
Learning the black hole metric from holographic conductivity

Kai Li,1,2,3,* Yi Ling,2,3,† Peng Liu,4,‡ and Meng-He Wu5,6,§
1Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China

2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

4Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou 510632, China
5School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science,

Shanghai 201620, China
6Center of Application and Research of Computational Physics,

Shanghai University of Engineering Science, Shanghai 201620, China

(Received 1 December 2022; accepted 6 March 2023; published 22 March 2023)

We construct a neural network to learn the Reissner-Nordström-anti–de Sitter black hole metric based on
the data of optical conductivity by holography. The linear perturbative equation for the Maxwell field is
rewritten in terms of the optical conductivity such that the neural network is constructed based on the
discretization of this differential equation. In contrast to all previous models in anti–de Sitter/deep learning
duality, the derivative of the metric function appears in the equation of motion and we propose distinct finite
difference methods to discretize this function. The notion of the reduced conductivity is also proposed to
avoid the divergence of the optical conductivity near the horizon. The dependence of the training outcomes
on the location of the cutoff, the temperature as well as the frequency range is investigated in detail. This
work provides a concrete example for the reconstruction of the bulk geometry with the given data on the
boundary by deep learning.
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I. INTRODUCTION

AdS=CFT correspondence as a typical implementation
of gauge/gravity duality reveals the deep connections
between a (dþ 1)-dimensional gravity theory and a
d-dimensional quantum field theory [1–4]. In particular,
due to the feature of strong/weak duality in a large N limit,
AdS=CFT correspondence has been proven to be a power-
ful tool to study the strongly correlated physics via classical
gravitational theories. When applying many-body systems
in condensed matter physics, it has formed an important
subject that now is dubbed as AdS/CMT (condensed matter
theory) duality [5–11]. In this field, the traditional way is
properly setting the structure of bulk geometry, and then
deriving the properties of the many-body system living on
the boundary by solving the equations of motion in the bulk
with the use of the holographic dictionary. Surprisingly,

one finds some of the properties simulate the transport
behavior of a strongly coupled system which has been
observed in laboratory but is very hard to understand based
on the standard perturbative method in quantum field
theory [6,12–22]. In this direction, remarkable progress
has been made in understanding the longstanding problems
in condensed matter physics by holography, such as the
mechanism of high-temperature superconductivity and
the non-Fermi liquid behavior of strange metals [23,24].
Nevertheless, this route contains a vital limitation that
prevents us from thoroughly solving the problems faced by
experimental physicists in laboratory. That is, the derived
properties of the dual system greatly depend on the specific
structure of spacetime in the bulk. Once the setup of bulk
geometry is given, then the transport property of the dual
system on the boundary is determined. Usually, based on
the consideration of symmetry, one may construct the bulk
geometry with essential ingredients to observe the expected
phenomenon for a dual system, but this is not the general
case. In general, we do not know what kind of bulk
geometry would give rise to the specific property of the
boundary theory as one expects. For instance, there are two
fundamental problems which have not been solved by AdS/
CMT duality. One is to reproduce the expected phase
diagram for the high-temperature superconductivity, the
other is to reproduce all the observed features of strange
metal in a single holographic model. In this situation, we
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are facing the inverse problem of the traditional AdS/CMT
method: Given the observed features of practical materials
in lab, can we construct a holographic model to reproduce
such features properly and finally provide a theoretical
understanding on these features? Or more generally, in the
context of holography, given the data on the boundary, how
can we reconstruct the geometry of the bulk?
Without doubt, this inverse problem is much harder. A

lot of efforts have been made to learn the bulk geometry by
machine learning/deep learning (DL), which is now viewed
as the most advanced technique in artificial intelligence
[25–47]. As far as we know, one may classify the current
application of deep learning to holography into two
categories by the types of boundary data used. One is
taking the entanglement on the boundary as the input data
[34,35] and the other is taking the vacuum expectation
value as the data [36,37,39,42]. For the first category, one
usually constructs a tensor network as the discretized
version of AdS=CFT correspondence, and then transfers
this network to a Boltzmann machine, and a method called
entanglement feature learning is suggested to learn the
spatial geometry from the feature of entanglement on the
boundary [34]. A generic neural network is also proposed
to recover the geometry fluctuation from the multiregion
entanglement entropy on the boundary [35]. The second
category is less ambitious but more relevant to AdS/CMT
duality. One just specifies the metric of the bulk to be some
simple form with one or more unknown functions, and then
constructs a neural network based on the equations of
motion for matter fields. The goal of the neural network is
to learn unknown functions in the metric by boundary data
which are the vacuum expectation value of dual operators
on the boundary. Now such an approach is called the anti–
de Sitter (AdS)/DL method. As the first step, in [36], it is
assumed that only one single function in the spacetime
metric is unknown. With this ansatz, one attempted to
construct the neural network based on the equations of
motion of a scalar field and then train the neural network to
learn the corresponding spacetime metric by inputting the
experimental data of magnetization and external magnetic
field as initial data. Moreover, this AdS/DL method has
also been applied to AdS/QCD duality [37,40,41]. Later,
the neural network is replaced by another machine learning
algorithm called neural ordinary differential equation,
which can serve the same purpose meanwhile yielding
more accurate results [43].
In all above work, the neural network is constructed by

