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In AdS=CFT corresponding, the UV divergence of generating functional on the field theory can be
removed as the IR divergence in the gravity. This geometric process is well known as holographic
renormalization. The standard method of holographic renormalization is based on the Fefferman-Graham
expansion, which is strict and universal but technically cumbersome. To improve the technique, different
methods have been proposed. Here we develop an alternative approach to holographic renormalization
based on the Hamilton-Jacobi formulation of gravity. Compared to previous approaches, its distinguishing
feature is the generation of exact ansatz of counterterms. We apply this approach to several typical
holographic models, which consistently performs well.
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I. INTRODUCTION

Anti-de Sitter/conformal field theory (AdS=CFT) corre-
sponding not only provides a gravitational lens for the
strongly coupled quantum many-body system but also
inspires the theory of quantum gravity [1]. Holographic
renormalization (HR), which removes the UV divergence
on the boundary field theory by isolating the IR divergence
in the bulk gravity, is one of the essential components in the
AdS=CFT [2,3].
There are various ways to perform the HR [4–20].

Among others, the standard method is strict, universal,
and conceptually simple [4,7,8]. However, its core com-
ponent, the Fefferman-Graham (FG) expansion (especially
its inversion), is technically cumbersome [21], which can
be partially attributable to the breaking of covariance in the
procedure. The problem of covariance is absent in a class of
approaches based on the Hamilton-Jacobi (HJ) formulation
of gravity, where the radial coordinate plays the role as
time. This class of approach was first proposed by de Boer,
Verlinde, and Verlinde (dBVV) [9,10], who derive the
counterterms in the derivative expansion by iteratively
solving the radial HJ equation. Note that here the HJ
equation is reduced to the Hamiltonian constraint which
ensures the invariance under the radial diffeomorphism.

The dBVV’s approach is considerably improved by
Kalkkinen, Martelli, and Muck [11,12]. In particular, the
logarithmic counterterms that have not been explicitly
obtained in [9,10] are isolated by relating them to the
breakdown of the recursive equation. The main flaw
common to these works is the requirement to postulate
an ansatz consisting of all potential divergent terms. Since
usually the ansatz is constrained only to be local and
covariant, it is likely to contain plenty of redundancy while
sometimes the sufficient ansatz is difficult to figure out. In
Refs. [13,14], Papadimitriou and Skenderis put forward a
systematic method without relying on the ansatz. The
crucial difference is that the covariant expansion is organ-
ized according to the eigenfunctions of the dilatation
operator comprised of induced metric and scalar fields.
However, as pointed out in [15], the eigenfunctions of the
dilatation operator for an arbitrary scalar potential would
not serve as a practical basis for the expansion since they
would be highly nontrivial.1 This problem has been
addressed in [15], where the dilatation operator is replaced
by the operator relevant only to the induced metric and
usually the resulting recursive equations are the functional
differential equations.
In 2016, Evang and Hadjiantonis proposed a practical

approach to the HJ formulation of HR, which returns to the
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1The dilatation operator can be understood as the asymptotic
form of the functional representation of the radial derivative. In
Ref. [13], it has been noted that the functional representation must
be modified when the leading asymptotics of bulk fields are of the
form r expð−dr=2Þ. This happens when the scaling dimension of
dual operators is Δ ¼ d=2. The well-known Freedman-Gubser-
Pilch-Warner (FGPW) model is exactly this case [22].
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derivative expansion and the postulation of ansatz [19]. In
contrast to previous approaches for solving the Hamiltonian
constraint, this one preserves the radial partial-derivative
term of the HJ equation.2 We hence refer to the former as
Hamiltonian approaches and the latter HJ approach. The
HJ approach has been illustrated in several Einstein-scalar
theories, including the FGPW model, the dilaton-axion
system with constant potential and others. Interestingly, it
handles power and logarithmic divergences in completely
the same way, that is, there is no difference between their
derivations such as the breakdown of recursive equations.
In Ref. [20], it is clarified that the HJ approach is not
conflicted with the Hamiltonian constraint, because there
only a part of the HJ equation is actually used to perform
HR while the Hamiltonian constraint is not used. Thus, the
HJ approach is strict and applicable to the theories with or
without the diffeomorphism symmetry.
In this paper, we will develop a new version of the HJ

approach to HR. The key improvement we will make is a
systematic method to generate the exact ansatz. By “exact,”
it means no omission and no redundancy. Moreover, it will
be illustrated that a general solution to the coefficients in
the ansatz can be derived. In the Appendix, we will provide
some technical details and apply the new approach to some
typical holographic models. In particular, we will study a
generalized holographic axion model, which has interesting
applications in the duality between gravity and quantum
matter [24–27]. Since its action allows for the derivative
term with nonintegral powers, this model might be a
challenge for previous HR approaches that require a
complete list of all possible ansatz or similar information.
In fact, this was the original motivation for developing our
new approach.

II. BENCHMARK

We will develop the benchmark of the approach in terms
of the Einstein gravity coupled to scalars fields in the
dþ 1-dimensional asymptotic AdS spacetime. The bulk
action of the theory is

S ¼ −
Z
M
ddþ1x

ffiffiffi
g

p ðR − gμνGIJ∂μΦI
∂νΦJ − VÞ; ð1Þ

where V is a potential of scalar fields and GIJ denote their
symmetric couplings.

A. HJ formulation

Let us introduce the HJ equation of this gravity system.
Using Eq. (1) and the Arnowitt-Deser-Misner (ADM)
metric with FG gauge [28]

ds2 ¼ dr2 þ γijdxidxj; ð2Þ

one can obtain the radial Hamiltonian [19,20]

H ¼
Z
∂M

ddx

�
1ffiffiffi
γ

p
�
πijπ

ij −
1

d − 1
π2 þ 1

4
GIJπIπJ

�

þ ffiffiffi
γ

p
LS

�
; ð3Þ

where πij and πI are the canonical momenta conjugate to
the induced metric γij and the scalar fields ΦI. We would
like to refer LS as the counterterm seed due to its role
played in the HR, which is given by

LS ¼ R − γijGIJ∂iΦI
∂jΦJ − VðΦÞ: ð4Þ

In classical mechanics, the canonical momenta can be
expressed as the variation of the on-shell action Sos [29]. As
a result, the HJ equation can be written as3

H

�
γij;ΦI;

δSos
δγij

;
δSos
δΦI

�
þ ∂Sos

∂r
¼ 0: ð5Þ

In section A of the Appendix, we have reviewed that the
HJ equation can be divided into two parts. We focus on the
counterterm part

Hct þ
∂Sct
∂r

¼ 0; ð6Þ

where

Hct ¼ −
Z
∂M

ddx½fSct; Sctg þ ffiffiffi
γ

p
LS�; ð7Þ

fSct; Sctg ¼ 1ffiffiffi
γ

p
�
δSct
δγij

δSct
δγkl

γijkl þ
1

4
GIJ δSct

δΦI

δSct
δΦJ

�
; ð8Þ

γijkl ¼ γikγjl −
1

d − 1
γijγkl: ð9Þ

For later use, we rewrite the counterterm as

Sct ¼ −2
Z
∂M

ddx
ffiffiffi
γ

p
Uðγij;ΦI; rÞ: ð10Þ

For the sake of brevity, we define

2This idea is partially inspired by Ref. [23], where the HJ
equation is used to isolate the infrared divergence of the scalar
field in a fixed de-Sitter background.

