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We present a generalization of the embedding space formalism to conformal field theories (CFTs) on
nontrivial states and curved backgrounds, based on the ambient metric of Fefferman and Graham. The
ambient metric is a Lorentzian Ricci-flat metric in dþ 2 dimensions and replaces the Minkowski metric of
the embedding space. It is canonically associated with a d-dimensional conformal manifold, which is the
physical spacetime where the CFTd lives. We propose a construction of CFTd n-point functions in
nontrivial states and on curved backgrounds using appropriate geometric invariants of the ambient space as
building blocks. This captures the contributions of nonvanishing one-point functions of multi-stress-energy
tensors, at least in holographic CFTs. We apply the formalism to two-point functions of thermal CFT,
finding exact agreement with a holographic computation and expectations based on thermal operator
product expansions (OPEs), and to CFTs on squashed spheres where no prior results are known and
existing methods are difficult to apply, demonstrating the utility of the method.

DOI: 10.1103/PhysRevD.107.066022

I. INTRODUCTION

It is important to understandquantumfield theory in curved
backgrounds and nontrivial states. This is the case both for
purely theoretical reasons and also because it has many
applications in a wide range of physical scenarios, from
condensed matter systems at finite temperature, to out-of-
equilibrium physics (e.g., the quark-gluon plasma), to semi-
classical black hole physics and cosmological observables.
A special class of quantum field theories are CFTs. They

appear as fixed points under renormalization group flow,
and at second-order phase transitions, meaning that they are
ubiquitous in nature. They are also of considerable theo-
retical interest, since they enter the anti–de Sitter/conformal
field theory (AdS=CFT) correspondence.
The kinematical constraints of CFTs in (conformally)

flat spacetimes in vacuum have been solved long ago [1,2].
In particular, both two-point and three-point functions of
primary operators are fixed by conformal symmetry up to
constants, while higher-point functions are fixed up to
functions of cross ratios. The analogue of these results for
CFTs in curved spacetime and nontrivial states is not

available, and the purpose of this paper is to fill in this gap.
In particular, we will propose a framework for solving the
kinematical constraints due to Weyl invariance and apply it
to scalar two-point functions.

II. THE EMBEDDING SPACE

The embedding space formalism takes advantage
of the fact that the conformal group SOð1; dþ 1Þ in d
dimensions coincides with the Lorentz group in (dþ 2)
dimensions [3–6]. Imposing conformal invariance on CFT
observables on any d-dimensional conformally flat back-
groundM simply reduces to demanding Lorentz invariance
on the embedding spaceR1;dþ1. This construction is realized
by mapping M to a projective section of the light cone
XMXM ¼ 0 in Minkowski space1: taking the CFT back-
ground to be flat space gð0Þij ¼ δij, each point xi ∈ M ¼ Rd

can be mapped to a null ray in R1;dþ1 according to

XMðt; xiÞ ¼ t

�
1þ xjxj

2
; xi;

1 − xjxj

2

�
; ð1Þ

with t ∈ R, and where t ¼ 1 corresponds to the isometric
embedding of Rd. A linear SOð1; dþ 1Þ transformation
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1Throughout this paper, small latin indices i; j… are
d-dimensional, and small greek indices μ; ν… denote the
dþ 1 directions on hyperbolic spaces, while capital latin letters
M;N; A; B… denote the dþ 2 embedding or ambient directions.
We will sometimes write XM as the following triplet:
XM ¼ ðX0; Xi; Xdþ1Þ.
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maps null rays to null rays, and this is equivalent to standard
conformal transformations on Rd. Considering scalar corre-
lators, the only building blocks that can be constructed on
R1;dþ1 out of the positions of the insertions are the scalars
Xij ¼ −2Xi · Xj of dimension−2. As a consequence, using a
scaling argument, two-point functions of scalar operators O
of dimension Δ are fixed to

hOðX1ÞOðX2Þi ¼
CΔ

ðX12ÞΔ
; ð2Þ

whereCΔ is a theory-specific constant. After projecting back
to Rd, X12jt¼1 ¼ jx1 − x2j2, recovering the known expres-
sion. With similar reasoning, one can efficiently obtain the
form of tensorial correlators and higher-point functions.
We now generalize the embedding space formalism to

apply to the case of CFTs in non-conformally-flat back-
grounds gð0Þ and nontrivial states by using the geometrical
construction known as the ambient space [7,8]. The ambient
space allows one to impose the kinematical constraints of
Weyl invariance in lieu of full conformal symmetries by
finding Weyl invariants on a d-dimensional manifold as
diffeomorphism invariants in dþ 2 dimensions.2

III. THE AMBIENT SPACE

To introduce the ambient space construction, we first
rewrite the flat metric on R1;dþ1 with the new coordinates
ðt; ρ; xiÞ:

YMðt; ρ; xiÞ ¼ t

�
1 − 2ρþ x2

2
; xi;

