processes on E reproduce the right moduli
space of the super-Riemann surfaces in R¢. Therefore, a
string geometry theory possesses all-order information of
superstring theory. Indeed, the path integral of perturbative
superstrings on flat spacetime is derived from the string
geometry theory, as in Refs. [1,3]. The consistency of the
perturbation theory determines d = 10 (the critical dimen-
sion). The cotangent space is spanned by’

d — Jz
dXDT = dr,
(u50) (= = ]
dXp " = dX (6,7.0), (2.4)
where u =0,...,d—1. The summation over (5,0) is

defined by [d6d*0E(5.7.0). E(5.7.0) =L1E(5.7,0),
where 7 is the lapse function of the two-dimensional metric
[see Eq. (4.28)]. This summation is transformed as a scalar
under 7 — 7/(7, X, (7)) and is invariant under a super-
symmetry transformation (5, 6) — (5'(5,0),0'(5,0)). Asa
result, the action (2.2) is invariant under this A" = (1, 1)
supersymmetry transformation. An explicit form of the line
element is given by

'The integral over the coordinates in Eq. (2.2) are explicitly
given by

/ DEDIDX; =Y / axg T[axpe”
E

;4[79
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Dy

ds*(E, X (7),7) = G(E, X (), 7) ()’ +2d1/dac{29EZGE X, (). (ot X", (5.7.0)

+ / d6d?0 R / do’dZQ’E’ZG (E. Xp, (7).2)i50) (uw2)dX}, (5.7,0)dX]) (6.2.0).  (2.5)

H'

The inverse metric GY(E, X} ('),%)2 is defined by

GGIK = GKIG); = 6K, where 8¢ =1 and 5”“"‘”
5”5(_7’3, where 55_9 _5(59)(6/9/) :% ((7 61)52(9 9/)

The dimensions of string manifolds, which are infinite-
dimensional manifolds, are formally given by the traces of
the flat metrics, 8} = D + 1, where D = [ ded?0E 5&;25
Thus, we treat D as a regularization parameter and will take
D — o later.

III. SUPERSTRING BACKGROUND
CONFIGURATIONS AND FLUCTUATIONS
REPRESENTING STRINGS

In this paper, we consider only static configurations,
including quantum fluctuations:

94Gmn =0
0;Bun =0,
9,® = 0,
0,A; = 0. (3.1)

In this section, we set classical backgrounds including
string backgrounds and consider fluctuations that represent
strings around them. In order to simplify calculations, we
consider the classical backgrounds up to the first-order
fluctuations around the flat background. Here we fix the
charts, where we choose T = IIA, IIB, or I. A = 0 on these
charts. The Einstein equation of the action (2.2) is given by

_ 1 - _ T
Ryn — ZHMABHQB + 2V VN® — EGMN
_ - e
X <R —4v1<1>v1<1>+4v1v1q>—§|H|2>
1 > FLi Lo
2 Z MLI Lp—l N
_EGMN|FP|2:| - 0 (32)

where R, Ry, R%‘PQ, and V,; denote the Ricci scalar,
Ricci tensor, curvature tensor, and covariant derivative

Slmllarly, the fields Gyy, @, By, ,,, and Ay, .. L,

_, are func-
tionals of the coordinates E, X, (T) and 7.

constructed from the metric Gyn. We consider a pertur-
bation with respect to the metric Gyn:

Gun = GMN + hy, (3.3)

where hy;y denotes a fluctuation around the zeroth-order
background GMN. We raise and lower the indices by f}MN
in the following. We also consider a perturbation with
respect to the two-form By, (k — 1)-form A,_;, and the
scalar @ around the flat background.

First, we generalize the harmonic gauge when a dilaton
couples. If we define yyn as

_ - 1Ay A P
¥mN = hyn - EGUhIJGMN +AGyn®, (34)

where A is a constant, the Einstein equation (3.2) is
written as

R | B - R i
Run — EGMNR + 2 (_VIVIWMN + RyaWn + Rl
Ry P 4 FarVai + T
- V'V Gan + RYp Gy — R WMN)

+ 2=A)VyVa®@ - 2 - A)GywV Vi@ =0, (3.5)

up to the first order in the fields ﬁIJ, ]_SIJ, @, and A,_,. R,
RMN, ﬁMNPQ, and @M denote the Ricci scalar, Ricci
tensor, curvature tensor, and covariant derivative con-
structed from the metric GMN. We set A = 2 so that the

Einstein equation includes only ¥yn. hyy is inversely
expressed as

1
hyn = Pun + D-1 <—G Ve + 4(1’) Gmn- (3.6)

We impose a generalization of the harmonic gauge,

A

Wy =0, (3.7)
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which reduces to the ordinary harmonic gauge if the
dilaton is zero. Then, the Einstein equation (3.5) becomes

R 1A PO RN A
Ryn — EGMNR + 5 (—ViV'ymn + Rya¥a
+ Rna?in — 2Ryans?*® + RV Gy
—Ryyn) = 0. (3.8)