considering the perturbations of a scalar field. In [42], the
perturbation of the metric tensor has been considered and
the neural network reflects the renormalization group (RG)
flow equation of the shear viscosity. In this paper, aiming to
apply AdS/DL method to AdS/CMT duality, we intend to
extend the setup to investigate the perturbations of a vector
field in the bulk. Specifically, we consider the electromag-
netic field Aμ in a charged black hole background and

construct the neural network based on the RG flow
equation of the optical conductivity of the dual current
operator, then train the black hole metric from the data of
the optical conductivity on the boundary.
We organize this paper as follows. In Sec. II, we derive the

equation ofmotion for the linear perturbation of theMaxwell
field and then rewrite this equation with the optical conduc-
tivity as the fundamental variable. The neural network is
constructed based on the discretized version of this equation.
In Sec. III, we explain the preparation of the input and output
training data. In Sec. IV, we illustrate the results of deep
learning and discuss the effects of the chemical potential μ
and the region of frequency ω on the final training results.
We suggest a novel regularization term to improve training
accuracy and save time in hyperparameter tuning. We also
propose several conditions on the regularization term, such as
smooth metric and asymptotic AdS, to obtain physically
reasonable results. Conclusions and discussions are given
in Sec. V. Appendix A gives details of four kinds of finite
difference methods for f0ðzÞ. Appendix B gives the detailed
training methods, hyperparameters, and all the training
results. Appendix C states the running environment of
the code.

II. BUILDING DEEP NEURAL NETWORK BY
HOLOGRAPHIC CONDUCTIVITY

In this section, we derive the equation of motion for the
optical conductivity in AdS/CMT duality and then con-
struct the corresponding neural network for training the
black hole metric. We start with the action of Einstein-
Maxwell theory with a negative cosmological constant,

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
−
FabFab

4

�
; ð1Þ

where κ2 ¼ 8πG with G the Newton constant, and 6
L2 is the

cosmological constant term with L being the AdS radius.
The field strength is F ¼ dA, where A is the Maxwell field.
From this action, the equations of motion can be derived as

Rab −
1

2
gabR −

3gab
L2

−
�
FacFb

c −
1

4
gabF2

�
¼ 0;

∇aFab ¼ 0: ð2Þ
We consider the following charged black brane solution to
(2) with spatially planar symmetry which is also called the
AdS-RN metric,1

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2 þ dy2
�
;

A ¼ μð1 − zÞdt; ð3Þ

1For concreteness, we fix κ ¼ 1 and L ¼ 1 throughout this
paper.
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where z ∈ ½0; 1� is the radial direction of RG flow and
fðzÞ≡ 1 − z3 − μ2z3=4þ μ2z4=4 is the theoretical result
by solving Einstein equations. In this paper, we will treat
fðzÞ as the target function that should be learned by the
neural network via data training. Parameter μ is the
chemical potential of the dual system on the boundary.
In this metric form, the horizon of black brane locates at
z ¼ 1 while the boundary of spacetime locates at z ¼ 0.
Moreover, the Hawking temperature, which is given by

T ¼ 12−μ2
16π , is identified as the temperature of the dual

system in equilibrium. Here, we set μ ∈ ð0; ffiffiffiffiffi
12

p � to ensure
that the Hawking temperature is positive. Thus, one may
change the temperature of the system by adjusting the value
of μ.
Now we consider the optical conductivity of the system

following the standard procedure of the linear response
theory in holographic gravity [7,48]. To obtain the optical
conductivity, we turn on an electric field along x direction
by considering the following linear perturbation in the bulk,

