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Local flatness is a property shared by all the spin foam models. It ensures that the theory’s fundamental
building blocks are flat by requiring locally-trivial parallel transport. In the context of simplicial Lorentzian
spin foam theory, we show that local flatness is the main responsible for the emergence of geometry
independently of the details of the spin foam model. We discuss the asymptotic analysis of the Engle-
Pereira-Rovelli-Livine spin foam amplitudes in the large quantum number regime, highlighting the
interplay with local flatness.
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I. INTRODUCTION AND MOTIVATIONS

Spin foam theory is a promising candidate for quantiza-
tion of gravity and is often referred to as the covariant
formulation of loop quantum gravity. It attempts to define a
Lorentzian background-independent path integral for gen-
eral relativity regularized on a fixed triangulation of a space-
time manifold. The theory assigns quantum numbers
representing geometric quantities to the 2-complex dual
to the triangulation. The path integral sums over all the
possible quantum numbers describe a sum over quantum
geometries. Moreover, spin foam theory assigns transition
amplitudes to states in the kinematical Hilbert space of loop
quantum gravity associated with the triangulation boundary.
The Engle-Pereira-Rovelli-Livine/Freidel-Krasnov

(EPRL/FK) model [1,2] is the most promising spin foam
theory available that is currently being developed (see [3,4]
for a pedagogical introduction). Its most celebrated and
successful result is the emergence of Regge geometries and
the Regge action in the large quantum numbers regime of
the spin foam amplitudes [5]. There are many extensions
and applications including but not limited to the Euclidean
EPRLmodel [6], the topological SUð2ÞBF theory [7,8], to
general cellular decomposition known as the KKL model
[9,10], to generic SLð2;CÞ tensors [11], and have a
numerical confirmation [12,13]. The original and the
majority of the related works are based on the bivector
reconstruction theorem [14] a map from Euclidean or
Lorentzian 4-simplices to a collection of bivectors satisfy-
ing (linear simplicity) constraints. This elegant theorem
was instrumental in driving the geometrical intuition of
spin foam models, and Regge calculus is the best tool to
study the semiclassical limit [15,16].
The EPRL spin foam model, and all of its extensions,

have very complicated recipes with many components

mixed. The traditional semiclassical analysis of the EPRL
spin foam model does not disentangle the role played by
each ingredient and blends all of them. A clear picture of
each contribution is fundamental to proposing improve-
ments, extensions, and generalizations of the model and
increasing our understanding of the theory. We separate the
analysis into two main components; the local flatness of the
spin foam vertices and the role of saddle-point equations.
We abandon the bivector reconstruction theorem favoring

gauge covariant geometrical objects like framed polyhedra,
dihedral angles, and twist angles. This description follows,
and is inspired by, previous work on discrete holonomy-flux
geometries [17] and on twisted geometries [18–21]. We
parametrize thewedge holonomies using a set of four framed
planes for each edge and a complex angle to each wedge.
Spin foam models are built with locally flat triangula-

tions. Any parallel transport in a 4-simplex is trivial. This
property is very general, and all the spin foam models in the
literature share it. When we impose local flatness to a set of
general holonomies, we find that geometry naturally
emerges. The holonomies are Regge-like. Since local flat-
ness does not involve areas, we cannot expect to reconstruct
a full Regge geometry. The holonomies contain information
on just the angles of the emerging geometry. Suppose we
also provide a closure condition for each edge. In that case,
we can identify framed tetrahedra and a unique Regge
geometry emerge up to a scale factor (if we ignore the
topological sector and discrete symmetries). This result is
entirely independent of the details of the model itself.
Therefore, we expect the emergence of geometry to be a
typical result of all locally-flat spin foam models.
We study the large quantum number regime of the EPRL

spin foam amplitude with saddle-point techniques. The
resulting equations provide a closure equation to each edge
and align the boundary framed planes with the ones para-
metrizing the wedge holonomies. As a result, at the saddle*dona.pietro@gmail.com
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point, the amplitude assumes a simple form in terms of the
complex angles of the wedge holonomies mixing boost and
rotation angles with the Immirzi parameter. Only if local
flatness is considered the saddle point action assumes the
form of the Regge action completing the connection with
discrete general relativity.
As a coproduct of our study, we provide an explicit form

of the action at the saddle point in terms of gauge invariant
quantities. In particular, its imaginary part was not studied
enough in the literature (because it is usually deemed as
irrelevant [5] or gauge fixed [12]). However, having
complete control of all the phases is necessary for the
numerical evaluation of the amplitude [12,22].
We complete our analysis by also studying the case of

extended triangulations with many vertices. First, we con-
sider them fixed and large instead of summing over the bulk
quantum numbers. The saddle-point equations reduce to a
closure condition at every edge and gluing equations that tell
us how to glue the geometry of the various vertices together.
We complement the analysis by looking at the role of the sum
over bulk degrees of freedom. We follow the seminal work
of [23] and find that the face holonomy is constrained to be a
4-screw with proportional boost and rotation angles. The
naive flatness problem arises immediately if this condition is
supplemented by local flatness and gluing conditions.

II. SPINORS, FRAMED PLANES AND MAPS
BETWEEN THEM

Spinors are elements of the vector space C2. We indicate
a spinor and its conjugate transpose with jzi and hzj.

jzi ≔
�
z0
z1

�
; hzj ≔ ðz̄0; z̄1Þ: ð1Þ

We use the Dirac notation to simplify the bookkeeping of
spinorial indices. The spinorial space comes with a natural
inner product given by hwjzi ≔ w̄0z0 þ w̄1z1 and a duality
map J ∶C2 → C2

J jzi ¼ jz� ≔
�−z̄1

z̄0

�
: ð2Þ

Moreover, a spinor and its dual form an orthogonal basis of
C2. Spinors also have many interesting properties useful
for performing calculations. We report some of them in
Appendix A.
A spinor naturally defines also a basis of R3 given by

ðn⃗; F⃗; n⃗ × F⃗Þ built from the matrix elements of the Pauli
matrices

hzjσ⃗jzi ¼ −n⃗; and ½zjσ⃗jzi ¼ iF⃗ þ n⃗ × F⃗: ð3Þ

In the following, we will work with unit norm spinors
hzjzi ¼ 1 to simplify the formulas if not specified otherwise.

