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We introduce the notion of “binary” positive and complex geometries, giving a completely rigid
geometric realization of the combinatorics of generalized associahedra attached to any Dynkin diagram.We
also define open and closed “cluster string integrals” associated with these “cluster configuration spaces”.
The binary geometry of type A gives a gauge-invariant description of the usual open and closed string
moduli spaces for tree scattering, making no explicit reference to a world sheet. The binary geometries and
cluster string integrals for other Dynkin types provide a generalization of particle and string scattering
amplitudes. Both the binary geometries and cluster string integrals enjoy remarkable factorization
properties at finite α0, obtained simply by removing nodes of the Dynkin diagram. As α0 → 0 these
cluster string integrals reduce to the canonical forms of the Arkani-Hamed-Bai-He-Yan (ABHY)
generalized associahedron polytopes. For classical Dynkin types these are associated with n-particle
scattering in the biadjoint ϕ3 theory through one-loop order.
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I. BINARY GEOMETRIES

A remarkable fact about particle scattering in arbitrary
spacetime dimension is that the poset of planar singularities
form combinatorial polytopes. The associahedron poly-
tope [1,2] encodes combinatorially all planar cubic tree
graphs, which has been realized directly in the kinematic
space and is known as the ABHY kinematic associahe-
dron [3]. Its canonical form [4] computes the tree-level
S-matrix of biadjoint ϕ3 theory, which makes hidden
symmetries of the amplitudes manifest. In [5] the ABHY
realization was extended to generalized associahedra of
any finite type cluster algebra [6,7], whose canonical forms
compute biadjoint ϕ3 amplitudes through one loop [8]; the
canonical form of the type-B or type-C polytope (known
as the cyclohedron) contains one-loop tadpole diagrams,

while for the type-D polytope it gives the integrand for one-
loop biadjoint ϕ3 amplitudes.
For a finite type, rank-n cluster algebra, these are

n-dimensional polytopes whose facets (respectively, verti-
ces) are in one-to-one correspondence with cluster variables
(resp., cluster seeds). The boundary structure of such a
polytope has interesting factorizations encoded in the
corresponding Dynkin diagram, where each facet corre-
sponds to removing a node of the Dynkin diagram. For
the associahedron of type An, the facets factorize as
Am ×An−1−m; the type-Bn=Cn associahedron has facets
of the shape Bm ×An−1−m or Cm ×An−1−m; the type-Dn
associahedron has facets of the shape Dm ×An−1−m, A1 ×
A1 ×An−3 or simplyAn−1. Examples of these factorizations
are shown below.

It is fascinating that cluster polytopes provide a geo-
metric realization of the combinatorics of “compatibility”
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for cluster variables. Each cluster variable is associated
with a facet of the polytope; compatible variables corre-
spond to facets in the polytope that meet, while incom-
patible variables correspond to facets that do not touch at
all. But there is still freedom in the particular realization of
the polytope, and any realization can be continuously
deformed in various ways without changing the relevant
combinatorics. It is therefore natural to wonder whether any
geometric realization of the combinatorics exists that is
more rigid and canonical.
This is what we seek to do in this letter. We introduce the

idea of binary geometries as a canonical and rigid way of
realizing the combinatorics of generalized associahedra for
any finite-type cluster algebra. For each facet or cluster
variable denoted as a, we assign a ua variable, and impose
the same number of constraints of the form

ua þ
Y
all b

ubjjab ¼ 1; ∀ a ð1Þ

where the non-negative integer bjja is called the compat-
ibility degree from b to a (originally defined in [6]). It is
zero if and only if a and b are compatible, or equivalently
if the two facets meet. It is highly nontrivial that for
n-dimensional generalized associahedra, these u equations
are consistent and the solution space turns out to be
n-dimensional. Demanding ua ≥ 0, these equations also
force all the ua to take values in [0, 1]. Thus when a facet a
is reached with ua → 0, the ub variables for all incompat-
ible facets (bjja > 0) are forced to go to 1. This is why we
call this a “binary” realization of generalized associahedra.
Restricting the u variables to be positive, the solution space
gives a “curvy” realization of the polytope. It is striking that
the “binary” property is not restricted to real and positive
ua, but is a feature of the complex space of solutions of
Eq. (1). When ua → 0, the second term in the equation

ub þ
Q

all c u
cjjb
c ¼ 1 becomes 0 for all incompatible ub’s,

and so those ub are all equal to 1. This is a novel feature of
the binary geometry; almost all the connections between
geometries with factorizing boundary structures and
physics, have involved reality and positivity in a crucial
way, whereas here the factorization holds with complex
variables.
For typeA, the binary realization (with bjja ¼ 0, 1 only)

