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We study a rich set of four-dimensional superconformal field theories with both central charges identical:
a ¼ c. These are constructed via the diagonal N ¼ 2 or N ¼ 1 gauging of the flavor symmetry G of a
collection of N ¼ 2 Argyres-Douglas theories of type DpðGÞ, with or without adjoint chiral multiplets, in
2106.12579 and 2111.12092. We compute superconformal indices of some theories where the rank
of G is low, performing a refined test for unitarity, and further determine the relevant and marginal operator
content in detail. We find that most of these theories flow to interacting superconformal field theories with
a ¼ c in the infrared.
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I. INTRODUCTION

It is always a fruitful endeavor to study nonperturbative
aspects of four-dimensional superconformal field theories.
From the nonperturbative perspective, it can be challenging
to determine the local operator spectrum, including subtle
relations between operators and the presence of renormal-
ization group flows between different superconformal field
theories (SCFTs). A systematic way to tackle this problem
is via utilizing the superconformal index [1,2]. With this
refined tool in hand, we study the operator contents of a
variety of 4D N ¼ 1 and N ¼ 2 superconformal field
theories with a ¼ c.
In fact, a large class of 4D N ¼ 2 SCFTs with identical

central charges, a ¼ c, are studied in [3] via gauging the
common flavor symmetry G of a collection of Dpi

ðGÞ
Argyres-Douglas theories. In a similar fashion, via gaug-
ing the common flavor symmetry in the N ¼ 1 sense, this
construction has been further expanded to construct
4D N ¼ 1 SCFTs with a ¼ c in [4].1 We find that almost
all asymptotically free or conformal gaugings, potentially

with the inclusion of adjoint-valued chiral matter, lead to
4D N ¼ 1 SCFTs with a ¼ c, if all of the pi are coprime
with the dual Coxeter number of G (h∨G). To verify that
these infrared SCFTs are indeed unitary interacting
SCFTs, we must determine that there exists a nonanom-
alous superconformal R symmetry via the principle of a
maximization [8], and further that along the flow into the
infrared where there are no operators that become free and
give rise to such a decoupled sector. Since free theories do
not have a ¼ c, their presence indicates that neither would
the interacting sector. In [4], it is confirmed that the
Coulomb branch operators of each Dpi

ðGÞ theory and
the moment map operators do not cross the unitarity bound
during the flow. In this paper, we do a more refined check
of unitarity of the 4D N ¼ 1 theories by determining their
full superconformal indices, for the cases where the gauge
group is of sufficiently low rank.
In order to show that the 4DN ¼ 1 SCFTs that we obtain

in this manner truly are unitary interacting SCFTs with
a ¼ c, we need a further check that goes beyond the
operators in the chiral ring. Certain unitarity constraints
are not directly visible from the operators in the chiral ring,
but are reflected in the superconformal index [9–11]. We
perform this vital check in cases where the gauge group is
low rank by computing the full N ¼ 1 superconformal
index. This relies on the known expressions for the super-
conformal indices of theDpðGÞ theories, for certain specific
choices of p and G. In addition to determining that the
theory is interacting, the index also provides a wealth of
information about the operator content of the theory. When
all fugacities are turned on, we can read off the precise
details of the relevant and marginal operators of the a ¼ c
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1Further 4D N ¼ 2 SCFTs with a ¼ c, arising from the class
S perspective [5,6], have recently appeared in [7].
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theories. We refer to this process of determining the operator
content from the index as “operator spectroscopy.” We
compute the indices for gaugings with both rational and
irrational R charges, including some of the N ¼ 2 Γ̂ðGÞ
theories, and also for theories with additional adjoint chiral
multiplets. In all cases, we find that there does not exist any
unitarity-violating term in the superconformal indices. This
procedure of operator spectroscopy enables us to determine
interesting properties of the theories, such as the structure of
their conformal manifolds, and the superpotential deforma-
tions that may trigger a flow to a new infrared SCFT.
Intriguingly, we find that many of these deformations
preserve the a ¼ c property, and we will explore the
landscape of such deformations in the upcoming paper [12].
In order to compute the superconformal indices for the

N ¼ 1 SCFTs that we consider, we need to know the
superconformal indices of the individual DpðGÞ theories.
Unfortunately, the full superconformal indices for DpðGÞ
theories are unavailable in general. However, for the
D2ðSUð3ÞÞ theories and the DpðSUð2ÞÞ ¼ ðA1; DpÞ theo-
ries, there are known N ¼ 1 UV Lagrangian theories that
have supersymmetry-enhancing flows to those N ¼ 2
SCFTs [13–17]. From this “Lagrangian description,” the
superconformal indices can be computed.2 As such, in this
paper we focus on SCFTs that are constructed via a
diagonal N ¼ 1 or N ¼ 2 gauging of the common flavor
symmetry of a collection of D2ðSUð3ÞÞ and DpðSUð2ÞÞ
theories.
The structure of the rest of the paper is as follows. In

Sec. II, we start by reviewing the construction of the Γ̂ðGÞ
theories from [3] and the extension to the N ¼ 1 SCFTs
with a ¼ c that were discussed in [4]; these are the theories
we explore throughout this paper. In Sec. III, we introduce
the superconformal index and explain how the supercon-
formal index can detect the existence of nonunitary oper-
ators in the spectrum of the putative infrared theory. We
state in Sec. IV the superconformal indices of the building
block DpðGÞ theories that have been computed in the
literature. We combine the DpðGÞ indices to study the
D̂4ðSUð3ÞÞ and Ê6ðSUð2ÞÞ SCFTs in Sec. V; this allows us
to determine that there are no nonunitary operators and to
read off the exact operator content for low values of the
scaling dimension. In Sec. VI, we study the conformal
manifolds for the N ¼ 1 SCFTs with a ¼ c obtained by
conformal gauging of a collection ofDpðGÞ theories. In the
subsequent four sections, we apply the technique of
operator spectroscopy to determine the operator content
of a variety of N ¼ 1 SCFTs studied in [4]. We study
theories built out ofD2ðSUð3ÞÞ Argyres-Douglas SCFTs in
Sec. VII; we explore theories built out of the D3ðSUð2ÞÞ
theories in Sec. VIII; in Sec. IX, we study gaugings

involving D5ðSUð2ÞÞ, together with the previously consid-
ered building blocks; in Sec. X, we study theories where the
gauging also involves additional adjoint-valued chiral mul-
tiplets. To conclude, in Sec. XI, we provide tables of the
relevant and marginal operator content that we determine
from the technique of operator spectroscopy throughout this
paper; we further provide some future applications of this
knowledge of the operator content. We list in the Appendix
the fully flavor-refined indices for the theories we study in
this paper.

II. SCFTs WITH a= c FROM N = 2
AND N = 1 GAUGINGS

In this paper, we exemplify the technique of operator
spectroscopy in the context of the N ¼ 2 and N ¼ 1

SCFTs with a ¼ c that were discussed in [3,4].3 The 4D
N ¼ 2 SCFTs of interest are constructed out of the
following building blocks: the Argyres-Douglas DpðGÞ
theories [32–35], the minimal ðG;GÞ conformal matter
theories [36,37], and N ¼ 2 vector multiplets. It was
studied in [4] under what circumstances can one take a
set of such building blocks and gauge together all of the G
flavor symmetries with N ¼ 2 vector multiplets such that
one obtains a superconformal field theory.
To analyze this question, it is important to understand the

physical properties of these building blocks. The DpðGÞ
theories can be obtained from the class S perspective as
compactifications of the 6D (2,0) SCFT of type G on a
sphere with a regular maximal puncture and an irregular
puncture. The regular puncture provides the theory with a
flavor symmetry G with flavor central charge

kADG ¼ 2ðp − 1Þ
p

h∨G; ð2:1Þ

where h∨G is the dual Coxeter number of G. The irregular
puncture may also provide an additional flavor symmetry
factor, depending on p and G. We have summarized when
these extra flavor symmetries occur in Table I.
The minimal ðG;GÞ conformal matter theories can be

obtained from the class S perspective by starting from the
6D (2,0) SCFT of type G and compactifying on a sphere
with two regular maximal punctures and one simple
puncture.4 The regular punctures each contribute a flavor
symmetry G; both have the same flavor central charge

2The Schur or Macdonald limit of the indices for a larger
subset of DpðGÞ theories is available in [18–29].

3Four-dimensional SCFTs with a ¼ c have also recently been
discussed in [7,30,31].

4These theories are referred to as conformal matter as they, and
their descendants via Higgs branch renormalization group flows,
also arise from the 6D (1,0) theories known as minimal ðG;GÞ
conformal matter [36] compactified on a torus. See Refs. [37–40]
and references therein for more details.
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kLG ¼ kRG ¼ 2h∨G: ð2:2Þ

There are additional Abelian flavor symmetries when
G ¼ SUðNÞ, and an additional SUð2Þ flavor symmetry
when G ¼ SUð2Þ, though we shall not be concerned with
those in this paper.
To obtain a conformal field theory, it is necessary for the

one-loop β function of the gauge coupling for each
introduced N ¼ 2 vector multiplet to vanish: βG ¼ 0.
We assume that an N ¼ 2 vector multiplet is introduced
that gauges the flavor symmetry of n copies of Dpi

ðGÞ and
m factors of the ðG;GÞ minimal conformal matters which
provide links between two gauge nodes or from a gauge
node to itself. Then the condition on the vanishing of the

one-loop β function is, using the expressions for the flavor
central charges in Eqs. (2.1) and (2.2),

βG ¼ 0 ⇔
Xn
i¼1

2ðpi − 1Þ
pi

h∨G þ 2mh∨G ¼ 4h∨G; ð2:3Þ

where the rhs is the contribution from the introduced vector
multiplet. It was shown in [4] that there are only six
solutions satisfying this equality for finite pi. The first four
solutions involve no copies of conformal matter, i.e.,
m ¼ 0, and they can be written as the following quivers,
respectively, corresponding to D̂4ðGÞ, Ê6ðGÞ, Ê7ðGÞ, and
Ê8ðGÞ theories:

ð2:4Þ

When conformal matter is included we find thatm ≤ 2, and
the only two options are

ð2:5Þ

Here, a solid line that is not connected to anything on one
side represents a ðG;GÞ conformal matter theory where

only one of the G flavor symmetries has been gauged. To
determine all possibilities for superconformal theories that
can be obtained by gauging together all of the G flavor
symmetries of a collection of such building blocks, we
determine how each of these gauge nodes can be adjoined.
Clearly the configurations in Eq. (2.4) cannot be connected
to any other gauge node, and the configurations with an
open conformal matter link can only be connected together
in the following two ways

ð2:6Þ

TABLE I. The conditions required to be satisfied if the irregular puncture of theDpðGÞ theory does not contribute
any flavor symmetry.

G SUðNÞ SOð2NÞ E6 E7 E8

No additional symmetry ðp;NÞ ¼ 1 p ∉ 2Zþ p ∉ 3Zþ p ∉ 2Zþ p ∉ 30Zþ
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We refer to these theories as D̂Nþ3ðGÞ and ÂN−1ðGÞ,
respectively, where N is the number of gauge nodes in
the quiver. Thus, we can see that superconformal N ¼ 2
quiver gauge theories formed by gauging together copies of
DpðGÞ and ðG;GÞ conformal matter have an ADE-type
classification, and we label them collectively as Γ̂ðGÞ [4].
It turns out that a subset of the Γ̂ðGÞ theories have

identical central charges: a ¼ c. These cases occur when
there are no ðG;GÞ conformal matter theories involved in
the gauging—these are the configurations that were
depicted in Eq. (2.4); i.e., when Γ ¼ D4, E6, E7, or E8.

5

When gcdðpi; h∨GÞ ¼ 1 then the central charges of the
Dpi

ðGÞ building block become

ai ¼
1

48

ð4pi − 1Þðpi − 1Þ
pi

dimðGÞ;

ci ¼
1

12
ðpi − 1Þ dimðGÞ: ð2:7Þ

In these circumstances, it is easy to see that the difference of
the central charges of the gauged theories are

48ðc−aÞ ¼−2dimðGÞ

þ
X
i

�
4ðpi − 1Þ− ð4pi− 1Þðpi− 1Þ

pi

�
dimðGÞ;

¼ dimðGÞ
�
−2þ

X
i

ðpi − 1Þ
pi

�
¼ 0; ð2:8Þ

where the first term comes from the vector multiplet and the
last equality follows by application of Eq. (2.3). We note
that the gcd condition between the pi and h∨G can be written
more succinctly as

Y
i

gcdðpi; h∨GÞ ¼ 1 ⇔ gcdðαΓ; h∨GÞ ¼ 1; ð2:9Þ

where αΓ is the largest comark associated to the Dynkin
diagram Γ. These a ¼ c theories have an interesting con-
nection, in the Schur sector, to N ¼ 4 super-Yang-Mills
theory, which was explored in [4] (see also [43,45–47]), and
to which we refer the reader for more details.
In [3], the authors considered an extension of the above

analysis to gauging the building blocks via an N ¼ 1

vector multiplet instead of an N ¼ 2 vector multiplet. In
this case, we can also consider an additional building block:
chiral multiplets transforming in a representation R of G.
The condition for the coupling of the introduced gauge
node to be either asymptotically free or conformal is,
schematically,

βG ≤ 0 ⇔
X

Dpi
ðGÞs

2ðpi − 1Þ
pi

h∨G þ
X

conformal
matters

2h∨G

þ
X
chirals

IðRÞ ≤ 6h∨G; ð2:10Þ

where the sums are over the different types of building
blocks connected to that N ¼ 1 gauge node. Here we have
used that the flavor central charge of a chiral multiplet in a
representation R of G is

kchiralG ¼ IðRÞ; ð2:11Þ

where IðRÞ is the Dynkin index of R.
In this paper, we focus on the configurations that may

permit identical central charges; this means that we do not
consider theories involving the conformal matter building
blocks, and the only chiral multiplets that we are allowed to
include are adjoint valued, as per the analysis in [3]. Such
gaugings can only involve a single gauge node and the
condition on the β function in Eq. (2.10) becomes

βG ≤ 0 ⇔
X

Dpi
ðGÞs

2ðpi − 1Þ
pi

h∨G þ
X
chirals

2h∨G ≤ 6h∨G: ð2:12Þ

It is straightforward to see that there can be at most six
Dpi

ðGÞ theories and three adjoint-valued chiral multiplets
attached to the N ¼ 1 gauge node [3]. The resulting
quivers are all of the form

ð2:13Þ

where we denote gauge nodes with a background shading
as N ¼ 1 gauge nodes to differentiate from the N ¼ 2
gauge nodes (which are unshaded), and the dashed line
indicates na ≤ 3 adjoint chirals. The various combinations
of pi and na were listed in [3], and we do not repeat
them here.
When the one-loop β function for the gauge coupling

vanishes (i.e., βG ¼ 0) then the gauge theory is conformal.
If βG < 0, however, then we must consider the renormal-
ization group flow to the infrared fixed point of the gauged
theory. This fixed point may or may not realize an
interacting SCFT. For example, the superconformal R
symmetry, as determined via a maximization [8], may
be inconsistent or the infrared theory may involve a
decoupled free sector. In [3], the analysis presented therein
demonstrates that, if gcdðpi; h∨GÞ ¼ 1 for all of the pi
involved in the gauging and there exists an interacting
SCFT in the infrared (without introducing new degrees of

5These specific families of theories are sometimes known as
the elliptic G models [41]; for some of these theories, aspects
have been explored in [31,33,39,42–44].
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freedom such as flipper fields), then the infrared SCFT has
identical central charges a ¼ c. Interestingly, these con-
ditions appear to be satisfied in most cases where βG < 0

and one obtains vast families of 4D N ¼ 1 SCFTs with
a ¼ c [3].