3For the theory with diffeomorphism symmetry, the Hamil-
tonian constraint H ¼ 0 should be respected. Thus, one might
wonder why the partial derivative ∂Sos=∂r is kept in general. This
issue has been explained carefully in section 2 of Ref. [20]. Here
we emphasize that Eq. (5) always holds no matter if the theory
has the diffeomorphism symmetry or not.
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K ¼ 4YijYij −
1

d − 1
ðU − 2YÞ2 −U2; ð11Þ

Yij ¼
Z

δU
δγij

; Yij ¼ −
Z

δU
δγij

; Y ¼ γij
Z

δU
δγij

;

PI ¼
Z

δU
δΦI ; ð12Þ

Z
δU ¼ 1ffiffiffi

γ
p

Z
∂M

ddx
ffiffiffi
γ

p
δU: ð13Þ

Then Eq. (6) can be reshaped as

2
∂U
∂r

þ LS þ K þGIJPIPJ ¼ 0; ð14Þ

which holds up to total derivatives, since it should be
understood as an integral equation.

B. Generation of ansatz

One of the key points in various HR approaches is how to
organize the counterterms. Considering that the counter-
terms are built from some boundary invariants with differ-
ent degrees of divergence, we choose to expand them
according to these degrees of divergence, which can be
formally written as

U ¼ Uðk0Þ þ Uðk1Þ þ Uðk2Þ þ � � � : ð15Þ

Some remarks on the expansion are in order. First, we
suppose that Uðk0Þ is independent with boundary fields.
This is true at least for asymptotic AdS spacetimes. Second,
the divergence degree ki is defined by the asymptotic
behavior of UðkiÞ, which can be expressed as UðkiÞ ∼ e−kir.
Although ki is often a number, it is not necessary.4

However, one should be careful that the number of terms
in the expansion (15) should be finite.5 Third, we do not
need to postulate the concrete ansatz of each UðkiÞ, nor do
we specify its divergence degree ki in advance. Both of
them will be emergent. Fourth, we assume a variation
identity6

YðkiÞ ¼ k̄iUðkiÞ þ TD with ki ≥ 2k̄i; ð16Þ

where k̄i is the number of inverse metrics in UðkiÞ and TD
means total derivatives. In section B of the Appendix, we
will prove that Eq. (16) holds very generally.
Now let us expand Eq. (14). Substituting Eq. (15) into

Eq. (14), we have

2
∂

∂r

X
i

UðkiÞ þ
X
i

LSðkiÞ þ
X
m;n

Hðkm;knÞ ¼ 0; ð17Þ

where

Hðkm;knÞ ¼ 4YðkmÞijY
ij
ðknÞ þ GIJPIðkmÞPJðknÞ

−
1

d − 1
ðUðkmÞ − 2YðkmÞÞðUðknÞ − 2YðknÞÞ

− UðkmÞUðknÞ: ð18Þ

Since the variation of Uðk0Þ vanishes, the leading order of
Eq. (17) is reduced to:

2
∂Uðk0Þ
∂r

−
1

d − 1
ðUðk0Þ − 2Yðk0ÞÞ2

−U2
ðk0Þ þGIJPIðk0ÞPJðk0Þ þ LSðk0Þ

¼ 2
∂Uðk0Þ
∂r

−
d

d − 1
U2

ðk0Þ þ dðd − 1Þ ¼ 0; ð19Þ

which has the solution Uðk0Þ ¼ 1 − dþOðe−drÞ. Note that
the higher order Oðe−drÞ does not correspond to a real
divergent term since

ffiffiffi
γ

p
e−dr ∼Oð1Þ. With Uðk0Þ in hand,

one can rewrite any other order of Eq. (17) as

2
∂

∂r
UðkiÞ þ 2ðd − 2k̄iÞUðkiÞ þ LSðkiÞ þ

X
m;n→i

Hðkm;knÞ ¼ 0;

ð20Þ

where m; n → i denotes that the choice of m and n in the
range ð0; i� such that Hðkm;knÞ has the divergence degree ki.
Note that in derivation of Eq. (20), we have used the
variation identity (16).
To proceed, we set

UðkiÞ ¼
X
a

CðaÞ
ðkiÞðrÞŪ

ðaÞ
ðkiÞ; ð21Þ

where ŪðaÞ
ðkiÞ are some independent scalars made of boun-

dary fields and their derivatives. The coefficients CðaÞ
ðkiÞðrÞ

are assumed to depend on r in general, following
Refs. [19,20]. Without loss of generality, we will focus
on one term CðkiÞðrÞŪðkiÞ, where we have suppressed the
index (a) for brevity. Then Eq. (20) indicates

4Whether ki is a number or not, we can use UðkiÞ ∼ e−kir to sort
the counterterms. In Appendix D 2, we will deal with the FGPW
model where the divergence degree related to the scalar with
Δ ¼ d=2 is not a number.

5In view of this, the expansion according to divergence degrees
is not suitable for the improved holographic QCD model
presented in [30], because it has been revealed that there are
divergences from any power of the dilaton [15].

6This identity has been found before in different systems
[19,20]. A similar identity has been used in [15] and it can be
traced back to [6] for pure gravity.
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2
∂

∂r
CðkiÞŪðkiÞ þ 2ðd− 2k̄iÞCðkiÞŪðkiÞ þ LAðkiÞ þ LPðkiÞ ¼ 0;

ð22Þ

where

LAðkiÞ ¼ LSðkiÞ þ
X
m;n→i
m;n≠i

Hðkm;knÞ; ð23Þ

LPðkiÞ ¼
X
m;n→i

m¼i or n¼i

GIJPIðkmÞPJðknÞ þ
X
m;n→i

m¼i andn¼i

GIJPIðkmÞPJðknÞ

ð24Þ

¼ CðkiÞŪðkiÞb1ðkiÞ þ C2
ðkiÞŪðkiÞb2ðkiÞ: ð25Þ

In section C of the Appendix, wewill analyze two constants
b1ðkiÞ and b2ðkiÞ in detail. One can find that either b1ðkiÞ or
b2ðkiÞ must be zero. We will refer them as mass parameters
since usually they are related to the mass of scalar fields.
Observing Eqs. (22)–(25), one may notice an important

fact: the ith order counterterms are absent if LAðkiÞ ¼ 0.
This can be seen by solving Eq. (22) without LAðkiÞ:

2
∂

∂r
CðkiÞ þ 2ðd − 2k̄iÞCðkiÞ þ b1ðkiÞCðkiÞ þ b2ðkiÞC

2
ðkiÞ ¼ 0:

ð26Þ

Its solutions can be divided into three classes.
(1) For b1ðkiÞ ¼ b2ðkiÞ ¼ 0, the solution is

CðkiÞ ¼ αe−ðd−2k̄iÞr þ � � � : ð27Þ

(2) For b1ðkiÞ ≠ 0 and b2ðkiÞ ¼ 0, the solution is

CðkiÞ ¼ αe−ðd−2k̄iþb1ðkiÞ=2Þr þ � � � : ð28Þ

(3) For b1ðkiÞ ¼ 0 and b2ðkiÞ ≠ 0, the solution is

CðkiÞ ¼
(
αe−ðd−2k̄iÞr þ � � � ; d − 2k̄i ≠ 0

2
b2ðkiÞr

þ � � � ; d − 2k̄i ¼ 0
: ð29Þ

Here α is an arbitrary integral constant. Immediately, this
implies that the solutions with α are not relevant to any real
divergent terms, because the divergent part of counterterms
should be unique.7 Moreover, the second line of Eq. (29)
does not yield real divergent terms either, since

ffiffiffi
γ

p
CðkiÞŪðkiÞ ∼ edr ·

1

r
· e−kir ¼ e−ðki−2k̄iÞr

r
< Oð1Þ; ð30Þ

where we have used ki ≥ 2k̄i.
As a result, one can see that the ansatz UðkiÞ at order i

should be emergent in LAðkiÞ. Put differently, the divergence
degree and the ansatz at each order can be iteratively
generated. To be clearer, we define the ansatz generator

LA ¼ LS þ
X
m;n

Hðkm;knÞ: ð31Þ

One should input the counterterm seed of order greater than
i − 1 and the ansatz of order in the range ð0; i − 1�. The
LAðkiÞ defined by Eq. (23) can be identified as the term in
LA with ki closest to ki−1 but greater than it.