23

5)
h(&

where a, = 1 and a(,;5) = . Then, the gauge-fixing

<

condition (3.7) becomes

/d5d29ﬁa< O soym = 0. (3.10)

the Einstein equation (3.8) becomes a Laplace equation,

Next, we set the zeroth-order background GMN as a flat
background: /dG d*0E o, )5(”69)'I/MN =0, (3.11)
GpN = amim, (3-9)  and the components of Eq. (3.6) read
|
. . D — 2_ 1 3Dl — (/4 o_//g//) 4 -
hddiD_llI/dd—’—D_ /dU d9E (N//e//)_mq)’
Bd(;w@) = ]I_/d(;wé)’
h —y AP ! | 5" PO ! 7L 4 g G
(w8 e®) = Vo b)wad) T Ot \ p - DV o wee) T p_1° ) :

Next, the equation of motion of the scalar of the
action (2.2),

_ _ R
R — 4V @M + 47, VMBS (A =0, (3.13)

1s written as
|

1 1
/dmﬂeEa 20 ome O + 4/dad29Ea i >y/dd——/dad2eEa( >aﬂ69 /da dPOEy

[
IA{ + @MﬁNl—lMN - vMﬁMBE + 4GMNvM©N6 = O,
(3.14)

up to the first order in the fields ﬁIJ, BIJ, A, and ®.
Furthermore, this can be written as

whIe =0 (3.15)

ré/)

around the flat zeroth-order background (3.9) under the static condition (3.1) in the generalized harmonic gauge (3.7).

This becomes a Laplace equation,

/ de 0 E 0550470 ® = 0, (3.16)
if the metric satisfies the Einstein equation (3.11).
On the other hand, the equations of motion of the B field and the (k — 1)-form fields,
_ 9 U7 _ - =11, 5 5,0 K;J,K,L L
Vi (2P HMNY) +ZZzn+1 FII"'Ip—zfanJlK] By g BB =0, (317)
p=3 n=0
1 n, — — =
Vi <§> Vi {BJIKI T P e ) (3.18)
are written as
VyHMNP — (3.19)
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eIﬁJLImLI,A — O, (320)
up to the first order in the fields hyy, Byy, A;_;, and ®.
Furthermore, Eq. (3.19) becomes a Laplace equation,

/ d& PO E 0550479 By = 0, (3.21)
around the flat zeroth-order background (3.9) under the
static condition (3.1) in Lorentz gauge,

VuBMN =0, (3.22)

which is equivalent to

055 BH N = 0. (3.23)

It is known that it is too difficult to describe the action of
the perturbative strings on the Ramond-Ramond (RR)
backgrounds in the Neveu-Schwarz-Ramond (NS-R) for-
malism. Because string geometry theory is formulated in the
NS-R formalism, we should derive the path integrals of the
perturbative strings only on the NS-NS backgrounds. Thus,
we set RR fields to zero.

We consider classical solutions corresponding to the type
II superstring background configurations:

Vi =0, (3.24)
Vausa) =0, (3.25)
_ 23

(u50) (7 \/Zgﬂu(xﬁ, (6,0))355 57 » (3.26)
Ed(;u‘;?)) =0, (3.27)

_ e .
Bso)wae) = ﬁBw(Xﬁ, (6.0))055 050, (3.28)
D= /d&dzéﬁ (X (6.0).  (3.29)
A, =0, (3.30)
A =0, (3.31)

where g, (x), B,,(x), and ®(x) satisfy Laplace equations,

(3.32)

and gauge-fixing conditions,

aﬂl//;w(x) =0,
FB,,(x) =0, (3.33)
where
1 af
Wﬂl/ = g;w - 55 g{l/i(s;w + 25;41/(1)’ (334)

which imply Egs. (3.10), (3.11), (3.16), (3.21), and (3.23).
Indeed, these are equivalent to

Gy =-1, (3.35)
G 59 = 0. (3.36)

_ 3 s
Gz0)(wze) = \/ZGW(XDT(O'» 05080, (3.37)
B9 =0, (3.38)

_ e’ s
Bso)wae) = ﬁBﬂu(XbT (6.0))557 0. (3.39)
D= /daaﬂéﬁzcb(XDT(a, 0)).  (3.40)
Ak—l - 0, (341)
A =0, (3.42)

where

Gu(Xp,) =6 + 9u(Xp,). (3.43)

These are the string background configurations themselves
[4,5]. Equation (3.32) implies that Gy, By, Ag_y, and @
satisfy their equations of motion in string geometry theory”
[Egs. (3.11), (3.16), and (3.21)], and G,,, B,,, and @ also
satisfy their equations of motion in the supergravity.
Therefore, these string background configurations in string
geometry theory represent perturbative string vacua para-
metrized by the on-shell fields in the supergravity as string
backgrounds.

Next, we consider fluctuations around these vacua. The
scalar fluctuation y 4, represents the degrees of freedom of
perturbative strings in the case of the flat background, as in
Refs. [1-3]. Thus, we also consider the scalar fluctuation
44 around the perturbative vacua. We set the classical part

of yy, as

3Under Eq. (3.16), Eq. (3.11) is equivalent to
[do d*0E 0,;50%°Vhyy = 0, due to Eq. (3.6).