III. UNITARITY AND
SUPERCONFORMAL INDICES

The superconformal index counts short multiplets up to
recombination into long multiplets. It admits a trace
formula as follows: pick a pair of supercharges, Q, Q†,
and consider the index of the form

Iðβ; μÞ ¼ Trð−1ÞFe−βδe−μiγi ; ð3:1Þ

where the trace is taken over the Hilbert space of the theory,
F is the fermion number, δ≡ fQ;Q†g, γi are generators of
the global symmetry algebras of the theory that commute
with Q;Q†, and μi are the corresponding chemical poten-
tials. By the usual arguments [1,2,48], the index only gets
contributions from the states satisfying δ ¼ 0, and thus the
index is independent of the fugacity β.
For the case of 4D N ¼ 1 superconformal theory, the

superconformal algebra is SUð2; 2j1Þwhich has the bosonic
subgroup SOð4; 2Þ ×Uð1ÞR. There are two generators in
the superconformal algebra that commute with Q, Q†.
Choosing Q ¼ Q̃ _−, we write the index (often called the
right-handed index) for a generic N ¼ 1 SCFT as

Iðt; y; vÞ ¼ Trð−1ÞFt3ðRþ2j2Þy2j1
Y
i

vfii ; ð3:2Þ

where R is the Uð1Þ R charge, j1 and j2 are the Lorentz
spins, and fi collectively denotes the generators of the
flavor symmetries of the theory. The trace is taken over the
states with scaling dimension Δ satisfying

Δ ¼ 3

2
Rþ 2j2: ð3:3Þ

The short superconformal multiplets that contribute to this
right-handed superconformal index, together with their
contribution, are given in Table II. It is convenient to define
the reduced superconformal index which is given by

Î ¼ ð1 − t3yÞð1 − t3=yÞðI − 1Þ: ð3:4Þ

This form is useful since it removes the contributions from
the conformal descendants.
Despite the cancellations from the ð−1ÞF factor, the

superconformal index is still powerful enough to determine
part of the operator spectrum, in particular for the low-lying
operators. We study the spectrum of operators in great
detail with the superconformal indices; more specifically,
we test the unitarity condition on the structure of the
index that operators should satisfy [9,10]. This is important
because it is possible for a “candidate” superconformal
theory to violate unitarity, which is not readily visible at the
level of the chiral ring [11]. Furthermore, we investigate
various chiral ring operators and observe chiral ring
relations, which lift some of the “classical” operators.
Here we introduce some terms that, if they were to

appear in the superconformal index, would indicate that
unitarity of the theory is violated. Any term of the form

tλχ2j1þ1ðyÞ ðλ < 2þ 2j1Þ; ð3:5aÞ

ð−1Þ2j1þ1tλχ2j1þ1ðyÞ ð2þ 2j1 ≤ λ < 6þ 2j1Þ; ð3:5bÞ

reveals the existence of nonunitary operators [9,10]. Here
χ2j1þ1ðyÞ indicates the character of the 2j1 þ 1 representa-
tion of the Lorentz SUð2Þ1. For small values of j1, we
provide the form of the terms which are thus required to be
absent below for convenience:

TABLE II. List of N ¼ 1 short multiplets that contribute to the right-handed index, the unitarity conditions they
satisfy, and their contributions to the right-handed index. The 4D N ¼ 1 short multiplet contributions to the
superconformal index appear in [49]. Note that the spins j1, j2 are integer quantized in [50], whereas they are half-
integer-quantized here.

Short multiplet CDI notation Unitarity condition Contribution to the index

B̄rðj1;0Þ LB̄1̄½j1; 0�ðrÞ3
2
r

r ≥ 2
3
ðj1 þ 1Þ ð−1Þ2j1 t3rχ2j1þ1ðyÞ

ð1−t3yÞð1−t3=yÞ

C̄rðj1;j2Þ LĀl̄½j1; j2�ðrÞ2þ2j2þ3
2
r

r > 2
3
ðj1 − j2Þ ð−1Þ2j1þ2j2þ1 t3ðrþ2j2þ2Þχ2j1þ1ðyÞ

ð1−t3yÞð1−t3=yÞ

Ĉðj1;j2Þ AlĀl̄½j1; j2�ð
2
3
ðj1−j2ÞÞ

2þj1þj2
� � � ð−1Þ2j1þ2j2þ1 t2j1þ4j2þ6χ2j1þ1ðyÞ

ð1−t3yÞð1−t3=yÞ

Dð0;j2Þ B1Āl̄½0; j2�ð−
2
3
ðj2þ1ÞÞ

1þj2
� � � − t4j2þ4

ð1−t3yÞð1−t3=yÞ

D̄ðj1≥1
2
;0Þ A1B̄1̄½j1; 0�ð

2
3
ðj1þ1ÞÞ

1þj1
� � � ð−1Þ2j1 t2j1þ2χ2j1þ1ðyÞ−t2j1þ5χ2j1 ðyÞ

ð1−t3yÞð1−t3=yÞ

D̄ð0;0Þ A2B̄1̄½0; 0�ð
2
3
Þ

1
� � � t2

ð1−t3yÞð1−t3=yÞ
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(1) tλ, λ < 2,
(2) −tλ, 2 ≤ λ < 6,
(3) tλχ2ðyÞ, λ < 7,
(4) tλχ3ðyÞ, λ < 4,
(5) −tλχ3ðyÞ, 4 ≤ λ < 8.
For a sample of the theories with a ¼ c that we construct

by gauging DpðGÞ theories, we confirm that they indeed
pass this refined unitarity test. In particular, we checked
explicitly for those with low rank G by verifying that their
superconformal indices do not contain any terms violating
unitarity. This goes beyond the study of the chiral operators
from [4].

IV. SUPERCONFORMAL INDICES
OF N = 2 DpðGÞ THEORIES

To determine the superconformal indices of the N ¼ 1
gaugings that we consider in this paper, we first collect the

superconformal indices of some individualDpðGÞ theories.
We define the superconformal index of an N ¼ 2 SCFT as

I ¼ Trð−1ÞFt2ðΔþj2Þy2j1v2R−r; ð4:1Þ

where R, r denote the Cartan generators of the SUð2ÞR ×
Uð1Þr symmetry. The index gets contributions only from
the states satisfying6

Δ − 2j2 − 2R − r=2 ¼ 0: ð4:2Þ

In particular, we consider D2ðSUð3ÞÞ, D3ðSUð2ÞÞ, and
D5ðSUð2ÞÞ theories.7 The (reduced) N ¼ 1 superconfor-
mal indices of these theories are given following [13,16]:

ÎD2ðSUð3ÞÞ ¼ t3v−3 þ t4ðv2χsu3;8 − v−1χ2ðyÞÞ þ t5vþ t6ðv−6 − χsu3;8ðz1; z2Þ − 1Þ þ t7χ2ðyÞðv2 − v−4Þ
þ t8ð2v−2 þ v4χsu3;27ðz1; z2ÞÞ þ t9ðv−9 − v−3 − χ2ðyÞÞ þOðt10Þ; ð4:3aÞ

ÎD3ðSUð2ÞÞ ¼ t8=3v−8=3 − t11=3v−2=3χ2ðyÞ þ t4v2χsu2;3ðzÞ þ t14=3v4=3 þ t16=3v−16=3 − t6ðχsu2;3ðzÞ þ 1ÞÞ
− t19=3v−10=3χ2ðyÞ þ t7v2χ2ðyÞ þ t22=3v−4=3 þ t8ðv4χsu2;5ðzÞ þ v−2 þ v−8Þ − t26=3v−8=3

− t9ð1þ v−6Þ þOðt283 Þ; ð4:3bÞ

ÎD5ðSUð2ÞÞ ¼ t12=5v−12=5 þ t16=5v−16=5 − t17=5v−2=5χ2ðyÞ þ t4v2χsu2;3ðzÞ − t21=5v−6=5χ2ðyÞ þ t22=5v8=5

þ t24=5v−24=5 þ t26=5v4=5 þ t28=5v−28=5 − t29=5v−14=5χ2ðyÞ − t6ðχsu2;3ðzÞ þ 1Þ þOðt32=5Þ; ð4:3cÞ

where χ2j1þ1ðyÞ is the character for the (2j1 þ 1)-dimen-
sional representation of the SUð2Þ1 factor of the Lorentz
group, χsuN;Rðz1;…; zN−1Þ is the character of the repre-
sentation R of SUðNÞ, v is associated to the Uð1Þ flavor
symmetry

F ¼ −rþ 2R; ð4:4Þ

coming from the decomposition of theN ¼ 2 R symmetry,
and z1; � � � zN−1 are the fugacities of the SUðNÞ flavor
symmetry.8

To introduce and explain the concept of operator
spectroscopy, such as in [9,52], we first explain how the

relevant and marginal operator content of the DpðGÞ
SCFTs can be determined from the indices in Eq. (4.3).
We can already see some interesting and noteworthy
information from these expressions. For example, the
moment map operator μ contributes to the index as t4v2.
We can see that D2ðSUð3ÞÞ, D3ðSUð2ÞÞ, and D5ðSUð2ÞÞ
each have no operator Trμ2, as there is no t8v4 term
appearing in either index; these operators are lifted from the
spectrum due to a chiral ring relation (also known as the
Joseph relation)

μ2jI2
¼ 0: ð4:5Þ

Here, the Joseph ideal I2 is defined via

Sym2ðadjÞ ¼ ½2 · adj� ⊕ I2; ð4:6Þ

where ½2 · adj� denotes the representation that has highest
weight being twice of the Dynkin indices for the adjoint
representation. It is well known that this relation is true for
all the N ¼ 2 theories with Higgs branch given as the

6Our Uð1Þr is normalized such that the Coulomb branch
operators have Δ ¼ −r=2, which is twice that of [51]. However,
the SUð2ÞR is half-integer-quantized, which matches with [51].

7These theories are often referred to under different names.
In particular, D2ðSUð3ÞÞ ¼ ðA1; D4Þ, D3ðSUð2ÞÞ ¼ ðA1; A3Þ ¼ðA1; D3Þ, and D5ðSUð2ÞÞ ¼ ðA1; D5Þ.

8The Uð1Þ flavor symmetries are normalized differently
from [16]. Our v corresponds to their v−2.
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one-instanton moduli space for G, which is identical to the
minimal nilpotent orbit of G. In fact, for those theories the
only nonvanishing part of the k-fold product of the moment
map operator is in the representation ½k · adj�, which can be
deduced from the universal formula for the Higgs branch
Hilbert series [53–57] or Hall-Littlewood index [58,59]

IHLðτÞ ¼
X∞
k¼0

χ½k·adj�τ2k; ð4:7Þ

where the moment map μ contributes χ½adj�τ2. In particular,
the index shows, for all k, that

Trμk ¼ 0; ð4:8Þ

for the Dpodd
ðSUð2ÞÞ and D2ðSUð3ÞÞ theories since their

Higgs branches are the SUð2Þ and SUð3Þ (centered) one-
instanton moduli spaces, respectively. In fact, the relation in
Eq. (4.8) holds for all the DpðGÞ theories with ðp; h∨Þ ¼ 1

since their Higgs branches are given by a nilpotent orbit.
Additional relations among the Bogomol'nyi–Prasad–

Sommerfield (BPS) operators (beyond the Higgs branch
operators) in the Argyres-Douglas theories can be deduced
[60,61]. To do this, it is useful to rewrite the super-
conformal indices of the above N ¼ 2 SCFTs in terms
of their short multiplet contents. For the theories we
consider, we have

ID2ðSUð3ÞÞ ¼ PE½χadjB̂1 þ Ē−3 þ Ĉ0ð0;0Þ − B̂2ð1þ χadjÞ
− B̄1;−4ð0;0Þ − χadjB̄1;−3ð0;0Þ − C̄1

2
;−2ð1

2
;0Þ

− Ĉ1ð0;0Þχadj þOðt11Þ�; ð4:9Þ

ID3ðSUð2ÞÞ ¼ PE½χadjB̂1 þ Ē−8
3
þ Ĉ0ð0;0Þ − B̂2 − B̄1;−10

3
ð0;0Þ

− χadjB̄1;−8
3
ð0;0Þ − C̄1

2
;−5

3
ð1
2
;0Þ − Ĉ1ð0;0Þχadj

þOðt10Þ�; ð4:10Þ

ID5ðSUð2ÞÞ ¼ PE½χadjB̂1 þ Ē−12
5
þ Ē−16

5
þ Ĉ0ð0;0Þ

− B̄1;−16
5
ð0;0Þχadj − B̂2 − B̄1;−14

5
ð0;0Þ

− B̄1;−18
5
ð0;0Þ − B̄1;−22

5
ð0;0Þ þOðt9Þ�: ð4:11Þ

Here, the PE stands for the plethystic exponential and we
used various symbols for the short multiplets (in the
notation of [51]) to denote their indices [58]. See
Table III for details. In the expressions (4.9) (4.10),
and (4.11), the multiplets with the positive sign can be
thought of as generators and the ones with minus sign as
relations. For example, the B̂1 is a conserved current
multiplet for the SUð2Þ or SUð3Þ flavor symmetry. We see
there is a term B̂2 with negative sign, which translates to
the Joseph relation, in Eq. (4.5), for the Higgs branch
operators. The index also allows us to study relations
beyond the Schur sector, as discussed in [60,61]. See
also [62] for a detailed study on the operator spectrum of
minimal Argyres-Douglas theory.
The Ēr multiplet contains the Coulomb branch operator

u with dimension Δ ¼ −r=2, which is the top component
in this multiplet.9 In terms of N ¼ 1 multiplets, it decom-
poses as

Ē−r → B̄r
3
ð0;0Þ ⊕ B̄rþ1

3
ð0;1

2
Þ ⊕ B̄rþ2

3
ð0;0Þ: ð4:12Þ

TheN ¼ 1 superconformal primary of the first multiplet is
u, and that of the next two are Qu and Q2u, respectively,
whereQ is theN ¼ 2 supercharge, which is not theN ¼ 1
supercharge.