In this case, the associated R3 basis is orthonormal. Each
spinor identifies a (framed) plane in R3 orthogonal to n⃗
equipped with a frame given by the vector F⃗ (sometimes we
will call it frame vector [19]). See Fig. 1 for a pictorial
representation. Intuitively, the magnitude of the spinor
determines the vector n⃗ while its phase (flag) characterizes
completely the frame vector F⃗.
This geometrical interpretation is the same one used in

the geometrical interpretation of loop quantum gravity
states given by twisted geometries [18,24–26].
A general SLð2;CÞ group element g can be parametrized

by two (unit) spinors jzi, jwi and a complex number ω,

g ¼ e
ω
2 jwihzj þ e−

ω
2 jw�½zj: ð4Þ

The group element g maps the source framed plane jzi into
the target one jwi. The complex angle ω encodes the boost
angle and part of the rotation between the planes (see
Appendix B for more details). The parametrization (4) is
very redundant. Three real numbers parametrize each unit
spinor (i.e., two angles to determine n⃗ and a third to
determine F⃗ in the orthogonal plane). The complex number
ω contributes to the count with two real degrees of freedom.
The parametrization [4] is redundant. We use eight real
parameters to specify a SLð2; CÞ group element. Only six
are necessary, and we can remove two safely. The para-
metrization [4] is invariant under the transformations

jzi → eiα1 jzi and jwi → eiα1 jwi;
jzi → eiα2 jzi and ω → ω − iα2; ð5Þ

and equivalent combinations of the two. It is possible to
remove two parameters among the phases of the spinors
and Imω by reabsorbing it in the third using (5). In the
following, we will work with the redundant parametrization
since it has a simpler geometric interpretation. Notice, that
also the dual group element ðg−1Þ† defines a map between
the source and target frames jzi, jwi with opposite chirality
and can be obtained from (4) sending ω → −ω�.

FIG. 1. Pictorial representation of the reference frame associ-
ated to a spinor jzi. The magnitude of the spinor determines the
plane and the phase of the spinor the frame of the plane.

PIETRO DONÀ PHYS. REV. D 107, 066011 (2023)

066011-2



The parametrization (4) is analog to the parametrization of
the SUð2Þ holonomy of the Ashtekar connection in twisted
geometries [18,24–26] and can be recovered from (4) setting
Reω ¼ 0 and removing the redundant Imω. A form equiv-
alent to (4) is derived in the context of covariant twisted
geometries in terms of twistors in [20].
While the spinorial space carries a representation (the

fundamental one) of SLð2;CÞ, the three-dimensional
space R3 spanned by ðn⃗; F⃗; n⃗ × F⃗Þ does not. If we want
to interpret the action of the Lorentz group on R3 we have
to embed it in a larger space where a representation is
realized. The embedding is not unique, and the interpre-
tation depends on this choice. Among many possibilities,
the EPRL model and the study of general SLð2;CÞ
invariants [11] suggest one in terms of γ-simple bivectors.
We represent a bivector with electric and magnetic part E⃗
and B⃗ with a complex vector given by Π ¼ E⃗þ iB⃗. In
electromagnetism, it is known as the Riemann-Silberstein
vector. If the electric and magnetic parts of the bivector are
proportional B⃗ ¼ γE⃗ we say the bivector is γ-simple (in
the canonical frame). In this case we parametrize it with a
complex number jþ iγj and a unit vector n⃗. Or, in terms
of the spinor jzi,

Π ¼ jð1þ iγÞn⃗ ¼ −jð1þ iγÞhzjσ⃗jzi: ð6Þ

In the context of the EPRL spin foam model, we interpret j
as quanta of areas and γ as the Immirzi parameter. This
particular bivector is the consequence of constructing and
implementing the linear simplicity constraints in the EPRL
model. The bivector Π transform in the finite-dimensional
representation of SLð2;CÞ usually denoted as (0, 1).
Therefore, we can see a group element (4) as a map between
the two γ-simple bivectors associated with jzi and jwi1

g⊳Π ¼ jð1þ iγÞhzjg−1σ⃗gjzi
¼ e

−ωþω
2 jð1þ iγÞhwjσ⃗jwi ¼ Π0: ð7Þ

Since Π transforms in the (0, 1) representation, we have to
use fundamental representation and its dual. To make the
bilinear (6) transform in the (0, 1) representation we need
both jzi and hzj with the same chirality. This is the reason for
the presence of the inverse group element (7).
Since we are interested in keeping the results as general

as possible, we would not rely on this interpretation, so we
will not specify any embedding until we talk about the
EPRL model. We consider (4) as a map between spinors
that only then dowe interpret as framed planes. This is what

we mean, with a slight abuse of language, when we will say
that (4) is a map between framed planes.
In the following, we shift the focus from general framed

planes to planes representing the faces of framed polyhedra.
With this goal in mind, it is convenient to use a holonomy
that maps the framed plane jzi into the framed plane dual
to jwi

g ¼ e
ω
2 jw�hzj − e−

ω
2 jwi½zj: ð8Þ

In this way, the framed planes associated with the faces of
polyhedra will have all outgoing normals. This is just a
change of convention to ease the future geometrical
interpretation. See Fig. 2 for a pictorial representation.

III. WEDGE HOLONOMIES
AND LOCAL FLATNESS

We consider the 2-complex of a 4-simplex as illustrated
in Fig. 3. It comprises five edges (dual to tetrahedra) and ten
faces (dual to triangles). A face in a vertex is also called a
wedge and contains two edges. We orient the wedges
indicating the source and the target edge. We label each

FIG. 2. Pictorial representation of the holonomy as a map
between reference frames.

FIG. 3. The 2-complex of a 4-simplex. The edges are numbered
from 1 to 5. A couple of edges label the wedges (faces in a
vertex). To keep the picture clean, we just explicitly wrote
the name of the wedges involving edge 1. We oriented the
wedges ab with a < b such that a is the source and b is the target
of the wedge.

1Note that if we apply g to a γ-simple bivector, that is not the
one associated to the source spinor of g the transformation is
complicated and, in general, it will not be mapped into another
γ-simple bivector.
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edge with an index a ¼ 1;…; 5 and each wedge with the
couple ab where a is the source, and b is the target.
We associate a SLð2;CÞ group element gab to every

wedge ðabÞ representing the holonomy along that wedge. It
describes the parallel transport from edge a to edge b.
Following (8), we parametrize it as

gab ¼ e
ωab
2 jzba�hzabj − e−

ωab
2 jzbai½zabj: ð9Þ

The spinor jzabi identifies a framed plane at the source edge
a and the spinor jzbai identifies a framed plane at the target
edge b. Given an edge a, four holonomies involve it, and
four framed planes, identified by the spinors jzabi with
b ≠ a, are associated with it. With this notation, the inverse
of (9) and the holonomy of the wedge with inverted
orientation are related by gba ¼ −g−1ab.
Spin foammodels are locally flat; they are built using flat