δAx ¼ AxðzÞe−iωt: ð4Þ

Plugging it into the Maxwell equation, one obtains the
linearized equation of motion for Ax as

z4A00
xðzÞ þ 2z3A0ðzÞ − z2A0

xðzÞBðzÞ þ CðzÞAx ¼ 0; ð5Þ

where

BðzÞ ¼ −
z2f0ðzÞ
fðzÞ þ 2z;

CðzÞ ¼ z4ω2

f2ðzÞ −
μ2z6

fðzÞ : ð6Þ

The Green function hJxJxi can be collected as −∂zAx=Ax
from holographic dictionary, while the applied electric field
associated with Ax reads as Ex ¼ −∂tAx ¼ iωAx. From the

Kubo formula in holographic gravity [6,49], the optical
conductivity can be expressed as

σðz;ωÞ ¼ ∂zAxðzÞ
iωAxðzÞ

: ð7Þ

Next, we intend to rewrite Eq. (5) as the differential
equation in terms of the optical conductivity. For this
purpose, we notice that

∂zσ ¼ iA0
xðzÞ2

ωAxðzÞ2
−

iA00
xðzÞ

ωAxðzÞ
: ð8Þ

Furthermore, dividing (5) by AxðzÞ one obtains

z4A00
xðzÞ=Ax þ 2z3A0

xðzÞ=Ax − z2BðzÞA0
xðzÞ=Ax þCðzÞ ¼ 0:

ð9Þ

With the use of Eq. (8), we obtain the differential equation
for the optical conductivity as

z4ðiωσ0ðzÞ−ω2σ2Þþ iωσð2z3− z2BðzÞÞþCðzÞ¼ 0: ð10Þ

Now the original second-order differential equation with
variable AxðzÞ becomes a first-order differential equation
with variable σðzÞ. We are ready to construct the neural
network and train the metric function fðzÞ based on this
equation. First, we discretize Eq. (10) by evenly sampling
along the z axis,

Δz ¼ zh − zb
N − 1

; zðnÞ ¼ zb þ nΔz; ð11Þ

where N is the number of layers of the network, while zb
and zh are the locations of the cutoff on the boundary and
the horizon, respectively. In addition, n ∈ ½0; N − 1�,
n ∈ Z, N ∈ N�, such as zð0Þ ¼ zb and zðN − 1Þ ¼ zh.
We rewrite Eq. (10) into the real part and the imaginary

part separately as

Reσðzþ ΔzÞ ¼ ReσðzÞ þ Δz
�
−
f0ðzÞ
fðzÞ ReσðzÞ þ 2ωImσðzÞReσðzÞ

�
;

Imσðzþ ΔzÞ ¼ ImσðzÞ þ Δz
�
−
f0ðzÞ
fðzÞ ImσðzÞ þ ω

f2ðzÞ −
μ2z2

ωfðzÞ þ ωðImσðzÞÞ2 − ωðReσðzÞÞ2
�
: ð12Þ

Next, we are concerned with the boundary conditions on
both ends of the z axis. At the horizon, we impose the in-
going boundary condition for AxðzÞ, which takes the form as

AxðzÞ ¼ ð1 − zÞ− iω
4πTaxðzÞ: ð13Þ

As a result, the optical conductivity becomes

σðz;ωÞ ¼ 1

4πTð1 − zÞ þ
∂zaxðzÞ
iωaxðzÞ

≡ 1

4πTð1 − zÞ þ σrðz;ωÞ;

ð14Þ

where we have denoted the second term as σrðz;ωÞ, and we
name it the reduced optical conductivity. It is noticed that
with the ingoing boundary condition, the first term of the
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conductivity becomes divergent near the horizon, which easily sabotages the numerics. Therefore, we intend to treat the
reduced optical conductivity as the basic variable for the construction of a deep neural network. The discretized version of the
equations of motion for the reduced conductivity is given by

Reσrðzþ ΔzÞ ¼ ReσrðzÞ þ Δz
�
−
f0ðzÞ
fðzÞ

�
ReσrðzÞ þ

1

4πTð1 − zÞ
�
þ 2ωImσrðzÞReσrðzÞ

þ 2ω

4πTð1 − zÞ ImσrðzÞ −
1

4πTð1 − zÞ2
�
;

Imσrðzþ ΔzÞ ¼ ImσrðzÞ þ Δz
�
−
f0ðzÞ
fðzÞ ImσrðzÞ −

ω

ð4πTÞ2ð1 − zÞ2 −
2ω

4πTð1 − zÞReσrðzÞ

þ ω

f2ðzÞ −
μ2z2

ωfðzÞ þ ωðImσrðzÞÞ2 − ωðReσrðzÞÞ2
�
: ð15Þ

In order to reveal the relation between the above discretized equation and a neural network, we convert the equation into a
matrix form as below,