TABLE III. List of N ¼ 2 short multiplets that appear in the indices in Eqs. (4.9), (4.10), and (4.11), and their
contributions to the index [58]. We denote the charge from theUð1Þ R symmetry as r and the charge from the SUð2Þ
R symmetry as R.

Short multiplet CDI notation Contribution to the index

B̂R B1B̄1̄½0; 0�ðR;0Þ −t2þ4Rv2ðR−1Þþt4Rv2R

ð1−t3yÞð1−t3=yÞ

B̄1;rð0;0Þ LB̄1̄½0; 0�ð2;−rÞ − t4−rvrðt2−v2Þð1þt2v4−tv2χ2ðyÞÞ
ð1−t3yÞð1−t3=yÞ

ĈRð0;0Þ AlĀl̄½0; 0�ðR;0Þ t6þ4Rv2R−2ðt2−v2Þð1−tv2χ2ðyÞÞ
ð1−t3yÞð1−t3=yÞ

C̄R;rðj1;0Þ LĀl̄½j1; 0�ðR;−rÞ ð−1Þ2j1 t6−rþ4Rv2Rþr−2ðt2−v2Þð1þt2v2−tv2χ2ðyÞÞχ2j1 ðyÞ
ð1−t3yÞð1−t3=yÞ

Ēr LB̄1̄½0; 0�ð0;−rÞ t−rvrð1þt2v4−tv2χ2ðyÞÞ
ð1−t3yÞð1−t3=yÞ

9As we are considering the right-handed index, we are
sensitive to the antiholomorphic Ē multiplets; Eq. (4.12) de-
scribes the decomposition of the Ē multiplet; however we will
generally abuse notation and write the Ē, and its superconformal
primary, without the bars.
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V. N = 2 SCFTs: D̂4ðSUð3ÞÞ
AND Ê6ðSUð2ÞÞ THEORIES

Before studying the spectrum of various N ¼ 1 super-
conformal field theories with a ¼ c, we first look into the
spectrum of N ¼ 2 SCFTs of type Γ̂ðGÞ considered in [3].

With the building blocks in hand, we study the D̂4ðSUð3ÞÞ
theory and the Ê6ðSUð2ÞÞ theory. The D̂4ðSUð3ÞÞ theory
can be constructed via gauging four copies of D2ðSUð3ÞÞ,
whereas the Ê6ðSUð2ÞÞ theory can be constructed with
three copies of D3ðSUð2ÞÞ:

ð5:1aÞ

ð5:1bÞ

The superconformal indices are computed utilizing the
expression

IN¼2 ¼
1

jWGj
I

½dz�GIGvecðzÞ
Yn
i¼1

IDpi
ðGÞðt; y; z; vÞ; ð5:2Þ

where IGvecðzÞ denotes the index for the vector multiplet (for
gauge group G) given as

IGvecðzÞ ¼ PE

�
−t3y − t3=yþ 2t6 þ t2v−2 − t4v2

ð1 − t3yÞð1 − t3=yÞ χG;adjðzÞ
�
;

ð5:3Þ

and where ½dz�G is the integration measure for G:

½dz�G ¼
Yr
i¼1

dzi
2πizi

Y
α∈Roots

ð1 − zαÞ: ð5:4Þ

Here, jWGj is the dimension of Weyl group of G, r is the
rank of G, and the product is over all roots of G.
Furthermore, z denotes the fugacities of G, and PE is
the plethystic exponential.

A. D̂4ðSUð3ÞÞ theory
Applying the formula in Eq. (5.2), we find that the

reduced index of D̂4ðSUð3ÞÞ is

ÎD̂4ðSUð3ÞÞ ¼ 4t3v−3 þ t4ðv−4 − 4v−1χ2ðyÞÞ þ t5ð4v − v−2χ2ðyÞÞ þ 11t6v−6 þ t7ð4v−7 þ χ2ðyÞðv2 − 17v−4ÞÞ
þ t8ðv−8 þ 27v−2 þ 2v4 − 8v−5χ2ðyÞ þ 6v−2χ3ðyÞÞ þ t9ð4v−3 þ 24v−9 þ χ2ðyÞð−16þ 5v−6Þ
þ 4v−3χ3ðyÞÞ þOðt10Þ: ð5:5Þ

Let us explain some of the operator spectrum that we
observe from the index:
(1) 4t3v−3: This term comes from the Coulomb branch

operators (i.e., the N ¼ 2 chiral operators) ui of
dimension 3=2 in each of the four D2ðSUð3ÞÞ
theories.

(2) t4v−4: It is associated to the operator Trϕ2,
where ϕ is the adjoint chiral in the N ¼ 2 vector
multiplet.

(3) 4t5v1: It arises from the N ¼ 2 superdescendants of
the Coulomb branch operators in the first bullet
point. These are Q2ui, where Q is the N ¼ 2
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supercharge of eachD2ðSUð3ÞÞ theory with nonzero
j2 and nontrivial N ¼ 2 Uð1Þ R charge.

(4) 11t6v−6: This term comes from ten marginal oper-
ators of the form uiuj and another one given by
Trϕ3. The operators of the form Trϕμi are absent
due to the F-term relation and the chiral ring relation
in Eq. (4.8).

All relevant and marginal operators, including those with
nonzero j1, are listed in Table IV.

For an N ¼ 2 theory, we can take the Macdonald limit
[58], which is defined as ðt3yÞ→0while ðt3=yÞ ¼ q and T¼
tv2y are held fixed. Then, the Macdonald index is given as

IMac ¼ Trð−1ÞFqΔ−RTR−r=2; ð5:6Þ

where the trace is taken over the operators with Δ − 2j2 −
2R − r=2 ¼ 0 and j1 þ j2 þ r=2 ¼ 0. We compute the
Macdonald index of the D̂4ðSUð3ÞÞ theory to be

TABLE IV. We present relevant and marginal contributions to the indices associated to theories achieved via various ways of gauging
copies of D2ðSUð3ÞÞ. For an explanation of the notation for the operators, see the main text. The positive/negative columns summarize
the operators that contribute either positively or negatively to the index, and we sum those contributions in the final column, which is the
coefficient of the term in the index. The “flavor current” at order t6 refers to the leading order contribution from the supermultiplet
containing the flavor current; this contribution comes from a fermionic component.

Index Term Positive Negative Total N ¼ 1 Multiplets

ÎD̂4ðSUð3ÞÞ t3v−3 ui � � � 4 4B̄1ð0;0Þ
t4v−1χ2ðyÞ � � � Qui −4 4B̄4

3
ð0;1

2
Þ

t5v Q2ui � � � 4 4B̄5
3
ð0;0Þ

t4v−4 Trϕ2 � � � 1 B̄4
3
ð0;0Þ

t5v−2χ2ðyÞ � � � QTrϕ2 −1 B̄5
3
ð0;1

2
Þ

t6 Q2Trϕ2 1 × ðstress-tensor multipletÞ 0 B̄2ð0;0Þ þ Ĉð0;0Þ
t6v−6 uiuj, Trϕ3 � � � 11 11B̄2ð0;0Þ

Îð2;2;2Þ t4 Trμiμj≠i, Q2ui � � � 6 6B̄4
3
ð0;0Þ

t5χ2ðyÞ � � � Qui −3 3B̄5
3
ð0;1

2
Þ

t6 ui, Trμ1μ2μ3 Trμ1μ3μ2 2 × ðflavor currentÞ 3 5B̄2ð0;0Þ þ 2Ĉð0;0Þ

Îð2;2;2;2Þ t9=2 ui, Q2ui � � � 8 8B̄3
2
ð0;0Þ

t9=2χ2ðyÞ � � � Qui −4 4B̄3
2
ð0;1

2
Þ

t6 Trμiμj≠i 3 × ðflavor currentÞ 3 6B̄2ð0;0Þ þ 3Ĉð0;0Þ

Îð2;2;2;2;2Þ t18=5 ui � � � 5 5B̄6
5
ð0;0Þ

t21=5χ2ðyÞ � � � Qui −5 5B̄7
5
ð0;1

2
Þ

t24=5 Q2ui � � � 5 5B̄8
5
ð0;0Þ

t6 � � � 4 × ðflavor currentÞ −4 4Ĉð0;0Þ

Îð2;2;2;2;2;2Þ t3 ui � � � 6 6B̄1ð0;0Þ
t4χ2ðyÞ � � � Qui −6 6B̄4

3
ð0;1

2
Þ

t5 Q2ui � � � 6 6B̄5
3
ð0;0Þ

t6 uiuj 5 × ðflavor currentÞ 16 21B̄2ð0;0Þ þ 5Ĉð0;0Þ

Îna¼1

ð2;2Þ;8 t2.5359 Trϕ2 � � � 1 B̄0.8453ð0;0Þ
t3.80385 ui, Trϕ3 � � � 3 3B̄1.26795ð0;0Þ

t4.26795χ2ðyÞ � � � Qui, Trλϕ −3 3B̄1.42265ð0;1
2
Þ

t4.73205 Trμiϕ, Q2ui � � � 4 4B̄1.57735ð0;0Þ
t5.0718 ðTrϕ2Þ2 � � � 1 B̄1.6906ð0;0Þ

t5.5359χ2ðyÞ � � � Trλϕ2 −1 B̄1.8453ð0;1
2
Þ

t6 Trμiϕ2 2 × ðflavor currentÞ 0 2B̄2ð0;0Þ þ 2Ĉð0;0Þ
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IMac
D̂4ðSUð3ÞÞ ¼ 1þ ðT þ 2T2Þq2 þ ðT − T3Þq3 þ ðT þ T2 þ 2T4Þq4 þ ðT þ T2 − T4 − T5Þq5 þ ðT þ 2T2 þ 2T3 þ 2T6Þq6

þ ðT þ 2T2 þ 2T3 − 2T4 − 2T5 − T7Þq7 þ ðT þ 3T2 þ 3T3 − T4 − 2T5 þ 2T8Þq8
þ ðT þ 3T2 þ 4t3 − 2T4 − 4T5 − T6 − T9Þq9 þOðq10Þ: ð5:7Þ

We further take the Schur limit (T → 1) from the Macdonald index to obtain the Schur index, which is defined as

ISchur ¼ Trð−1ÞFqΔ−R: ð5:8Þ

We compute the Schur index of D̂4ðSUð3ÞÞ as

ISchur
D̂4ðSUð3ÞÞ ¼ 1þ 3q2 þ 4q4 þ 7q6 þ 6q8 þOðq10Þ; ð5:9Þ

whichmatcheswith the known result [3]. The Schur sector of anyN ¼ 2SCFTis captured by its vertex operator algebra (VOA)
[63]. It would be interesting to directly construct the VOA for the Γ̂ðGÞ theories to gain further access on this theory.

B. Ê6ðSUð2ÞÞ theory
We compute the reduced index of Ê6ðSUð2ÞÞ theory and find it as

ÎÊ6ðSUð2ÞÞ ¼ 3t
8
3v−

8
3 − 3t

11
3 v−

2
3χ2ðyÞ þ t4v−4 þ 3t

14
3 v

4
3 − t5v−2χ2ðyÞ þ 6t

16
3 v−

16
3 − 9t

19
3 v−

10
3 χ2ðyÞ

þ t
20
3 ð3v−20

3 þ 3v−
2
3χ3ðyÞÞ þ t7v2χ2ðyÞ þ t

22
3 ð12v−4

3 þ 3v−
4
3χ3ðyÞÞ − 6t

23
3 v−

14
3 χ2ðyÞ þ t8ðv−2 þ 11v−8Þ

þ t
25
3 ð3v−16

3 − 6v
2
3Þχ2ðyÞ þ 3t

26
3 v−

8
3χ3ðyÞ − t9ð1þ 19v−6Þχ2ðyÞ þOðt10Þ: ð5:10Þ

Let us explain some of the important operators that can be
read off from the index:
(1) 3t8=3v−8=3: It arises from the Coulomb branch

operator of dimension 3=2 in each N ¼ 2
D3ðSUð2ÞÞ theory, ui.

(2) t4v−4: It comes from Trϕ2 where ϕ is the scalar in
the N ¼ 2 vector multiplet.

(3) 3t14=3v4=3: Superpartners of the Coulomb branch
operators of each D2ðSUð3ÞÞ: Q2ui.

(4) 6t16=3v−16=3: This term comes from products of
Coulomb branch operators: uiuj.