4-simplices (or, more general, four-dimensional cells). In
terms of holonomies, a 4-simplex is flat if the parallel
transport along any cycle is trivial.2 For example, for a
3-cycle ðabcÞ, the parallel transport is trivial if

gcagbcgab ¼ 1: ð10Þ

For a simplicial vertex (as Fig. 3), imposing (10) on all the
3-cycles is sufficient to guarantee that the parallel transport
on any cycle is trivial.3 The generalization, to a general
cell [9,10,27] is straightforward. However, we need to be
careful to consider the correct number and order of cycles
(higher-order cycles are probably necessary [10,28]).
A general set of holonomies is not locally flat. We

impose it as a requirement. We find some constraints on the
spinors and complex angles parametrizing the wedge
holonomies (9). After some lengthy but straightforward
algebra (that we report in detail in Appendix C), we find
that Eq. (10) on every 3-cycle are equivalent to

coshðωab þ iξcabÞ ¼ cos θ̂cab; ð11Þ

for each wedge ab and

sinϕb
ac sinhðωab þ iξcabÞ ¼ sinϕc

ab sinhðωca þ iξbacÞ: ð12Þ

for each couple of wedges ab and ac. The angles θ̂cab and
ξcab are functions of the spinors and have an interesting
geometrical interpretation.
The angle θ̂cab is the generalized dihedral angle and is

given by the expression

cos θ̂cab ¼
−jhzcajzcb�j2 þ jhzabjzacij2jhzbajzbcij2 þ jhzacjzab�j2jhzbajzbc�j2

2jhzacjzabihzacjzab�hzbajzbcihzbajzbc�j
¼ cosϕc

ab þ cosϕa
cb cosϕ

b
ac

sinϕa
cb sinϕ

b
ac

; ð13Þ

where in the last equality we wrote the spinorial scalar
products explicitly in terms of the 3D dihedral angles ϕa

bc
between framed planes jzabi and jzaci (see Appendix A).
The readers familiar with 4D geometry will recognize

in (13) the definition of the angle between the hyperplanes
a and b when embedded in 4D, reconstructed using the
spherical cosine laws. Without the hat, we will denote the
geometric angle with θcab.

4 The spherical cosine laws have
the same form for Euclidean and Lorentzian signatures of
the embedding space. If j cos θ̂cabj < 1 it is Euclidean and if
j cos θ̂cabj > 1 it is Lorentzian. In the first case, the angle is
real and θ̂cab ¼ θcab. In the last case, both hyperplanes are
embedded as spacelike hyperplanes. The angle is imaginary
and iθcab ¼ θ̂cab − χabπ where χab ¼ 0 (cos θ̂cab > 1) for
cochronal hyperplanes and χab ¼ 1 (cos θ̂cab < 1) for
antichronal hyperplanes.

The generalized dihedral angle (13) depends only on
absolute values of spinors scalar products. On the contrary,
the twist angle ξcab depends explicitely on the phases of
the spinors

ξcab ¼ arg

�hzacjzab�hzabjzaci
hzbcjzbai½zbajzbci

�
: ð14Þ

It is the edge-dependent and gauge-invariant twist
angle studied extensively in the twisted-geometry liter-
ature [18,21,29–31]. It measures the twist between the
frames of the planes ab and ba (source and target of the
wedge ab) using ac and bc as a reference when parallel
transported in the same frame with the Ashtekar holon-
omy. You can follow these steps if you want to visualize
the twist angle. Consider the framed plane jzabi and its
intersection with the framed plane jzaci. Do the same with

2A cycle is a closed, ordered collection of wedges. For example ðabcÞ ¼ fðabÞ; ðbcÞ; ðcaÞg is a 3-cycle. A cycle made of three
wedges.

3All the cycles of a general graph are generated composing a the fundamental cycles. For a 4-simplex, the fundamental cycles are
given by a set of six independent 3-cycles. We will consider all 3-cycles even if redundant to deal with symmetric equations.

4Please note the plus sign in the numerator of (13). At first glance, it seems to disagree with the analog formula reported in some
literature [29]. The difference resides in the conventions that we use where all the dihedral angles (4D, 3D, 2D) are external. The factor π
of difference compensates for the different sign. The inverse spherical cosine laws have the opposite sign.
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jzbai and jzbci. Rotate all the framed planes in the edge b
such that the framed plane jzbai coincide with jzabi and the
frames are aligned. The twist angle measures the angle
between the intersections of the framed planes with jzaci
and jzbci, respectively.
The local flatness equations [(11) and (12)] constrain

both the spinors and the complex angles of the wedge
holonomies. First, we obtain the complex angles as a
function of the spinors by inverting the trigonometric
functions. Second, we realize that we have multiple
expressions for the same complex angles (one for each
3-cycle the wedge holonomy belongs to). These multiple
expressions are consistent if the spinors satisfy some extra
conditions.
The set of equations has been studied in the context of

the asymptotic analysis of the EPRL vertex amplitude. We
summarize the result here and refer to [10] for a detailed
analysis. We find two distinct classes of solutions.
The first one is characterized by j cos θ̂cabj < 1 for all

cycles and the angles θ̂cab ¼ θcab are real. Inverting the
trigonometric functions in (11) we find

ωab ¼ iϵθcab − iξcab; ð15Þ

were ϵ ¼ �1 is a sign and has to be the same for all the
wedges ab to satisfy (12). There are two ways to have the
complex angle cycle independent. If the framed planes
satisfy the orientation conditions5 we can prove that θcab ¼
ξcab for any c. Therefore, for ϵ ¼ 1 the complex angle is
trivially cycle independent

ωab ¼ 0 ∀ ab ð16Þ

is cycle independent. If ϵ ¼ 1, the combination −θcab − ξcab
is not in general independent from the choice of c.
However, if the spinors satisfy angle-matching conditions6

the angles θcab and ξcab are individually independent form c
(see [10,29,30,32] for an explicit proof). In this solution
sector angle-matching conditions imply the orientation
conditions as proved in [32]. In this case we drop the cycle
dependent index c and the complex angles are purely
imaginary and assume two possible values

ωab ¼ iϵθab − iξab: ð17Þ

In this case, we can imagine a 4D Euclidean embedding the
edge hyperplanes and the angle θab is the 4D dihedral angle
between them in this embedding. The readers familiar with
the spin foam literature are probably asking themselves
where are vector geometries and the Euclidean 4-simplices.
We will answer this question at the end of the section. In
both cases the complex angles are vanishing or purely
imaginary and the wedge holonomies are SUð2Þ elements.
Some parts of the literature refer to this as degenerate
geometries. However, we prefer to call this class of solution
the topological sector to highlight the SUð2Þ nature of the
holonomy. In fact, if we restrict the EPRL spin foam
partition function to SUð2Þ holonomies we obtain the
partition function of the topological SUð2Þ BF theory.
The second class of solutions is characterized

by j cos θ̂cabj > 1 for all cycles. The angles θ̂cab ¼ iθcab þ
χabπ are complex. Inverting the trigonometric functions
in (11) we find