1þ 2ρ − x2

2

�
: ð3Þ

The result is the Minkowskidþ2 metric in ambient form:

ηMNdYMdYN ¼ 2ρdt2 þ 2tdtdρþ t2δijdxidxj: ð4Þ

The surface ρ ¼ 0, where XMðt; xiÞ ¼ YMðt; 0; xiÞ,
describes the light cone, and in this limit we recover
Eq. (1). The region ρ < 0 corresponds to the future and
past of the light cone, while ρ > 0 covers the points with a
spacelike separation from the origin. The coordinate
t ¼ Yþ ¼ Y0 þ Ydþ1 defines various sections of the light
cone. Equation (4) admits a homothety T ¼ t∂t, a null
vector which geometrizes scaling transformations of the
d-dimensional theory.
The ambient space generalizes Eq. (4) so that it applies to

a general background gð0Þ and general states. There are two
key ingredients. First, the generalized spacetime should
possess a homothety T ¼ t∂t and a nullcone structure at
ρ ¼ 0. Second, it should be Ricci flat. The most general

metric satisfying these conditions up to diffeomorphisms is
of the form [7,8]

g̃ ¼ 2ρdt2 þ 2tdtdρþ t2gijðx; ρÞdxidxj; ð5Þ

for which the Ricci tensor R̃MN ¼ 0. When the Riemann
tensor vanishes, this reduces to the embedding space
[Eq. (4)]. Given a boundary metric, gijðx; 0Þ ¼ gð0ÞijðxÞ,
the Ricci-flat condition can be solved in the neighborhood
of ρ ¼ 0:

gðx; ρÞ ¼ gð0Þ þ � � � þ ρd=2ðgðdÞ þ hðdÞ log ρÞ þ � � � ; ð6Þ

where all the terms up to the order displayed are locally
determined by gð0Þ except gðdÞ. hðdÞij is only present for
even d. gðdÞ carries information about the state. As will
become clear momentarily, in situations where AdS=CFT
applies, the holographic dictionary gives gðdÞij ∼ hTiji [16].
To gain some intuition about these geometries, one can

perform the coordinate transformation ρ ¼ −r2=2, t ¼ s=r,
with s, r > 0, covering only the region interior to the future
nullcone. The ambient metric becomes

g̃ ¼ −ds2 þ s2
�
dr2 þ gijðx; rÞdxidxj

r2

�
: ð7Þ

The Ricci-flat condition implies that the term in brackets is
an asymptotically locally (Euclidean) AdS (ALAdS) space-
time [7,8]. The coordinate s geometrizes theAdS radius, and
thus scaling dimensions with respect to the ambient homo-
thety T coincide with engineering dimensions. Minkowski
space can be foliated by hyperbolic slices, and Eq. (7) is the
generalization to Ricci-flat spacetimes retaining the homo-
thety T. This may also lead to a connection of our work with
flat-space holography—see, e.g., Refs. [17–19].
Weyl transformations are induced by a specific class of

ambient diffeomorphisms [8], and the ambient connectione∇M induces a Weyl connection on the nullcone at ρ ¼ 0.
This is the precise sense in which Weyl transformations are
realized on the ambient space, and CFT kinematical
constraints are enforced by using appropriate diffeomor-
phism invariants in ambient space. Here we restrict to
nonspinning operators; spinning operators may be analyzed
similarly (using tractor calculus [20,21]).

IV. PROPOSAL

Our aim is to solve kinematical constraints: given a CFT
with a spectrum of operators with dimensions Δi, we want
to determine the form of CFT correlators consistent with
the kinematical constraints. CFT correlators obey specific
transformation rules under Weyl transformations, and they
should have the right singularity structure at short dis-
tances, reproducing the known flat-space behavior, so we

2Other uses of the ambient space in physics include (but
are not limited to) higher spin theories and holographic anomalies
[9–15].
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would like to obtain expressions that satisfy these two
properties.
Let us first consider the case of scalar two-point functions,

generalizing the embedding space result [Eq. (2)]. Let X
denote coordinates on the null cone in ambient space at
t ¼ 1. Then hOðX1ÞOðX2Þi is a scalar bilocal which
depends on the positions of the insertions X1, X2 and has
the right weight with respect toWeyl transformations. There
are two main differences relative to the embedding formal-
ism. First, on a curved background g̃, it does not make sense
to take an inner product between two position vectors.
Second, g̃ in general has nonzero curvature.
Regarding the first point, on a flat ambient space, the

homothetic vector is given by T ¼ XM
∂M, and thus in this

case X12 ¼ −2X1 · X2 is also equal to X12 ¼ −2T1 · T2.
Moving away from flat space,weviewT as thegeneralization
of a positionvector. To construct an inner product in this case,
we first parallel transport T1 from X1 to X2 along an ambient
space geodesic, giving T̂1 in the tangent space atX2. Thenwe
generalize X12 by defining the dimension −2 scalar invariant
X̃12 ¼ −2T̂1 · T2; a short computation shows [22]