turns out to give a gauge-invariant description of the moduli
space of open- and closed-string world sheet at genus
zero [9] (with u variables being cross-ratios [10]). The
binary positive and complex associahedron geometry
directly underpin open- and closed-string amplitudes; we
will see that both the Parke-Taylor form and Koba-Nielsen
factor [11] in string integrals are naturally written in terms
of the u variables. String amplitudes are the stringy
canonical form, or α0 extension of the canonical form,
for ABHYassociahedra [12]; not only does the α0 → 0 limit

reproduce the ϕ3-tree amplitude, but it factorizes into
products of lower amplitudes at finite α0.
We will give a concise definition of the compatibility

degrees from the ABHY realization [8], and it is remark-
able that the u equations encode the boundary structures of
generalized associahedra from (1). Naturally associated
with them are the generalized open- and closed-string
amplitudes that we call cluster string integrals [12]; the
open cluster string integral is the integral over the binary
geometry of its canonical form, and is beautifully regulated
by including all the factors of the form uα

0X

IðfXgÞ ¼
Z
Uþ

ΩðnÞðUþÞ
Y
a

uα
0Xa

a : ð2Þ

These are the most perfect examples of stringy canonical
forms with leading order given by the ABHY polytope [12],
and their factorizations at finite α0 again correspond to
removing a node of the Dynkin diagram [13]. For example,
the α0 → 0 limit of typeD integral gives one-loop planar ϕ3

amplitude, and it factorizes as product of lower-point
integrals of type D and A.
Our aim in this paper is to give a self-contained

description of the u equations, and to summarize and
highlight only a few of the important features of the binary
geometry and associated stringy canonical forms. We will
present a much more detailed discussion of these in a
longer companion article [14], where we will give a cluster
algebraic explanation of u variables and u equations and
construct these cluster configuration spaces as certain
quotients of cluster varieties showing that the space is
smooth with normal-crossing boundary divisors.

II. BINARY ASSOCIAHEDRA
AND STRING AMPLITUDES

A. The U space and the moduli space

We begin by discussing the u-variables in the most
familiar setting of the usual associahedron. We introduce
N ≔ nðn−3Þ

2
ui;j variables, and consider N u equations [3],

1 − ui;j ¼
Y

ðk;lÞ cross ði;jÞ
uk;l; ð3Þ

where the product is over all chords ðk; lÞ that cross ði; jÞ,
i.e., all u’s that are incompatible with ui;j. Equation (3) is
the type-A version of (1) where the only nonzero degree is
1. For example for n ¼ 4 we have u1;3 þ u2;4 ¼ 1 and for
n ¼ 5, we have u1;3 þ u2;4u2;5 ¼ 1 and its cyclic images.
Let us denote the solution space of (3) as the U space,

and a nontrivial observation is that n − 3 of the equations
are redundant, and thus Un has dimension n − 3. The U
space has the boundary structure of an associahedron
purely algebraically; at a boundary ui;j → 0, we see that
for any incompatible ðk; lÞ, the rhs of 1 − uk;l vanishes, thus
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uk;l → 1 and all incompatible u’s decouple. We are left with
U spaces for two polygons divided by ði; jÞ, thus the
boundary is given by their product,

∂ui;j→0Un ¼ Uði; iþ 1;…; jÞ ×Uðj; jþ 1;…; iÞ: ð4Þ

We see that u equations encode the boundary structure of
An−3 even for u ∈ C. For example, as u1;3 → 0,
u2;4; u2;5 → 1, which decouple from u equations, and we
are left with u1;4 þ u3;5 ¼ 1 which defines the n ¼ 4 space
Uð3; 4; 5; 1Þ [times the trivial Uð1; 2; 3Þ space].
We can include positivity. By requiring all ui;j ≥ 0, (3)

implies all of them satisfy 0 ≤ ui;j ≤ 1, which cut out a
“curvy” associahedron with N facets; we will refer to it as
the positive part of U space, Uþ

n , which has the same shape
as An−3. For n ¼ 5, the positive part Uþ

5 ∼A2 gives a
“curvy” pentagon [3].
As mentioned above, the U space turns out to provide

a SL(2)-invariant description of the moduli space (or
configuration space), M0;n, of n points on P1, where the
u’s can be interpreted as cross-ratios of such n points. Let us
see how the moduli space naturally emerges from (3).
Consider a pair of disjoint sets of points, A, B and we
can write A ¼ faþ 1; aþ 2;…; bg and B ¼ fcþ 1;
cþ 2;…; dg where a, b, c, d are cyclically ordered. We
define UA;B ¼ Q

i∈A;j∈B ui;j and note the trivial identity
UA;B1

UA;B2
¼ UA;B for two disjoint sets B1 ∪ B2 ¼ B.