All of the relevant and marginal operators, including those
with a nonzero j1, are listed in Table IV. We can also take
the Macdonald limit of Eq. (5.10) to get the Macdonald
index of Ê6ðSUð2ÞÞ theory, which is

IMac
Ê6ðSUð2ÞÞ ¼ 1þ Tq2 þ Tq3 þ ðT − T3Þq4 þ ðT − T3Þq5

þ ðT þ T2Þq6 þ ðT þ T2 − T3 − T4Þq7
þ ðT þ 2T2 − T3 − T4Þq8 þOðq9Þ: ð5:11Þ

We can further take the Schur limit to obtain

ISchur
Ê6ðSUð2ÞÞ ¼ 1þ q2 þ q3 þ 2q6 þ q8 þOðq9Þ: ð5:12Þ

This result matches with the known result [3,43]. The
associated VOA for this theory is given by theAð6Þ algebra
of [64] and studied in detail in [42,43]. It would be
interesting to reproduce the Macdonald index we presented
above from the VOA as was done in other Argyres-Douglas
(AD) theories [26,28,29,65].
We can also consider the Hall-Littlewood limit of the

superconformal index and thus determine the operators
which exist in that sector (quite often identical to the set of
Higgs branch operators) of the spectrum of the theory; for
a ¼ c theories (and beyond), this limit has been inves-
tigated thoroughly in [7]. The Hall-Littlewood indices for
D̂4ðSUð2N þ 1ÞÞ theories, which can be realized as genus-
zero class S theories with Z2 twist lines, demonstrated the
presence of operators belonging to D-type multiplets. This
demonstrated that, in contrast to a common belief, the
Higgs branch Hilbert series is different from the Hall-
Littlewood index, even for genus-zero class S theories.
Among the Γ̂ðGÞ theories, the Hall-Littlewood indices
indeed agrees with Higgs branch Hilbert series when
Γ ¼ E6; E7; E8; however, when Γ ¼ D4, they do not agree.

VI. CONFORMAL MANIFOLDS
AND CONFORMAL GAUGINGS

The superconformal index allows us to use the
technique of operator spectroscopy to determine the
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low-scaling-dimension operator content of the theories
that we consider. These SCFTs are constructed by
gauging together a collection of N ¼ 2 DpðGÞ theories
via an N ¼ 1 or N ¼ 2 vector multiplet. Understanding
the operator content of the individual DpðGÞ theories
provides a strong start: this we do by studying the
reduced superconformal indices in Sec. IV. However,
upon gauging there are many subtleties to take into
account; the R charges of the operators from each DpðGÞ
theory are shifted through a maximization, and nontrivial
chiral ring relations amongst the operators of the gauged
theory can rule out naively expected operators. For this
reason, the superconformal index is a vital tool to
determine both that the gauged theories are unitary
and to extract the operator spectrum.
However, in this section, we consider a slightly simpler

class of theories obtained via N ¼ 1 gauging of a
collection of Dpi

ðGÞ such that the one-loop β function
of the introduced gauge coupling vanishes. Such pi were
enumerated in [4]. For these theories, we now explore the
exactly marginal operators, and thus the structure of the
N ¼ 1 conformal manifold, that can be determined via
the study of the spectrum of Coulomb branch scaling
dimensions of each individual Dpi

ðGÞ. When doing
N ¼ 1 conformal gauging, it is important to verify that
there exists at least one exactly marginal operator,
otherwise the gauged theory does not, in fact, give rise
to an interacting SCFT [66,67]. These can be determined
independently of the superconformal index, and we verify
that the superconformal index for the single N ¼ 1
conformal gauging that we determine (see Sec. VII D)
matches the counting done in this section. We focus on
theories with a ¼ c, and thus it is necessary that
gcdðpi; h∨GÞ ¼ 1 for each pi. Analysis of all of the
possible conformal gaugings in [4] leads us to conclude
that G ¼ SUðNÞ is a necessary condition for a ¼ c.
There are 18 different conformal gaugings, and they
contain the following possibilities for p:

p ∈ f2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 15; 18; 20; 24; 42g: ð6:1Þ

We refer to [4] for the complete list of combinations. To
determine which products of Coulomb branch operators
are marginal, we actually only need to know the
Coulomb branch operators that have Δ < 2. If
DpðSUðNÞÞ is such that N > p, then the spectrum of
Coulomb branch operators, with Δ < 2, contains one
operator with each of the following scaling dimensions:

Δ≤2 ¼
�
pþ 1

p
;
pþ 2

p
;…;

2p − 1

p

�
; ð6:2Þ

as can be observed from the general formula for the
Coulomb branch scaling dimensions of DpðGÞ:

Cðp;GÞ ¼
�
j −

h∨G
p

sjj − h∨G
p

s > 1; j ∈ CasðGÞ; s

¼ 1;…; p − 1

�
: ð6:3Þ

Here, CasðGÞ are the degrees of the fundamental Casimir
invariants of G.
The number of marginal operators formed by the product

of two Coulomb branch operators,

uaub; ð6:4Þ

of a DpðN > pÞ theory is given by

#marginalðDpðSUðN > pÞÞÞ ¼
�
p − 1

2

	
: ð6:5Þ

Next, we consider marginal operators formed from
the product of two different Coulomb branch operators
belonging to two different Argyres-Douglas theories:
Dp1

ðSUðNÞÞ andDp2
ðSUðNÞÞ. We consider N > p2 ≥ p1,

and let l ¼ gcdðp1; p2Þ denote the greatest common
divisor. It is straightforward to see that the number of
such marginal operators is

l − 1: ð6:6Þ

Combining these two results we can determine the number
of marginal operators, formed from the product of two
Coulomb branch operators of the DpðGÞ building blocks,
of the N ¼ 1 gauged theory. We find

#marginal operators ¼
X
pi;pj>i

ðgcdðpi; pjÞ − 1Þ

þ
X
pi

�
pi − 1

2

	
; ð6:7Þ

where we assume that the pi are increasing p1 ≤ � � � ≤ p6

and that the gauge group is SUðN > p6Þ. Furthermore, the
total number ofUð1Þ flavor currents in the gauged theory is
the number of pi > 1 minus one, and thus we can see from
Eq. (6.7) that the number of exactly marginal operators in
the theory after the conformal gauging is nonzero.
It remains for us to consider the number of marginal

operators that exist when N < p. There is a small finite
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number of such cases and in each the number of marginal
operators on the Coulomb branch can be determined
exhaustively. We have verified that, in all cases, the number
of exactly marginal operators is strictly positive. Thus, all
conformal ðN ¼ 1Þ-gaugings of the common G flavor
symmetry of a collection ofDpi

ðGÞ theories gives rise to an
interacting N ¼ 1 SCFT.

VII. N = 1 GAUGINGS OF MULTIPLE D2ðSUð3ÞÞ
Next, we turn to the analysis of the superconformal index

for strictly N ¼ 1 theories. We begin by considering the
four theories that are built out of between three and six
copies of the D2ðSUð3ÞÞ theory via N ¼ 1 gauging. The
quiver diagrams of these theories are

The index of the theory arising from gauging of n copies of
the Dpi

ðGÞ theory via an N ¼ 1 vector multiplet is given
by the integral

I ¼ 1

jWGj
I

½dz�GIGvecðzÞ
Yn
i¼1

IDpi
ðGÞðt; y; z; vit3ϵiÞ; ð7:1Þ

where z denotes fugacities of the introduced gauge group
G, v denotes those of the flavor symmetries, jWGj is the
dimension of Weyl group of G, ½dz�G is the integration
measure [defined in Eq. (5.4)] and IGvec is the index for
the N ¼ 1 vector multiplet with gauge group G which is
given by

IGvecðzÞ ¼ PE

�
−t3y − t3=yþ 2t6

ð1 − t3yÞð1 − t3=yÞ χG;adjðzÞ
�
; ð7:2Þ

and PE is the plethystic exponential.
The vit3ϵi term in the indices of the Dpi

ðGÞ theories
arises from the mixing between the UV R symmetry and
Abelian flavor symmetries which forms the superconformal
R charge:

Uð1ÞIRR ¼ Uð1ÞR þ ϵiF i: ð7:3Þ

In addition, there always exists one particular linear
combination of the F i that is anomalous. It follows that
all vi shall satisfy a corresponding relation; in turn, vi can

be redefined into fugacities of the anomaly free flavor
symmetries. For example, when considering three copies of
D2ðSUð3ÞÞ gauged together, the diagonal Uð1Þ generated
by F 1 þ F 2 þ F 3 is anomalous and only the axial Uð1Þ s
generated by F 1 − F 2 and F 2 − F 3 remain as nonanom-
alous symmetries of the gauged theory. The diagonal Uð1Þ
anomaly imposes the condition that

Y
i

vi ¼ 1; ð7:4Þ

and the index recombines into fugacities of the two axial
Uð1Þ s,

ṽi ¼ v−1i viþ1: ð7:5Þ

In this section we typically turn off the fugacities of the
Uð1Þ s, i.e.,

ṽi ¼ 1; ð7:6Þ

as the way in which they enter the index is not of key
importance for the purposes of determining unitarity or the
spectrum of relevant/marginal operators. As usual, we refer
to the version of the index obtained in this way as the
unrefined index. In Appendix, we list the full, refined,
expressions for completeness.
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A. Gauging three copies of D2ðSUð3ÞÞ
We first compute the reduced index of the theory with

three copies of D2ðSUð3ÞÞ glued together via N ¼ 1
gauging. The coefficients ϵi of the flavor mixing to the
infrared R charges are determined solely by the anomaly
free condition as

ϵi ¼ −
1

3
; i ¼ 1; 2; 3; ð7:7Þ

where we note that no operator crosses the unitarity bound
along the flow into the infrared. From the mixing param-
eters, we can determine the R charge of the various relevant
operators after the gauging. We find

RðμiÞ ¼
2

3
; RðuiÞ ¼ 2; RðQiÞ ¼ −

1

3
; ð7:8Þ

for the R charges of the moment maps, the Coulomb
branch operators, and the leftover N ¼ 2 supercharges.
Computing the reduced unrefined index from the integral in
Eq. (7.1), we find

Îð2;2;2Þ ¼ 6t4 − 3t5χ2ðyÞ þ 3t6 − 3t7χ2ðyÞ þ 12t8

− 11t9χ2ðyÞ þOðt10Þ: ð7:9Þ

The first term 6t4 comes from the operators of the form
Trμiμj≠i and theQ2ui. The ui where i ¼ 1, 2, 3 denotes the
single Coulomb branch operator in each of the D2ðSUð3ÞÞ
building blocks, each with scaling dimension Δ ¼ 3

2
; Q2ui

is a superconformal descendant in the N ¼ 2 theory,
however the E multiplet decomposes as in Eq. (4.12) when
the gauging breaks the symmetry to N ¼ 1, and Q2ui
corresponds to the primary of an N ¼ 1 multiplet. The
three marginal operators that contribute to the t6 term
correspond to the Coulomb branch operators, ui. In fact,
there are two more marginal operators

Trμ1μ2μ3; Trμ3μ2μ1; ð7:10Þ

that are neutral under both Abelian flavor symmetries
F 1 − F 2 and F 2 − F 3. The contributions from these
operators are canceled precisely by the negative contribu-
tions from the two Uð1Þ current multiplets. We do not find
the other operators of the form Trμiμjμk as they are lifted by
a chiral ring relation between the adjoint part of μ2 in the
D2ðSUð3ÞÞ theories, as we discuss around Eq. (4.5). There
are some other operators which we might expect to
contribute to the index in Eq. (7.9), and for which we
now discuss the expected reason for their absence. There are
three operators involving the moment maps and the gaugino:
Trλμi. We would expect these operators to contribute to the
index as

−t5ðv21 þ v−21 v22 þ v−22 Þχ2ðyÞ; ð7:11Þ

where we have restored the Uð1Þ2 flavor symmetry fugac-
ities.10 However, we can see that the superconformal index
of theD2ðSUð3ÞÞ theory, which is written in Eq. (4.3), has a
term t7χ2ðyÞv2, which, after gauging, contributes to the
t5χ2ðyÞ term as in Eq. (7.11), where the overall coefficient is
instead þ1. We expect that these operators pair up to form
long multiplets after gauging, and thus they no longer
contribute to the index, which is only sensitive to (certain)
short multiplets, as discussed. We note that it is necessary to
go to the flavor-fugacity-refined index to see that it is the
Trλμi operators that recombine into long multiplets, and not
the Qui operators.
To determine the superconformal multiplets that generate

the ring of short multiplets, and the relations among them in
this ring, it is often helpful to take the plethystic logarithm
of the superconformal index. We again reduce by multi-
plying by ð1 − t3yÞð1 − t3=yÞ to remove the contribution
from conformal descendants, which renders the generators
and ring relations more clearly. We define the reduced
plethystic log of the superconformal index as

Ĩ ≡ ð1 − t3yÞð1 − t3=yÞPLog½I�: ð7:12Þ

As expected, PLog is the plethystic logarithm that is the
inverse of plethystic exponential. For the theory we are
discussing here, we find

Ĩð2;2;2Þ ¼ 6t4 − 3t5χ2ðyÞ þ 3t6 − 3t7χ2ðyÞ − 9t8

þ 7t9χ2ðyÞ þOðt10Þ: ð7:13Þ

In fact, one can identify which short multiplets belonging to
the 4D N ¼ 1 superconformal algebra contribute to each
term of the superconformal index up to some low order in t.
The contribution of each 4D N ¼ 1 short multiplet to
the superconformal index is summarized in Appendix A
of [49], which we repeat with our notational conventions in
Table II of this paper. Up to tr<8 order, we identify which
short multiplets contribute to the reduced plethystic loga-
rithm as follows:

Ĩð2;2;2Þ ¼ 6B̄4
3
ð0;0Þ þ 3B̄5

3
ð1
2
;0Þ þ 5B̄2ð0;0Þ þ 2Ĉð0;0Þ þ 3B̄7

3
ð1
2
;0Þ

þOðt8Þ: ð7:14Þ

However, the problem of determining the multiplet spec-
trum from the superconformal index does not have a unique
solution; in this case, an ambiguity first arises at the order
of Oðt8Þ. There are four possible short multiplets

10We emphasize that these are the fugacities associated to the
nonanomalous axial Uð1Þ symmetries—for convenience, we
have slightly abused notation by dropping the tildes compared
to Eq. (7.5).
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C̄−1
3
ð0;1Þ; C̄2

3
ð0;0Þ; Dð0;1Þ; −B̄8

3
ð0;0Þ ð7:15Þ

that may contribute to the −9t8 term from the index. Since
Dð0;1Þ comes from the higher-spin free field [50], it is absent
for any interacting theory. Despite that we cannot give a
full-proof rigorous argument, we give a heuristic reasoning
why we think that there are no C-type multiplets. This is
because we find that from the refined index [see Eq. (A1)]
by turning on all the flavor fugacities, we see that the t8

term naturally arises from the products of B̄4
3
ð0;0Þ, while the

operator product expansion (OPE) of B̄4
3
ð0;0Þ × B̄4

3
ð0;0Þ, the

B̄8
3
ð0;0Þ multiplet appears but the C̄−1

3
ð0;1Þ; C̄2

3
ð0;0Þ multiplets

are not present. As the six operators that contribute at order
t4 are of the form

Q2ui and Trμiμj≠i ði; j ∈ f1; 2; 3gÞ; ð7:16Þ

we would naively expect that there exist 21 operators at
order t8:

ðQ2uiÞðQ2ujÞ; ðQ2uiÞTrμjμk≠j; ðTrμiμj≠iÞ2: ð7:17Þ

However, we know that ðQ2uiÞ2 from each D2ðSUð3ÞÞ
theory are absent, and we expect that ðQ2uiÞTrμjμk≠j only
exists if i, j, and k are all distinct, since otherwise it would
behave like a mixed Coulomb-Higgs operator of one of the
D2ðSUð3ÞÞ building blocks. Altogether, this gives nine
relations at order t8, which is reflected in the −9t8 term in
the plethystic log. Therefore, we claim that the −9t8 term
appears in the index comes entirely from −B̄8

3
ð0;0Þ. Hence,

while naively there would be 6 × 7=2 ¼ 21 B̄8
3
ð0;0Þ multip-

lets in the theory, there are only 12 of them present.