X̃12 ¼ lðX1; X2Þ2; ð8Þ

where lðX1; X2Þ is the geodesic length between the two
points. Clearly, X̃12 ¼ X12 in the case of flat space. Note also
that although the insertions X1, X2 lie on the nullcone, the
geodesics connecting them generically pass through the
ALAdS slices and are thus affected by the CFT state.
Moving to the second point, nonvanishing ambient

curvature entails that more scalar bilocals than X̃12 may
be constructed. The additional ingredients are the ambient
Riemann tensor R̃MNPQ, ambient covariant derivatives ∇̃,
and T̂1, T2. These ingredients are subject to the constraints
∇̃MTN ¼ g̃MN and TMR̃MNPQ ¼ 0. R̃MNPQ encodes infor-
mation about the state, since, for instance, for even d,

ð∇̃ρÞd2−2R̃ρijρjρ¼0;t¼1
¼ 1

2

�
d
2

�
!gðdÞij þ F½gð0Þ�; ð9Þ

where F½gð0Þ� is a local functional of the background metric
gð0Þ, and similarly for other components. In holographic
theories, gðdÞij ∼ hTiji; and when the CFT admits a large-N
limit, h∶Tn∶ i ∼ hTin. In such cases, products of R̃MNPQ

capture multi-stress-energy-tensor contributions.
We denote I ðkÞ as the general linear combination (with

constant coefficients) of all curvature invariants of weight
zero (with respect to ambient homothety) with k ambient
Riemann tensors.3 Note that, depending on the example,

when we evaluate these invariants on the ambient back-
ground, some of the terms in I ðkÞ may become linearly
dependent. With all scalar bilocals in hand, we can write an
expression for a general two-point function of scalars O of
dimension Δ, which has the right transformation properties
and the correct singularity behavior as follows:

hOðX1ÞOðX2Þi ¼
CΔ

ðX̃12ÞΔ
lim
ρ→0
t→1

�
1þ

X∞
k¼1

I ðkÞ
�
þ � � � ; ð10Þ

capturing a universal subset of all possible terms consistent
with Weyl invariance, as explained below (the dots indicate
that in general additional terms are present). We note that
the two-point function [Eq. (10)] is analytic in gð0Þ, as it
should be.
To get some insight in this expression, let us consider

some additional dynamical information. A local CFT in any
state in a short-distance/high-energy limit should have an
OPE expansion, which may be used to determine the
correlators4 (see, for example, Refs. [23–25]). Therefore,
two-point functions could be expressed as an expansion in
terms of one-point functions. From this perspective, the
invariants I ðkÞ capture the contribution of multi-stress-
energy tensors, at least for holographic CFTs in the large-N
limit. More generally, the invariants may form a basis, and
Eq. (10) may have wider applicability, as we will see in the
example below. In general, the right-hand side of Eq. (10)
would also contain additional terms capturing nontrivial
one-point functions of operators other than the stress-
energy tensor.5 To capture these, additional invariants based
on matter fields in ambient space may be required.
In the large-Δ limit, we expect from usual saddle-point

arguments that the two-point function is well approximated
by the geodesic length in ALAdSdþ1 connecting the two
insertion points. One can show [22] that geodesic lengths in
ALAdSdþ1 are related to those of ambient space geodesics
through

ðX̃12Þ−Δ ¼ r−2Δe−ΔLAdS jr¼0; ð11Þ

where LAdS is the geodesic distance between the boundary
insertions on the ALAdSdþ1 slice of unit radius. Thus, only
the leading term in Eq. (10) will remain in the large-Δ limit.
The terms in the sum provide the finite-Δ corrections.
Using curvature invariants of the form in Eq. (14), a general
result is that I ð1Þ ¼ 0 [22], and therefore the geodesic
approximation is exact up to OðR̃iemÞ2, assuming that no
other operator with Δ < 2d acquires a vacuum expectation
value (VEV).

3Where sequences of covariant derivatives appear in the
construction of I ðkÞ—e.g., ∇a∇b… acting on the same object
—we symmetrize their indices. This makes the counting of
Riemann tensors unambiguous.

4Note, however, that a priori it appears possible to have
correlators satisfying CFT kinematical constraints without neces-
sarily having an underlying OPE, such as in the context of dS=CFT.

5We thank Slava Rychkov for discussion on this point.
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As a final remark, observe that in the case of more than one
ambient geodesic connecting the two insertions, new inde-
pendent invariants may be associated with different geo-
desics, and one should sum over geodesics. Note, however,
that under mild conditions, there is a unique geodesic that
connects any two points on the boundary [26,27].