ωab ¼ ϵθcab þ iχcabπ − iξcab: ð18Þ

The sign ϵ ¼ �1 is the same for all faces ab to satisfy (12).
Since it is irrelevant, we dropped the sign from the term
containing χcab. Because the angle is complex, the only way
to have (18) independent from c is to have each of its terms
independent from c. The orientation conditions cannot be
satisfied. Once again, if the spinors satisfy angle-matching
conditions the angles θcab, χ

c
ab and ξcab are independent

from c [10,30,32]. In this case, we drop the cycle-
dependent index c, and the complex angles assume two
possible values

ωab ¼ ϵθab þ iχabπ − iξab: ð19Þ

We embed the edge hyperplanes in a 4D Lorentzian space
as spacelike hyperplanes. We call this sector of solutions
the Lorentzian sector. The real part of the complex angle
ϵθab is the 4D dihedral angle between the hyperplanes a, b
embedded in flat Lorentzian 4D space. The imaginary part
has a causal term χabπ that tracks if the hyperplanes are
cochronal or antichronal, and a term ξab measuring the
twist between the framed planes ab and ba. The wedge
holonomy has a boost and rotation part and takes the form

gab ¼ e
ϵθabþiχabπ−iξab

2 jzba�hzabj − e−
ϵθabþiχabπ−iξab

2 jzbai½zabj: ð20Þ

The solution with different signs ϵ ¼ �1 are related by the

transformation gab⟶
ϵ→−ϵðg†abÞ−1. This duality is related by

the symmetry of the local flatness equations (10). We
obtain a set of equivalent equations if we transform all the
holonomies into their inverse-conjugate transpose.
Some clarifications are in order. We were cautious in

naming the geometries emerging from the local flatness
conditions (10). In the spin foam literature the geometries in
the topological sector called vector geometries, Euclidean

5All the source and the target framed planes can be oriented in
such a way their normals are pairwise opposite. The orientation
can happen by rotating all the framed planes at the same edge
with the same SUð2Þ transformation. See [8] for complete
geometric characterization.

6Consider the 2D angle αcdab on the plane jzabi indentified by
its intersection with the planes jzaci and jzadi. Similarly, conder
the corresponding 2D angle αcdba identified by jzbai, jzbci, and
jzbdi. The angle-matching condition is αcdab ¼ αcdba for all possible
a, b, c, d.
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4-simplices and the geometries in the Lorentzian sector are
Lorentzian 4-simplices. If we impose only local flatness we
are missing a crucial ingredient to do the same. We do not
know if the framed planes at the edges form a tetrahedron.
This can be done by adding a closure condition to
each edge.
First, we associate each edge with an area. In the EPRL

spin foam model, this area is quantized and given by a spin
jab ¼ jba. We will use the same name for coherence. For
each edge a we impose a closure constraint on the spinors
at that edge X

b≠a
jabhzabjσ⃗jzabi ¼ 0: ð21Þ

With this additional condition the framed planes at each
edge a close forming a framed tetrahedron [33] with areas
given by jab. If the tetrahedra exist, then the geometries in
the topological sector satisfying the orientation conditions
are vector geometries. The angle-matching condition is
equivalent to proper shape-matching conditions since the
areas of corresponding triangles match by construction.
The geometries in the topological sector satisfying the
shape-matching conditions form a Euclidean 4-simplex.
The geometries in the Lorentzian sector satisfying the
shape-matching conditions form a Lorentzian 4-simplex.
The closure conditions (21) are defined up to a global
rescaling of all the areas jab → λjab. Therefore, the
geometries we reconstruct are defined up to a global scale.

IV. THE EPRL MODEL AND LOCAL FLATNESS

The EPRL spin foam transition amplitude on a given
simplicial 2-complex Δ with faces colored by SUð2Þ spins
jf and edges colored by intertwiners ie is given by

AΔ ¼
X
jf;ie

Y
f

Af

Y
e

Ae

Y
v

Av: ð22Þ

The face amplitude is given by Af ¼ 2jf þ 1 and the edge
amplitude by Ae ¼ 2ie þ 1. They are fixed [34] requiring
the correct convolution property of the path integral with a
fixed boundary. The simplicial EPRL vertex amplitude Av
in the spinorial basis is formulated associating to each
wedge ab a spin jab and the function

Dðγjab;jabÞ
jabJ ζbajabζab

ðgabÞ; ð23Þ

where gab is the wedge holonomy, Dðγjab;jabÞ
jabJ ζbajabζab

is a
γ-simple unitary irreducible representation of SLð2;CÞ,
and γ is the Immirzi parameter. The choice of the
particular γ-simple representation is due to the weak
quantum implementation of the linear simplicity con-
straints. Classically, it is responsible for reducing the
Lorentzian topological BF theory to general relativity. In
the spinorial basis, the γ-simple irrep (23) can be written in
exponential form using a dummy spinor wab necessary to
implement the unitarity of the representation

Dðγjab;jabÞ
jabJ ζbajabζab

ðgabÞ ¼
2jab þ 1

π

Z
dwab

½ζbajwabi2jabhwabjgabjζabi2jab
kwabk2jabþ2iγjabþ2kg†abwabk2jab−2iγjabþ2

¼
Z

dwabμabeSab ; ð24Þ

where the function μab ¼ 2jabþ1
π

1
kwabk2kg†abwabk2 is usually

interpreted as a measure factor. The wedge action is

Sab ¼ 2jab log

�½ζbajwabihwabjgabjζabi
kwabk1þiγkg†abwabk1−iγ

�
: ð25Þ

The vertex amplitude Av is constructed taking the product
of (23) on all the wedges. Then, assigning a holonomy to
each edge ga such that gab ¼ g−1b ga. And finally, integrating
over the edge holonomies, being careful to remove a
redundant integration to regularize the amplitude [35],

Av ¼
Z Y

a

dgaδðg1Þ
Y
ab

Dðγjab;jabÞ
jabζbajabζab

ðg−1b gaÞ: ð26Þ

The model is usually introduced in this way, and the
literature rarely comments on the choice of assigning
holonomies to edges. Introducing the edge holonomy ga
related to the wedge holonomy via gab ¼ g−1b ga implements

the local flatness condition strongly in the EPRL model.
Local flatness is not a requirement of the discretization
prescription we use in formulating the EPRL model. It is an
ingredient we add to the mix because we want to work with
flat simplices. To highlight it, we rewrite the vertex
amplitude (26) using all ten wedge holonomies and
imposing local flatness strongly with a delta function for
each fundamental cycle of the 4-simplex.