C. Solution of coefficients

We will specify the coefficients in the ansatz by solving
Eq. (22). To save symbols, let us still denote any term in
LAðkiÞ as ŪðkiÞ and the ansatz as CðkiÞŪðkiÞ. Thus, Eq. (22)
can be reduced to

2
∂

∂r
CðkiÞ þ 2ðd − 2k̄iÞCðkiÞ þ 1þ b1ðkiÞCðkiÞ þ b2ðkiÞC

2
ðkiÞ ¼ 0: ð32Þ

It also has three classes of solutions, which are listed below.
(1) For b1ðkiÞ ¼ b2ðkiÞ ¼ 0,

CðkiÞ ¼
(
− 1

2ðd−2k̄iÞ þOðe−ðd−2k̄iÞrÞ; d − 2k̄i ≠ 0

− r
2
þOð1Þ; d − 2k̄i ¼ 0

: ð33Þ

(2) For b1ðkiÞ ≠ 0, b2ðkiÞ ¼ 0,

CðkiÞ ¼
8<
:

− 1
2ðd−2k̄iÞþb1ðkiÞ

þOðe−ðd−2k̄iþb1ðkiÞ=2ÞrÞ; d − 2k̄i ≠
−b1ðkiÞ

2

− r
2
þOð1Þ; d − 2k̄i ¼ −b1ðkiÞ

2

: ð34Þ

7In this work, we are not concerned with finite counterterms. They depend on the choice of renormalization group (RG) scheme.

MING-XIA MA and SHAO-FENG WU PHYS. REV. D 107, 066012 (2023)

066012-4



(3) For b1ðkiÞ ¼ 0 and b2ðkiÞ ≠ 0,

CðkiÞ ¼
8<
:

−1
ðd−2k̄iÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−2k̄iÞ2−b2ðkiÞ

p þOðe−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−2k̄iÞ2−b2ðkiÞ

p
rÞ; d − 2k̄i ≠

ffiffiffiffiffiffiffiffiffiffi
b2ðkiÞ

p
− 1

d−2k̄i
þ 2

ðd−2k̄iÞ2
1
r þOðr−2Þ; d − 2k̄i ¼

ffiffiffiffiffiffiffiffiffiffi
b2ðkiÞ

p : ð35Þ

Here we keep the coefficients up to the presence of integral
constants. Thus, the higher orders can be dropped since
they should not be relevant to any real divergent terms.
As a result, we have obtained the coefficients at the ith
order. Each coefficient is determined by four constants
d; k̄i; b1ðkiÞ; b2ðkiÞ. It is worth pointing out that there are two
important special cases. One is relevant to the theories with
constant potential. Since b1ðkiÞ ¼ b2ðkiÞ ¼ 0 and ki ¼ 2k̄i
therein, the coefficients CðkiÞ are universal for all counter-
terms at any given (d; ki), see section C in the Appendix.
The other is relevant to any logarithm divergence, which
appears at d − 2k̄i ¼ 0 or −b1ðkiÞ=2 and is associated with
the universal coefficient −r=2.

III. GENERAL ALGORITHM

We will extract the spirit of the above benchmark and
promote it to be a more general algorithm, which can be
stated as follows.
(1) Derive the HJ equation and separate the counterterm

part from it.
(2) Take the formal expansion according to the diver-

gence degree. Express any order of counterterms
as UðkiÞ ¼ CðkiÞðrÞŪðkiÞ and build up the recursive
equation

2
∂

∂r
CðkiÞŪðkiÞ þ FðCðkiÞÞŪðkiÞ þ LAðkiÞ ¼ 0: ð36Þ

Here FðCðkiÞÞ is a function of the coefficient8 but
LAðkiÞ is independent with the coefficient.

(3) Generate the exact ansatz of the counterterms
iteratively from LAðkiÞ.

(4) Set LAðkiÞ ¼ ŪðkiÞ ¼ 1 in Eq. (36) to obtain an ODE
of the coefficient. Solve the ODE for a general
solution.

Note that we have assumed that the solution of
Eq. (36) without LAðkiÞ is not relevant to divergent
counterterms.9

IV. EXAMPLES AND ASSESSMENTS

In section D of the Appendix, we will use the above
approach to work out the counterterms explicitly in some
typical holographic models. Keeping these examples in
mind, we will assess the approach from four aspects.

A. Simplicity

The main calculation we need is to take variation and
solve ODE. The difficulty of variation (with respect to the
tensor) is greatly reduced by some symbolic computing
programs (such as the Mathematica package xAct [31]).
As for ODE, they are first order and usually simple, at least
for the holographic models we encounter in this paper.
In particular, when the general solution is found and the
variation is prepared, the counterterms can be obtained only
by algebra calculation.

B. Universality

We have taken the model with the action (1) as the
benchmark. This is a rather general model. In fact, most
models in the Appendix are its special cases. They include
the theory of gravity coupled to a dilaton with a general
potential [3], the FGPW model where one of two scalars
has Δ ¼ d=2 [19,22], the axion-dilaton model with con-
stant potential,10 and the axion-dilaton model with asymp-
totic polynomial potential [32]. As the illustration of more
general algorithm, we also study two models that cannot be
described by the action (1). They are the massive gravity
that breaks the diffeomorphism symmetry [33–37] and the
generalized holographic axion model that allows for the
derivative term with nonintegral powers [24–27].

C. Exactness

The HJ approach to the HR of the axion-dilaton model
has been studied in [19], where the first step is to postulate
the ansatz for each counterterm. For the highest order at
d ¼ 4, their ansatz has 28 terms. Note that the terms up to
total derivatives have already been omitted. Nevertheless,
the redundancy is considerable, since the number of real
counterterms is only 16. The situation is more serious for

8For all the models in this paper, the function is the sum of
linear and quadratic terms. But it would be changed for a more
general model.

9The counterexamples may be very rare, even if they would
exist.

10In this model, the scalar fields are dual to marginal operators
and they do not enjoy the same suppression as the scalar fields that
are dual to the relevant operators. This issue is handled in [19] by
allowing the coefficients in the ansatz as the functions of marginal
scalars. In our work, it is not necessary. Different scalar fields are
treated in the same way.
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the nonlinear holographic axion model: it is difficult to
postulate the sufficient ansatz due to the noninteger powers.
As a comparison, we generate the exact ansatz in the
Appendix for all the models including these two.