1o 0
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Fu(Xp ) = / DX'5 G(Xp,: X'y (X' ). (3.44)
where we will choose a particular function w(X Dr) later

and G(Xp, ;X'p ) is a Green function on the flat super-
string manifold given by

=2
G(Xp X'y ) = NU d5' dlé'% (xgr(a, 7)

O\ 2132
—X’/‘bT(a’,G’)> } °, (3.45)
which satisfies
a1 P
d6dPOE - __G(X; . X/
/ oy (6.0)20X,,,(5.0) (Xp,:Xp,)
=6(Xp —X'p ). (3.46)

where A\ is a normalizing constant. A derivation is given in
the Appendix. As a result, ¥4, is not on-shell but satisfies

19 1 9
déd’0E _ (X
/ T eaxr XbY_M(a,e)""’"( by

A
QD
~—
<\I

(3.47)

=w(Xp,)-

Furthermore, we consider the quantum part of y 4,

D—-1-
V= 3.48
Vaa =55 2 ( )
where 2 ﬁ is introduced for later convenience. In total,
Gmy = Gun + By + Gyne (3.49)

where Gy is given by Eq. (3.9), hyy is given by
Eq. (3.12) with Egs. (3.44), (3.25), (3.26), and (3.29),
and Gy is given by

édd = &5

~ 1
G(ﬂé‘é)(/[&’é/) - D 2\/=¢ /469 /= /9/).

dem =0,

(3.50)

IV. DERIVING THE PATH INTEGRALS
OF THE PERTURBATIVE SUPERSTRINGS
ON CURVED BACKGROUNDS

In this section, we derive the path integrals of the
perturbative superstrings up to any order from the tree-
level two-point correlation functions of the quantum scalar
fluctuations of the metric. In order to obtain a propagator,
we add a gauge-fixing term corresponding to Eq. (3.7) into
the action (2.2) and obtain

1 .
- /D%DEDX[)T\/—G [6‘2‘1’ <R+4VI<I)VI<I)—2|H|2> —52|F1,|2
p=1

1 (en/ = 1 oyin = - -\ 2
-3 {VN (GMN - EGUGIJGMN + 2GMN<I>) } ] ,

(4.1)

where we abbreviate the Faddeev-Popov ghost term because it does not contribute to the tree-level two-point correlation
functions of the metrics. By substituting Eqs. (3.49), (3.27)—(3.30) [which do not necessarily satisfy the equations of

motion (3.32)] into Eq. (4.1), this is expressed as

= / D7DEDXp, <Co+01&5+$c2c7; +¢ / ds d*0E / da’ dzé’ﬁ’c<ﬂ”9><ﬂ’“’9’>a(ﬂﬁé)a(ﬂ,ﬁ,@,)@, (4.2)
where
. 4D
“="p_1 d6 POE 0,350 r g — e ad 520K 0,550 D
+ﬁ d6 P08 0,550 / 45’ dZH’E’y_/(”,",Z,; (4.3a)
€ = ; / d5 98 0,59 Wh“”z(p%z / d PO E 0,550 / a5 LORF 7). (4.3b)

066023-6
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0)— ] _ - A (455
Cy = 4/d6d QEO(WQJ ( G)V/dd_m/dGnganae) ( >/d(7l(,{29ElI/8j/5/5_r;, (43C)

Py =y D_l 1_
c(ﬂ09)</‘09) = |:4< +—|I/dd+

1 D-1
D-2) 2 2(D-2)

D1 —etywe)
ap-2)¥

/ d(—y//dZé//E//v—/(ﬂ”‘?ﬂéﬁ)_Lﬁ] W) (W) _ . (4.3d)

(M”O’”H”) D—2

up to the first order in the classical fields and the second order in ¢. When D — oo, Eq. (4.2) is

N a1 - A _ ~
= / DzDE DX, [—4 / d5 d*O 8 0,550 ® + / d6 d*O K 0,,55)0%" 7 4up

1 N .
+¢ /dod26E6 0""9 de¢+¢<4 2llldd>/d&dzeEé(Mw)a(””G)qﬁ

_ZJ’ / ds d*0E / ds’ d29/1?:’w<ﬂﬂ9><ﬂ/”’9’>a(w(;)a(ﬂ,ﬁ,@,)a;] . (4.4)

By shifting the field ¢ as ¢ = ¢’ — %, the first-order term in ¢’ vanishes as

o
Qi
K
ASN

~ 1 N o ~ o~ (1 1 | R 1 _ A
S_/D%DEDXDT [¢IZ/d5cp9Ea(uﬁé)a(”69)de¢'+¢ (4+2llldd+§GUhlJ—§‘I’>/d5d29anaé) !