Av ¼
Z �Y

ab

dgabD
ðγjab;jabÞ
jabζbajabζab

ðgabÞ
�
CLFðgab;…; gcdÞ ð27Þ

An explicit example of CLF based on a choice of funda-
mental cycles is

CLFðgab;…; gcdÞ ¼ δðg−113 g23g12Þδðg−114 g24g12Þδðg−115 g25g12Þ
× δðg−114 g34g13Þδðg−115 g35g13Þδðg−115 g45g14Þ:

ð28Þ
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An explicit integration shows that we can eliminate six
wedge holonomies gab with a > 1 from (27) out of ten. We
obtain exactly the formula of the amplitude (26) if we
identify the edge holonomies gb with g1b. Different choices
of fundamental cycles in (28) correspond to different
regularizations of (26) where a different redundant edge
integration is removed.

V. THE LARGE SPIN LIMIT OF THE EPRL
VERTEX AMPLITUDE

In the large spin regime, we consider the spins associated
with the faces EPRL vertex amplitude homogenously large

jab → λjab with λ ≫ 1: ð29Þ

We will refer to λ as the scale of the spins. We recast the
vertex amplitude in exponential form using (24) with a total
action

S¼
X
ab

Sab ¼
X
ab

2jab log

 
½ζbajwabihwabjgabjζabi
kwabk1þiγkg†abwabk1−iγ

!
: ð30Þ

The action (30) is linear in the spins. Therefore, we can
approximate the vertex amplitude using saddle-point tech-
niques. The saddle points dominate the integrals of the
vertex amplitude and are the points where the gradient of the
action vanishes. Among them, we focus on those maximiz-
ing the real part of the action and giving the dominant
contributions to the asymptotic behavior of the vertex
amplitude. The real part of the wedge actions is negative
ReSab ≤ 0. The maximum of the real part of whole
action (30) is obtained when ReSab ¼ 0 for all wedges.
Strictly speaking, we should consider all the saddle points.
Traditionally, the dominant ones are studied since the
additional equations simplify the calculations. It would be
interesting to study what changes if we relax the dominance
request, especially in extended triangulations [22,36,37].
The saddle-point equations are

δS
δga

¼ 0 ð31Þ

δS
δwab

¼ 0 ð32Þ

δS
δw̄ab

¼ 0 ð33Þ

ReSab ¼ 0 ð34Þ

We combine the saddle point equations to recast them in a
form with a simpler geometrical interpretation. From (31)
using the other equations to remove the dummy spinors wab,
we obtain the closure condition for the boundary spinors

X
b≠a

jabhζabjσ⃗jζabi ¼ 0: ð35Þ

As we already discussed in (21) this condition allows
interpreting the boundary framed planes as framed tetrahedra
with areas given by the spins jab.
Combining the other three equations [(34), (32) and (33)]

we obtain some equations that can be used to determine the
value of the dummy spinors at the saddle point (we will not
report them since they are not important for our discussion)
and the equations that constrain the wedge holonomies’
spinors in terms of the boundary ones. We use wedge
holonomies to separate the saddle-point equations from the
local flatness equation gab instead of the edge holonomies.

gabjζabi ¼ λabjζba�; ðg−1abÞ†jζabi ¼
1

λ�ab
jζba�; ð36Þ

where the proportionality parameter λab is to be deter-
mined. We have one alignment equation for each wedge ab
fixing the parameters of the wedge holonomies (9) in terms
of the boundary states.

gab ¼ e
ωab
2 jζba�hζabj − e−

ωab
2 jζbai½ζabj; ð37Þ

where the porportionality coefficient is related to the
complex angle λab ¼ e

ωab
2 and still free.7

On shell of the alignment equations (36) the action (30)
assumes a very simple form in terms of the complex
angles ωab

SðcrÞ ¼
X
ab

SðcrÞab ¼ iλ
X
ab

jabðγReωab þ ImωabÞ: ð38Þ

Suppose we do not impose the local flatness conditions.
In that case, the complex angles in (37) are undetermined,
and the closure conditions (21) are the only restrictions on
the boundary spinors. To connect with discrete 4D geom-
etries and reproduce the famous result for which Lorentzian
Regge action (and geometry) emerge in the semiclassical
limit of the EPRL vertex amplitude, we have to include the
local flatness conditions that we discussed in great length in
Sec. III. They require additional constraints on the spinors
and fix the complex angles in terms of the holonomies’
spinors. For example, if we restrict to the Lorentzian sector,
local flatness requires the framed tetrahedra described by
the boundary spinors to satisfy the shape-matching con-
straints. We can reconstruct a Lorentzian 4-simplex with a
spacelike boundary embedding the framed tetrahedra in
4D. The real part of the complex angles equals the dihedral
angles. The imaginary part of the complex angles relates to

7The proof is straightforward. We write gab in terms of the four
bilinears jζbaihζabj, jζba�hζabj, jζbai½ζabj, jζba�½ζabj that form a
basis of GLð2;CÞ and we use (36) and det gab ¼ 1 to determine
the complex coefficients.
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the twist angle between the two framed tetrahedra. The
action at the saddle point in this case becomes

SðcrÞ ¼ iλϵ
X
ab

γjabθab − iλ
X
ab

jabξab þ iλϵπ
X
ab

jabχab

¼ iλϵSR − iλT þ iλϵπϒ: ð39Þ

The first term is the well known Regge action of the
4-simplex SR ¼Pab γjabθab with areas γjab and
Lorentzian dihedral angles θab. The sign ϵ, which labels
the two solutions of the local flatness equations, represents
the two possible orientations of the 4-simplex with
given boundary spacelike tetrahedra. The second term
T ¼Pab jabξab is a twist term describing how the hol-
onomies transform the frames of the boundary triangles.
The last term ϒ ¼Pab jabχab is related to the “causal”
structure of the 4-simplex and encodes the cochronality or
antichronality of the boundary tetrahedra in the 4-simplex.
The effect of the local flatness condition on the

Hessian of the saddle point expansion in the EPRL model
is still unknown in closed form. It can be computed
numerically [12], and its mathematical properties are
known [38]. In particular, the Hessian is nondegenerate
for geometries corresponding to nondegenerate 4-simplices.
It could be interesting to study the nondegeneracy of the
Hessian off shell of the local flatness condition and how
they contribute. We leave this challenging calculation to
future work.