�
Reσrðzþ ΔzÞ
Imσrðzþ ΔzÞ

�
¼ W2×2

�
ReσrðzÞ
ImσrðzÞ

�
þ b⃗; ð16Þ

where

W2×2 ¼
 

1 − Δz f0ðzÞ
fðzÞ Δz 2ω

4πTð1−zÞ

−Δz 2ω
4πTð1−zÞ 1 − Δz f0ðzÞ

fðzÞ

!
ð17Þ

and

b⃗ ¼ Δz

0
B@ − f0ðzÞ

fðzÞ
1

4πTð1−zÞ −
1

4πTð1−zÞ2 þ 2ωImσrðzÞReσrðzÞ
− ω

ð4πTÞ2ð1−zÞ2 þ ω
f2ðzÞ −

μ2z2

ωfðzÞ þ ωðImσrðzÞÞ2 − ωðReσrðzÞÞ2

1
CA: ð18Þ

Here, W2×2, which contains the information of the
spacetime metric, can be regarded as the weight matrix
of a neural network. The weight matrix in deep learning
represents the connecting parameters of the neurons of
adjacent layers. And naturally, b⃗ can be regarded as the bias

term of a network. In addition, according to the matrix
form, the activation function is the identical mapping.
As a result, we construct the following neural network to

represent the discretized equation of motion for the reduced
conductivity (Fig. 1).

FIG. 1. The structure of the deep neural network. The holographic optical conductivity propagates from the boundary to the horizon.
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Physically speaking, we can consider the network
structure as the spacetime structure because the connecting
weights of the network contain the metric information and
the propagation direction of the network is the holographic
direction [36]. Also, we can imagine a scene where the
conductivity travels along the network by perceiving the
spacetime information locally.
However, we notice that the derivative of the metric

function, namely f0ðzÞ, appears in the equations of motion
as well, which is in contrast to the discretized version of the
equations of motion appearing in previous literature on
deep learning in holography [36,42]. In principle, we may
treat fðzÞ and f0ðzÞ as two independent variables and train
them independently. In practice, however, we find that this
makes the optimization process of deep learning much more
difficult. To obtain a feasible deep learning process, we
discretize f0ðzÞ in terms of its relation to fðzÞ. There are
many different ways to discretize f0ðzÞ. Here we select four
distinct varieties as listed below and investigate their effects
on the final results (see detailed information in AppendixA).

(1) ln fðzÞ forward: f0ðzÞ
fðzÞ ¼ ðln fðzÞÞ0 ≈ ln fðzþΔzÞ−ln fðzÞ

Δz .

(2) ln fðzÞ middle: f0ðzÞ
fðzÞ ≈

ln fðzþΔzÞ−ln fðz−ΔzÞ
2Δz .

(3) fðzÞ forward: f0ðzÞ ≈ fðzþΔzÞ−fðzÞ
Δz .

(4) fðzÞ middle: f0ðzÞ ≈ fðzþΔzÞ−fðz−ΔzÞ
2Δz .

We introduce the loss function to evaluate the difference
between the true values and the results predicted by the
neural network. One criterion of designing a neural net-
work is to make the loss function as small as possible.
According to the previous work [36,42], we introduce two
loss functions as below,

Ltotal;1 ¼
1

N

X
data

jσðω; zhÞ − σ̂ðω; zhÞj þ LREG; ð19Þ

Ltotal;2 ¼
1

N

X
data

jσðω; zhÞ − σ̂ðω; zhÞj2; ð20Þ

where the regularization term is

LREG ¼ c1½fðzð0ÞÞ − 1�2 þ c2
ðnepoch=10Þ1.5

XN−1

n¼0

1

zðnÞ2 ½fðzðnþ 1ÞÞ − fðzðnÞÞ�2: ð21Þ

In the above equations, σ is the input data while σ̂ is what
the network predicts. c1 and c2 are hyperparameters, which
we can tune manually. nepoch is the number of epochs we
run, where an epoch is defined as the period that the full
dataset propagates through the neural network once. Here
the regularization term LREG contains two terms and they
are used to find a reasonable metric, which differs greatly
from the common effect of overcoming the overfitting. The
first term is to guarantee the asymptotically AdS property
of spacetime at zb ¼ 0, while the second term is to suppress
the possibility of large gradients to promote the efficiency
of the neural network to figure out a smooth metric function
numerically. We find that both terms are important for the
deep learning process, just as in previous works [36,39,42].