V. THERMAL CFTs

We now consider the example of holographic CFTs at
finite temperature living on S1β ×Rd−1. We parametrize
such a background with coordinates xi ¼ ðτ; xaÞ with
a ¼ 2…d, τ ∼ τ þ β and denote jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ x2

p
. The

inverse temperature β introduces a new scale that breaks
conformal invariance, and thus this appears as one
of the simplest settings where we can test our proposal.
We work perturbatively in 1=β, and since β is the only
scale, this corresponds equivalently to a short-distance or
low-temperature expansion.
Using holography, we can write down the ambient metric

as Eq. (7), where the dþ 1 dimensional metric in square
brackets is given by the Euclidean AdS planar black brane:

1

z2

�
dz2

1 − zd

zdH

þ
�
1 −

zd

zdH

�
dτ2 þ δabdxadxb

�
; ð12Þ

where β ¼ 4πzH=d. Given the ambient metric, we can
construct the ambient building blocks discussed above in
this specific example. The use of the holographic metric
here does not necessarily mean that the two-point function
constructed through Eq. (10) using such invariants will
only apply to holographic thermal CFTs; the solution to the
kinematical constraints at strong coupling may provide a
basis for the general solution. We will see shortly that in the
present context, this is indeed the case.
The ambient geodesic distance between the two inser-

tions can be easily computed perturbatively in 1=β, yield-
ing, for the first two orders when d ¼ 4,

X̃12 ¼ jxj2
�
1þ π4jxj2ðx2 − 3τ2Þ

120β4
þ

−
π8jxj4ð91τ4 − 98τ2x2 þ 19x4Þ

201600β8
þOðβÞ−12

�
; ð13Þ

which matches the expressions for the AdS geodesic
distance given in Refs. [28,29] through Eq. (11).
The remaining invariants can be constructed in terms of

the Riemann tensor evaluated at X2. We build scalar
bilocals involving k curvatures as follows:

ðT̂1Þl ⊗ ð∇̃Þr1R̃ ⊗ � � � ⊗ ð∇̃Þrk R̃; ð14Þ
where R̃ is the ambient Riemann curvature tensor atX2. Their
scalingdimension isq ¼ 2kþ r − l, where r ¼ P

k
i ri andl

is the number of T̂1 vectors. One can show that q is always
even from geometric identities. To make a term of dimension
zero which contributes to I ðkÞ, we multiply by ðX̃12Þq=2.
In this example, and to first order in gðdÞ [specializing

Eq. (9)],

R̃ρjkρ ¼
d
4

�
d
2
− 1

�
gðdÞjkρ

d
2
−2t2;

R̃ρjkl ¼
d
4
½∇lgðdÞjk −∇kgðdÞjl�ρd

2
−1t2;

R̃ijkl ¼
d
4
½gð0ÞilgðdÞjk þ gð0ÞjkgðdÞil − ðl ↔ kÞ�ρd

2
−1t2; ð15Þ

where gðdÞjk ∼ hTjki, the expectation value of the
holographic energy momentum tensor, and ∇ indicates
the Levi-Civita connection associated with gð0Þ. Note that
R̃MNPQ ¼ OðβÞ−d, and so in general I ðkÞ ¼ OðβÞ−kd. As
mentioned earlier,I ð1Þ ¼ 0, and the coefficient of the term at
OðβÞ−d is fully fixed by the geodesic approximation
ðX̃12Þ−Δ. This is in line with expectations from the thermal
OPE described below and results in the literature [28,30,31].
At the next order, β−2d, there are contributions from

ðX̃12Þ−Δ and I ð2Þ. To this order, a complete basis is provided
by terms with two Riemann tensors fe0; e1; e2g, so that
I ð2Þ ¼ c0e0 þ c1e1 þ c2e2, where in d ¼ 4,

e0 ¼ Rð0Þ
ACR

ð0ÞAC ¼ 3

4

jxj8
z8H

þ � � � ;

e1 ¼ Rð1Þ
ACR

ð0ÞAC ¼ −
jxj6
z8H

ð3τ2 þ 7x2Þ þ � � � ;

e2 ¼ Rð1Þ
ACR

ð1ÞAC ¼ 4
jxj4
z8H

ð3τ4 þ 16τ2x2 þ 17x4Þ þ � � � ;

ð16Þ

where the ellipses denote OðβÞ−12 corrections and

RðrÞ
AC ≡ T̂M1

1 …T̂Mr
1 T̂U

1 T̂
V
1 ∇̃M1

…∇̃Mr
R̃AUCV: ð17Þ

The polynomials on the right-hand side of Eq. (16) form a
basis of polynomials of order 8 constructed from xi under
contractionwith the available boundary tensors—namely δij
and the thermal hTijiβ appearing in Eq. (15). In fact, they are
linear combinations of the Gegenbauer polynomials appear-
ing below in the discussion of thermal OPEs. Thus, in this
case, as advertised, the expression of the two-point function
holds for any thermal two-point function, even though the
ambient metric was constructed using an AdSmetric related
to holographic thermal CFTs.
With all ambient invariants constructed to the required

order in d ¼ 4, we have for the proposal in Eq. (10)
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hOðτ; xÞOð0Þiβ ¼
CΔ

jxj2Δ
�
1 −

π4Δðx2 − 3τ2Þjxj2
120β4

þ π8jxj4
β8

��
c0 þ

Δð63Δþ 170Þ
30240

�
3

4
jxj4

−
�
c1 þ

Δð14Δþ 39Þ
25200

�
jxj2ð3τ2 þ 7x2Þ þ 4

�
c2 þ

Δð7Δþ 20Þ
201600

�
ð3τ4 þ 16τ2x2 þ 17x4Þ

�
þOðβÞ−12

�
;