VI. EXTENDED EPRL SPIN FOAM AMPLITUDES

The next step is considering spin foam amplitudes with
more than a vertex. Before discussing the amplitude of the
EPRL model specifically, we will make some general
observations. For simplicity of notation, let us consider
the most straightforward case of two vertices glued together
on two edges. The 2-complex associated with this ampli-
tude has two bulk edges and a bulk face (see Fig. 4 for
reference). We decorate with tides the variables associated

with the second vertex and look at the holonomies related
to the bulk face. Using the parametrization (9) the two bulk
holonomies are

gab ¼ e
ωab
2 jzba�hzabj − e−

ωab
2 jzbai½zabj; and

g̃ba ¼ e
ω̃ba
2 jz̃ab�hz̃baj − e−

ω̃ba
2 jz̃abi½z̃baj: ð40Þ

In general, the two holonomies in their (9) form do not glue
nicely. The framed plane jzbai of gab is independent from
the framed plane jz̃bai of g̃ba. The details of how the two
holonomies glue is given by the details of the spin foam
theory.
We focus on the contribution to the EPRL spin foam

amplitude AΔ (22) deriving from the bulk face. Each vertex
contributes with a γ-simple unitary irreducible representa-
tion (23)

Dðγjab;jabÞ
jabJ ζbajabζab

ðgabÞ; and Dðγjab;jabÞ
jabJ ζ̃abjab ζ̃ba

ðg̃baÞ: ð41Þ

We glue the two vertices together with the factors
hζabjζ̃ab�2jab and hζbajζ̃ba�2jab due to the fact that the
spinorial basis is overcomplete. We integrate over the four
spinors ζ with the appropriate measure.8If we put (41) in the
exponential form we find that the face contributes to the
amplitude with an action

Sf ¼ 2jab log

�½ζbajwabihwabjgabjζabi
kwabk1þiγkg†abwabk1−iγ

�
þ 2jab loghζabjζ̃ab�

þ 2jab log
�½ζ̃abjw̃abihw̃abjg̃bajζ̃bai
kw̃abk1þiγkg̃†abw̃abk1−iγ

�

þ 2jab loghζ̃bajζba�: ð42Þ

All the spinors in (42) are bulk spinors used to glue the
vertices or dummy spinors used i nthe SLð2;CÞ represen-
tations. We are integrating over all of them.
The whole EPRL amplitude (22) is defined with a sum

over spins associated with bulk faces. Before considering
the effect of the sum, we analyze the amplitude for a fixed
value of the bulk face spin.
The action (42) is still linear in the spins jab and in the

large spins regime (29) we can approximate the spin foam
amplitude using saddle point techniques. The saddle point
is made on all the variables. Now they also include bulk
spinors. Again we look for the dominant saddle points
where the gradient of the action vanishes, and the real part
of the action is maximal. Since ReS ≤ 0 and both the
contribution coming from the vertices and the gluing are
negative and at most zero, maximizing ReS is equivalent to
asking that the real part of each of its constituents (each
logarithm) vanish independently.

FIG. 4. Two spin foam vertices glued together. We denoted with
a and b the bulk edges (highlighted in blue). The bulk face (also
highlighted in blue) connects the two vertices and comprises the
two wedges (one for each vertex) that include the bulk edges. We
indicate the two bulk holonomies with gab and g̃ba.

8The integration measure is dζ ¼ 1=pid4ζ.
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In addition to the saddle point equations we discussed in
Sec. V for each vertex, the extra integrals over the bulk
spinors lead to some additional equations

δS
δζab

¼ 0; ð43Þ

δS

δζ̄ab
¼ 0; ð44Þ

Re loghζabjζ̃ab� ¼ 0: ð45Þ

It has been shown with an explicit calculation [36,37]
that on shell of the other critical-point equations (43)
and (44) are automatically satisfied. The solution of
Eq. (45) are simple and requires the bulk edge spinors to
coincide up to a phase

jζabi ¼ e−iαab jζ̃ab�; and jζbai ¼ e−iαba jζ̃ba�: ð46Þ

The saddle point analysis is identical to the single vertex
case with the extra wedge gluing condition on bulk edge
spinors. The action of the closed face (42) at the critical
points is

SðcrÞf ¼ iλjabðγReωab þ ImωabÞ þ iλjabðγReω̃ab þ Imω̃abÞ
þ i2λjabðαab þ αbaÞ: ð47Þ

To make contact with geometry, we go on shell of each
vertex’s local flatness equations (10). If we restrict for
brevity to a global Lorentzian sector,9 the action of the
closed face (42) reduces to

SðcrÞf ¼ iλγjabðϵθab þ ϵ̃θ̃baÞ − iλjabðξab þ ξ̃baÞ
þ i2λjabðαab þ αbaÞ þ iλπjabðϵχab þ ϵ̃χbaÞ: ð48Þ

Recall that we decorate with a tilde the variables of the
second vertex. The first term is the algebraic sum of the
Lorentzian dihedral angle dual to the triangle ðabÞ. It is
related to the deficit angle associated with the triangle, and
the relative sign ϵ=ϵ̃ is associated with the relative ori-
entation of the two 4-simplices. The relative orientation of
the two vertices is not fixed. If this is a desired feature of
the EPRL model or if we want to remove it is not clear;
however, the same freedom is present in the Ponzano-
Regge model [39,40] where it is necessary to have a
topological invariant model.
The last term is a sign for the amplitude, keeping track of

the local causal structures of the two 4-simplices. The twist

term combines with the overlapping term in an interesting
way. Observe that, up to irrelevant factors of 2π, and using
the conditions (46) for the closed face and the auxiliary face
used to define the twist angles, we can express the sum of
the twist angles as

ξab þ ξ̃ab ¼ arg

�hζacjζab�hζabjζaci
hζbcjζbai½ζbajζbci

�

þ arg

�hζbcjζbai½ζbajζbci
hζacjζab�hζabjζaci

�
þ 2ðαab þ αbaÞ

¼ 2ðαab þ αbaÞ; ð49Þ

where the two arg functions cancel since their arguments
are reciprocal. The twist contribution of the action summed
with the overlap on shell vanish. The action of the closed
face (42) restricted to a global Lorentzian sector reduces to
a term proportional to the deficit angle and a “sign” term
related to the Lorentzian structure of the two 4-simplices