III. THE SETUP FOR TRAINING DATA AND
DISCRETIZATION

In this section, we present the setup for the training data
and figure out the best way to discretize f0ðzÞ. Given the
theoretical result of the metric function fðzÞ, then from (10)
one can numerically obtain the data of optical conductivity
from the boundary ðσðzbÞÞ to the horizon ðσðzhÞÞ for any
specified frequency ω > 0, as performed in ordinary holo-
graphic approach. Now we reverse the problem by setting
fðzÞ as an unknown function and try to learn it by inputting
the data of optical conductivity. For this purpose, near the
boundary, z ¼ 0 we fix the location of the cutoff at zb ¼
0.01 and input 2000 numerical data of optical conductivity

with ω uniformly sampled along (0.1, 1] as initial data at
the cutoff. Next, since the conductivity becomes divergent
at the horizon z ¼ 1, we also need to introduce a cutoff zh
near the horizon. Now for each input data, one can generate
the data of conductivity at zh as output data through the
neural network. Finally, one can train the neural network to
learn the metric function by comparing the output data with
the theoretical results. All the training data fðσðzbÞ; σðzhÞÞg
we use can be found in [50]. Here, we study two cases,
zh ¼ 0.9 and zh ¼ 0.99, to test the learning ability of the
neural network.
Next, we need to fix the number of layers in the neural

network. The discretization in the process of deep learning
introduces truncation error, which can be decreased by
increasing the number of layers in the neural network. In
theory, constructing deeper neural networks with more
layers would improve the accuracy, however, with the price
of consuming time and intensifying resources. In practice,
we find that an 11-layer neural network in this work
suffices to provide results that are strikingly close to those
of deeper networks.
Finally, we intend to pick out the best way of discretizing

f0ðzÞ for the neural network. For this purpose, we show the
output data of the standard conductivity and the reduced
conductivity at zh ¼ 0.99 with μ ¼ 1 in Figs. 2 and 3,
respectively, which are generated by the neural network
with various discretizations of f0ðzÞ. We also present the
numerical result by directly solving the differential equa-
tion with the finite difference method, which might be
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viewed as the “true” values of the conductivity, namely the
data obtained by the deep neural network in the continu-
ous limit.
First, let us focus on the output of the standard

conductivity in Fig. 2. It is noticed that the data of the
conductivity obtained by the “fðzÞ forward” discretization
looks closer to the data by the continuous limit. However,
in practice, we find that the “ln fðzÞ forward” discretization
performs more robustly, and with it one can get more
accurate metric information than “fðzÞ forward” discreti-
zation (see the comparison in Table I). We can make the
difference of results between “fðzÞ forward” and “ln fðzÞ
forward” smaller by increasing the number of network
layers, but the “ln fðzÞ forward” method is intrinsically
more robust. Therefore, with comprehensive consideration,
we decide to adopt “ln fðzÞ forward” method to train the

network. Similarly, we compare the output of the reduced
conductivity in Fig. 3, and find that “fðzÞ forward”
discretization is the best way for deep learning process
of the reduced conductivity.
We obtain the similar results for the case with

(zh ¼ 0.99, μ ¼ 2), (zh ¼ 0.9, μ ¼ 2), and other combina-
tions (in Appendix B). As a result, we choose “ln fðzÞ
forward” discretization for the standard conductivity and
“fðzÞ forward” discretization for the reduced conductivity
in the construction of the neural network.
More importantly, we find that the output data of the

reduced conductivity at zh is much closer to the data of the
continuous limit than that of the standard conductivity. In
particular, as zh approaches the location of the horizon,
the reduced conductivity exhibits its advantages more
evidently since the divergent part has been peeled off.

FIG. 2. The standard conductivity at z ¼ 0.99 generated by the neural network with different discretizations of f0ðzÞ. The left (right)
plot is the real (imaginary) part of the optical conductivity. The brown curve is the numerical result by directly solving the differential
equation with the finite difference method.

FIG. 3. The reduced conductivity at z ¼ 0.99 generated by the neural network with different discretizations of f0ðzÞ. The left (right)
plot is the real (imaginary) part of the optical conductivity.
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So in the next section, we focus on the results of the neural
network constructed with the reduced conductivity. For full
results, please see [50].