ð18Þ

which is determined up to three numbers c0, c1, c2.
As mentioned earlier, we expect a short-distance/

high-energy expansion in any CFT in any state. For the
thermal state, one should expect multi-stress-energy-tensor
∶TnðJÞ∶ contributions6 of the form [28,32–37]

hOðτ; xÞOð0Þiβ ⊃
X∞
n¼0

X2n
J¼0
J even

aðTÞn;JC
ðνÞ
J ðηÞ jxj

nd−2Δ

βnd
; ð19Þ

where CðνÞ
J are the Gegenbauer polynomials with order

ν ¼ d=2 − 1 depending on η ¼ τ=jxj. The constants aðTÞn;J

are related to the dynamics and are not determined by
symmetries.
To the required order in β, the multi-stress-energy-tensor

contributions in Eq. (19) match Eq. (18) for any Δ with the
following identification:

aðTÞ0;0 ¼ CΔ; aðTÞ1;0 ¼ 0; aðTÞ1;2 ¼ Δ
120

CΔ; ð20Þ

aðTÞ2;0 ¼
�
3c0
4

− 6c1 þ 52c2 þ
Δð7Δþ 18Þ
201600

�
CΔ; ð21Þ

aðTÞ2;2 ¼
�
c1 − 15c2 þ

Δð7Δþ 12Þ
201600

�
CΔ; ð22Þ

aðTÞ2;4 ¼
�
c2 þ

Δð7Δþ 20Þ
201600

�
CΔ: ð23Þ

The connection between the OPE thermal blocks in
Eq. (19) and ambient invariants can be understood using
factorization h∶Tn∶ i ∼ hTin and the appearance of hTiji in
Eq. (15). From this point of view, the connection
will continue to hold to all orders OðβÞ−nd through
an appropriate set of curvature invariants up to I ðnÞ.
Note that aðTÞ1;0 , aðTÞ1;2 get contributions only from the
geodesic distance, in line with our earlier observation that
I ð1Þ ¼ 0.
As an explicit check of the proposal in Eq. (10) in

the case of thermal CFTs [Eq. (18)], we now compute the

two-point function using a holographic bulk computation.
We solve

□Φ ¼ ΔðΔ − dÞΦ ð24Þ
on the (dþ 1)-dimensional background [Eq. (12)] subject
to Dirichlet boundary conditions and regularity in the
interior. We normalize such that CΔ ¼ 1.
In the case of odd (dþ 2Δ), one can solve Eq. (24)

analytically to arbitrarily high order in 1=β in Fourier space,
and for concreteness we present results for d ¼ 4,Δ ¼ 3=2.
We find perfect agreement with Eq. (18), which determines
the following coefficients of the ambient proposal:

c0 ¼ −
53

1575
; c1 ¼ −

11

1120
; c2 ¼ −

11

16800
: ð25Þ

Returning to the case of general d, for noninteger Δ, we
have also computed the order-β−d contribution exactly:

hOOiβ ¼
1

jxj2Δ
�
1þ λ1ðx2 − ðd − 1Þτ2Þ jxj

d−2

βd

�
þOðβÞ−2d;

ð26Þ
where λ1 ¼ ð4πd Þd

ffiffi
π

p ð−1Þdþ1ΔΓð−d
2
−1
2
Þ sinðπðd−ΔÞÞ

2dþ2Γð1−d
2
Þ tanðπd

2
Þ sinðπΔÞ .

VI. SQUASHED SPHERES

We now present an example where the result is not
known and not easy to obtain by any other means: the two-
point function of scalar operators for CFTs on squashed
spheres. See Refs. [38,39] for a holographic computation
on such backgrounds. We fix d ¼ 3 for concreteness; the
background takes the form

ds2 ¼ dθ2 þ sin2θdϕ2 þ 1

1þ α
ðdψ þ cos θdϕÞ2; ð27Þ

where α parametrizes the squashing and α ¼ 0 corresponds
to a round S3. Here, 0 ≤ ψ < 4π, 0 < θ < π, and
0 < ϕ < 2π. The CFT state that we intend to study on
this background is characterized by the stress tensor VEV
hTiji ¼ 3