B. Gauging four copies of D2ðSUð3ÞÞ
In an analogous manner, we find that the reduced index

of the theory constructed via gluing four copies of
D2ðSUð3ÞÞ by N ¼ 1 gauging is

Îð2;2;2;2Þ ¼ t
9
2ð8 − 4χ2ðyÞÞ þ 3t6 þ t9ð46 − 35χ2ðyÞ
þ 6χ3ðyÞÞ þOðt212 Þ: ð7:18Þ

There are six marginal operators of the form Trμiμj, where
we recall that the Trμ2i operators are projected out by the
chiral ring relation of D2ðSUð3ÞÞ, and there are three
nonanomalous Uð1Þ flavor symmetries from F i − F iþ1;
thus, we expect that the contribution to the t6 term is
6 − 3 ¼ 3, which agrees with Eq. (7.18). The t7χ2ðyÞv2
term in the index of each D2ðSUð3ÞÞ contributes to the
index of the gauged theory as the term 4t6χ2ðyÞ; similarly to
the gauging of three copies of D2ðSUð3ÞÞ, this is canceled
by the contribution from the four operators of the form
Trλμi. There are eight relevant operators, among which four

of them are the Coulomb branch operators of each
individual D2ðSUð3ÞÞ theory. The other four relevant
operators are the N ¼ 2 superpartners of the Coulomb
branch operators of each D2ðSUð3ÞÞ theory before
gauging.
We write the reduced plethystic log of the index as

Ĩð2;2;2;2Þ ¼ t
9
2ð8−4χ2ðyÞÞþ3t6−3t9χ2ðyÞþOðt212 Þ: ð7:19Þ

At low orders in t, the superconformal multiplets generat-
ing the chiral ring can be determined unambiguously from
the index, and we find that it can be written as

Ĩð2;2;2;2Þ ¼ 8B̄3
2
ð0;0Þ þ 4B̄3

2
ð1
2
;0Þ þ 6B̄2ð0;0Þ þ 3Ĉð0;0Þ þOðt9Þ:

ð7:20Þ

In this expression, each of the listed short multiplets
provides a shorthand for the plethystic logarithm of the
contribution of that multiplet to the superconformal index,
as summarized in Table II. Thus it is easy to see that the
spectrum of low-scaling dimension multiplets listed here
reproduces the plethystic log in Eq. (7.19).

C. Gauging five copies of D2ðSUð3ÞÞ
At this point we expect that the reader is familiar with the

procedure of using the expression in Eq. (7.12) to deter-
mine the reduced superconformal index. Then, without
further ado, we find the reduced index of the theory
comprised of five copies of D2ðSUð3ÞÞ glued together
by N ¼ 1 gauging as

Îð2;2;2;2;2Þ ¼ 5t
18
5 − 5t

21
5 χ2ðyÞ þ 5t

24
5 − 4t6 þ 25t

36
5

− 25t
39
5 χ2ðyÞ þ t

42
5 ð40þ 10χ3ðyÞÞ

− 21t9χ2ðyÞ − 20t
48
5 þOðt10Þ: ð7:21Þ

There are no marginal operators in this theory and fourUð1Þ
flavor symmetries contributing (−4) at the t6 order. There
are ten relevant scalar operators, where five of them are the
Coulomb branch operators in the individual D2ðSUð3ÞÞ
theories and they contribute to the 5t

18
5 term in the index. The

other five relevant scalar operators correspond to the 5t
24
5

term, and they arise from the N ¼ 2 superdescendants of
the Coulomb branch operators from each D2ðSUð3ÞÞ
theory. The contributions of all of the relevant and marginal
operators are summarized in Table IV.
To find the generators and relations of the chiral ring, we

determine that the reduced plethystic log of the index is

Ĩð2;2;2;2;2Þ ¼ 5t
18
5 − 5t

21
5 þ 5t

24
5 − 4t6 þ 10t

36
5 þ 4t9 − 15t

48
5

þOðt515 Þ: ð7:22Þ
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Up to t6 order, we find that the following N ¼ 1 super-
multiplets contribute to the index:

Ĩð2;2;2;2;2Þ ¼ 5B̄6
5
ð0;0Þ þ 5B̄7

5
ð1
2
;0Þ þ 5B̄8

5
ð0;0Þ þ 4Ĉð0;0Þ þOðt365 Þ:

ð7:23Þ

D. Gauging six copies of D2ðSUð3ÞÞ
Finally, we consider the SCFT obtained via the con-

formalN ¼ 1 gauging of the SUð3Þ flavor symmetry of six
copies of the D2ðSUð3ÞÞ theory. The reduced supercon-
formal index of the resulting SCFT is

Îð2;2;2;2;2;2Þ ¼ 6t3 − 6t4χ2ðyÞ þ 6t5 þ 16t6 − 36t7χ2ðyÞ
þ t8ð72þ 15χ3ðyÞÞ þ t9ð26 − 16χ2ðyÞÞ
þOðt10Þ: ð7:24Þ

There are five Uð1Þ flavor symmetries in this theory, each
of which has a current contributing (−1) to the t6 term in the
index. There are 21 marginal operators obtained from the
product of pairs of Coulomb branch operators: uiuj. All of
the relevant operators contributing to this index are the six
Coulomb branch operators and their N ¼ 2 superpartners.
For each of these gaugings ofD2ðSUð3ÞÞ theories, we have
summarized the relevant and marginal operators that
contribute to the index in Table IV.
Although it begins to become ambiguous, we can

perform the operator spectroscopy also for the low
R-charge irrelevant operators. We explore such an analysis
in this example by explaining the operators that contribute
to the t7 and t8 terms that appear in the index in
equation (7.24). At t7, there are 36 operators of the form
uiQuj that contribute the complete −36χ2ðyÞ. Putatively, at
t7, there also exist the operators Trλμi; however, as
discussed in Sec. VII A, these recombine with the operators
contributing χ2ðyÞt7 in each D2ðSUð3ÞÞ theory to form
long multiplets in the gauged theory; thus they do not
contribute to the superconformal index. At t8 the contrib-
uting operators are uiQ2uj, QuiQujj1, Trμiμj≠i, and
QuiQuj≠ij3, where we observe from the D2ðSUð3ÞÞ super-
conformal index in Eq. (4.3) that the putative operators
QuQuj3 do not exist. The contributions from all of these
operators reproduce the t8 term in the index in Eq. (7.24).
We further find that the reduced plethystic log of the

index is

Ĩð2;2;2;2;2;2Þ ¼ 6t3 − 6t4χ2ðyÞ þ 6t5 − 5t6 − 15t8 − 5t9χ2ðyÞ
þOðt10Þ; ð7:25Þ

and we can also determine the short N ¼ 1 multiplets that
contribute up to order t8 as follows:

Ĩð2;2;2;2;2;2Þ ¼ 6B̄1ð0;0Þ þ 6B̄4
3
ð1
2
;0Þ þ 6B̄5

3
ð0;0Þ þ 5Ĉð0;0Þ þOðt8Þ:

ð7:26Þ

It is straightforward to see that the superconformal pri-
maries of the B̄1ð0;0Þ multiplets are the ui, of the B̄4

3
ð1
2
;0Þ

multiplets are the Qui, and of the B̄5
3
ð0;0Þ multiplets are the

Q2ui. The five Ĉð0;0Þ multiplets, which have scalar fields as
their superconformal primaries, contain the fiveUð1Þ flavor
currents. This matches precisely with the known decom-
positions of the N ¼ 2 E-type multiplets into N ¼ 1
superconformal multiplets, as given in Eq. (4.12).

VIII. N = 1 GAUGINGS OF MULTIPLE D3ðSUð2ÞÞ
Next, we turn to the study of a simple class of theories

with G ¼ SUð2Þ. We consider several theories built out of
between two and four copies of the D3ðSUð2ÞÞ theory via
N ¼ 1 gauging. As in the previous section, this construc-
tion will generally give rise to non-Lagrangian theories as p
and N, i.e., 3 and 2, are coprime. Each index demonstrates
the absence of nonunitary contributions and the relevant
and marginal operators that contribute to these three indices
are summarized in Table V.

A. Gauging two copies of D3ðSUð2ÞÞ
Two copies of D3ðSUð2ÞÞ can be glued together via

N ¼ 1 gauging to give rise to a theory with the following
quiver diagram:

The reduced index of this theory with two copies of
D3ðSUð2ÞÞ can be computed again by an application of
the integral formula given in Eq. (7.1). We find that

Îð3;3Þ ¼ 3t3 − 2t
9
2χ2ðyÞ þ 3t6 − 2t

15
2 χ2ðyÞ þ t9ð3þ 2χ2ðyÞÞ

þOðt212 Þ: ð8:1Þ

The operators associated to each of these terms can be
determined straightforwardly, as described in the previous
section, and we do not belabor the point here; the operators
are summarized in Table V. After taking the plethystic log
and removing the contributions from the conformal
descendants, then we can see that it is written as

Ĩð3;3Þ ¼ 3t3 − 2t
9
2χ2ðyÞ − 3t6 þ 4t

15
2 χ2ðyÞ − t9ð1þ χ5ðyÞÞ

þOðt212 Þ: ð8:2Þ

From this expression we can perform the N ¼ 1 multiplet
spectroscopy unambiguously up to order t6, and we find
that the reduced plethystic log can be written as
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Ĩð3;3Þ ¼ 3B̄1ð0;0Þ þ 2B̄3
2
ð1
2
;0Þ− 2B̄2ð0;0Þ þ Ĉð0;0Þ þOðt152 Þ; ð8:3Þ

where we note again that we have abused notation and wrote
the name of the supermultiplet as a shorthand for the
contribution to the reduced plethystic log of the superconfor-
mal index from that multiplet, as summarized in Table II.
The term −2B̄2ð0;0Þ comes from two separate contribu-

tions: first, we get þ2 from the two Coulomb branch
operators ðu1; u2Þ in eachD3ðSUð2ÞÞ. The other (negative)
contribution to this term comes from nontrivial relations
between the chiral primaries in the OPE of B̄1ð0;0Þ × B̄1ð0;0Þ.
More precisely, the superconformal primaries belonging to
the 6B̄2ð0;0Þ multiplets appearing in the OPE 3B̄1ð0;0Þ ×sym

3B̄1ð0;0Þ are, naively,

ðQ2u1ÞðQ2u1Þ; ðQ2u2ÞðQ2u2Þ; ðQ2u1ÞTrμ1μ2;
ðQ2u2ÞTrμ1μ2; ðQ2u1ÞðQ2u2Þ; ðTrμ1μ2Þ2:

The first four are lifted by the chiral ring relations. This is
deduced by looking at the refined index, given in Eq. (A5).
Hence, these chiral ring relations contribute −4B̄2ð0;0Þ.
Thus, we end up with −2B̄2ð0;0Þ.

B. Gauging three copies of D3ðSUð2ÞÞ
Now we consider the theories constructed from three

copies of theD3ðSUð2ÞÞ theory viaN ¼ 1 gauging, whose
quiver diagram is given by

TABLE V. We write the relevant and marginal contributions to the indices associated to the theories obtained via various ways of
gauging copies of D3ðSUð2ÞÞ. The notation is as described in Sec. XI. Again, the positive/negative columns summarize the operators
that contribute positively/negatively to the index. The total column is the sum of the positive and negative contributions and provides the
coefficient of the associated term in the index. The “flavor current” at order t6 refers to the leading order contribution from the
supermultiplet containing the flavor current; this contribution comes from a fermionic component.