IV. RESULTS OF THE LEARNED METRIC

A. The result of learned metric with μ= 1 and zh = 0.99

First, we show a typical example of the training results
for the metric function fðzÞ with μ ¼ 1 and zh ¼ 0.99,
which is illustrated in Fig. 4. The left figure is the result of

the learned metric. It shows that after the deep learning
process, the initial randomly selected metric becomes the
true metric. Two plots on the right-hand side are the output
data of the reduced conductivity at zh. It shows that the
reduced conductivity generated by the initial metric is far
away from the true one, while after the deep learning
process, it is quite close to the true conductivity, indicating
that the neural network has successfully learned the metric
from the reduced conductivity. Also, we find that, after the
first training process, the results of both the metric and

(a)

(b-1)

(b-2)

FIG. 4. The results of deep learning. (a) The learned metric results. The orange curve represents the true metric fðzÞ. The red curve
represents the random initial weights of the metric in the network. The blue curve represents the trained metric after the first training
process, and the penalty means the regularization term in the first loss function. The purple one is the final metric after double training
procedures. (b-1) The real part of the reduced conductivity generated by different metrics. The orange, red, blue, and purple curves
represent the real part of reduced conductivity generated by the true metric, the random initial metric, the metric after the first training
process, and the final metric after double training procedures, respectively. (b-2) The imaginary part of the reduced conductivity
generated by different metrics.

(a) (b)

FIG. 5. The DNN (deep neural network) training results of the reduced conductivity with different values of chemical potential
(zh ¼ 0.99, ω ∈ ð0.1; 1�).
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reduced conductivity are almost as good as the final ones.
For more details on the training methods and the training
results, please see Appendix B. Because the target of the
deep learning is the metric, next we show the results for the
metric only.

B. The comparison of results between
μ= 1 and μ = 2 at zh = 0.99

In this subsection, we discuss the effects of the chemical
potential μ on the training results, which can also be
understood as the influence of temperature. Figure 5 is
the deep learning results of the reduced conductivity at
zh ¼ 0.99 with μ ¼ 1 (left plot) and μ ¼ 2 (right plot),
respectively. We have tried various initial guesses and
found they all converge to the true values of fðzÞ with great

accuracy. This shows that the neural network is powerful
and robust in learning the metric from optical conductivity.
We show more concrete performance criteria in Fig. 6. It

is noticed that the effect of the deep learning for μ ¼ 1 is
better than that of the case μ ¼ 2. This result holds also for
many other training data [50]. Nevertheless, one can see
that both training results are greatly improved after the
second training process.

C. The comparison of training results
for μ= 1 and zh = 0.99 with different ω ranges

In this subsection, we discuss how the different ranges of
the frequency ω affect the final training results. Previously,
the research on the shear viscosity provided a positive
answer to whether the neural network can learn the metric
with the data in a narrow range of ω [42]. Here we intend to
justify if this is also true for optical conductivity. For this
purpose, we study two different ranges of ω: (0.1, 0.11]
and (0.99, 1], each of which takes 2000 data points into
account.

(a) (b)

FIG. 7. The DNN training results of the reduced conductivity at zh ¼ 0.99 with μ ¼ 1 and ω ∈ ð0.99; 1� (left plot) and (0.1, 0.11]
(right plot).

FIG. 8. The comparison of deep learning results for the reduced
conductivity among three different ranges of ω.

FIG. 6. The comparison of deep learning results for the reduced
conductivity (zh ¼ 0.99, μ ¼ 1, 2). MAE (mean absolute error)
and MSE (mean square error) are two types of criteria functions
used to evaluate the performance of training the network, and
their definitions may be found in Appendix B. The subscript p
represents the penalty and it means the results for the first training
procedure. Subscript f represents final and it means the results for
the final training procedure.
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Figure 7 shows the deep learning results of the reduced
conductivity at zh ¼ 0.99 with μ ¼ 1 and ω ∈ ð0.99; 1�
(left plot) and (0.1, 0.11] (right plot), respectively. Figure 8
gives the concrete performance criteria of three different ω
ranges at zh ¼ 0.99 of μ ¼ 1. We find that the training
performance is better when the range of ω is wider. In
addition, a larger μ will worsen the training outcomes, as
illustrated in Appendix B.