Furthermore, we define complementary sets Ā, B̄ as Ā ¼
fbþ 1;…; cg and B̄ ¼ fdþ 1;…; ag. From (3) we can
deduce that

UA;B þ UĀ;B̄ ¼ 1: ð5Þ

Indeed, (3) is a special case of (5); choosing A ¼ fig,
B ¼ fjg, the ranges for k and l in (3) are fīg, fj̄g,
and (3) becomes Ufig;fjg þUfīg;fj̄g ¼ 1. The extended u
equations (5) nicely lead to the identification of U’s as
cross-ratios. Denoting UA;B as ½a; bjc; d�, we have
UĀ;B̄ ¼ ½b; cjd; a�, and thus we see the appearance of four
points and the identities ½a; bjc; d�must satisfy. Trivially, we
have ½a; bjc; e�½a; bje; d� ¼ ½a; bjc; d� and more interest-
ingly by (5) we have ½a; bjc; d� þ ½b; cjd; a� ¼ 1. They
are precisely identities that invariantly characterize cross-
ratios for n points on P1. The solutions are

½a; bjc; d� ¼ ðadÞðbcÞ
ðacÞðbdÞ ; ð6Þ

where ðabÞ denotes a minor of Gð2; nÞ that represents n
points on P1. If we further require the n points to be ordered
on RP1 [equivalently they can be represented by a point in
Gþð2; nÞ], then all the cross-ratios are between 0 and 1;
0 < ½a; bjc; d� < 1. This is how the open-string moduli
space, Mþ

0;n, emerges from u equations.

We have just seen that the ui;j allow us to describe the
open-string moduli space without thinking about n ordered
points on the boundary of a disk. But this standard picture
allows us to see something else as well—the presence of
different orderings of the n points, which relate to different
color orderings for scattering amplitudes. In contrast, the
ui;j variables appear inexorably linked to a single ordering.
So how can we see the other orderings from this point of
view? This question has a natural answer. As we have
discussed, it is when we restrict all the ui;j ≥ 0, that the u
equations force them to lie in the unit interval, 0 ≤ ui;j ≤ 1.
It is natural to ask whether some of the ui;j’s might be
negative. Without any detailed study of the solutions of the
extended u equations, we can just ask which sign patterns
for the u’s are allowed to be compatible with
UA;B þ UĀ;B̄ ¼ 1, i.e., excluding only those sign patterns
for which both terms are negative. Quite beautifully, we
find that precisely ðn − 1Þ!=2 such sign patterns are
allowed. For any consistent sign pattern, it is natural define
new positive variables û in the obvious way by writing
ûi;j ¼ ð−1Þsgnðui;jÞui;j. We can then rearrange the extended
u equations to be in the form of setting the sum of two
monomials in the û variables to unity. Remarkably, the set
of all the Û equations we get in this way is just a a
reordering of the extended u equations we started with.
This exposes a hidden Sn symmetry of the Un space which
we can recognize as permutations of the n points once we
identify the space with M0;n. Taking the ui;j to be real, we
see thatUnðRÞ ∼M0;nðRÞ is tiled by ðn − 1Þ!=2 connected
components, and each of them is an associahedron Uþ

n ∼
An−3 for a cyclic ordering. For example, it is easy to check
that there are 12 such consistent sign patterns for n ¼ 5 [for
12 pentagons of M0;5ðRÞ]; similarly there are 60 sign
patterns for n ¼ 6, which gives 60 A3 associahedra that
tile M0;6ðRÞ.