1 ~ _ = A _ - NI 6_’ ra_r’/ ~
—Zqﬁ’ / s d’0E / ds’ d20'B/ R+ 0 9>a<”5,;>a(ﬂ,z.,,é,)¢’], (4.5)

where surface terms are dropped and the gauge-fixing condition in Eq. (3.33) and the relation (3.4) are applied. By
normalizing the leading part of the kinetic term as ¢' = —2(1 — ¥4, — GYhy; + ®@)¢",* we have

= /D%DEDXDT {/ ds O 959)0 o) Vi@ +¢" | d6d*0E 04 )a<ﬂ69>¢

_527” d&JZéE/dél dzélﬁ/E(M(;@)(ﬂrﬁ/@,)a(ﬂde ”’5’9’ % :| (46)

In the following, we consider only the case that the quantum fluctuation is local with respect to the indices (5, 8) as

/= / dz d*0f (X, (5.0)), (4.7)

and obtain the component representation of Eq. (4.6). Under the superdiffeomorphism transformation of & and 6, f dce
and [ d6d*0 E are invariant; then, 1 §(G — &) and £6(6 —3)5*(0 — 0') are scalars, and thus £ 5*(0 — @) is a scalar. Hence,
we have

“This field redefinition is local with respect to fields in string geometry theory, because the fields are functionals of the coordinates,
X4 (5,7,0).
Dy
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. _ oxx (8.0)
= / dd' PO, 0) —L— i
0X"(5) oXy (5,0')

X" (5)

I B
_ / Ao PO 0) 5,506~ 7)

¢, (4.8)

. _ oX4 (7.,0)

- / do' PO, 0) —2 a_ _

oyp*(5)  oXy (5.9)
T

oy (5)

N B
= /do’dze’E(U’,H’)gél’jé(a -o)¢

E@G.0) e(6) o 4 0 0

('I“S//
H (= D v (=0
oX, (5.0) 0X}, (5,0)

and
- - 1- 1 /
(X5, 0.0)) = 5 X) + 0,5 X007 + 3 (0,9 X7 + 30,0, X0 ). (.10
Collecting the above results, the action (4.6) is expressed as

066023-8
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_ ~ _ /3 1 0 0 - 1 0 0 -
_/DTDhDX¢,/(/ do ﬁ((éﬂu_gpu)__— ”—apgﬂv(x)l//p_— ¢”

20X, 0X, &2 0X,, oy,
—(o (X)Fﬂ+laa (X)yPy” L9 9 5 4w (4.11)
o 5 909 9 (X)W 2 ax, oF, o) ). -

This can be written as

S=-2 / DEDhDX$"H <—z Xp, ! E) 9" (4.12)

i h 0
U asi (5 Oy [ —is O
+2/dﬂlé( 2)(a7yl//)< lédX”)

= 1 , 1 0 d 1
5V h— P +-90., pu? ) (=i -
+/d0' \/ZZE (apgm,(X)F +26p6pgﬂU(X)z// W >< ’éax) (6F) 5@ (4.13)

Here Iy, = 1G"*(0,G,; + 0,G,; — 0,G,,), w* = w*y°, y° = ( )

) ol 0 Vi o i h )
0= —2/DrDhDX¢” {—z/don 0; X" — D /d —5-0;X"B,! ()X”+ /da;n// 0,H, p(X)y5y01;/”

' h o i h 0
0 - = 7 040
2/61’0’ 7 /}(X)ysy 1//”a y+2/daéz( 2.7y z//”a ﬂ>

which is true because of the gauge-fixing condition (3.33).
The propagator for ¢ defined by

4
}J/’, (4.14)

Ar(E.Xp, (7): B, X}, (7)) = ((E. X, (7))9(E". X, (7)) (4.15)
satisfies

1 o o0 0 A EVACE Xe (31 B/ X. () — 8(E — BNS(Xn (3) — X/(¥
H(=1% s oy sy X, OB ) AR(E. X (B X, (7)) = O(E - B)6(Xp, () - X@). (410

In order to obtain a Schwinger representation of the propagator, we use the operator formalism (ﬁ X b, (7)) of the first
quantization. The eigenstate for (E, X(7)) is given by |E, X(7)). The conjugate momentum is written as (pg, Py ). There is
no conjugate momentum for the auxiliary field F*, whereas the Majorana fermion w4 is self-conjugate and satisfies
{ra(5), Pp(8)} = ﬁéaﬂGﬂ” (X)6(6 — &’). By defining creation and annihilation operators for y as " = \/% (4 — iph)
and g+ = %(zf/{ + iph), one obtains an algebra {y* (), (6')} = G’”’( V8(6 — &), {9*(5),9"(3")} =0, and
{y#*(5),9*"(8’)} = 0. The vacuum |0) for this algebra is deﬁned by z//”( )|0) = 0. The eigenstate |y), which satisfies
i(@)lw) = p*(@)lp). is given by ev'|0) = ] GOV
(yly') = ¥V, whereas the completeness relation is [ Dyt Dl//|l//> VW (| = 1.

|O> Then, the inner product is given by
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Since Eq. (4.16) means that Ay is an inverse of H, Ag
can be expressed by a matrix element of the operator A~ as
Ap(E, Xp (7); E’, X’DT(%’))
= (E.Xp, (D)[H (px (7).

\[ hG " (7

where we use the fact that the states do not depend on F*
because it is not an independent variable and is written in
terms of the other fields X* and y*.