V. CONCLUSION AND DISCUSSION

We have constructed a neural network to learn the RN-
AdS black hole metric in the bulk based on the data of
optical conductivity on the boundary by holography. The
equation of motion that we recast into a neural network is
generated by perturbing the vector field, thus enriching the
prior research that only studied the scalar field or metric
tensor field. In contrast to previous models, in this circum-
stance, the derivative of the metric function f0ðzÞ appears in
the equation of motion, and we have proposed four distinct
finite difference methods to discretize f0ðzÞ. We have
investigated their performance during the deep learning
process in detail. Furthermore, to recast the equations of
motion into a numerically feasible neural network, we have
defined the reduced conductivity to avoid the divergence of
the optical conductivity near the horizon. In addition, we
have proposed a novel regularization term that automati-
cally tunes the hyperparameters, which ensures the robust-
ness and efficiency of the training methods. We have also
discussed the dependence of the training outcomes on the
location of the cutoff zh, the temperature as well as the
frequency range. It turns out that the network is harder to
train as zh approaches the horizon and as the temperature
decreases. Given the number of data points, the training
results with a wider range of ω are better than those with a
narrower range. This can be understood from the fact that
data from wider ranges of frequency contains more
information than that from the narrower ranges.
This work has explicitly demonstrated the remarkable

power of deep learning in the reconstruction of the
spacetime with the given data on the boundary. For further
study, we expect the AdS/DL method may be applied to
AdS/CMT duality and shed light on the open problems in
strongly coupled many-body system. For instance, given
the RG flow data of the optical conductivity of the strange
metal, the neural network would learn the metric of the bulk
geometry that is capable of reproducing all the transport
features of the strange metal. Currently, such kind of metric
in the framework of AdS/CMT is unknown. Without doubt,
the neural network presented in this paper is too simple to
accomplish this task. We expect it could be developed into a
network with more abundant structure and functions, such
that its ability of learning the background information could
be greatly improved. As the next step, one could consider a
neural network with more neurons such that it could learn

more unknown functions rather than a single unknown
function in the metric. In addition, we expect that the AdS/
DL method may be applied to more holographic models
and learn the bulk geometry by inputting the data of other
transport quantities such as the thermal conductivity, etc.
An even more ambitious goal of AdS/DL is to learn the

action of the dual gravity system from boundary data,
which is of crucial significance not only for finding
holographic models to understand important phenomena
in dual systems but also for comprehending the implica-
tions of machine learning in holographic reconstruction of
spacetime geometry. However, many challenges persist in
realizing this goal, such as the degeneracy between the
boundary data and the action of the dual theory, the
construction of a machine learning model that can establish
a relationship between the boundary data and the action
represented by a symbolic system, etc. Recent advance-
ments in machine learning offer promising prospects for
directly learning the action from boundary data. For
instance, the representation of symbolic space is compa-
rable to natural language, and there exist highly effective
methods, such as seq2seq [51], that can effectively address
the problem. The SymbolicMathematics [52], empowered
by seq2seq, is even more powerful in solving integral
problems than well-known commercial software such as
Mathematica and Matlab. These methods provide valuable
strategies for representing and exploring the symbolic
space. To solve the problem of degeneracy, on one hand,
we can reduce the necessary variables in the model based
on physical considerations, such as symmetry require-
ments. On the other hand, compared to the electrical
conductivity that we currently consider, one may further
reduce the degeneracy by increasing the type of boundary
data, such as thermal conductivity, entropy, etc. Furthermore,
a crucial capability of machine learning is generalization,
meaning that it has the potential to address problems outside
its training data range. Currently, advances such as diffusion
models and ChatGPT have robustly demonstrated this
[53,54]. We have reason to believe that given sufficiently
high-quality datasets, machine learning has the potential to
learn more intrinsic properties of holographic gravity and
greatly contribute to the development of the AdS/DL.
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APPENDIX A: FOUR TYPES OF FINITE DIFFERENCES OF f 0ðzÞ
(1) ln fðzÞ forward

ReσðzþΔzÞ ¼ReσðzÞþ ðlnfðzÞ− lnfðzþΔzÞÞReσðzÞþΔz½2ωImσðzÞReσðzÞ�;

ImσðzþΔzÞ ¼ ImσðzÞþ ðlnfðzÞ− lnfðzþΔzÞÞImσðzÞþΔz
�

ω

f2ðzÞ−
μ2z2

ωfðzÞþωðImσðzÞÞ2−ωðReσðzÞÞ2
�
: ðA1Þ

(2) ln fðzÞ middle

ReσðzþΔzÞ ¼ ReσðzÞ þ ðlnfðz−ΔzÞ− lnfðzþΔzÞÞ
2

ReσðzÞ þΔz½2ωImσðzÞReσðzÞ�;