D. Fluency

As an advantage inherited from the HJ approach [19,20],
the logarithmic divergence does not cause any more trouble
than the power divergence. On the contrary, here it is
somewhat simpler to deal with the logarithmic divergence.
This can be understood as follows. After generating the
exact ansatz at certain order with the logarithmic diver-
gence, we immediately know that all coefficients are −r=2,
which has been pointed out as the second special case
below Eq. (35). The logarithmic divergence is present in
general at the highest order when d is even. It also appears
in massive gravity and holographic axion model when d is
odd. Since the highest order has the most independent
counterterms, the universal coefficient brings considerable
simplification.

V. SUMMARY

In this work, we developed an alternative approach to
holographic renormalization based on the HJ formulation
of gravity. Its distinguishing feature is the generation of
exact ansatz of counterterms. Although our primary focus
is on the technical aspects, this approach brings new
understandings of how counterterms are organized and
generated. As one can see, the ith counterterm is deter-
mined by the exact ansatz LAðkiÞ and the coefficient
function FðCðkiÞÞ in Eq. (36). Meanwhile, the existence
of general solutions to the coefficients informs us of all
types of counterterms in a certain class of theory. In
particular, the benchmark model allows three types of
counterterms, which are power law, logarithmic, and
inverse logarithmic. Furthermore, the general conditions
under which these types appear may be helpful in designing
a special UV which is required by some bottom-up holo-
graphic models. For example, if we expect a conformal
anomaly when d is odd, one way is to design a model such
that the counterterm seed has a term with half-integer
inverse metrics. This is exactly the fact that massive gravity
exhibits. In the future, it would be interesting to explore
whether the current approach can be extended beyond the
standard AdS=CFT, which may break the conformal
symmetry [38–42], keep the finite coupling [43–45], and
even deviate from the large N limit [46,47].
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APPENDIX A: DECOMPOSE HJ EQUATION

Let us start from the HJ equation:

H

�
γij;ΦI;

δSos
δγij

;
δSos
δΦI

�
þ ∂Sos

∂r
¼ 0: ðA1Þ

Suppose that Sren and Sct are the renormalized part and the
counterterm part of Sos, respectively. Then Eq. (A1) can be
decomposed into

Hren þ
∂Sren
∂r

−Hct −
∂Sct
∂r

¼ 0: ðA2Þ

Here Hct ≡ −ðH −HrenÞ and we define Hren as the part of
H relevant to Sren. Using the expression of Hamiltonian (3),
we read

Hren ¼
Z
∂M

ddx½2f−Sct; Sreng þ fSren; Sreng�; ðA3Þ

Hct ¼ −
Z
∂M

ddx½fSct; Sctg þ ffiffiffi
γ

p
LS�; ðA4Þ

where LS is the counterterm seed and the bracket fSa; Sbg is
defined through

fSa; Sbg ¼ 1ffiffiffi
γ

p
�
δSa
δγij

δSb
δγkl

γijkl þ
1

4
GIJ δSa

δΦI

δSb
δΦJ

�
: ðA5Þ

We can change Eq. (A3) a little as

Hren ¼
Z
∂M

ddx½2fSos; Sreng − fSren; Sreng�: ðA6Þ

Note that the second term in Eq. (A6) is vanishing near the
boundary. This is because it is much smaller than the first
term by definition and we will show below that the first
term is not greater than Oð1Þ, see Eq. (A9).
To calculate the variations of Sos, we can equate two

forms of the momentum

δSos
δγij

¼ ∂L
∂_γij

¼ ffiffiffi
γ

p ðKij −KγijÞ; ðA7Þ

δSos
δΦI ¼

∂L

∂ _ΦI ¼ 2
ffiffiffi
γ

p
GIJ

_ΦJ; ðA8Þ

where the extrinsic curvature tensor Ki
j ¼ γik _γkj=2.

Inserting Eqs. (A7)–(A8) into Eq. (A6), we find

Hren ¼
Z
∂M

ddx

�
δSren
δγij

_γij þ
δSren
δΦI

_ΦI

�
: ðA9Þ

Furthermore, we consider that Sren can be taken as the
functional of (γ̄ij; Φ̄I) or (γij;ΦI; r). This is viewed from the
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field theory and its gravity dual, respectively. Keeping this
in mind, we can derive

∂Sren
∂r

þHren ¼
∂Srenðγij;ΦI; rÞ

∂r

þ
Z
∂M

ddx

�
δSren
δγij

_γij þ
δSren
δΦI

_ΦI

�
ðA10Þ

¼ dSrenðγ̄ij; Φ̄IÞ
dr

¼ 0: ðA11Þ

Combining it with Eq. (A2), we can obtain the counterterm
part of the HJ equation11

Hct þ
∂Sct
∂r

¼ 0: ðA12Þ

APPENDIX B: VARIATION IDENTITIES

We will study two variation identities. Suppose that a
boundary invariant with divergence degree k can be
formally written as

UðkÞ ¼ ðγab � � �ÞðΦI � � �ÞðRa
bcd � � �Þð∇aYb��� � � �Þ: ðB1Þ

Here ðX � � �Þ denotes the product of (one or more) X and
Yb��� denotes any tensor which is made by the product ofΦI

and Ra
bcd as well as their covariant derivatives.

For convenience, we define an operatorZ
Xδ̄≡ γij

1ffiffiffi
γ

p
Z

ddx
ffiffiffi
γ

p
X

δ

δγij
; ðB2Þ

where X can denote any tensor. Using the chain rule, we
haveZ

δ̄UðkÞ ¼
Z

δ̄ðγab � � �ÞðΦI � � �ÞðRa
bcd � � �Þð∇aYb��� � � �Þ

þ
Z

ðγab � � �Þδ̄ðΦI � � �ÞðRa
bcd � � �Þð∇aYb��� � � �Þ

þ
Z

ðγab � � �ÞðΦI � � �Þδ̄ðRa
bcd � � �Þð∇aYb��� � � �Þ

þ
Z

ðγab � � �ÞðΦI � � �ÞðRa
bcd � � �Þδ̄ð∇aYb��� � � �Þ:

ðB3Þ

We will calculate the four terms respectively:Z
δ̄ðγab � � �ÞðΦI � � �ÞðRa

bcd � � �Þð∇aYb��� � � �Þ ¼ k̄UðkÞ;

ðB4Þ
Z

ðγab � � �Þδ̄ðΦI � � �ÞðRa
bcd � � �Þð∇aYb��� � � �Þ ¼ 0; ðB5Þ

Z
ðγab � � �ÞðΦI � � �Þδ̄ðRa

bcd � � �Þð∇aYb��� � � �Þ ¼ TD; ðB6Þ
Z

ðγab � � �ÞðΦI � � �ÞðRa
bcd � � �Þδ̄ð∇aYb��� � � �Þ ¼ TD: ðB7Þ

The former two equations are obvious. Note that k̄ is the
number of inverse metric in ðγab � � �Þ. The latter two
equations are derived as follows:

Z
Xδ̄Ra

bcd ¼
Z

Xð∇cδ̄Γa
bd −∇dδ̄Γa

bcÞ

¼
Z

ð−∇cXδ̄Γa
bd þ∇dXδ̄Γa

bcÞ

¼
Z

−∇cX
1

2
γaeð∇bδ̄γed þ∇dδ̄γbe −∇eδ̄γbdÞ − ðc → dÞ

¼
Z

1

2
γaeð∇b∇cXδ̄γed þ∇d∇cXδ̄γbe −∇e∇cXδ̄γbdÞ − ðc → dÞ

¼ −
1

2
ð∇b∇cXδad þ∇d∇cXδab −∇a∇cXγbdÞ − ðc → dÞ; ðB8Þ

11This equation has been derived before in [20]. Here the procedure is more general since we have not invoked the explicit asymptotic
behavior of the metric and scalar fields. Moreover, Eq. (A12) is similar to Eq. (27) in [3], and their relation has been explained in [20].
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Z
Xδ̄ð∇iYj…Þ ¼