B. Open string integrals on the U space

It is very natural to define integrals on the U space,
which turn out to be usual string integrals with Koba-
Nielsen factor. For the open-string case, we are interested in
integrating the canonical form for the positive part, which
can be obtained by a (trivial) pushforward [4]. Given an
acyclic quiver ofAn−3, or equivalently a triangulation of an
n-gon without any internal triangle, it turns out by (3) that
one can solve for all the N u variables rationally in terms of
the n − 3 uα’s in that cluster seed. This provides a one-to-
one map from the space f0 < uα < 1g to Uþ

n , and thus the
canonical form can be obtained by pushforward [4]

ΩðUþ
n Þ ¼

Yn−3
α

d log
uα

1 − uα
; ð7Þ

and any acyclic quiver gives the same result. Consider
integrating it over Uþ

n , which of course diverges at
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boundaries; a natural way to regularize the integral is by
putting a factor uα

0X with X > 0 for each boundary,

IUþ
n ðfXgÞ ≔ ðα0Þn−3

Z
Uþ

n

ΩðUþ
n Þ
Y
i;j

u
α0Xi;j

i;j : ð8Þ

The formΩðUþ
n Þ is the famous Parke-Taylor form forMþ

0;n

[or Gþð2; nÞ mod torus action], ΩðUþ
n Þ ¼ dnz=SLð2Þ

ð12Þ���ðn1Þ, where
z’s denote the n punctures of Mþ

0;n [or inhomogeneous

coordinates of Gþð2; nÞ=T]. As shown in [12], IUþ
n is

nothing but the open-string integral where the regulator is

exactly the Koba-Nielsen factor,
Q

i;ju
α0Xi;j

i;j ¼Q
a;bðabÞα0sa;b

with ðn
2
Þ Mandelstam variables given by sa;b ¼ Xa;b þ

Xaþ1;bþ1 − Xa;bþ1 − Xaþ1;b; since we mod out the torus
action, there are n constraints (momentum conservation)P

b≠a sa;b ¼ 0, and thus only nðn − 3Þ=2 of the sa;b are
linearly independent.
The leading order of IUþ

n is given by the biadjoint ϕ3

amplitudemnðfXgÞ, and the same result can be obtained by
summing over saddle points [3], known as Cachazo-He-
Yuan (CHY) formulas [15,16]. This connection between
α0 → 0 limit and “scattering equations” in the α0 → ∞ limit
has been understood as a general phenomenon for any
stringy canonical form [12] (see also [17]).
What is special about IUþ

n is that it factorizes perfectly
even at finite α0, which becomes manifest in the form of (8).
It is easy to see that IUþ

n has a simple pole at each Xi;j ¼ 0,
and the residue is given by the integral at the boundary
at ui;j → 0; at this boundary we have ∂ui;j→0ΩðUþÞ ¼
Ωð∂ui;j→0UþÞ by definition, which factorizes into two lower
forms, since the boundary factorizes as (4). Remarkably,
precisely due to (3), the Koba-Nielsen factor factorizes
accordingly, and we have

ResXi;j¼0IUþ
n ¼

Z
Uþ

L×U
þ
R

ðΩL ×ΩRÞ
Y
L

ðuα0XÞ ×
Y
R

ðuα0XÞ;

which is nothing but IL × IR, where L and R denote the
two polygons divided by the chord ðijÞ in the n-gon. Let us
give an example for n ¼ 5; IUþ

5 reads

Z
1

0

d log
u1;3

1 − u1;3
d log

u1;4
1 − u1;4

uX1;3
1;3 u

X1;4
1;4 u

X2;4
2;4 u

X2;5

2;5 u
X3;5

3;5 ;

whose leading order is the canonical function ofA2 cut out
by 5 facets, Xi;j > 0, with ABHY conditions c1;3 ¼
X1;3 þ X2;4 − X1;4, c1;4 ¼ X1;4 þ X2;5 − X2;4, c2;4 ¼ X2;4þ
X3;5 − X2;5. At finite α0, e.g., as X13 → 0, the residue is
given by the Veneziano amplitude (times I3 ¼ 1), IUþ

4 ¼R
1
0 d log u

1−u u
sð1 − uÞt with s ¼ X14, t ¼ X35.

It is also natural to consider closed-string integrals for a
pair of orderings, α and β, in complex U space,

Ic
nðαjβÞ ≔

Z
UðCÞ

ΩðUþ
α Þ

Y
uα

0X
�
ΩðUþ

β Þ
Y

uα
0X
��

;

where from the monomial transformation of u’s, we
see that ΩðUþ

α Þ by (7) is the Parke-Taylor form of
ordering α, and the Koba-Nielsen factor is permuta-
tion invariant, thus the integral can be written asR
UðCÞ ΩðαÞΩ�ðβÞjQa;bðabÞα0sa;b j2. Similarly, we can inte-
grateΩðUþ