Index Term Positive Negative Total N ¼ 1 Multiplets

ÎÊ6ðSUð2ÞÞ t8=3v−8=3 ui � � � 3 3B̄8
9
ð0;0Þ

t11=3v−2=3χ2ðyÞ � � � Qui −3 3B̄11
9
ð0;1

2
Þ

t14=3v4=3 Q2ui � � � 3 3B̄14
9
ð0;0Þ

t16=3v−16=3 uiuj � � � 6 6B̄8
3
ð0;0Þ

t4v−4 Trϕ2 � � � 1 B̄4
3
ð0;0Þ

t5v−2χ2ðyÞ � � � QTrϕ2 −1 B̄5
3
ð0;1

2
Þ

t6 Q2Trϕ2 1 × ðstress-tensor multipletÞ 0 B̄2ð0;0Þ þ Ĉð0;0Þ

Îð3;3Þ t3 Q2ui, Trμ1μ2 � � � 3 3B̄1ð0;0Þ
t9=2χ2ðyÞ � � � Qui −2 2B̄3

2
ð0;1

2
Þ

t6 ui, ðTrμ1μ2Þ2 ðQ2u1ÞðQ2u2Þ 1 × ðflavor currentÞ 3 4B̄2ð0;0Þ þ Ĉð0;0Þ

Îð3;3;3Þ t4 ui, Q2ui � � � 6 6B̄4
3
ð0;0Þ

t4χ2ðyÞ � � � Qui −3 3B̄4
3
ð0;1

2
Þ

t6 Trμiμj≠i 2 × ðflavor currentÞ 1 3B̄2ð0;0Þ þ 2Ĉð0;0Þ

Îð3;3;3;3Þ t3 ui � � � 4 4B̄1ð0;0Þ
t15=4χ2ðyÞ � � � Qui −4 4B̄5

4
ð0;1

2
Þ

t9=2 Q2ui � � � 4 4B̄3
2
ð0;0Þ

t6 uiuj 3 × ðflavor currentÞ 7 10B̄2ð0;0Þ þ 3Ĉð0;0Þ

Îna¼2

ð3Þ;3;3 t2.74273 u � � � 1 B̄0.91424ð0;0Þ
t3.68568χ2ðyÞ � � � Qu −1 B̄1.22856ð0;1

2
Þ

t4.62864 Q2u � � � 1 3B̄1.54288ð0;0Þ
t3.68568 Trϕiϕj � � � 3 B̄1.22856ð0;0Þ

t4.84284χ2ðyÞ � � � Trλϕi −2 2B̄1.61428ð0;1
2
Þ

t5.48545 u2 � � � 1 B̄1.82848ð0;0Þ
t5.7858 Trμϕi � � � 2 2B̄1.9286ð0;0Þ
t6 � � � 4 × ðflavor currentÞ −4 4Ĉð0;0Þ
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The reduced index of three copies of D3ðSUð2ÞÞ glued
together by N ¼ 1 gauging is

Îð3;3;3Þ ¼ t4ð6 − 3χ2ðyÞÞ þ t6 þ t8ð21 − 15χ2ðyÞ þ 3χ3ðyÞÞ
þ t9ð1 − χ2ðyÞÞ þOðt10Þ: ð8:4Þ

We can see that Îð3;3;3Þ evinces a one-dimensional con-
formal manifold, and the relevant and marginal operators
are listed in Table V. We also list the reduced plethystic log
and express the short multiplets that contribute to the index
at low orders:

Ĩð3;3;3Þ ¼ t4ðt − 3χ2ðyÞÞ þ t6 þ t8ð−6þ 3χ2ðyÞÞ
þ t9ð1 − χ2ðyÞÞ þOðt10Þ ð8:5Þ

¼ 6B̄4
3
ð0;0Þ þ 3B̄4

3
ð1
2
;0Þ þ 3B̄2ð0;0Þ þ 2Ĉð0;0Þ þOðt8Þ: ð8:6Þ

C. Gauging four copies of D3ðSUð2ÞÞ
We further consider the theories constructed with four

copies of the D3ðSUð2ÞÞ theory glued via N ¼ 1 gauging.
The corresponding quiver diagram is

and the reduced index of the theory thus obtained is

Îð3;3;3;3Þ ¼ 4t3 − 4t
15
4 χ2ðyÞ þ 4t

9
2 þ 7t6 − 16t

27
4 χ2ðyÞ

þ t
15
2 ð28þ 6χ3ðyÞÞ þ t

33
4 ð4 − 12χ2ðyÞÞ

þ t9ð14þ 5χ2ðyÞÞ − t
39
4 ð20þ 28χ2ðyÞ

þ 16χ3ðyÞÞ þOðt10Þ: ð8:7Þ

We compute the reduced plethystic log of the index Ĩð3;3;3;3Þ
in order to exhibit the generators and relations of the chiral
ring:

Ĩð3;3;3;3Þ ¼ 4t3 − 4t
15
4 χ2ðyÞ þ 4t

9
2 − 3t6 þ 2t

15
2

þ t
33
4 ð4þ 4χ2ðyÞÞ− t9ð4þ χ2ðyÞÞ− 4t

33
4 þOðt414 Þ:

ð8:8Þ

We can also identify every short multiplet containing
relevant and marginal operators that contributes to the
superconformal index as follows:

Ĩð3;3;3;3Þ ¼ 4B̄1ð0;0Þ þ 4B̄5
4
ð1
2
;0Þ þ 4B̄3

2
ð0;0Þ þ 3Ĉð0;0Þ þOðt152 Þ:

ð8:9Þ

As expected, this is consistent with the decomposition of
the N ¼ 2 E-type multiplets containing the low-scaling
dimension Coulomb branch operators of each of the
D3ðSUð2ÞÞ building blocks, as in Eq. (4.12), combined
with the nonanomalous Uð1Þ flavor currents that survive
from the N ¼ 2 R symmetry after N ¼ 1 gauging.

IX. N = 1 SCFT CONSTRUCTIONS
WITH D5ðSUð2ÞÞ

In this section, we consider examples where the gauging
involves at least one copy of the D5ðSUð2ÞÞ theory. This is
the theory with the largest value of p for which the
superconformal index can be computed in a reasonable
time frame. The first example, in Sec. IX A, is the first
instance where we determine the index for gaugings
involving differing pi, and as such we find that the
superconformal R symmetry involves a mixing with irra-
tional coefficients. In the second example, we consider
gauging together two copies of D5ðSUð2ÞÞ. The resulting
operators spectroscopy in these two cases is summarized in
Table VI.

A. Gauging two copies of D3ðSUð2ÞÞ
and one D5ðSUð2ÞÞ

We consider the theory composed via gluing two copies
of D3ðSUð2ÞÞ and a single D5ðSUð2ÞÞ together, via
ðN ¼ 1Þ gauging, which can be depicted as

ð9:1Þ

We find the reduced superconformal index of this theory is

Îð3;3;5Þ ¼ t3.05814 − t3.50969χ2ðyÞ þ 3t3.96124 − 2t3.99031χ2ðyÞ
þ 2t4.01938 þ t4.07752 − t4.52907χ2ðyÞ þ t4.98062 − 2t6

þ t6.05814 þ t6.11627 þOðt6.48062Þ: ð9:2Þ
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This theory is an example where the mixing coefficients ϵi
are irrational, and thus the theory has irrational charges, as
seen from the irrational powers of t; however, we can see
that all the terms that appear are consistent with unitarity.
For this theory, we study some of the operators that
contribute to the superconformal index. Recall that each
copy of theD3ðSUð2ÞÞ theory has a single Coulomb branch
operator, which we call u1 and u2, and the D5ðSUð2ÞÞ
theory has two Coulomb branch operators, u3 and v3. We
find that u3 contributes to the t3.05814 term; u1 and u2
contribute to the t3.96124 term; and v3 provides the t4.07752

term. All other relevant terms are provided by the N ¼ 2

superdescendants of these four Coulomb branch operators.
There are two Uð1Þ flavor currents, and no marginal
operators, that contribute to the t6 term. Finally, we can
see that Trμ1μ2, which is an irrelevant operator, contributes
to the t6.05814 term.
Up to Oðt6.05814Þ the reduced index is identical with

reduced plethystic log of the index since the first composite
operator appears at Oðt6.11627Þ. Every relevant operator
captured by the superconformal index is actually a super-
conformal primary operator of a B̄-type N ¼ 1 super-
conformal multiplet. Here, we exhibit the short multiplets
that are captured by the index up to order t6:

TABLE VI. In this table, we summarize the superconformal indices, and the associated operator spectroscopy, for the gaugings
discussed in Secs. IX, X C, and X D. Again, the positive/negative columns summarize the operators that contribute positively/negatively
to the index. The total column is the sum of the positive and negative contributions and provides the coefficient of the associated term in
the index. The “flavor current” at order t6 refers to the leading order contribution from the supermultiplet containing the flavor current;
this contribution comes from a fermionic component.

Index Term Positive Negative Total N ¼ 1 Multiplets

Îð3;3;5Þ t3.05814 u3 � � � 1 B̄1.01938ð0;0Þ
t3.50969χ2ðyÞ � � � Qu3 −1 B̄3.50970ð0;1

2
Þ

t3.96124 u1, u2, Q2u3 � � � 3 3B̄1.3204ð0;0Þ
t3.99031χ2ðyÞ � � � Qu1, Qu2 −2 2B̄1.3301ð0;1

2
Þ

t4.01938 Q2u1, Q2u2 � � � 2 2B̄1.33979ð0;0Þ
t4.07752 v3 � � � 1 B̄1.35917ð0;0Þ

t4.52907χ2ðyÞ � � � Qv3 −1 B̄1.50969ð0;1
2
Þ

t4.98062 Q2v3 � � � 1 B̄1.6602ð0;0Þ
t6 � � � 2 × ðflavor currentÞ −2 2Ĉð0;0Þ

Îð5;5Þ t3 Q2ui � � � 2 2B̄1ð0;0Þ
t15=4χ2ðyÞ � � � Qui −2 2B̄5

4
ð0;1

2
Þ

t9=2 ui, Q2vi, Trμ1μ2 � � � 5 5B̄3
2
ð0;0Þ

t21=4 � � � Q2vi −2 2B̄7
4
ð0;1

2
Þ

t6 vi, Q2u1Q2u2 1 × ðflavor currentÞ 2 3B̄2ð0;0Þ þ Ĉð0;0Þ

Îna¼2

ð5Þ;3;3 t2.42423 u � � � 1 B̄0.80808ð0;0Þ
t3.23231 v � � � 1 B̄1.0774ð0;0Þ

t3.40404χ2ðyÞ � � � Qu −1 B̄1.13468ð0;1
2
Þ

t3.80808 Trϕ2
1, Trϕ1ϕ2, Trϕ2

2
� � � 3 3B̄1.26936ð0;0Þ

t4.21212χ2 � � � Qv −1 B̄1.40404ð0;1
2
Þ

t4.38384 Q2u � � � 1 B̄1.46128ð0;0Þ
t4.84847 u2 � � � 1 B̄1.61616ð0;0Þ

t4.90404χ2ðyÞ � � � Trλϕ1, Trλϕ2 −2 2B̄1.63468ð0;1
2
Þ

t5.19192 Q2v � � � 1 B̄1.73064ð0;0Þ
t5.65654 uv � � � 1 B̄1.8855ð0;0Þ

t5.82827χ2ðyÞ � � � uQu −1 B̄1.9428ð0;1
2
Þ

t5.88384 Trμϕ1, Trμϕ2 � � � 2 2B̄1.96128ð0;0Þ
t6 � � � 4 × ðflavor currentÞ −4 4Ĉð0;0Þ
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Ĩð3;3;5Þ ¼ B̄1.01938ð0;0Þ þ B̄1.16990ð1
2
;0Þ þ 3B̄1.32041ð0;0Þ

þ 2B̄1.33010ð1
2
;0Þ þ 2B̄1.33979ð0;0Þ þ B̄1.35917ð0;0Þ

þ B̄1.50969ð1
2
;0Þ þ B̄1.66021ð0;0Þ þ 2Ĉð0;0Þ þOðt6.05814Þ:

ð9:3Þ

These supermultiplets and their associated primary operators
are listed in Table VI.

B. Gauging two copies of D5ðSUð2ÞÞ
Another theory we consider which involves the

D5ðSUð2ÞÞ building block is the theory obtained via
gauging two copies of the D5ðSUð2ÞÞ theory. The resulting
SCFT can be written as the quiver

ð9:4Þ

By computing the superconformal index we can verify that
there are no terms that violate unitarity and thus confirm
that we obtain an interacting SCFT with a ¼ c in the
infrared. The reduced index of this theory is

Îð5;5Þ ¼ 2t3 − 2t
15
4 χ2ðyÞ þ 5t

9
2 − 2t

21
4 χ2ðyÞ þ 2t6 − 2t

27
4 χ2ðyÞ

þOðt7Þ; ð9:5Þ

which has rational exponents, as expected since the mixing
coefficients are themselves rational. We call the two
Coulomb branch operators of D5ðSUð2ÞÞ as u and v,
and they have dimensions 6=5 and 8=5, respectively. In the
gauged theory, we know that there exist two marginal
operators that come from v1 and v2. There also exists a
marginal operatorQ2u1Q2u2; however we can see from the
superconformal index of the D5ðSUð2ÞÞ theory, given in
Eq. (4.3), that the putative ðQ2uiÞ2 operators do not
contribute to the index. There is a single nonanomalous
Uð1Þ flavor symmetry. The current for this flavor symmetry
and the three marginal operators contribute to the coef-
ficient 3 − 1 ¼ 2 of the t6 term. The relevant terms in the
index are contributed to by the following operators: t3 is
Q2ui, t15=4 is Qui, t9=2 is ui, Q2vi, and Trμ1μ2, and finally
t21=4 is Qvi. We summarize this operator content, together
with the relevant and marginal operators in terms ofN ¼ 1
superconformal multiplets, as determined from the reduced
plethystic logarithm, in Table VI.

X. N = 1 THEORIES WITH ADJOINT CHIRALS

We have now determined the superconformal indices
for a variety of the infrared SCFTs with a ¼ c that we
constructed in [4]. We now turn to examples where, in
addition to the gauged DpðGÞ theories, we also include

one or two extra adjoint chiral multiplets. The super-
conformal index of this SCFT can be determined using the
expression for the superconformal index of the DpðGÞ
theory, as in Eq. (4.3), and the known expression for the
index of a weakly coupled chiral multiplet. A chiral
multiplet in the representation ðadj;RÞ of a flavor
symmetry G × F̃ has index

Iadjoint chiral ¼ PE
�
t3RϕχF̃;RðvÞ − t6−3RϕχF̃;R̄ðvÞ

ð1 − t3yÞð1 − t3=yÞ χG;adjðzÞ
�
;

ð10:1Þ

where Rϕ is the R charge of adjoint chiral ϕ, z denotes the
G flavor fugacity that will be gauged together withDpðGÞ,
and v stands for the fugacities of the other flavor
symmetry F̃ collectively.