Z
Xδ̄ð∂iYj… − Γk

ijYk… þ � � �Þ

¼
Z

X½ð−δ̄Γk
ijYk… þ � � �Þ þ∇iδ̄Yj…�

¼
Z �

−X
1

2
γkeð∇iδ̄γej þ∇jδ̄γie −∇eδ̄γijÞYk… þ � � � þ X∇iδ̄Yj…

�

¼
Z �

1

2
½∇iðXYe

…Þδ̄γej þ∇jðXYe
…Þδ̄γie −∇eðXYe

…Þδ̄γij� þ � � � −∇iXδ̄Yj…

�

¼ 1

2
½−∇iðXYj…Þ −∇jðXYi…Þ þ∇kðXYk

…Þγij� þ � � � −
Z

∇iXδ̄Yj… ðB9Þ

Here � � � in Eq. (B9) denote the contributions according
to the suppressed index … in the tensor Yj…. Moreover,
we note that the last term above is a total derivative, which
can be seen by iteratively using Eq. (B5), Eq. (B6), and
Eq. (B9). Combining Eqs. (B4)–(B7), we have proved12

Z
δ̄UðkÞ ¼ k̄U þ TD: ðB10Þ

From the form of Eq. (B1), it is obvious that there is a
constraint 2k̄ ≤ k.
Next, we turn to the operator

Z
Xδ̃≡ΦI 1ffiffiffi

γ
p

Z
ddx

ffiffiffi
γ

p
X

δ

δΦI : ðB11Þ

Acting it on Eq. (B1), we read

Z
δ̃UðkÞ ¼

Z
δ̃ðγab � � �ÞðΦI � � �ÞðRa

bcd � � �Þð∇aYb��� � � �Þ

þ
Z

ðγab � � �Þδ̃ðΦI � � �ÞðRa
bcd � � �Þð∇aYb��� � � �Þ

þ
Z

ðγab � � �ÞðΦI � � �Þδ̃ðRa
bcd � � �Þð∇aYb��� � � �Þ

þ
Z

ðγab � � �ÞðΦI � � �ÞðRa
bcd � � �Þδ̃ð∇aYb��� � � �Þ:

ðB12Þ

Each line yields

Z
δ̃ðγab � � �ÞðΦI � � �ÞðRa

bcd � � �Þð∇aYb��� � � �Þ ¼ 0; ðB13Þ

Z
ðγab � � �Þδ̃ðΦI � � �ÞðRa

bcd � � �Þð∇aYb��� � � �Þ ¼ k̃1UðkÞ;

ðB14Þ
Z

ðγab � � �ÞðΦI � � �Þδ̃ðRa
bcd � � �Þð∇aYb��� � � �Þ ¼ 0; ðB15Þ

Z
ðγab � � �ÞðΦI � � �ÞðRa

bcd � � �Þδ̃ð∇aYb��� � � �Þ ¼ k̃2UðkÞ;

ðB16Þ

where k̃1 and k̃2 denote the numbers of ΦI in ðΦI � � �Þ and
ð∇aYb��� � � �Þ, respectively. Note that one can use

Z
Xδ̃ð∇aYb���Þ ¼

Z
−∇aXδ̃Yb��� ðB17Þ

and Eqs. (B14)–(B15) iteratively to prove Eq. (B16). Thus,
we have

Z
δ̃UðkÞ ¼ k̃UðkÞ; ðB18Þ

where k̃ ¼ k̃1 þ k̃2 means the number of ΦI in UðkÞ. Note
that there is also a constraint 2k̄þ Δ−k̃ ≤ k associated with
Eq. (B18). Here we have set ΦI ∼ e−Δ−r.

APPENDIX C: MASS PARAMETERS

The two parameters bð1Þ and bð2Þ are defined by

LPðkiÞ ¼
X
m;n→i

m¼i or n¼i

GIJPIðkmÞPJðknÞ þ
X
m;n→i

m¼i andn¼i

GIJPIðkmÞPJðknÞ

ðC1Þ

¼ CðkiÞŪðkiÞb1ðkiÞ þ C2
ðkiÞŪðkiÞb2ðkiÞ; ðC2Þ

where

12This identity may still hold even if the counterterm is more
general than Eq. (B1). For examples, see the massive gravity in
section D and the holographic axion model in section E.
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PIðkmÞ ¼
Z

δUðkmÞ
δΦI ; PJðknÞ ¼

Z
δUðknÞ
δΦJ : ðC3Þ

Now let us calculate the divergence degrees of two terms in
Eq. (C1). Without loss of generality, we have

½GIJPIðkiÞPJðknÞ� ¼ ½GIJ� þ ½PIðkiÞ� þ ½PJðknÞ�
¼ ½GIJ� þ ki þ kn − ½ΦI� − ½ΦJ� ¼ ki;

ðC4Þ
½GIJPIðkiÞPJðkiÞ� ¼ ½GIJ� þ ½PIðkiÞ� þ ½PJðkiÞ�

¼ ½GIJ� þ 2ki − ½ΦI� − ½ΦJ� ¼ ki; ðC5Þ

where ½� � �� denotes the divergence degree of � � �. We will
analyze the parameters bð1Þ and bð2Þ in terms of Eq. (C4)
and Eq. (C5). We will focus on the situations related to
holographic models studied in the next section.
(1) Since kn ≠ ki in Eq. (C4), the two equations cannot

hold at the same time. This means either b1ðkiÞ ¼ 0

or b2ðkiÞ ¼ 0.
(2) Consider the benchmark model with constant po-

tential, where ½ΦI� ¼ ½ΦJ� ¼ 0 and ½GIJ� ¼ 0. Then
neither Eq. (C4) nor Eq. (C5) holds and we have
b1ðkiÞ ¼ b2ðkiÞ ¼ 0 and ki ¼ 2k̄i.

(3) Consider the benchmark model with massive scalar
fields and supposeGIJ as a diagonal constant matrix.
The two equations have the solutions kn ¼ 2½ΦI� and
ki ¼ 2½ΦI�. Keeping this in mind, one can find

b1ðkiÞ ¼
4GIIVIIk̃i

dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − b2ð2½ΦI �Þ

q ;

b2ð2½ΦI �Þ ¼ −4GIIVII; ðC6Þ

where k̃i is the number of scalar fieldΦI inUðkiÞ, VII

is the constant before the term ΦIΦI in the potential,
GII is the inverse of scalar couplings, and the same
index I is not summed up. Note that we have used
Eq. (B18) to derive Eq. (C6). Since GIIVII ¼ m2

and Δ− ¼ d
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd
2
Þ2 þm2

q
, where m is the mass of

ΦI , Eq. (C6) can be reduced to

b1ðkiÞ ¼ −2k̃iΔ−; b2ð2Δ−Þ ¼ −4m2: ðC7Þ

We therefore refer bð1Þ and bð2Þ as the mass
parameters.