α Þ in a different region UþðβÞ. The leading order
of both integrals are general biadjoint ϕ3 amplitudes,
mnðαjβÞ, given by (the canonical function of) ABHY
associahedra with certain facets sent to infinity [12].
We end with some counting regarding M0;n. It is well-

known that out of all ðn − 1Þ!=2 ordering ΩðαÞ’s, only
ðn − 2Þ! are linearly independent, which is the number of
independent top-dimensional d log forms, or Parke-Taylor
forms [18]. Moreover, in the presence of the Koba-Nielsen
factor, the dimension of the (n − 3)th [half the dimension of
M0;nðCÞ] twisted (co)homology group is ðn − 3Þ!, which
is the number of saddle points [12] (see also [17,19]), thus
the matrix I c

nðαjβÞ and mnðαjβÞ has rank ðn − 3Þ! [20–23].
It is known that the Euler characteristic ofM0;nðCÞ is given
by ð−1Þn−3ðn − 3Þ! [24,25].

III. CLUSTER CONFIGURATION SPACES

Now we explain how a binary geometry, called the
cluster configuration space, can be constructed for gener-
alized associahedra of finite-type cluster algebras. The only
new ingredient in the u equations, (1), is that the compat-
ibility degree bjja can take values other than 0, 1. They
form aN × N matrix for a finite-type cluster algebra withN
cluster variables. Let us give a concise definition of the
compatibility degree without referring to most of the
machinery of cluster algebra, based on a picture of “walk
through all cluster variables” which underpins the ABHY
realizations of generalized associahedra [5,8].

A. General u equations from the walk

To define a walk, we start with any acyclic quiver with n
nodes, and at each step pick one of the sources, i.e., a node
with only outgoing arrows, and reverse all these arrows so
they become incoming [26]. We assign each node a “linear”
variable X (which corresponds to a facet of the generalized
associahedron), and at each step we have exactly one new
variable; when mutating (a source) v to v0, we replace Xv
with Xv0 and impose a linear relation [5,8]

Xv þ Xv0 −
X
w←v

Xw ¼ cv; ð9Þ

where cv is a positive constant labeled by v as well. Note
that for quivers that are not simply laced, there can be
integer “weight”, so in general we have−

P
w nwXw instead

(with nw being the weight for w of the arrow w ← v).
We claim that if and only if the quiver is a Dynkin diagram,
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we can consistently stop the walk and end up with a
polytope which is independent of the constants [8]. For
such a case, we walk N − n steps and require all the N
variables to be positive, X > 0, which gives a n-dim
generalized associahedron with N facets; (9) allows us
to solve all N variables in terms of the original n X’s and
N − n positive c’s. It is highly nontrivial that given a
Dynkin diagram, starting from any acyclic quiver and
walking in any order always give the generalized associa-
hedron (with different ABHY realizations).
For a givenvariable b, we define bjja for all a from awalk

withN − n steps as follows. Choose any initial quiver where
b is a source and for any variable a, the degree is defined as
the solution to (9), bjja ≔ Xa with the following conditions
on initial X’s and the c’s. Let us set all the n initial variables
X ¼ 0 (including Xb ¼ 0), and we set all c ¼ 0 except for
cb ¼ 1 (corresponding to the step immediately after Xb).
By (9) we see bjja ¼ Xa is an integer “Green’s function”
from b to awith the only nonvanishing source from cb ¼ 1.
To obtain the N × N matrix we need to do such walks
starting with all N of the a variables. One can check that in
the simply-laced case we always have ajjb ¼ bjja, for type
Awe have only ajjb ¼ 0, 1, and for other types we can have
bjja > 1.

Let us give some examples of u equations from our
definition of compatibility degrees. We start with Dn with
N ¼ n2 variables, and a natural way to label these variables
is to first assign for the Dynkin diagram n initial variables
u1; ũ1; u1;2; u1;3;…; u1;n−1, and the rest can be obtained by
cyclic rotations. There are three types of u equations, those
for ui or ũi, those for ui;iþ1 and those for ui;j for non-
adjacent i, j. It suffices to write them explicitly for the first
nontrivial example, D4:

4 eps∶ 1 − u1;2 ¼ u3ũ3u4ũ4u23;4u2;3u2;4u4;1u3;1;

4 eps∶ 1 − u1;3 ¼ u4ũ4u4;1u4;2u2;4u3;4;

8 eps∶ 1 − u1 ¼ ũ2ũ3ũ4u2;3u3;4u2;4: ð10Þ
The compatibility degrees in (10) are obtained from walks
as discussed above. Let us show an example of the walk
which gives bjja with b ¼ 12 (when 3 sources can be
mutated at some steps we do all of them together).