16π gð3Þij, with

gð3ÞijðxÞdxidxj ¼
α

3ðαþ 1Þ3=2
�
dθ2 −

2

1þ α
dψ2

−
4 cos θ
1þ α

dψdϕ

−
ðαþ 3Þ cos 2θ − αþ 1

2ðαþ 1Þ dϕ2

�
: ð28Þ

6In general, there are additional contributions due to other
operators than the stress-energy tensor acquiring a one-point
function in the thermal state, as discussed earlier. We will not
discuss these here but will return to them in Ref. [22].
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We work perturbatively in small α. According to
our prescription, the ALAdS4 slices of the ambient
space corresponding to this setup are AdS-Taub-NUT4

spaces [40],

dr2

VðrÞ þ ðr2 − n2Þðdθ2 þ sin2θdϕ2Þ

þ 4n2VðrÞðdψ þ cos θdϕÞ2; ð29Þ

with n ¼ ð2 ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

p Þ−1, m ¼ αð1þ αÞ−3=2=2 and

VðrÞ ¼ r2 þ n2 − 2mrþ ðr4 − 6n2r2 − 3n4Þ
r2 − n2

: ð30Þ

We consider insertions at the generic points x1 ¼ ðθ1; 0; 0Þ
and x2 ¼ ðθ;ψ ;ϕÞ using translation invariance along ψ and
ϕ. We further fix θ1 ¼ 0 for ease of exposition.
Defining χ ¼ ðϕ − ψÞ=2, the parallel transported vector

from X1 to X2 reads

T̂1 ¼
sin θ

2
cos χ þ 1

2r
∂s þ

sin θ
2
cos χ − 1

64r
∂r

þ 2 cos
θ

2
cos χ∂θ þ csc

θ

2
sin χ∂ψ

− csc
θ

2
sin χ∂ϕ þOðαÞ: ð31Þ

The nonvanishing components of the ambient Riemann are
of the form in Eq. (15), with the addition of an overleading
ð∇lRð0Þjk −∇kRð0ÞjlÞt2 to R̃ρjkl.
Following the same arguments as in the thermal case,

I ð1Þ ¼ 0 and the leading curvature invariants are thus of
order OðαÞ2. A possible basis for the ambient invariants
accounting for the three ∶T2∶ blocks including no deriv-
atives is given by [up to order OðαÞ3],

ð∇R̃iemÞ2 ¼ 168α2

t6
;

R̃ð1Þ
ACR̃

ð1ÞAC ¼ 18α2cos2
θ

2

�
cos θ þ 3 − 2sin2

θ

2
cos 2χ

�
2

;

R̃ð0Þ
ACR̃

ð2ÞAC ¼ −
3

2
α2
�
cos θ þ 3 − 2sin2

θ

2
cos 2χ

�
2

�
5 cos θ þ 3þ 2sin2

θ

2
cos 2χ

�
; ð32Þ

since from the form of the ambient Riemann, it follows they
do not contain derivatives acting on the stress tensor.
A linear combination of these three invariants with
general coefficients will appear in I ð2Þ. Similar invariants
can be constructed for double-stress tensor blocks
with an arbitrary number of derivatives, as well as for

multi-stress-energy tensor blocks. Using these ingredients,
we can assemble the correlator according to Eq. (10) (more
details will be provided in Ref. [22]).

VII. HIGHER-POINT FUNCTIONS

Following similar arguments, higher-point functions also
admit an ambient space representation,

hO1ðX1Þ…OnðXnÞi ¼
�Y

pairs

X̃
αij
ij

�
½fðuÞ þ � � ��; ð33Þ

where ellipses denote weight-zero ambient curvature invar-
iants akin to those built for two-point cases. Here, X̃ij are
ambient geodesic distances [Eq. (8)] connecting all pairs of
insertions. f is the function of cross ratios that appears for
n-point functions of the same CFT in vacuum on flat
space, where now the cross ratios are formed from the
geodesic pairs, u½pqrs� ¼ ðX̃prX̃qsÞ=ðX̃pqX̃rsÞ, and where
Δi ¼ −

P
n
j¼1 αij. As discussed earlier, in many cases

ambient invariants involving a single Riemann tensor
vanish, and thus Eq. (33) may be computed using a
geodesic approximation to first subleading order in the
deviation from flat-space vacuum CFT.

VIII. CONCLUSIONS

We have presented a prescription to solve the kinematical
constraints of scalar n-point functions for CFTs in general
backgrounds and states. The construction is based on a
generalization of the embedding space formalism and
utilizes geometric invariants of the ambient space. Our
proposal captures stress-energy tensors; to capture the
contributions of other operators, the ambient space should
be generalized to include matter fields. We tested the
construction in the case of holographic two-point functions
for CFTs in a thermal state, finding exact agreement, and
along the way confirmed expectations from thermal OPEs.
We made predictions for two-point functions on squashed
spheres and for general scalar n-point functions. Natural
generalizations of this proposal include higher-spin oper-
ators leveraging tractor calculus.