On the other hand,

).0.Xp, (). B)E. X} (7)), (4.17)

! = i/oo dTe—iTH, (4.18)
0
because
. © o . 1 . 00
lim dT e T(iH+e) — |im { _ e—T(zH+€):|
e—0+ 0 e—0+ —(1H+€) 0
=—ifi™". (4.19)

This fact and Eq. (4.17) imply
(D) B X (7))

—i /O dT(E. X, (2)]e"THE. X)) (7). (4.20)

AF(E9 Xﬁ

In order to define two-point correlation functions that are
invariant under the general coordinate transformations in
the string geometry, we define in and out states as

||Xi)7i|Ef’3E

Ef R/
v= [ DEIE.Xp,)

E; _
(Xp, [ E g Eillou = [E DE(E.Xp, /. (4.21)

where XDTi = XDT(%/ = —OO), Xf)rf = XDT(f = oo),
and E; and E, represent the vielbein of the supercy-
linders at 7 = +oo, respectively. [ in [DE includes
2 - compact topologies» Where DE is the invariant measure of
the supervielbein E on the two-dimensional super-
Riemannian manifolds X. E and E are related to each
other by the superdiffeomorphism and the super-Weyl
transformations. When we insert asymptotic states, we
integrate out X Dyf X Dyis E4, and E; from the two-point
correlation function for these states:

Ap(Xp, i Xp,i Epo s Ej)

=i / AT (Xp B o™X By By

(4.22)
By inserting
1= /dEdeDTTm(%m)‘Em’XﬁTTm(%nz)>
xXe Wm Vn <Emv XDTTm (Tm)
= [ dpklpio . (4.23)

this can be written as in Ref. [1],

o0 A
Ap(Xp,p: Xp,i|Ep ;) = iA dT(Xp, /|Es.  Eilloue™ |1 Xp, i Es.  Eiiy

:i/ dThm
0

N

" DE / DE’ / dEndXDTn(fn)e—iW:'Wn
=1

x [T E i1 Xp i et MR, X, (7))

m=0

(o] E e
=i / dTolim [ dTy, / ' DE / dT,dX;, , (Z,)e P
0 N=eo E; m= l i=0 !

x / AP X P Dl (it | H 1 ) X NS(T, = Ty

N N
. - —gt
= lA dT() llm /dTN+|/ DE |:| |:| /ddeXDTm(Tm)e Y Wm

/dp e N px ‘/_G/w

><

DZAGHE DT,( 7,).E) ‘//,H'lf/ié(Ti — Ti+1)ei(P§(‘(Xi+1—Xi>>
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. ) E; N Y _
—i [Taryfimary., [ e [ araaxs, @) 11 [ dor,dps, G

m=0
N
. Tm - Tm+l — - = Xm(Tm) XM+1( m+l)
Xexp(z At(me——i—/dO'erm(fm)
mZ::‘) At At
iyl Lo et CEot) g () RG (X ()W (50).0. X5, 5. E) ) )

E b
—i / e DEDX,, / DT / Dp;Dpx(z
E; X},

Dri

xexp(i/_:dz(m(r)iro /doepx,,< (0.0 3 x0(2(0).1
5 5 \/RG (X(=(0), ) (20, 0 Sy (3(1). 1
(O H(px (1), 1), ﬁGﬂxX(%(r), O (0.0, Xy (2(0). 1), E)) ) , (4.24)

where Eg = E', X, 4(70) = Xp ;» 7o = =00, Exyy = E, Xp vy (Zvi1) = Xp f» Tygr = 00, and A{ = \/L_ A trajectory
of points [E, X, (7)] is necessarily continuous in Mp, so that the kernel (E,,, 1. Xp,_,,1 1 (Zy1)|€” NTH|R, Xp,m(Tm)) in
the fourth line is nonzero when N — oo.

By integrating out py(7(¢), t), we move from the canonical formalism to the Lagrange formalism. Because the exponent
of Eq. (4.24) is at most second order in py(Z(¢), t), integrating out pyx (7(t), ¢) is equivalent to substituting into Eq. (4.24) the
solution px(7(2),t) of

Nl\l)| =i

(—2)_(11707”1//”)}

| =

d Vh _
led—X” + iTe {n"d X+ + l—() XYB,¢ (T, (X) + HJF L (X)ys)y w? —
+iTVip" = iTVhg™(X)p,x = O, (4.25)

which is obtained by differentiating the exponent of Eq. (4.24) with respect to px(Z(t), t). The solution is given by

(22rw) )| = L [07B =Cy (0 + o (O 4260

(\[\I)| I

1 e d ooy
Pux = X =T 0 X"~

TVh G dt

up to the first order in the classical backgrounds g,,(X) and B, (X). By substituting this, we obtain

ErXpr

o0 d
A (g, X, i) =i [ DTDEDX,, 0Dprexp(i [ an(prl G700

iXpyi

/da\/_GW )(1/300%0)@( (1), 1)0,X*(2(1), 1)

+ h%'0,X* (2(1), 1)0;X* (7(1), 1) + Eﬁl LT (1)0;X"(7(1), 1)0:X" (3(1), t)>
+ / dsiB,, (X(7(t).1))0,X"(%(1), 1)0; X" (%(1). 1)