The nonsimply-laced Dynkin diagrams can be obtained
from simply-laced ones by folding. Type Bn−1 can be
obtained from type Dn by identifying ui and ũi for
i ¼ 1;…; n, thus we can obtain N ¼ n2 − n u’s and
equations for Bn−1 (here bjja is not necessarily symmet-
ric) [27]. For example, for B3 we have 12 u equations:

1 − u1;2 ¼ u23u
2
4u4;1u3;1u

2
3;4u2;4u2;3;

1 − u1;3 ¼ u24u4;2u4;1u3;4u2;4;

1 − u1 ¼ u2u3u4u2;3u3;4u2;4; ð11Þ

plus cyclic rotations. Similarly, Cn−1 can be obtained from
A2n−3, which corresponds to triangulating a 2n-gon, by
identifying ui;j ¼ uiþn;jþn (the cluster seeds correspond to
centrally-symmetric triangulations). Combinatorially, it is
also an (n − 1)-dim cyclohedron, but its u equations,
obtained from folding those of A2n−1, are different from
those of Bn−1 since some compatibility degrees differ,
except for the case B2 ¼ C2.
Finally let us give the only two 2d cases beyond A2;

hexagon, B2 ¼ C2 and octagon, G2. From identification of
A3, and denoting the variables cyclically as u1, v1, u2, v2,
u3, v3, the u equations for B2 ¼ C2 read

1 − u1 ¼ u2v2u3; 1 − v1 ¼ v2u23v3; ð12Þ

plus 2 more cyclic rotations. Here we see the walk that
gives the equation for v1 is

From identification of B3 and renaming variables as
u1; v1;…; u4; v4, we have 8 u equations for G2 (below we
show the walk for v1), which are cyclic rotations of

1 − u1 ¼ u2v2u23v3u4; 1 − v1 ¼ v2u33v
2
3u

3
4v4: ð13Þ

Finally, we note that F 4 can be obtained by folding E6.
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B. Cluster configuration space

The first observation about the u equations for a finite
type Φ is that only N − n of them are independent, thus the
solution space, denote as UðΦÞ, is n dimensional. Purely
algebraically, the U space has the same boundary structure
as the generalized associahedron; as ua → 0, all incom-
patible ub → 1 (those with bjja > 0), and the boundary has
the same structure as the corresponding facet of the
generalized associahedron. Moreover, if we impose that
all u’s are positive, we have the positive part with all N
0 < ua < 1, which cut out a“curvy” generalized associa-
hedron of type Φ. For example, UþðBÞ, UþðCÞ give
“curvy” cyclohedra whose facets are of the shape A × B
(or A × C); UþðD4Þ is a curvy polytope with 12 A3 ∼D3

facets and 4 A3
1 (cubes), and in total 50 vertices (one for

each seed when 4 compatible u’s approach zero).
We remark that the u equations for any finite type can be

derived from a set of equations we call local u equations,
which are associated with the walks. For any walk with
N − n steps, at each step we write

1 − uv
uv

1 − uv0

uv0
¼

Y
w←v

ð1 − uwÞ; ð14Þ

for mutating a source v to v0. By considering different
walks, we find that there are N such local u equations (14)
with rank N − n; we claim that they are equivalent to (1).
For example, one can show that (3) are equivalent to the
following nðn−3Þ

2
equations for An−3:

1 − ui;j
ui;j

1 − uiþ1;jþ1

uiþ1;jþ1

¼ ð1 − ui;jþ1Þð1 − uiþ1;jÞ: ð15Þ

For B2 ¼ C2 and G2, (12) and (13) are equivalent to

1−ui
ui

1−uiþ1

uiþ1

¼ 1−vi;
1−vi
vi

1−viþ1

viþ1

¼ð1−uiþ1Þp;

for p ¼ 2, 3, respectively (note we have i ¼ 1;
2;…; pþ 1). With the identification Y ≔ u

1−u, the local u
equations agree with recurrence relations for these Y
variables in the Y system for any finite type cluster
algebra [6,28].
From (14) we see that only for an acyclic quiver can all

the N u variables be solved rationally using its n variables.
One can then show that the form

Q
α d log

uα
1−uα

is identical
(up to a sign) for all such seeds, which in turn gives the
canonical cluster form ΩðUþÞ with logarithmic singular-
ities on the boundaries of the U space.