ACKNOWLEDGMENTS

We thank Slava Rychkov for comments. The work of
E. P. is supported by Royal Society Research Grants
No. RGF/EA/181054 and No. RF/ERE/210267. K. S.
and B.W. are supported in part by the Science and
Technology Facilities Council (Consolidated Grant
“Exploring the Limits of the Standard Model and
Beyond”). B. W. is supported by a Royal Society
University Research Fellowship.

PARISINI, SKENDERIS, and WITHERS PHYS. REV. D 107, 066022 (2023)

066022-6



[1] A. M. Polyakov, Conformal symmetry of critical fluctua-
tions, JETP Lett. 12, 381 (1970).

[2] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal
Field Theory, Graduate Texts in Contemporary Physics
(Springer-Verlag, New York, 1997).

[3] P. A. M. Dirac, Wave equations in conformal space,
Ann. Math. 37, 429 (1936).

[4] D. G. Boulware, L. S. Brown, and R. D. Peccei, Deep-
inelastic electroproduction and conformal symmetry,
Phys. Rev. D 2, 293 (1970).

[5] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov,
Spinning conformal correlators, J. High Energy Phys. 11
(2011) 071.

[6] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov,
Spinning conformal blocks, J. High Energy Phys. 11
(2011) 154.

[7] C. Fefferman and C. R. Graham, Conformal invariants, in
Elie Cartan et les mathematiques d’aujourd’hui - Lyon,
25–29 juin 1984, Asterisque No. S131 (Societe Mathema-
tique de France, Paris, 1985), pp. 95–116.

[8] C. Fefferman and C. R. Graham, The ambient metric, Ann.
Math. Stud. 178, 1 (2011).

[9] M. Grigoriev and A. Waldron, Massive higher spins from
BRST and tractors, Nucl. Phys. B853, 291 (2011).

[10] E. Joung, M. Taronna, and A. Waldron, A calculus
for higher spin interactions, J. High Energy Phys. 07
(2013) 186.

[11] X. Bekaert, M. Grigoriev, and E. D. Skvortsov, Higher spin
extension of Fefferman-Graham construction, Universe 4,
17 (2018).

[12] M. Grigoriev and A. Hancharuk, On the structure of the
conformal higher-spin wave operators, J. High Energy Phys.
12 (2018) 033.

[13] S. Curry and A. R. Gover, An introduction to conformal
geometry and tractor calculus, with a view to applications in
general relativity, arXiv:1412.7559.

[14] A. R. Gover and A. Waldron, Boundary calculus for
conformally compact manifolds, Indiana University
mathematics Journal 63, 119 (2014).

[15] A. Rod Gover, E. Latini, and A. Waldron, Poincare-Einstein
holography for forms via conformal geometry in the bulk,
arXiv:1205.3489.

[16] S. de Haro, K. Skenderis, and S. N. Solodukhin, Holo-
graphic reconstruction of spacetime and renormalization in
the AdS=CFT correspondence, Commun. Math. Phys. 217,
595 (2001).

[17] J. de Boer and S. N. Solodukhin, A holographic reduction of
Minkowski space-time, Nucl. Phys. B665, 545 (2003).

[18] A. Ball, E. Himwich, S. A. Narayanan, S. Pasterski, and A.
Strominger, Uplifting AdS3=CFT2 to flat space holography,
J. High Energy Phys. 08 (2019) 168.

[19] S. Baiguera, G. Oling, W. Sybesma, and B. T. Sogaard,
Conformal Carroll scalars with boosts, arXiv:2207.03468.

[20] T. Bailey, M. Eastwood, and A. Gover, Thomas’s structure
bundle for conformal, projective and related structures,
Rocky Mt. J. Math. 24, 1191 (1994).

[21] A. Cap and A. Gover, Standard tractors and the conformal
ambient metric construction, Ann. Glob. Anal. Geom. 24,
231 (2003).

[22] E. Parisini, K. Skenderis, and B. Withers (to be published).
[23] J. Zinn-Justin, Quantum Field Theory and Critical

Phenomena, International Series of Monographs on Physics
Vol. 77 (Oxford University Press, New York, 2021).

[24] K. Fredenhagen and R. Haag, Generally covariant quantum
field theory and scaling limits, Commun. Math. Phys. 108,
91 (1987).

[25] S. Hollands, The operator product expansion for perturba-
tive quantum field theory in curved spacetime, Commun.
Math. Phys. 273, 1 (2007).

[26] R. Mazzeo, Hodge cohomology of negatively curved
manifolds, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1986.

[27] C. R. Graham, C. Guillarmou, P. Stefanov, and G. Uhlmann,
X-ray transform and boundary rigidity for asymptotically
hyperbolic manifolds, Ann. l’Inst. Fourier 69, 2857 (2019).

[28] A. L. Fitzpatrick and K.-W. Huang, Universal lowest-
twist in CFTs from holography, J. High Energy Phys. 08
(2019) 138.