(4) In section D. 5, we will study the holographic axion
model, where the divergence degree ½ΦI� ¼ 0 but the
effective couplings ½ḠIJ� ≠ 0. Apparently, two equa-
tions have the solutions kn¼−½ḠIJ� and ki¼−½ḠIJ�.
However, they are not real solutions since ki >
−½ḠIJ� therein. So we still have b1ðkiÞ ¼ b2ðkiÞ ¼ 0.

APPENDIX D: APPLICATIONS

We will apply the HJ approach developed in the main
text to six typical models. The HR of the former five
models has been studied before by different approaches
[3,15,19,20,32]. The counterterms of the fifth model have
been used in [32] but are not given explicitly. The two
special cases of the last model have also been studied
in [48] and [24]. One can see that our results are consistent
with theirs.

1. Dilaton model: General potential

Suppose that the boundary dimension is d ¼ 4 and there
is only one scalar field ϕ. From the HJ equation, we read
the (inverse) coupling G11 ¼ 2 and the counterterm seed

LS ¼ R −
1

2
γij∂iϕ∂jϕ − VðϕÞ; ðD1Þ

where the scalar potential is

VðϕÞ ¼ V0 þ V1ϕþ V2ϕ
2 þ V3ϕ

3 þ V4ϕ
4 þ � � � ; ðD2Þ

with V0 ¼ 12, V1 ¼ 0, and V2 ¼ −3=2. The mass square is
m2 ¼ −3 and the scaling dimension is Δ ¼ 3.
We will derive the counterterms by three steps.
(1) Generate ansatz

WithUðk0Þ ¼ −3 and LS in hand, we can calculate
Eq. (31) iteratively and generate the ansatz at all
order with ki ≤ d:

LAð2Þ ¼ R − V2ϕ
2; LAð3Þ ¼ −V3ϕ

3; ðD3Þ

LAð4Þ ¼ −
1

2
γij∂iϕ∂jϕ − V4ϕ

4 þ 4Yð2ÞijY
ij
ð2Þ

þ 2P2
ð3Þ − U2

ð2Þ −
1

3
ðUð2Þ − 2Yð2ÞÞ2: ðD4Þ

(2) Take variation
What we need is

Yð2Þij ¼ Cð1Þ
ð2ÞRij; Pð3Þ ¼ −3V3ϕ

2Cð3Þ: ðD5Þ

Note that the upper index (1) in Cð1Þ
ð2Þ is used to

indicate that Cð1Þ
ð2Þ is associated with the first term

in LAð2Þ.
(3) Specify coefficients

Using Eq. (C7), one can read the mass parameters

bð2Þ
2ð2Þ ¼ 12; b1ð3Þ ¼ −6: ðD6Þ

The coefficients can be obtained by Eqs. (33), (34),
and (35). In particular, keep in mind that they are
universal at the highest order: CðdÞ ¼ − r

2
. Then we

have
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Cð1Þ
ð2Þ ¼ −

1

4
; Cð2Þ

ð2Þ ¼ −
1

6
; Cð3Þ ¼ −

1

2
;

Cð4Þ ¼ −
r
2
: ðD7Þ

We collect UðkiÞ at all orders (except Uðk0Þ ¼ 1 − d):

Uð2Þ ¼ −
1

4
ðRþ ϕ2Þ; Uð3Þ ¼

1

2
V3ϕ

3;

Uð4Þ ¼ −
r
2
LAð4Þ: ðD8Þ

Putting Eq. (D4), Eq. (D5), Eq. (D7), and Eq. (D8)
together, it yields

Uð4Þ ¼ −
r
2

�
1

4
RijRij −

1

12
R2 −

1

2
γij∂iϕ∂jϕ −

1

12
Rϕ2

þ
�
9

2
V2
3 − V4 −

1

12

�
ϕ4

�
: ðD9Þ

2. FGPW model: Dimension Δ= d=2

Suppose that the boundary dimension is d ¼ 4 and there
are two scalar fields ψ and ϕ. The couplings are the identity
matrix GIJ ¼ diagð1; 1Þ and the counterterm seed is

LS ¼ R − γij∂iψ∂jψ − γij∂iϕ∂jϕ − Vðψ ;ϕÞ; ðD10Þ

where the scalar potential is

Vðψ ;ϕÞ ¼ −12 − 4ϕ2 − 3ψ2 þ ψ4 þ � � � : ðD11Þ

The mass squares are m2 ¼ −3 and −4 for two scalars
fields, respectively. Accordingly, the scaling dimensions
are Δ ¼ 3 and 2. The latter indicates a nontrivial asymp-
totic behavior ϕ ∼ re−2r. In order to sort the counterterms
that involve ϕ, we set ϕ ∼ e−Δ̄r where Δ̄ ¼ 2 − ln r=r is not
a number. However, it is convenient to understand Δ̄ as an
effective dimension with 1 < Δ̄ < 2.
In the following, we will derive the counterterms. Since

the procedure is similar to the above example, we will omit
unnecessary text descriptions for brevity.
(1) Generate ansatz

LAð2Þ ¼ Rþ 3ψ2; LAð2Δ̄Þ ¼ 4ϕ2; ðD12Þ

LAð4Þ ¼ −γij∂iψ∂jψ − ψ4 þ 4Yð2ÞijY
ij
ð2Þ

−U2
ð2Þ −

1

3
ðUð2Þ − 2Yð2ÞÞ2: ðD13Þ

Note that the divergence degree of LAð2Δ̄Þ is 2Δ̄,
which is not a number. But this did not cause any
problems with our approach.

(2) Take variation

Yð2Þij ¼ Cð1Þ
ð2ÞRij: ðD14Þ

(3) Specify coefficients

bð2Þ
2ð2Þ ¼ 12; b2ð2Δ̄Þ ¼ 16: ðD15Þ

Cð1Þ
ð2Þ ¼ −

1

4
; Cð2Þ

ð2Þ ¼ −
1

6
;

Cð2Δ̄Þ ¼ −
1

4
þ 1

8r
; Cð4Þ ¼ −

r
2
: ðD16Þ

We collect UðkiÞ at all orders:

Uð2Þ ¼ −
1

4
ðRþ 2ψ2Þ; Uð2Δ̄Þ ¼

�
−1þ 1

2r

�
ϕ2;

Uð4Þ ¼ −
r
2
LAð4Þ: ðD17Þ

One can find that Uð4Þ can be rewritten as

Uð4Þ ¼ −
r
2

�
1

4
RijRij −

1

12
R2 − γij∂iψ∂jψ −

1

6
Rψ2 −

4

3
ψ4

�
:

ðD18Þ

3. Axion-dilaton model: Constant potential

Suppose that the boundary dimension is d ¼ 4 and there
are two massless scalar fields: the dilaton ϕ and the axion χ.
The couplings areGIJ ¼ diagð1; 1=ZÞ. Here Z is a function
of ϕ and I ¼ 1, 2 refer ϕ and χ, respectively. The
counterterm seed is

LS ¼ R − γij∇iϕ∇jϕ − Zγij∇iχ∇jχ − V: ðD19Þ

Unlike the previous two examples, now the potential is
constant V ¼ −12.
(1) Generate ansatz

LAð2Þ ¼ R − γij∇iϕ∇jϕ − Zγij∇iχ∇jχ; ðD20Þ

LAð4Þ ¼ P2
1ð2Þ þ

1

Z
P2
2ð2Þ þ 4Yð2ÞijY

ij
ð2Þ −

4

3
U2

ð2Þ:

ðD21Þ

(2) Take variation

Yð2Þij ¼ Cð2ÞðRij −∇iϕ∇jϕ − Z∇iχ∇jχÞ; ðD22Þ

P1ð2Þ ¼ Cð2Þð2∇2ϕ − Z0γij∇iχ∇jχÞ;
P2ð2Þ ¼ 2Cð2Þγij∇iðZ∇jχÞ: ðD23Þ
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(3) Specify coefficients
Since the potential is constant, we have b1ðkiÞ ¼

b2ðkiÞ ¼ 0 and 2k̄i ¼ ki. This indicates CðkiÞ ¼
− 1

2ðd−kiÞ for d ≠ ki or − r
2
for d ¼ ki. Concretely,

we have

Cð2Þ ¼ −
1

4
; Cð4Þ ¼ −

r
2
: ðD24Þ

We collect UðkiÞ at all orders
13:

Uð2Þ ¼ −
1

4
LAð2Þ; Uð4Þ ¼ −

r
2
LAð4Þ: ðD25Þ

One can see that Uð4Þ can be expanded as 16 independent
terms [19].