SðcrÞf ¼ iλγjabðϵθab þ ϵ̃θ̃baÞ þ iλπjabðϵχab þ ϵ̃χbaÞ: ð50Þ

It is interesting to also look at the form of the face
holonomy on shell of the critical-point equations. Using the
gluing equations (46) we have

gf ¼ g̃bagab ¼ e
ωabþω̃ba

2
þiðαabþαbaÞjζabihζabj

þ e−
ωabþω̃ab

2
−iðαabþαbaÞjζab�½ζabj: ð51Þ

The holonomy gf maps the framed plane jzabi to itself with
a complex angle ωf ¼ ωab þ ω̃ab þ i2ðαab þ αbaÞ. The
spinor jζabi is constrained only by closure equations. In
particular, gf is a 4-screw, a composition of a boost of angle
Reωf and a rotation of angle Imωf along the same axis n⃗ab.
If we include the local flatness equations (10) and restrict

ourselves to the global Lorentzian sector, we can further-
more simplify the expression for the complex angle ωf

ωf ¼ γðϵθab þ ϵ̃θ̃baÞ þ iπðϵχab þ ϵ̃χbaÞ; ð52Þ

where we used (49) to cancel the twist angles with the
gluing phases, in this sector, the face holonomy has the
form of a Regge holonomy. It is a pure boost in the plane
orthogonal to the triangle of an angle equal to the sum
of the 4D dihedral angles dual to the triangles of the (two)
4-simplices that share it.

VII. THE SUM OVER THE SPINS

In the previous section we studied the large spins
approximation of the spin foam amplitude with fixed bulk
spins. The full spin foam amplitude (22) is obtained
by weighting the contributions with a face amplitude
Af ¼ 2jf þ 1 and summing over the spins associated with

9While critical-point equations (the spherical sine laws, to be
precise) force all the holonomies in the same vertex to be in the
same sector, there are no equations that require holonomies in
different vertices to be in the same sector.
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bulk faces. To keep the notation simple, we will continue using the example introduced in the previous section. The
generalization to arbitrary bulk faces immediately follows with the same reasoning and steps. Summing over its spin
explicitly, the bulk face ðabÞ contributes to the spin foam amplitude with

FEPRLðgab; g̃baÞ ¼
X
jab

ð2jab þ 1Þ
Z

ð2jab þ 1Þdζab
Z

ð2jab þ 1Þdζba
Z

ð2jab þ 1Þdζ̃ab
Z

ð2jab þ 1Þdζ̃ba

×Dðγjab;jabÞ
jabJ ζbajabζab

ðgabÞhζabjζ̃ab�2jabDðγjab;jabÞ
jabJ ζ̃abjab ζ̃ba

ðg̃baÞhζ̃bajζba�2jab ; ð53Þ

where dζ is the measure over the spinor space. Notice that
the integrals over the spinors could be performed exactly.
We opt not to do it to use the same notation of the previous
sections.
The partition function of the EPRL spin foam model can

be rewritten as the product of functions like (53) associated
with each face, a local flatness constraint for each vertex, and
the integration over all the wedge holonomies. The equiv-
alent of (53) for the BF topological spin foam theory is a
group delta function of the product of the wedge holonomies
associated with the face. In that case, the delta functions
impose the global flatness of the model on the 2-complex,
forcing any parallel transport to be trivial. A similar result for
the EPRL model can be obtained by studying the wavefront
set of the partition function. Studying it is a very involved
process and has been proposed in the context of the
Euclidean EPRL model in [23]. The analysis in [23] focuses
more on mathematical rigor than its interpretation and uses a
parametrization with numerous auxiliary variables. For these
reasons, it remains an amazing paper not fully digested by
the community. The takeaway message of their work we
need for this section is that the singular support of the
integrand dominates the integrals in the EPRL partition
functions. The singular support of a distributions is essen-
tially given by the group elements for which the distribution
is singular (e.g. the singular support of δðgfÞ is given
by SingðδÞ ¼ f1g).
The calculation is lengthy but simple. We report it with

all the details in Appendix D. The singular support of the
function (53) is given by

SingðFEPRLðgab; g̃baÞÞ ¼ fgab; g̃bajg̃bagab
¼ e

ωf
2 jζihζj þ e−

ωf
2 jζ�½ζj with γReωf

þ Imωf ¼ 0 mod 4πg: ð54Þ

The singular support of (53) contains all the wedge
holonomies such that their product (that forms the face
holonomy representing the parallel transport around a bulk
face) is a 4-screw. Its direction is arbitrary, and it has a
rapidity and rotation angle proportional (the proportionality
factor is −γ) up to 4π factors. Following the arguments
of [23], we expect that such holonomies dominate the
semiclassical limit. The result of the analog calculation for
a face with an arbitrary number of vertices is the same.

The “naive” flatness problem [23,41–44] claims that, at
fixed triangulation, the amplitude is dominated in the large
(boundary) spin limit by flat geometries. For a path-
integral formulation of a quantum theory, the amplitude
is exponentially suppressed if and only if the boundary
data is inconsistent with the classical equation of motions.
Therefore, the flatness problem was interpreted as an
indication that the EPRL model apparently cannot recover
nonflat solutions of Einstein’s equations. The problem
disappears if the triangulation refinement is considered at
the same time as the large spin limit.
However, we want to show that the same tension arises

when we combine (54) with the large spin limit form of the
face holonomy derived in the previous section (51) and
local flatness conditions. In that case, the imaginary part of
the complex angle of the face holonomy is the vanishing
twist term. The real part of the complex angle is the sum of
the dihedral angles associated with the bulk face. In this
case, the singular support condition gives the (in)famous
flatness equation γ

P
i θi ¼ 0 mod 4π.

The same conclusion can also be derived using saddle
point techniques, and Poisson resummation [44]. We
preferred to follow the singular support argument to
demystify the result of [23] because it focuses more on
the holonomies than the geometries.

VIII. DISCUSSION

We explored the implication of local flatness in
Lorentzian spin foam models. We find that geometry
emerges naturally from it, independently from the details
of the models.
We associate a set of SLð2;CÞ holonomies with the

wedges of a spin foam vertex. We require the parallel
transport within a simplicial spin foam vertex to be
trivial and find constraints on the geometry that parametrize
the holonomies. We parametrize each holonomy with
two framed planes (one at the source and one at the
target) and a complex angle representing the boost
and twist between the planes. This interpretation is analog
to the twisted-geometry picture of loop quantum
gravity [18,20,21,30,31]. The local flatness equations
impose conditions on the angles of the geometry that we
divide into two classes. The first class of solutions contains
SUð2Þ holonomies. Moreover, the geometry has to satisfy
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at least the orientation conditions, and the complex angles
vanish. If the geometry satisfies angle-matching condi-
tions, we can embed the 3D hyperplanes associated with
the spin foam edges in Euclidean 4D space. The complex
angles are related to the 4D dihedral angles and the twist
between corresponding frames. The second class of sol-
utions contains holonomies with a nontrivial boost part.
The geometry satisfies angle-matching conditions, and we
can embed the 3D hyperplanes associated with the spin
foam edges as spacelike hyperplanes in a Lorentzian 4D
space. The real part of the complex angles relates to the 4D
dihedral angle between them, and the imaginary part to the
twist between corresponding frames. If we require closure
conditions of the framed planes associated with the same
edge, we can interpret the framed planes as framed
tetrahedra. If we supplement the local flatness condition
with closure conditions, geometry in the topological sector
reduces to a vector geometry or a Euclidean 4-simplex.
Geometry in the Lorentzian sector reduces to a Lorentzian
4-simplex with a spacelike boundary. Closure conditions
result from the theory’s edge SUð2Þ invariance. Assumewe
find a mechanism to select the Lorentzian sector of locally
flat holonomies. Integrating over locally flat holonomies
satisfying edge closure constraints restricted to the
Lorentzian sector is equivalent to summing over all
Lorentzian 4-simplices.
The correspondence between holonomies and Lorentzian