[29] D. Rodriguez-Gomez and J. G. Russo, Correlation functions
in finite temperature CFT and black hole singularities,
J. High Energy Phys. 06 (2021) 048.

[30] M. Kulaxizi, G. S. Ng, and A. Parnachev, Subleading
eikonal, AdS=CFT and double stress tensors, J. High
Energy Phys. 10 (2019) 107.

[31] R. Karlsson, M. Kulaxizi, A. Parnachev, and P. Tadić,
Leading multi-stress tensors and conformal bootstrap,
J. High Energy Phys. 01 (2020) 076.

[32] E. Katz, S. Sachdev, E. S. Sørensen, and W. Witczak-
Krempa, Conformal field theories at nonzero temperature:
Operator product expansions, Monte Carlo, and holography,
Phys. Rev. B 90, 245109 (2014).

[33] W. Witczak-Krempa, Constraining Quantum Critical
Dynamics: ð2þ 1ÞD Ising Model and Beyond, Phys.
Rev. Lett. 114, 177201 (2015).

[34] L. Iliesiu, M. Kologlu, R. Mahajan, E. Perlmutter, and D.
Simmons-Duffin, The conformal bootstrap at finite temper-
ature, J. High Energy Phys. 10 (2018) 070.

[35] Y. Gobeil, A. Maloney, G. S. Ng, and J.-q. Wu, Thermal
conformal blocks, SciPost Phys. 7, 015 (2019).

[36] R. Karlsson, A. Parnachev, and P. Tadić, Thermalization in
large-N CFTs, J. High Energy Phys. 09 (2021) 205.

[37] Y.-Z. Li, Z.-F. Mai, and H. Lü, Holographic OPE coef-
ficients from AdS black holes with matters, J. High Energy
Phys. 09 (2019) 001.

[38] K. Zoubos, Holography and quaternionic Taub NUT,
J. High Energy Phys. 12 (2002) 037.

[39] K. Zoubos, A conformally invariant holographic two-point
function on the Berger sphere, J. High Energy Phys. 01
(2005) 031.

[40] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
2nd ed., Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2003).

EMBEDDING FORMALISM FOR CFTs IN GENERAL STATES ON … PHYS. REV. D 107, 066022 (2023)

066022-7

https://doi.org/10.2307/1968455
https://doi.org/10.1103/PhysRevD.2.293
https://doi.org/10.1007/JHEP11(2011)071
https://doi.org/10.1007/JHEP11(2011)071
https://doi.org/10.1007/JHEP11(2011)154
https://doi.org/10.1007/JHEP11(2011)154
https://doi.org/10.1016/j.nuclphysb.2011.08.004
https://doi.org/10.1007/JHEP07(2013)186
https://doi.org/10.1007/JHEP07(2013)186
https://doi.org/10.3390/universe4020017
https://doi.org/10.3390/universe4020017
https://doi.org/10.1007/JHEP12(2018)033
https://doi.org/10.1007/JHEP12(2018)033
https://arXiv.org/abs/1412.7559
https://doi.org/10.1512/iumj.2014.63.5057
https://doi.org/10.1512/iumj.2014.63.5057
https://arXiv.org/abs/1205.3489
https://doi.org/10.1007/s002200100381
https://doi.org/10.1007/s002200100381
https://doi.org/10.1016/S0550-3213(03)00494-2
https://doi.org/10.1007/JHEP08(2019)168
https://arXiv.org/abs/2207.03468
https://doi.org/10.1216/rmjm/1181072333
https://doi.org/10.1023/A:1024726607595
https://doi.org/10.1023/A:1024726607595
https://doi.org/10.1007/BF01210704
https://doi.org/10.1007/BF01210704
https://doi.org/10.1007/s00220-007-0230-6
https://doi.org/10.1007/s00220-007-0230-6
https://doi.org/10.5802/aif.3339
https://doi.org/10.1007/JHEP08(2019)138
https://doi.org/10.1007/JHEP08(2019)138
https://doi.org/10.1007/JHEP06(2021)048
https://doi.org/10.1007/JHEP10(2019)107
https://doi.org/10.1007/JHEP10(2019)107
https://doi.org/10.1007/JHEP01(2020)076
https://doi.org/10.1103/PhysRevB.90.245109
https://doi.org/10.1103/PhysRevLett.114.177201
https://doi.org/10.1103/PhysRevLett.114.177201
https://doi.org/10.1007/JHEP10(2018)070
https://doi.org/10.21468/SciPostPhys.7.2.015
https://doi.org/10.1007/JHEP09(2021)205
https://doi.org/10.1007/JHEP09(2019)001
https://doi.org/10.1007/JHEP09(2019)001
https://doi.org/10.1088/1126-6708/2002/12/037
https://doi.org/10.1088/1126-6708/2005/01/031
https://doi.org/10.1088/1126-6708/2005/01/031