4. Axion-dilaton model: Asymptotic polynomial
potential

Suppose that the boundary dimension is d ¼ 4 and there
are two scalar fields: one is a massless axion and the other is
a dilaton with nontrivial potential [32]. The counterterm
seed can be written as

LS ¼ R −
1

2
γij∇iϕ∇jϕ −

1

2
Zγij∇iχ∇jχ − V; ðD26Þ

where the coupling and potential are given by

Z ¼ e2γϕ ¼ 1þ 2γϕþ 2γ2ϕ2 � � � ðD27Þ

V ¼ −12 coshðσϕÞ − bϕ2

¼ −12 − ðbþ 6σ2Þϕ2 −
σ4ϕ4

2
þ � � � : ðD28Þ

Note that they have been expanded as polynomials near the
boundary and are characterized by three parameters γ, σ,
and b. The scaling dimension Δ of the scalar operator dual
to the dilaton is related to σ and b by

bþ 6σ2 ¼ Δð4 − ΔÞ
2

: ðD29Þ

We will set Δ ¼ 3 that was chosen to study thermody-
namics in [32].

(1) Generate ansatz

LAð2Þ ¼ R −
1

2
γij∇iχ∇jχ þ ðbþ 6σ2Þϕ2;

LAð3Þ ¼ −γϕγij∇iχ∇jχ; ðD30Þ

LAð4Þ ¼ −
1

2
γij∇iϕ∇jϕ − γ2ϕ2γij∇iχ∇jχ

þ σ4ϕ4

2
þ 2P2

2ð2Þ þ 2P2
ð3Þ þ 4Yð2ÞijY

ij
ð2Þ

−U2
ð2Þ −

1

3
ðUð2Þ − 2Yð2ÞÞ2: ðD31Þ

(2) Take variation

Yð2Þij ¼ Cð1Þ
ð2ÞRij − Cð2Þ

ð2Þ
1

2
∇iχ∇jχ; ðD32Þ

P2ð2Þ ¼ Cð2Þ
ð2Þγ

ij∇i∇jχ; Pð3Þ ¼ −Cð3Þγγij∇iχ∇jχ:

ðD33Þ
(3) Specify coefficients

bð3Þ
2ð2Þ ¼ 12; b1ð3Þ ¼ −2: ðD34Þ

Cð1Þ
ð2Þ ¼ −

1

4
; Cð2Þ

ð2Þ ¼ −
1

4
; Cð3Þ

ð2Þ ¼ −
1

6
;

Cð3Þ ¼ −
1

2
; Cð4Þ ¼ −

r
2
: ðD35Þ

We collect UðkiÞ at all orders:

Uð2Þ ¼ −
1

4
Rþ 1

8
γij∇iχ∇jχ −

1

6
ðbþ 6σ2Þϕ2;

ðD36Þ

Uð3Þ ¼
1

2
γϕγij∇iχ∇jχ; Uð4Þ ¼ −

r
2
LAð4Þ:

ðD37Þ

5. Massive gravity: Breaking diffeomorphism symmetry

Massive gravity cannot be described by the benchmark
action in the main text. Particularly, it breaks the diffeo-
morphism symmetry, which indicates that the ADM metric
cannot be gauged as usual. Nevertheless, it is found that for
the popular holographic model [33–37], the lapse still can
be normalized and sometimes the shift vector is falling off
fast enough near the boundary. Thus, the HJ equation and
its counterterm part still have the same form as before,
except that the counterterm seed is changed as [20]

LS ¼ Rþ dðd − 1Þ þ
X4
n¼1

αnenðXÞ; ðD38Þ
13By matching the scalar fields and specifying the coupling,

these counterterms can be reduced to obtain the counterterms of
some important but simpler five-dimensional axion-dilaton mod-
els, see [49,50] for two examples.
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where enðXÞ are the symmetric polynomials of the eigen-
values of the d × d matrix Xi

j,

e1 ¼ ½X�; e2 ¼ ½X�2 − ½X2�;
e3 ¼ ½X�3 − 3½X�½X2� þ 2½X3�; ðD39Þ

e4 ¼½X�4 − 6½X�2½X� þ 8½X3�½X� þ 3½X2�2 − 6½X4�: ðD40Þ

Note that we have denoted ½X� ¼ Xi
i and will set d ¼ 4.

Obviously, the matrix Xi
j is the key object, which is

defined as the square root of γijfij. Here fij are the
reference metric on the boundary.
The HR of massive gravity can be performed by the

general algorithm in main text. One can expect that it is
similar to the last model. This is because their coefficient
functions FðCðkiÞÞ in the recursive equations (36) are equal
to the same 2ðd − 2k̄iÞ. Note that enðXÞ in the counterterm
seed and other ansatz generated below do not take the form
as Eq. (B1) but the variation identity (B10) still holds,
where the number k̄ is counted by treating Xi

j as the object
with 1=2 inverse metric [20].

(1) Generate ansatz

LAð1Þ ¼ α1e1; ðD41Þ

LAð2Þ ¼ α2e2 þ Rþ 4Yð1ÞijY
ij
ð1Þ −U2

ð1Þ; ðD42Þ

LAð3Þ ¼ α3e3 þ 8Yð1ÞijY
ij
ð2Þ − 2Uð1ÞUð2Þ; ðD43Þ

LAð4Þ ¼ α4e4 þ 4Yð2ÞijY
ij
ð2Þ þ 8Yð1ÞijY

ij
ð3Þ

−
4

3
U2

ð2Þ − 2Uð1ÞUð3Þ: ðD44Þ

(2) Take variation

Yð1Þij ¼ Cð1Þα1
1

2
Xij; ðD45Þ

Yð2Þij ¼ Cð2Þ½Rij þ ðα2 − C2
ð1Þα

2
1Þð2½X�Xij − ½X2�ijÞ�;

ðD46Þ

Yð3Þij ¼ Cð3Þ

��
α31
144

−
α1α2
4

þ 3α3

��
1

2
½X�2Xij −

1

2
Xij½X2� − ½X�½X2�ij þ ½X3�ij

�

þ α1
12

ðð2∇k∇ðjXiÞk −∇k∇kXij −∇i∇j½X�Þ − 3RkðiXk
jÞÞ

þ α1
12

�
½X�Rij þ

1

2
RXij þ γij∇k∇kX −∇i∇j½X�

��
: ðD47Þ

Here we have entered Cð1Þ and Cð2Þ given below to simplify
Yð3Þij.
(3) Specify coefficients