< o (2(1). g

Y N
+§/d0\/z<le}//ﬂ]/0El// + iy (Fyyp+Huypy5)y0dt
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d 1 =
- ZG/u/)_(ayOyal//ﬂ EXD(%(t)ﬂ t)) + E T/ do \/Z<ZG/41/ _”ylaffl//u
+ i Uy + oy )y 0:X0 (1), 0w = 2Gujtar v w 0,X" (2(1), 1) + 5 Gﬂyw Wrar Y X

i ) 1 o A
=~ H,, 20 v 0w vysw” — —D,H, ' w it ysy’ + Rp— | | ), (4.27)
4 2

1
Tl AT 0
+ g R;wxl/)lllﬂl// 7874 3

where we use the Arnowitt-Deser-Misner decomposition of the two-dimensional metric,

R _ )
]jlmn _ <n + nsn n;;)’ \/Z — ﬁé, hmn — . ( _)2 , (4.28)
-2 + o

= <(1) (1)) and Eq. (3.47) by choosing a function o(Xp, ) as

= A1
a)(X[)T) = /d& \/Z(R;, i + ?G”y()(—,xﬂa(—,xv + iGWV‘/ﬂyla&v/u

h
—f\/w (T + Huupys)yol//”{ —2n°0;X* —;( 27a7°r l//”)}
+ <FUW7 + Huﬂp?’s)}’la&X”Wp - 2Guu)_(a7]7a‘/’”aaxy - i\/z(—2)?ay0y“w”) <iGﬂyn"a5X” + ?%XABM)
i ,jl 0 1 }_l = ,0,a = ,0.,b,, U
~2 da—n//"a H,' (X)rsy'w _Z?G"”(_%y r ) (=277 W)

1 e
1D Huml//”w”wlysw”> . (429)

1 1 i
+5 ) Gpwl//#l// )(ay 4 Zh +- 6 Rﬂu/lpl/_/’ll//llll_lywp - g ﬂup}?aybyalilﬂl//UYhySV/ﬂ
where Rj is the scalar curvature of the two-dimensional metric /,,, and A is a constant, which will be identified with the
logarithm of the string coupling constant g,. In the following, we consider only constant dilaton backgrounds because a
world-sheet theory of superstrings in nonconstant dilaton backgrounds is not known.

In this way, the Green function can generate all of the terms without 7 derivatives in the string action as in Eq. (3.47), but
cannot generate those with 7 derivatives, which need to be derived nontrivially, because the coordinates X#(7) in string
geometry theory are defined on the constant-7 lines. We should note that the time derivative in Eq. (4.27) is in terms of ¢, not
7 at the moment. In the following, we will see that 7 can be fixed to 7 by using a reparametrization of ¢ that parametrizes a
trajectory. e

By inserting [ DeDbels 4 i) , where b(t) and c(r) are bc ghosts, we obtain

f DTf

: df(—ipr(t) % T(1) + d’;g’) d(T(;)tC(f))

Ar(Xp, ;i Xp JESE) = Z, L DTDEDX (T)DpTDcDbexp( /

XDTL

[ 8 VG (x(a(0.0) (57 5 0010 00X 3(00. 1)

+ 100, XH (%(1), 1)0; X (%(1), t) + %E‘ IT(1)0; X" (2(1), 1)0; X" (%(1), t))
+ / dciB,, (X (7(t).1))0, X" (7(1), 1)0; X" (7(t). )

V[~ ~=(. . _ .d __ d i
+2/d0\/2 (le/l//”}’Odtl//y+ w (Fvy/) JFHW)}’S)YO*X”(T(I)J)W’

dt
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) d. T = ]
—ZGMMOY“W"EX”(T(I%t)) +5T / ds\V'h (lGﬂyw"f@aw + 05 (T + Hypprs)yr' 0:XH ((2), t)y?

_ _ 1 o 1 _ _
—2G 7.7 v " 0; X" (1), 1) + 3 G "W 2 ar vy + g R, 0y gty

i ) 1 o A
-3 H i ot v v Wy sy’ — 1 D, H,w"w’i'ysy” + R;, ﬂ) > > . (4.30)

where we redefine ¢(¢) — T(t)c(t), and Z, represents an overall constant factor. In the following, we rename it Z;, Z,, - - -
when the factor changes. The integrand variable p;(z) plays the role of the Lagrange multiplier providing the following
condition:

Fi(1)=2T1@) =0, (4.31)

which can be understood as a gauge-fixing condition. Indeed, by choosing this gauge in

E; Xp.r

EiX[)T[ -

: di < / 6 VG, (X(2(1). 1))

y G o0 %0}”(%0), 00,XY(#(1), 1) + B3, XH (1), 1)3,X* (2(1), 1

+%l_l”T(t)0ﬁX”(%(t),t)d,,X”(%(t),t)> —|—/dé'iB,w(X(%(t),t))a,X”(i'(t),t)d,;X”(i'(t),t)