A. Gauging two copies of D2ðSUð3ÞÞ with
an adjoint chiral

As a first example, consider the SCFT constructed via the
ðN ¼ 1Þ gauging of two copies of the D2ðSUð3ÞÞ theory,
together with an additional adjoint chiral multiplet ϕ:

ð10:2Þ

The reduced index of this theory is straightforwardly
worked out from the superconformal indices of the building
blocks, and we find

Îna¼1

ð2;2Þ;8¼ t2.5359þ3t3.80385−3t4.26795χ2ðyÞþ4t4.73205þ t5.0718

− t5.5359χ2ðyÞþ3t6.33975þOðt6.80385Þ: ð10:3Þ

Here we utilized the notation na to denote the number of
adjoint chiral multiplets. We can see that the index for this
theory contains no unitarity-violating terms, demonstrating
that it does indeed flow to an infrared SCFTwith a ¼ c. The
relevant and marginal operators that each of the terms in the
index arise from are listed in Table IV; similarly, it is
straightforward to use the reduced plethystic logarithm to
determine the N ¼ 1 superconformal multiplets that con-
tribute to the index at low orders, and these are also
contained in Table IV.

B. Gauging one copy of D3ðSUð2ÞÞ
with two adjoint chirals

Next, we consider an example of a gauging involving
two additional adjoint chiral multiplets, corresponding to
the quiver
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ð10:4Þ

We find that the reduced index of this theory, constructed
with a D3ðSUð2ÞÞ gauged together with two adjoint chiral
multiplets ϕ1 and ϕ2 attached, is

Îna¼2

ð3Þ;3;3 ¼ t2.74273 þ t3.68568ð3 − χ2ðyÞÞ þ t4.62864

− 2t4.84284χ2ðyÞ þ t5.48545 þ 2t5.7858 − 4t6

þ t6.42841ð3 − χ2ðyÞÞ þOðt7.62864Þ: ð10:5Þ

We can see that this index contains no unitarity violating
terms, and thus we have a good infrared SCFTwith a ¼ c,
as expected from the analysis of a subset of the protected
operators in [4]. The flavor symmetry of this theory is
Uð1Þ × SUð2Þ, which can be seen in the t6 term

−4t6 → −ð1þ χsu2;3ðvÞÞt6; ð10:6Þ

if we revive the SUð2Þ flavor fugacity, v. The flavor
symmetry is the anomaly-free part of the classical Uð1Þ ×
Uð1Þ × SUð2Þ flavor symmetry, where the first Uð1Þ is the
flavor remnant of N ¼ 2 R symmetry, and the remaining
Uð1Þ × SUð2Þ is the symmetry rotating the two adjoint
chirals ϕ1;2. The relevant and marginal operators that
contribute to the superconformal index are listed in
Table V, and we now briefly describe their identification.
Under the superconformal R symmetry the R charges of the
adjoint chirals, the moment map, and the single Coulomb
branch operator of the Argyres-Douglas theory are

Rðϕ1Þ ¼ Rðϕ2Þ ¼
87 −

ffiffiffiffiffiffiffiffi
354

p

111
∼ 0.61428;

RðμÞ ¼ 11þ 2
ffiffiffiffiffiffiffiffi
354

p

37
∼ 1.31432;

RðuÞ ¼ 252 − 8
ffiffiffiffiffiffiffiffi
354

p

111
∼ 0.914242: ð10:7Þ

If we consider operators built out of these objects then we
find that the following are relevant scalar operators

Trϕ2
1; Trϕ1ϕ2; Trϕ2

2; Trμϕ1; Trμϕ2; u; u2:

ð10:8Þ

Each operator contributes a term t3R, where R is the R
charge of the operator, to the superconformal index, and
thus we can see the following contributions: the Coulomb
branch operator u to t2.74273, the three Trϕiϕj to t3.68568, the
two Trμϕi to t5.7858, and the u2 to t5.48545. The theory has no
marginal operators. The four operators Trϕiϕjϕk would

a priori appear to be relevant operators; however they are
absent in this specific case due to the absence of a cubic
Casimir for G ¼ SUð2Þ. In [12], we consider G ¼ SUðNÞ
and study the SCFTs obtained by renormalization group
flows triggered by both the relevant operators in Eq. (10.8)
and the cubic operators, when they exist. These operators
organize themselves into N ¼ 1 superconformal multip-
lets, and the specific multiplets that contain the relevant and
marginal operators can easily be determined from the
plethystic log; we summarize the operators and their
associated superconformal multiplets in Table V.

C. Gauging one copy of D5ðSUð2ÞÞ
with two adjoint chirals

We consider another example of a gauging with two
adjoint chiral multiplets where the D3ðSUð2ÞÞ from the
previous section is replaced with the D5ðSUð2ÞÞ Argyres-
Douglas theory. The ultraviolet depiction of the resulting
N ¼ 1 SCFT is given by the following quiver

ð10:9Þ

Using the by-now-familiar techniques, we find that the
reduced superconformal index of the infrared SCFT is

Îna¼2

ð5Þ;3;3 ¼ t2.42423 þ t3.23231 − t3.40404χ2ðyÞ þ 3t3.80808

− t4.21212χ2ðyÞ þ t4.38384 þ t4.84847 − 2t4.90404χ2ðyÞ
þ t5.19192 þ t5.65654 − t5.82827χ2ðyÞ þ 2t5.88384

− 4t6 þOðt6.23231Þ: ð10:10Þ

The theory has the same Uð1Þ × SUð2Þ flavor symmetry as
the theory studied in the previous subsection. We can figure
out the relevant and marginal operators that contribute to
the index with the data of the infrared R charges of each
fields. The R charges of the adjoint chiral multiplets, the
moment map, and the Coulomb branch operator of the
D5ðSUð2ÞÞ theory are

Rðϕ1Þ ¼ Rðϕ2Þ ¼
82 −

ffiffiffiffiffiffiffiffi
298

p

102
∼ 0.634680;

RðμÞ ¼ 49þ 5
ffiffiffiffiffiffiffiffi
298

p

102
∼ 1.32660;

RðuÞ ¼ 31 −
ffiffiffiffiffiffiffiffi
298

p

17
∼ 0.808078: ð10:11Þ

We find that there are no terms corresponding to operators
that violate the unitarity bound; thus we expect that the IR
theory in this example indeed has identical central charges.
The full spectrum of relevant and marginal operators we
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find from index, and the N ¼ 1 multiplets to which they
belong, are listed in Table VI.

D. Gauging zero copies of DpðGÞ
with two adjoint chirals

Throughout this paper, and in our previous work [4], we
focus on 4D N ¼ 1 SCFTs that are built out of a diagonal
gauging of Argyres-DouglasDpðGÞ theories, together with
the possible inclusion of adjoint-valued chiral multiplets. In
fact, such a construction can lead to N ¼ 1 theories with
a ¼ c even if the number of Argyres-Douglas theories
included as building blocks is zero! In this section, we
consider the Lagrangian theory obtained formally by
gauging the G flavor symmetries of zero copies of any
DpðGÞ theory, together with two adjoint chiral multiplets.
This is thus simply a quiver gauge theory with a gauge node
G and two adjoint chiral multiplets:

ð10:12Þ

The reader can easily confirm that this theory has a ¼ c,
for any value of G. It has an SUð2Þ flavor symmetry whose
fundamental representation rotates the two adjoint chiral
multiplets, ϕ1 and ϕ2, while the classical Uð1Þ that rotates
their phase is anomalous. We consider G ¼ SUð3Þ, and
then the reduced index of this theory can be determined
utilizing the formula in Eq. (10.1). The result is simply
written as

Îna¼2
adj;adj ¼ t3χsu2;3ðvÞ þ t

9
2ðχsu2;4ðvÞ − χsu2;2ðvÞχ2ðyÞÞ

þ t6ðχsu2;5ðvÞ − χsu2;3ðvÞ þ 2 − χsu2;3ðvÞχ2ðyÞÞ
þOðt152 Þ; ð10:13Þ

where we have refined the index by the fugacity v of the
SUð2Þ flavor symmetry. The theory contains seven relevant
scalar operators

Trϕ2
1; Trϕ1ϕ2; Trϕ2

2; Trϕ3
1; Trϕ2

1ϕ2;

Trϕ1ϕ
2
2; Trϕ3

2; ð10:14Þ

where the first three transform in the 3 of the SUð2Þ flavor,
and the latter four transform in the 4. There are seven
marginal scalar operators

ðTrϕ2
1Þ2; Trϕ2

1Trϕ1ϕ2; Trϕ2
1Trϕ

2
2; ðTrϕ1ϕ2Þ2;

Trϕ1ϕ2Trϕ2
2; ðTrϕ2

2Þ2; Tr½ϕ1;ϕ2�2: ð10:15Þ

Among these seven marginal operators, four of them are
exactly marginal and span a four-dimensional conformal
manifold.

It turns out that G ¼ SUð3Þ is particularly special due to
the absence of an independent quartic Casimir for that Lie
algebra. When we have a larger gauge symmetry, we have
more marginal operators. For example when G ¼ SUð4Þ,
the reduced index is

Îna¼2
adj;adj ¼ t3χsu2;3ðvÞ þ t

9
2ðχsu2;4ðvÞ − χsu2;2ðvÞχ2ðyÞÞ

þ t6ð2χsu2;5ðvÞ − χsu2;3ðvÞ þ 2 − χsu2;3ðvÞχ2ðyÞÞ
þOðt152 Þ: ð10:16Þ

As we can see, there is an additional set of scalar marginal
operators transforming in the 5 of the SUð2Þ flavor. These
are the operators

Trϕ4
1; Trϕ3

1ϕ2; Trfϕ1;ϕ2g2; Trϕ1ϕ
3
2; Trϕ4

2:

ð10:17Þ
These operators exist for the a ¼ c infrared SCFTs that
have ultraviolet description as SUðNÞ with two adjoint-
valued chiral multiplets for any N > 3. The landscape
formed by superpotential deformations to new N ¼ 1
SCFTs triggered by the operators in Eqs. (10.14),
(10.15), and (10.17) has been studied in [68].

XI. SUMMARY AND FUTURE DIRECTIONS

We have determined the superconformal indices for a
wide variety of theories, and we have also discussed in
some cases how we can analyze the computed indices to
determine the low-dimensional operator content of the
theory; hence we are effectively performing operator
spectroscopy. We have verified that there is no unitary
violating operator up to certain order, further supporting
that our a ¼ c theories constructed are unitary interacting
SCFTs. We now summarize the operators that contribute to
the relevant and marginal terms up to t≤6 for the indices of
all of the DpðGÞ gaugings discussed throughout this paper.
(See Tables IV–VI.)
The relevant and marginal operators typically fall into a

few fixed categories. The first kind of operators that appear
are those that arise from the N ¼ 2 E-type supermultiplets
that contain the Coulomb branch operators. Let Q denote
the N ¼ 2 supercharge which has nonzero j2. The states
Qu and Q2u are superdescendants of the Coulomb branch
operator u. After N ¼ 1 gauging, Q is no longer a
supercharge of the theory, and the states u, Qu, and Q2u
are no longer related by supersymmetry; they are indepen-
dent operators. Nevertheless, these states, and products of
these states, regularly contribute relevant and marginal
operators to the spectrum of these a ¼ c SCFTs.
The second category of operators are those constructed

out of the fields of the weakly coupled content of the gauged
theory. We variously include N ¼ 2 vector multiplets,
N ¼ 1 vector multiplets, and N ¼ 1 chiral multiplets.
The fields with which we are concerned are the scalar field
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ϕ inside of the N ¼ 1 chiral multiplet and the gaugino λ
inside of the N ¼ 1 vector multiplet. When the gauging
involves anN ¼ 2 vector multiplet, as in the Γ̂ðGÞ theories,
one introduces both an N ¼ 1 vector and chiral multiplet,
and the supercharge Q, charged under j2, relates the
gaugino and the scalar as λ ¼ Qϕ.
Finally, there are operators constructed out of the moment

maps of each DpðGÞ, μ. Typically, the Joseph ideal in
Eq. (4.6) removes operators containing μk, and thus all
contributions from the moment maps involve products of
moment maps from different DpðGÞ origins. All noncancel-
ing contributions to the indices turn out to be formed either
out of products of these three categories of operators, or else
out of operators belonging to the flavor current multiplets.
In Table IV, we list the relevant and marginal operator

content, and how they contribute to the index, of the
D̂4ðSUð3ÞÞ theory, the four theories obtained by ðN ¼ 1Þ
gauging of between three and six copies ofD2ðSUð3ÞÞ, and
the infrared theory obtained by ðN ¼ 1Þ gauging of two
copies of D2ðSUð3ÞÞ together with a single additional
adjoint chiral multiplet. Similarly, in Table V, we write
the operator content for the Ê6ðSUð2ÞÞ theory, the ðN ¼ 1Þ
gaugings of three and four D3ðSUð2ÞÞ theories, and finally
the theory obtained via the ðN ¼ 1Þ gauging of the SUð2Þ
flavor symmetry of a single D3ðSUð2ÞÞ together with two
additional adjoint-valued chiral multiplets. Lastly, in
Table VI, we write the relevant and marginal operators,
the N ¼ 1 superconformal multiplets that they belong to,
and how they contribute to the index for each of the gauged
theories that we consider involving a D5ðSUð2ÞÞ build-
ing block.
We want to emphasize that the operator spectroscopy

done in this paper has set the foundations to further study an
even broader landscape of 4D SCFTs with a ¼ c. In
particular, we are exploring the landscape of 4D N ¼ 1
SCFTs with a ¼ c by investigating if any superpotential
deformation maintaining the a ¼ c property exists. In view
of the analysis done in [68] on the superpotential deforma-
tions for SQCD with fundamental and adjoint chiral
multiplets, we perform a similar analysis, and we find that
the resulting 4D N ¼ 1 SCFTs often preserve the a ¼ c
property [12].
Another important expectation is that analyzing the

operator spectrum, as we have done in this paper, should
be helpful for constructing potential supergravity dual
theories to these 4d SCFTs with a ¼ c. The fact that a ¼
c holds at finite N, where N is the rank of the gauge algebra,

requires a remarkable cancellation in the contributions to the
subleading orders in any putative AdS5 dual. Determining
the precise mechanism which sources this cancellation is the
subject of ongoing work. In the current paper, we have
computed the superconformal indices only for low-rank
theories; this is because the full index of the higher-rank
DpðGÞ theories are yet unavailable. It would be interesting to
find a method to compute the index for arbitrary rank and
look for the large N behavior of the index, which should be
helpful for understanding the holographic dual of these
theories.11 The operator spectrum of these SCFTs, which we
analyzed via their superconformal indices, provides con-
straints on the form of the supergravity duals, as these
protected operators, and the renormalization group flows that
they trigger, must be replicated in their holographic dual
theories.
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APPENDIX: SUPERCONFORMAL INDICES
WITH FLAVOR FUGACITIES