Cð1Þ ¼ −
1

6
; Cð2Þ ¼ −

1

4
;

Cð3Þ ¼ −
1

2
; Cð4Þ ¼ −

r
2
: ðD48Þ

We collect UðkiÞ at all orders:

Uð1Þ ¼ −
1

6
LAð1Þ; Uð2Þ ¼ −

1

4
LAð2Þ;

Uð3Þ ¼ −
1

2
LAð3Þ; Uð4Þ ¼ −

r
2
LAð4Þ: ðD49Þ

6. Generalized axion model: Noninteger power

We will study an interesting model in AdS=CMT: the
generalized holographic axion model [27]. We write down
its action

S ¼ −
Z
M
d4x

ffiffiffi
g

p ðRþ 6 − VðXÞÞ: ðD50Þ

It has the derivative term V ¼ Xn, where X ¼ gμνXμν and
Xμν ¼ GIJ∂μχ

I
∂νχ

J with GIJ ¼ 1
2
diagð1; 1Þ. Note that χI

with I ¼ 1, 2 denote two massless scalar fields.
One obvious feature of this model is that the power n can

be a decimal. In fact, it allows for explicit breaking of
translational symmetry when 1=2 ≤ n < 5=2 and sponta-
neous breaking for n > 5=2 [51]. The HR of this model has
not been systematically studied before except for the cases
with n ¼ 1 [48] and 1=2 [24].
Let us build up the HJ formulation of this model. Using

the metric

ds2 ¼ dr2 þ γijdxidxj; ðD51Þ

one can obtain the Lagrangian from the action

L ¼ −
Z
∂M

d3x
ffiffiffi
γ

p ½Rþ 6þK2 −KijKij

− VðGIJ _χ
I _χJ þ γijχijÞ�: ðD52Þ
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It yields the canonical momenta

πij ≡ ∂L
∂_γij

¼ ffiffiffi
γ

p ðKij −KγijÞ; ðD53Þ

πI ≡ ∂L
∂_χI

¼ 2
ffiffiffi
γ

p
V 0ðXÞGIJ _χ

J: ðD54Þ

The Hamiltonian can be defined by a Legendre trans-
formation of Lagrangian

H ≡
Z
∂M

d3xðπij _γij þ πI _χ
IÞ − L: ðD55Þ

We need to solve _χI from the nonlinear equation (D54).
This is difficult for a decimal n. Fortunately, in the
holographic application of this model, it is usually assumed
implicitly

VðGIJ _χ
I _χJ þ γijχijÞ ¼ VðχÞ þ V 0ðχÞGIJ _χ

I _χJ þ � � � ;
ðD56Þ

where χ ¼ γijχij and χij ¼ GIJ∂iχ
I
∂jχ

J. Suppose that the
asymptotic behavior of the axions

χI ¼ χIð0ÞðxiÞ þ e−Δ̄rχIð1ÞðxiÞ þ � � � : ðD57Þ

The expansion (D56) implies

Δ̄ > 1: ðD58Þ

Furthermore, one can find that the higher order terms in
Eq. (D56) do not contribute to the counterterms, provided
that

2ðn − 1Þ þ 2Δ̄⩾3: ðD59Þ

Here we will focus on the situation satisfied with Eq. (D58)
and Eq. (D59). More complete analysis will be given
in [52].
Now let us go back to Eq. (D54). With Eq. (D56) in

mind, it can be solved as

_χI ¼ GIJπJ
2

ffiffiffi
γ

p
V 0ðχÞ ; ðD60Þ

and the Hamiltonian has the form

H¼
Z
∂M

d3x

�
1ffiffiffi
γ

p
�
πijπ

ij−
1

d−1
π2þ1

4
ḠIJπIπJ

�
þ ffiffiffi

γ
p

LS

�
;

ðD61Þ

where the effective coupling and the counterterm seed are

ḠIJ ¼ 1

V 0ðχÞG
IJ; LS ¼ Rþ 6 − VðχÞ: ðD62Þ

With the Hamiltonian in hand, we can derive the
counterterm part of the HJ equation. The procedure is
almost the same as in section A. The only thing worth
mentioning is that despite the appearance of nontrivial
coupling ḠIJ in the Hamiltonian, it disappears in its
renormalized counterpart, since here we have

δSos
δΦI ¼

∂L

∂ _ΦI ¼ 2
ffiffiffi
γ

p
GIJV 0ðχÞ _ΦJ: ðD63Þ

Furthermore, one can see that ḠIJ and VðχÞ are not
polynomials in general, which makes the ansatz generated
below go beyond the form (B1). Nevertheless, the variation
identity (B10) still holds while k̄ may be a decimal.
Collecting these facts, one can find that the general
algorithm is applicable to this model. In fact, it is similar
to the previous two models since their coefficient functions
FðCðkiÞÞ in the recursive equations are the same.
(1) Generate ansatz

LAð2nÞ ¼ −V; LAð2Þ ¼ R; ðD64Þ

LAð4nÞ ¼ 4Yð2nÞijY
ij
ð2nÞ þ

dþ 4nðn − 1Þ
1 − d

U2
ð2nÞ;

ðD65Þ

LAð2nþ2Þ ¼ 8Yð2nÞijY
ij
ð2Þ þ ḠIJPIð2nÞPJð2nÞ

þ 2ðd − 2þ 2nÞ
1 − d

Uð2nÞUð2Þ; ðD66Þ

LAð6nÞ ¼ 8Yð2nÞijY
ij
ð4nÞ þ

dþ 2nð4n− 3Þ
1−d

2Uð2nÞUð4nÞ:

ðD67Þ

(2) Take variation

Yð2nÞij ¼ −Cð2nÞV 0χij; PIð2nÞ ¼ 2Cð2nÞ∇iðV 0∇iχIÞ;
Yð2Þij ¼ Cð2ÞRij; ðD68Þ

Yð4nÞij ¼ Cð4nÞC2
ð2nÞ

�
dþ 4nðn − 1Þ

1 − d
2nχ2n−1χij

þ 8n2χ2n−3½ðn − 1Þχklχklχij þ χχki χkj�
�
:

ðD69Þ

(3) Specify coefficients
We have CðkiÞ ¼ − 1

2ðd−kiÞ for d ≠ ki or − r
2
for

d ¼ ki. We have not written the concrete expression
at each order since n has not been specified.
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We collect UðkiÞ at all orders:

Uð2nÞ ¼ Cð2nÞLAð2nÞ; Uð2Þ ¼ Cð2ÞLAð2Þ; ðD70Þ

Uð4nÞ ¼ Cð4nÞLAð4nÞ; Uð2nþ2Þ ¼ Cð2nþ2ÞLAð2nþ2Þ;

Uð6nÞ ¼ Cð6nÞLAð6nÞ: ðD71Þ

Since here d ¼ 3, the logarithmic divergence appears at
n ¼ 3

2
, 3
4
, and 1

2
. Note that we have sorted the orders based on

1
2
< n < 1. For n ¼ 1

2
, Uð2Þ and Uð4nÞ appear at the same

order, and so do Uð2nþ2Þ and Uð6nÞ.
14 For 3=2 ≥ n ≥ 1, one

can see that onlyUð2Þ andUð2nÞ in Eq. (D70) and Eq. (D71)
are relevant to real counterterms. For n > 3=2, only Uð2Þ
remains to be relevant.
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