Ve ad d_
+ E/ do \/2 <lG;u/l//ﬂyOEl// + wy (pr + pryS)yOEXﬂ(T(t)’ t)l//p

d
—2G 7.7 7"y EX”(?U), t))
1 —~ \/T : — 1 v c =V 1 =
+ ET(t) do h ZGWW”V 55’# + wy (Fvﬂp + HvﬂpyS)y a(—,Xﬂ(T(l), t)l//p
= o laay, 1 V(= 1 iy Vi abaa 1 Ty AT VP
= 2G04 vyt 0 X" (3(1), 1) + 5 Gl WL YUy + o Ruag P oy

i ) 1 o )
- §H,Wxar”r“l//"w”msw’ = 2 DoH v wlrsy’ + R;, Z) ) ) , (4.32)

we obtain Eq. (4.30). Equation (4.32) has a manifestly one-dimensional diffeomorphism symmetry with respect to ¢, where
T(z) is transformed as an einbein [10].
Under 4 = T(r), which implies

J00 — 2100

7Ol — TRO!,

Rl = 1,

Vi=1Vrw, (4.33)
T
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T(t) disappears from Eq. (4.32) and we obtain

- Xbrs
Ap(Xp,r: Xpi|Ef E) = Z, / DEDX, (7)

iXDTI

Xexp(— /_ ) ( / 5B G, (X )( 300, X4 (2(1) 10,X(£(1). 1
+ h019,X¥ (2(1), )95 X* (2(1), 1) + %ﬁllaﬁX”(%(l), 1)05X" (7(1). f))
+/d5iBﬂl/(X(%(t)’t))alXﬂ(%(t)’t)aﬂxy(%(t)’t)

45 [ 4o VRGO 15 (F,yy + Huyyr ) 06X (0. 1

= 2G a1 w"0:X" (3(1), 1))

1 =
+ 2/ do \/Z<1G;w _ﬂylaffl//l/ + ”/_/ (Fuyp + pr}/S)]ﬂd&X”(%(Z‘), t)l///)

_ _ 1 _ _
= 2G,0.7 v W 0; X" ((1). 1) + 5 Gy a7 + 6Rﬂy1pw”wﬁw”w”

i ) 1 o A
- §H,wp)(a7”7“w"w”mswp - ZDpHﬂMW”WpWAySWV + R;, E) ) > : (4.34)

This action is still invariant under the diffeomorphism with respect to ¢ if 7 transforms in the same way as ¢.
If we choose a different gauge,

Fy(t):=7(1) -t =0, (4.35)

in Eq. (4.34), we obtain

d%(t))

'XDTi _

/ d5 VG, (X )( 7999,X# (2 (1), 1)9,X* (3 (1), 1)

_ 1-
+ K0, XH (z(1), 1)0; X (7(1), 1) + Eh“a;,X” (7(1), 1)0;X* (z(1), t))
+ / dsiB,,(X(7(t).1))0,X*(7(1), 1)0;X"(%(1). 1)

! d'\/z G, wty?o wr + g (I H 40 XH (7T P
+§ 9 l ;ww Vo + w ( vpp + uﬂp}/S)y a (T(t)’t)w

1
—2G W 7.7y w0, X  (2(1). 1) 4+ 5 G,wl// WY + 6R,Mpw”w vyt

i

- _ 1 _ ~ y)
=3 Hupka Y0 rorsW’ = 3 DpHuwp v W ysw + Ry %> ) >
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Ef'Xbe o _ _ = _ 1—00 - - - =
—z DEDX, exp(— [ dz [ d6 VG, (X(2(1).1)) S H00.X(3.7)0,X* (5. 7)
E —0

i»XﬁTi

_ 1.
+ h0:X*(5,7)0,X*(5,7) +§h“0,-,X/‘(6, 7)0;X" (5, %)) + / dciB,,(X(5,7))0:X"(6,7)0;X"(5,7)

1 =
+5 / ds\V'h (iGﬂulIf”r“aaw” + 0 (T + Hypys)y@0,.X" (7(1), )y?

_ - L
- ZGWZaVbVaW”abXU (T(t), t) + 5 Gvaﬂwb)(aybya)(b +

3

The path integral is defined over all possible two-
dimensional super-Riemannian manifolds with fixed punc-
tures in the manifold M defined by the metric G,,, as in
Fig. 1. The super-diffeomorphism times super-Weyl invari-
ance of the action in Eq. (4.36) implies that the correlation
function is given by

i ) 1 o A
— = H,, 77 Yy sy — 1 D,H "y’ i'ysy” + R;, E)) :

1 -
& Ruap Wy i y”

(4.36)

S, = %/_: dr/ do\/h(o,7) <(h'””(0, T)GW(X(G, 7)) + ie"" (o, T)BW(X(G, 7)))0,,X*(0,7)0,X" (0, 7)

o o _ 1 o
+ G " 0 w” + i (T, + Hypo¥'s )Y 0,XH (0. 0)y? — 2G i ay vy 0,X" (0, 7) + 5 G0 W xay"r X

i

1 I C bae , 1 -
+6Rmpw”wiw”wf -3 Xl YT Yy syt = 2 DoHuwi"y* vﬂyw/”),

and y is the Euler number of the two-dimensional Rie-
mannian manifold. For regularization, by renormalizing ¢,
we divide the correlation function by the constant factor Z
and by the volume of the super-diffeomorphism times the
super-Weyl transformation V g, wey- Equation (4.37) are
the path integrals of perturbative superstrings on an
arbitrary background that possess the supermoduli in the
type IIA, type 1IB, and SO(32) type I superstring theories
for T =1IA, 1IB, and I, respectively [11,12,13]. In par-
ticular, in string geometry, the consistency of the perturba-

s \//
<Hw
7 %

FIG. 1. A path and a super-Riemann surface. The line on the
left is a trajectory in the path integral. The trajectory parametrized
by 7 from —oo to oo represents a super-Riemann surface, with
fixed punctures in M on the right.