ImσðzþΔzÞ ¼ ImσðzÞ þ ðlnfðz−ΔzÞ− lnfðzþΔzÞÞ
2

ImσðzÞ þΔz
�

ω

f2ðzÞ−
μ2z2

ωfðzÞ þωðImσðzÞÞ2 −ωðReσðzÞÞ2
�
:

ðA2Þ

(3) fðzÞ forward

Reσðzþ ΔzÞ ¼ ReσðzÞ þ
�
1 −

fðzþ ΔzÞ
fðzÞ

�
ReσðzÞ þ Δz½2ωImσðzÞReσðzÞ�;

Imσðzþ ΔzÞ ¼ ImσðzÞ þ
�
1 −

fðzþ ΔzÞ
fðzÞ

�
ImσðzÞ þ Δz

�
ω

f2ðzÞ −
μ2z2

ωfðzÞ þ ωðImσðzÞÞ2 − ωðReσðzÞÞ2
�
: ðA3Þ

(4) fðzÞ middle

ReσðzþΔzÞ ¼ReσðzÞþfðz−ΔzÞ−fðzþΔzÞ
2fðzÞ ReσðzÞþΔz½2ωImσðzÞReσðzÞ�;

ImσðzþΔzÞ ¼ ImσðzÞþfðz−ΔzÞ−fðzþΔzÞ
2fðzÞ ImσðzÞþΔz

�
ω

f2ðzÞ−
μ2z2

ωfðzÞþωðImσðzÞÞ2−ωðReσðzÞÞ2
�
: ðA4Þ

We remark that for both of the middle methods the first
layer is not defined since the data of the current layer depends
on the data in the previous and next layers. Thus, in practice
we adopt the forward difference method to define the first
layer. For more details, please see Appendix C.

APPENDIX B: DNN TRAINING
PARAMETERS AND RESULTS

In this appendix we present the details of the training
process, including the setup for epochs, loss functions,
learning rate, the optimization algorithm, as well as the
training criteria.
As a whole, the training process is divided into two steps.

The first step contains 3001 epochs, while the second step
contains 2001 epochs. The loss function for each step has
been shown in the main body of the paper. The learning
speed with L1 loss is faster while L2 loss can make the final
metric more smooth.

For the optimization algorithm, we use the RMSprop
optimizer in the first step and the Adam optimizer in the
second step. The batch size is fixed as 200.
For the learning rate, we reduce it gradually along with

the increase of the epoch by applying the module torch
.optim.lr_scheduler.MultiStepLR in PyTorch.
At the first step, when the number of epochs is within
(1–1000), the learning rate is set as 10−3. In the range of
(1001–1500) and (1501–3001), the learning rate is set as
9 × 10−4 and 8.1 × 10−5 respectively. Similarly, at the
second step when the number of epoch is within (1–500),
(501–1000), (1001–1250), (1251–1500), (1501–1750), and
(1751–2001), the learning rate is 10−3, 10−4, 10−5, 10−6,
10−7, and 10−8, respectively. In principle, this kind of
selection for learning rate is empirical and the epoch is large
enough such that the loss will not reduce and fluctuate at
some quantity.
The values of hyperparameters c1 and c2 are specified

quite casually because of our special design of the
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regularization term. In practice, we choose 50, 100, and 200
for c2 and 1, 10, and 20 for c1 correspondingly. During the
training process, the harder is the training task, the larger
the value of c1 needs to be. Nevertheless, in general the
setup of c1 and c2 does not affect the training results much.
In particular, the involvement of the second training step
makes the specification of c1 and c2 less important.
The training criteria (MAE and MSE) are shown below,

MAE ¼
XN
i¼1

jfip − fitj
N

;

MSE ¼
XN
i¼1

ðfip − fitÞ2
N

; ðB1Þ

where i represents the ith layer and fip is the quantity that
the network trains, which is just the metric function fðzÞ in

this work. fip represents the metric of prediction, while fit
refers to the true metric.
To prevent the influence of contingency factors and

statistical fluctuations on the learning process, we train five
times for each training process and set the average of these
results as our final results. All the training results are listed
in Table I.

APPENDIX C: THE Python CODE

We employ PyTorch (CPU version 1.6.0) and Python

(version 3.7.9) to implement the deep learning process
in this work. It is suggested to run this in Anaconda3. The
modules such as PyTorch, TORCHVISION, and MoviePy should
be installed in advance. The main code and a set of training
data can be found in [50].
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