IV. OPEN CLUSTER STRING INTEGRALS

Based on any binary positive geometry, it is natural to
write down stringy integrals generalizing usual string
amplitudes. To write down the canonical form of Uþ,

we apply exactly the same prescription as in the type A
case. Pick any seed with an acyclic quiver which has uα
with α varying over the n nodes, e.g., forDn we can choose
u1; u01; u12;…; u1;n−1; we find a diffeomorphism from
f0 < uα < 1g to Uþ

n ðΦÞ, thus we have a (trivial) pushfor-
ward formula for ΩðUþðΦÞÞ as in (7). The open cluster
string integral over UþðΦÞ is defined as

IΦðfXgÞ ≔ ðα0Þn
Z
UþðΦÞ

Yn
α

d log
uα

1 − uα

YN
a

uα
0Xa

a ;

where Xa > 0 and we have a meromorphic function of X’s
which is reminiscent of string amplitudes. Such integrals
are exponentially suppressed as α0 → ∞, and satisfy the
analog of channel-duality and Regge behavior [12]. It is the
stringy canonical forms of an ABHY generalized associa-
hedron [12] (see Sec. 9.3 for a D4 example): if we choose a
positive parametrization using e.g., principal coefficients,
the regulator

Q
uX contains the N − n F-polynomials. As

α0 → 0, we have the ABHY polytope for the dual Dynkin
diagram, which is given by the Minkowski sum of the
Newton polytopes [14]. Its canonical function gives the
leading order of the integral,

P
seed

Q
v

1
Xv
, where we sum

over all vertices/seeds with each term given by product of
Xv for its d facets. For Bn−1=Cn−1 andDn, it gives planar n-
point tadpole diagrams, and one-loop planar integrand for
bi-adjoint ϕ3-theory, respectively [8]. The same result can
be obtained from pushforward due to the “scattering-
equation map” from Uþ to the ABHY polytope.
These generalized string amplitudes are very special

since on any “massless” pole, Xa ¼ 0, they have factor-
izations associated with Dynkin diagrams, at finite α0. The
argument is the same as for type A—the residue at Xa ¼ 0
is given by the integral over the boundary with ua → 0,
where both the form Ω and the regulator

Q
uX “factorize”

by removing a node of the Dynkin diagram.
For example, removing a generic node in type Dn

corresponds to Xi;j → 0, and the integral IðDnÞ factorizes
as IðAÞ × IðDÞ [there are nðn − 3Þ such facets].
Removing the trivalent node corresponds to Xi;iþ1 → 0,
and the integral factorizes as IðAn−3Þ × IðA1Þ × IðA1Þ (n
such facets) and for removing one of the two special nodes,
Xi → 0 (or X̃i → 0), the residue is given by the “forward
limit” of the (nþ 2)-point string integral, IðAn−1Þ. More
exotic factorizations happen for type Em with m ¼ 6, 7, 8,
e.g., for IðE6Þ the polytope has 6 × 7 ¼ 42 facets; for
any of the 7 poles associated with the trivalent node,
the residue factorizes as IðA2Þ × IðA2Þ × IðA1Þ or
“5-pt” × “5-pt” × “4-pt”, and on other facets we have
IðA4Þ × IðA1Þ, IðD5Þ, or IðA5Þ. It is remarkable that
these integrals contain products of string amplitudes as
residues on massless poles.
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V. CLOSED CLUSTER STRING INTEGRALS

Finally, let us briefly comment on extended u equations,
and the analogs of “orderings” and closed-string integrals
for the cluster configuration space. For any finite type Φ,
one has extended u equations of the form

UI þ VI ¼ 1; ð16Þ

where I indexes a mutation relation—just as for type A
where (5) corresponds to a mutation from ðacÞ → ðbdÞ, we
show in [14] that Eq. (16) corresponds to mutation relations
of the cluster algebra. Here UI and VI are monomials of u
variables determined by a mutation, and for a special
mutation in our walk, it reduces to one of the usual u

equations (1) with UI ¼ ua and VI ¼
Q

b u
bjja
b .

We conjecture that the “orderings”, or connected com-
ponents of UðRÞ (with boundaries removed), are in
bijection with the sign patterns consistent with all the
extended u equations (16). A new phenomenon is that in
general these regions can have shapes different from the
original positive part. For UðCnÞ we find that the real space
is tiled by components that are “curvy” cyclohedra and
associahedra, e.g., for B2 ¼ C2 we find 4 hexagons and
12 pentagons tiling the space UðRÞ.
Based on the “orderings”, one can also define closed

cluster string integrals over UðCÞ for finite-type cluster
algebras, with canonical forms and regulators for two
“orderings” ΩðαÞQ uXðΩðβÞQ uXÞ� (and similarly
open-stringy integrals with forms for two components).
Such a complex integral is well-defined if we can write u’s
in ordering β as monomials of u’s in ordering α, so that
exponents of any u and u� differ only by integer shifts. We
leave a detailed discussion of the integrals and possible
physical meaning to future work.