Rl

: ) By Xors —Jy =S
AF(Xbe, XDTilEf’Ei> =7 DEDXi)Te e =,
E.X;,,
(4.37)
where
(4.38)

tion theory around the background consisting of Egs. (3.3),
(3.27)—(3.30) determines d = 10 (the critical dimension).

V. CONCLUSION AND DISCUSSION

In this paper, in the string geometry theory, we fixed the
classical part of the scalar fluctuation of the metric around
the string background configurations, which are parame-
trized by the superstring backgrounds G,,(x) and B, (x).
We showed that the two-point correlation functions of the
quantum parts of the scalar fluctuation are path integrals of
the perturbative superstrings on the string backgrounds. In
this derivation, we moved from the second quantization
formalism to the first one, where the coordinates of the two
fields in the correlation functions become the asymptotic
fields that represent the initial state X#(z = —o0, ¢, 6) and
final state X*(z = o0, 5, 0), respectively. All paths on the
string manifolds from X¥(z = -00,0,0) to XH(r=
0, 7, 6) are summed up in the first quantization represen-
tation of the two-point correlation functions. Because the
paths on the string manifolds are world sheets with genera
as shown in Sec. VI of Ref. [1], they reproduce the path
integrals of the perturbative strings up to any order,
although the correlation functions are at tree level.
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In this paper, we considered the classical backgrounds
up to the first-order fluctuations around the flat back-
ground. Our next task is to consider the second- and
higher-order classical fluctuations. Another task is to
derive path integrals of the perturbative heterotic strings
on all string backgrounds, G, (x), B,,(x), and A,(x), from
the string geometry theory by considering the heterotic
string manifolds.

Let us consider classical instanton effects in string
geometry theory. If we substitute the string background
configurations into the action, the terms that include
RR fields are zero because of the Poincaré duality [5].
In the case of a constant dilaton ¢, which is related to
the string coupling constant g, by g, = e?, the action is
given as § = ¢S, where § = [ DEDzDX, v-G(R +

S
4V;®V'® — L|H|?). Then, the partition function Z = ¢ %
has a correct dependence on the string coupling constant in
the role of the nonperturbative effects in string theory, where
S is identified with an instanton action itself. This fact, and
the fact that one can derive the perturbative superstrings up

to any order in the string coupling constant from string
geometry theory at the tree level, suggest that string
geometry theory can be defined by a classical limit of the
path integral (2.1).
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APPENDIX: GREEN FUNCTION ON STRING
GEOMETRY

In this appendix, we show that Eq. (3.45) is indeed a
Green function on the flat superstring manifold. If
X’If)ﬂ(é, 0) # X”If)”(é, 0), we have

_ e _ _ |7 e _ _
=(2 —D)N[/ dadHT(X’;)T(a, 0) — XU;‘)T("’ 9))2} B (X"DT(G’,Q’) - X’Z ( ’,9’)), (A1)
and then,
1 0 1 0 _e? - _\21%
— —— = dodf— | X4, (6,0) - X" (5,0
E” aXI/DT<6_II’9/I) E/ aXDTU(6I,9,)N|:/ o E < DT(G ) DT(G )) :|
1 él - —éz W (= 7 M (= N 2 _g —/ —// ' N
= d(2—D)E?./\/' dO'dHE XDT(O',Q) —XDT<O',9) 5(6' —a6")6(0 —0")
11-/—// —"Ez H (=D /M—_2_¥
—D(2—D)E,F N| | dod i XDT(J,Q) XDT(G,Q)
X X’Z)T(5’,9’) —X’%T(ﬁ’,g’) Xp,,(6",0") = X' U(&”,H”)) (A2)
Thus,
-1 0 1 0 _é2 _ B 2 %
dé' dO'E' - = = dedd— | X (5,0) - X" (5,0
/ TV Yxy (7.0)7 0X, (5',9/)/\/[/ od0g \ X5, (.0) = X', (@ )) }
Dy TV
L _ o _ _ a0\
:d/d(;/ do'6(0)(2 - D)N /dad@E <X’If)T(a, 0) - X% (5, 9))
—é2 _ _ 2 —% _ élZ _ _ 2
-DR2-D)N [/ dz‘m!eE <X%T(‘_” 0) —X”lf)r(& 9)) ] /dz;' do' —- <X%T(‘_"’9/) _xwﬁr(a/,ef)) =0, (A3)

where we use D = d [ d&' d0'6(0). Hence, we find
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| 0 _
dé'dO'E' — _ — N /d‘de
/ ¢ E’aX%T(Z;’,H’)é’aXDTV(ﬁ’,H’) { 7

where N\ is a normalizing constant.

(X}, (3. 0) - X" (5.0)*| =68Xp, - X} ).

b (A4)
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