In this appendix, we list the superconformal indices that
were worked out throughout this paper in a refined way
where all of the fugacities for the flavor symmetries are
turned on. The expressions tend to be rather cumbersome,
as the flavor symmetry is generically just Uð1ÞN , for some
N; however we write them here for both completeness and
future reference. We emphasize that, throughout this
appendix, we are considering the flavor-fugacity-refined
version of the reduced superconformal index, defined as
in Eq. (3.4).
The refined and reduced index of three D2ðSUð3ÞÞ

gauged together by an N ¼ 1 SUð3Þ vector multiplet is

Îð2;2;2Þ ¼ t4ðv21 þ v−11 þ v−21 v22 þ v2 þ v1v−12 þ v−22 Þ − t5χ2ðyÞðv1 þ v−11 v2 þ v−12 Þ
þ t6ðv31 þ v−31 v32 þ v−32 Þ − t7χ2ðyÞðv−21 þ v21v

−2
2 þ v22Þ

þ t8ðv−41 þ 2v−11 þ v21 þ v41v
−4
2 þ v−22 þ 2v1v−12 þ 2v2 þ v−21 v22 þ v42Þ þOðt9Þ: ðA1Þ

11For the case of N ¼ 2 Γ̂ðGÞ theories, the Schur index is available for arbitrary N [45,47,69,70].
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In comparison with the unrefined index in Eq. (7.9), we have here two fugacities v1 and v2 associated to the twoUð1Þ flavor
symmetries generated by F 2 − F 1 and F 3 − F 2. We can see that Eq. (7.9) is recovered when we take v1 ¼ v2 ¼ 1, as
required. Next, we write down the reduced index of four D2ðSUð3ÞÞ theories glued by N ¼ 1 gauging, with the three
fugacities vi for the three Uð1Þ flavor symmetries F iþ1 − F i. The refined index is

Îð2;2;2;2Þ ¼ t
9
2ððv−11 þ v31 þ v1v−12 þ v−31 v32 þ v−33 þ v2v−13 þ v3 þ v−32 v33Þ − χ2ðyÞðv1 þ v−11 v2 þ v−12 v3 þ v−13 ÞÞ
þ t6ð−3þ v−22 þ v22 þ v21v

−2
3 þ v−21 v22v

−2
3 þ v−21 v23 þ v21v

−2
2 v23Þ þOðt9Þ: ðA2Þ

Similarly, the refined index for five D2ðSUð3ÞÞ glued together involves four fugacities vi associated to the four
nonanomalous Uð1Þ flavor symmetries, F iþ1 − F i; we find

Îð2;2;2;2;2Þ ¼ t
18
5 ðv31 þ v−31 v32 þ v−32 v33 þ v−33 v34 þ v−34 Þ − t

21
5 χ2ðyÞðv1 þ v−11 v2 þ v−12 v3 þ v−13 v4 þ v−14 Þ

þ t
24
5 ðv−11 þ v1v−12 þ v2v−13 þ v3v−14 þ v4Þ − 4t6 þOðt365 Þ: ðA3Þ

Finally, the refined index of the conformal N ¼ 1 gauging of six copies of D2ðSUð3ÞÞ is

Îð2;2;2;2;2;2Þ ¼ t3ðv31 þ v−31 v32 þ v−32 v33 þ v−33 v34 þ v−34 v35 þ v−35 Þ − t4χ2ðyÞðv1 þ v−11 v2 þ v−12 v3 þ v−13 v4 þ v−14 v5 þ v−15 Þ
þ t5ðv−11 þ v1v−12 þ v2v−13 þ v3v−14 þ v4v−15 þ v5Þ þ t6ð−5þ v61 þ v32 þ v−61 v62 þ v−31 v33 þ v31v

−3
2 v33

þ v−62 v63 þ v−34 þ v−32 v34 þ v31v
−3
3 v34 þ v−31 v32v

−3
3 v34 þ v−63 v64 þ v−65 þ v31v

−3
5 þ v−31 v32v

−3
5 þ v−32 v33v

−3
5

þ v−33 v34v
−3
5 þ v−33 v35 þ v31v

−3
4 v35 þ v−31 v32v

−3
4 v35 þ v−32 v33v

−3
4 v35 þ v−64 v65Þ þOðt7Þ: ðA4Þ

The fugacities vi are again associated to the five Uð1Þ flavor symmetries, which are generated by F iþ1 − F i.
Next, we turn our attention to the refined indices involving the gauging of D3ðSUð2ÞÞ theories. The refined index of two

D3ðSUð2ÞÞ gauged together, with a fugacity v for the flavor Uð1Þ generated by F 2 − F 1, is

Îð3;3Þ ¼ t3ð1þ v
4
3 þ v−

4
3Þ − t

9
2χ2ðyÞðv2

3 þ v−
2
3Þ þ t6ð1þ v

8
3 þ v−

8
3Þ − t

15
2 χ2ðyÞðv2 þ v−2Þ

þ t9ð1þ v4 þ v−4 þ χ2ðyÞðv4
3 þ v−

4
3ÞÞ þOðt212 Þ: ðA5Þ

Similarly, the refined index of three D3ðSUð2ÞÞ gauged together via the diagonal of the SUð2Þ flavor symmetries is

Îð3;3;3Þ ¼ t4ðv−4
3

1 þ v
8
3

1 þ v
−8
3

2 þ v
4
3

1v
−4
3

2 þ v
4
3

2 þ v
−8
3

1 v
8
3

2 − χ2ðyÞðv
2
3

1 þ v
−2
3

2 þ v
−2
3

1 v
2
3

2ÞÞ
þ t6ðv21 þ v−22 þ v−21 v22 − 2Þ þOðt8Þ; ðA6Þ

where, again, we have introduced two fugacities vi for the two nonanomalous Uð1Þ flavor symmetries generated by
F iþ1 − F i. When four copies of theD3ðSUð2ÞÞ SCFTare ðN ¼ 1Þ gauged together via their common flavor symmetry, we
find that the refined index, with three fugacities vi standing for the threeUð1Þ flavor symmetries associated toF iþ1 − F i, is

Îð3;3;3;3Þ ¼ t3ðv8
3

1 þ v
−8
3

1 v
8
3

2 þ v
−8
3

2 v
8
3

3 þ v
−8
3

3 Þ − t
15
4 χ2ðyÞðv

2
3

1 þ v
−2
3

1 v
2
3

2 þ v
−2
3

2 v
2
3

3 þ v
−2
3

3 Þ
þ t

9
2ðv−4

3

1 þ v
4
3

1v
−4
3

2 þ v
4
3

2v
−4
3

3 þ v
4
3

3Þ þ t6ð−3þ v
16
3

1 þ v
−8
3

2 þ v
8
3

2 þ v
−16

3

1 v
16
3

2

þ v
−16

3

3 þ v
8
3

1v
−8
3

3 þ v
−8
3

1 v
8
3

2v
−8
3

3 þ v
−8
3

1 v
8
3

3 þ v
8
3

1v
−8
3

2 v
8
3

3 þ v
−16

3

2 v
16
3

3 Þ þOðt274 Þ: ðA7Þ

We have now written the flavor-fugacity-refined reduced superconformal indices for all the 4D N ¼ 1 SCFTs arising
from either asymptotically free or conformal gaugings of the diagonal of the flavor symmetry of a collection of either
D2ðSUð3ÞÞ or D3ðSUð2ÞÞ theories. We now include the refined indices for some more sporadic examples of the N ¼ 1

SCFTs with a ¼ c that were determined in [4]. The refined index for the infrared SCFT arising from theN ¼ 1 gauging of
the SUð2Þ flavor symmetries of two copies of D3ðSUð2ÞÞ and one copy of D5ðSUð2ÞÞ is
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Îð3;3;5Þ ¼ t3.05814v122 − t3.50969χ2ðyÞv22 þ t3.96124ðv8
3

1 þ v
−8
3

1 þ 1Þv−82 − t3.99031χ2ðyÞðv
2
3

1 þ v
−2
3

1 Þv−22
þ t4.01938ðv4

3

1 þ v
−4
3

1 Þv42 þ t4.07752v162 − t4.52907χ2ðyÞv62 þ t4.98062v−42 − 2t6 þOðt6.05814Þ: ðA8Þ

There are twoUð1Þ flavor symmetries which do not have an ABJ anomaly, and to which we associated the fugacities v1 and
v2. These correspond to the Uð1Þs generated by, respectively, −F 1 þ F 2 and 3F 1 þ 3F 2 − 5F 3; here F 1;2 are the flavor
Uð1Þs arising from the two D3ðSUð2ÞÞs and F 3 is the flavor Uð1Þ coming from the D5ðSUð2ÞÞ. We can also consider the
refined index of the theory arising from two D5ðSUð2ÞÞ gauged together, where there is one flavor fugacity v standing for
the anomaly free Uð1Þ symmetry generated by −F 1 þ F 2. This index is

Îð5;5Þ ¼ t3ðv8
5 þ v−

8
5Þ − t

15
4 χ2ðyÞðv2

5 þ v−
2
5Þ þ t

9
2ð1þ v

12
5 þ v

4
5 þ v−

4
5 þ v−

12
5 Þ − t

21
4 χ2ðyÞðv6

5 þ v−
6
5Þ

þ t6ðv16
5 þ v−

16
5 Þ þOðt274 Þ: ðA9Þ

Next, we include an example where we are not only gauging a collection of Argyres-Douglas theories, by also where we
include additional chiral matter multiplets charged under the introduced gauge node. In particular, the refined reduced index
for the theory obtained via gauging two D2ðSUð3ÞÞ theories together by N ¼ 1 gauging with one additional adjoint chiral
multiplet ϕ is

Îna¼1

ð2;2Þ;8 ¼ t2.5359v−22 þ t3.80385ðv31 þ 1þ v−31 Þv−32 − t4.26795χ2ðyÞð1þ v1 þ v−11 Þv−12 þ t4.73205ðv21 þ v1 þ v−11 þ v−21 Þv2
þ t5.0718v−42 − t5.5359χ2ðyÞv−22 þ t6ðv21 þ v−21 − 2Þ þOðt6.33975Þ: ðA10Þ

The two fugacities v1 and v2 are for the two flavor Uð1Þ generated by −F 1 þ F 2 and F 1 þ F 2 − T, where T is the
classical Uð1Þ symmetry that rotates the phase of ϕ. As another example involving adjoint-valued chiral multiplets, we
consider the refined index for one D3ðSUð2ÞÞ where the SUð2Þ flavor symmetry is gauged together with two adjoint
chirals ϕ1 and ϕ2. There is an SUð2Þ × Uð1Þ flavor symmetry; the SUð2Þ rotates the two chirals and the remaining
nonanomalous Uð1Þ is T − 3F , where the T is the generator of the Uð1Þ factor in the Uð2Þ that classically rotates the
two adjoint chiral multiplets. The fugacity for the Cartan of SUð2Þ is v1 and that for the Uð1Þ is v2. Altogether, the
refined reduced index is

Îna¼2

ð3Þ;3;3 ¼ t2.74273v82 þ t3.68568ðχsu2;3ðv1Þv22 − χ2ðyÞv22Þ þ t4.62864v−42 − t4.84284χ2ðyÞχsu2;2ðv1Þv2 þ t5.48545v162

þ t5.78580χsu2;2ðv1Þv−52 − t6ðχsu2;3ðv1Þ þ 1Þ þOðt6.42841Þ: ðA11Þ

From all of these refined indices we find that the charges of the operators under the Uð1Þ flavor symmetries, as read off
from the fugacities, matches the identification of operators using operator spectroscopy. Finally, we consider the refined
index for one D5ðSUð2ÞÞ whose flavor SUð2Þ is gauged and coupled to two adjoint chirals ϕ1 and ϕ2. Similar to the
previous example of D3ðSUð2ÞÞ gauged with two adjoint chirals, this theory also has SUð2Þ ×Uð1Þ; two adjoint chirals
are rotated into each other by an SUð2Þ flavor symmetry, and there is also a nonanomalous Uð1Þ that is 5T − 4F ,
where T rotates the phases of adjoint chirals. We turn on fugacities v1 and v2, which are associated to the SUð2Þ and
Uð1Þ flavor symmetries, respectively. The refined index of this theory is given by

Îna¼2

ð5Þ;3;3 ¼ t2.42423v
48
5

2 þ t3.23231v
64
5

2 − t3.40404χ2ðyÞv
8
5

2 þ t3.80808χsu2;3ðv1Þv102 − t4.21212χ2ðyÞv
24
5

2 þ t4.38384v
−32

5

2

þ t4.84847v
96
5

2 − t4.90404χ2ðyÞχsu2;2ðv1Þv52 þ t5.19192v
−16

5

2 − t5.65654v
112
5

2 − t5.82827χ2ðyÞv
56
5

2 þ t5.88384χsu2;2ðv1Þv−32
− t6ðχsu2;2ðv1Þ þ 1Þ þOðt6.23231Þ: ðA12Þ
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