VI. POINT COUNTS

To find the connected components of UðΦÞðRÞ for any
finite type, it is useful to study various topological proper-
ties of the U space [14]. The latter can be done beautifully
by counting the number of points inU over a finite field Fq,
N ðqÞ, for any prime number q (excluding some bad prime
cases). It is remarkable that N ðqÞ is a polynomial of q for
type A, B, and C, and it is a quasipolynomial for cases
including D4, G2 etc. For these cases, jN ðq ¼ −1Þj and
jN ðq ¼ 1Þj immediately give the number of connected
components of UðRÞ, and the Euler characteristic of
UðCÞ (which is the number of saddle points/independent
integral functions), respectively. Moreover, the coefficient
of each order in q is the dimension of the corresponding
(co)homology group, and in particular jN ðq ¼ 0Þj gives
the number of linearly independent top-dimensional d log
forms.
Let us spell out the counting for simple cases. For An−3,

the point count gives ðq − 2Þðq − 3Þ � � � ðq − nþ 2Þ, and

we recover ðn − 1Þ!=2, ðn − 2Þ! and ðn − 3Þ! as mentioned
above. For UðBnÞ we find N ðqÞ ¼ ðq − n − 1Þn, thus the
number of components, top-dim d log forms and saddle
points are ðnþ 2Þn, ðnþ 1Þn, and nn, respectively. For
UðCnÞ, N ðqÞ ¼ ðq− n− 1Þðq− 3Þðq− 5Þ � � � ðq− 2nþ 1Þ,
thus these numbers are ð2nÞ!!ðnþ 2Þ, ð2nþ 1Þ!!ðnþ 1Þ
and ð2nÞ!!=2.
Let us include two examples with quasipolynomial

counting. For G2, we find N ðqÞ ¼ ðq − 4Þ2 þ 4δq where
δq ¼ 0 if q ¼ 2 mod 3 and 1 if q ¼ 1 mod 3; substituting
q ¼ −1 and q ¼ 1 in both cases gives the correct
counting—25 connected components and 13 saddle points.
For D4, N ðqÞ ¼ q4 − 16q3 þ 93q2 − 231qþ 206þ 2δq,
and indeed we find 547 components and 55 saddle points.

VII. OUTLOOK

There are a large number of obvious mathematical
questions associated with the binary geometries we have
introduced in this letter, some of which will be taken up
in [14]. But the most urgent and interesting question is a
physical one: is there any natural physical meaning to the
cluster string integrals beyond the usual string amplitudes
associated with type A? We know that these objects
strikingly generalize the remarkable factorization proper-
ties of string amplitudes, and we also know that in the
α0 → 0 limit, at least for the classical Bn, Cn,Dn types, they
reduce to field theory integrands at one loop. Are they
somehow related to real string amplitudes at one loop? If so
the string-loop amplitudes are clearly being represented in a
completely different way. If not, what is the physical
interpretation of these functions?
Let us close by remarking that the existence of the u

equations giving a binary realization of the compatibiltiy for
cluster polytopes is rather miraculous. Of course we can
write down such u equations for any n-dimensional poly-
tope; for any facet f and all facets f0 that are not adjacent to
f, we ask uf þ

Q0
f u

0
f ¼ 1. Naively there are as many

equations as unknowns here, and we would find only a
discrete set of solutions, rather than an n-dimensional space.
It is highly nontrivial that these equations are consistent with
each other and give an n-dimensional solution space.
Indeed, working with the simplest case of n ¼ 2 dimen-
sional polygons, one can attempt to write e.g., the u
equations with all unit exponents for any N-gon, and
remarkably find that they are only consistent for N ¼ 4,
5, which correspond toA1 ×A1,A2. By allowing nontrivial
exponents we then find N ¼ 6, 8 corresponding to B2 ¼ C2
andG2. Preliminary investigations [29] suggest that oneway
to obtain such binary geometries is to consider “degener-
ations” of generalized associahedra with certain c’s set to
zero, including products of lower-dimensional ones but
many more nontrivial cases. It is fascinating that this simple
and naturalmathematical question, about binary realizations
of the combinatorics of polytopal geometry, can be realized
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by incredibly special polytopes with a factorizing boundary
structures, including the ones associated with unitary
particle scattering processes in spacetime.
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