geometry is model independent and very general. We do not
have to mention semiclassical regimes, irreducible repre-
sentations, or other ingredients necessary to build a model.
The geometry of Lorentzian 4-simplices emerges naturally
from the vertices of any locally flat Lorentzian spin foam
theory with SUð2Þ edge invariance. What role do the details
of the spin foam model play? The model has to introduce a
scale ℏ that distinguishes the semiclassical regime from the
quantum one. In the semiclassical regime, the model
provides an action that tells us how to glue 4-simplices
together and how to recover (discrete) Einstein equations.
In the EPRL model, ℏ multiplies the spins associated with
the areas of the geometry. Therefore, we identify the
semiclassical regime with the large quantum numbers
regime.10We glue two 4-simplices together, identifying the
shared tetrahedra up to the choice of frame. How to recover
the Einstein equations in the theory is still unknown and is an
object of active research. In this regime, the EPRL model
also gives the edge closure conditions as saddle point
equations and the action reduces to the area-angle Regge
calculus area.
We believe this is the best starting point if we want to

iterate and improve the EPRL spin foam model using a top-
down approach starting from discrete general relativity. We

realize this is an arduous and lengthy path and that this
work is only the first step in this direction.
We conclude with a few observations. The story we tell

shows many connections with effective spin foams [45,46].
They abandon loop quantum gravity variables to work
directly with flat Lorentzian 4-simplices, take the action of
area-angle Regge calculus seriously, and study the gluing
of 4-simplices with a term inspired by spin foams. In this
work, we prove that the integral over SLð2;CÞ holonomies
of the EPRL model is somehow equivalent to the sum over
Lorentzian 4-simplices of the effective model. We leave to
future work, a more in-depth study on how to translate their
results into the holonomies language that talks directly to
traditional covariant loop quantum gravity.
There are numerous extensions of the EPRL model that

includes 4-simplices with timelike boundary. Even if this
work cannot apply directly to those models, local flatness is
a fundamental ingredient also in that case. The paramet-
rization (9) uses spinors that carry a representation of
SUð2Þ, the subgroup of the Lorentz group stabilized by the
normal of the spacelike hypersurface. We can repeat our
analysis by changing the parametrization of the wedge
holonomies with objects that carry a SUð1; 1Þ representa-
tion. We expect to find comparable results in that case too.
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APPENDIX A: ALGEBRA WITH SPINORS

Given a unit spinor jzi such that hzjσ⃗jzi ¼ −n⃗ we
have that

jzihzj ¼ 1 − n⃗ · σ⃗
2

; ðA1Þ

is a projector on the one dimensional subspace of C2

spanned by jzi. The orthogonal projector is given by

jz�½zj ¼ 1þ n⃗ · σ⃗
2

: ðA2Þ

The sum of the two orthogonal projectors provides a
resolution of the identity of C2

jzihzj þ jz�½zj ¼ 1: ðA3Þ

The scalar products of two unit spinors and their duals are
related by the followind identities

10To be more precise, the community recently agreed upon
identifying the semiclassical regime as a double limit of large
quantum numbers and refined 2-complexes.
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½zjw� ¼ hwjzi ¼ hzjwi; ½zjwi ¼−½wjzi ¼−hzjw�: ðA4Þ

Therefore, a direct calculation shows that

jhwjzij2 ¼ 1 − j½wjzij2: ðA5Þ

Given two unit spinors jzabi and jzaci representing two
framed planes we compute

jhzabjzacij2 ¼ hzabjzacihzacjzabi ¼ hzabj
1 − n⃗ac · σ⃗

2
jzabi

¼ 1þ n⃗ab · n⃗ac
2

¼ 1þ cosϕa
bc

2
; ðA6Þ

where cosϕa
bc ¼ n⃗ab · n⃗ac is the dihedral angle between the

framed planes jzabi and jzaci orthogonal to n⃗ab and n⃗ac.
Using (A5) we have

j½zabjzacij2 ¼
1 − cosϕa

bc

2
: ðA7Þ

Combining (A6) and (A7) and using basic trigonometry we
also have

2j½zabjzacihzabjzacij ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosϕa

bc

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosϕa

bc

2

r
¼ sinϕa

bc; ðA8Þ

where we assumed by convention that 0 ≤ ϕa
bc ≤ π.

APPENDIX B: CANONICAL FORM
OF THE HOLONOMIES

Consider two spinors jzi and jwi representing the basis
of two C2 spaces. If we interpret them as the source and
target space of a linear map g ∈ GLð2;CÞ we can para-
metrize it using the projectors and complex coefficients

g ¼ ajwihzj þ bjw�hzj þ cjwi½zj þ djw�½zj: ðB1Þ

A general g ∈ SUð2Þ element can be parametrized by

g ¼ ajwihzj þ bjw�hzj − b�jwi½zj þ a�jw�½zj; ðB2Þ

with the unit determinant condition jaj2 þ jbj2 ¼ 1.
Moreover, we can always find a canonical basis for the
source and target space for which

g ¼ ei
ϕ
2jwihzj þ e−i

ϕ
2jw�½zj; ðB3Þ

where the phase ϕ is redundant and can be reabsorbed
in the phase of any of the two spinors. We keep it anyway
since it is convenient for our analysis. We can also
prove that

b ¼ e
η
2jwihwj þ e−

η
2jw�½wj; ðB4Þ

is an element of SLð2;CÞ and is a pure boost. Using the
projectors (A1) and (A2) and denoting with m⃗ the normal
of the framed plane jwi

b ¼ e
η
2jwihwj þ e−

η
2jw�½wj

¼ e
η
2 þ e−

η
2

2
1 −

e
η
2 − e−

η
2

2
m⃗ · σ⃗ ¼ e−η

m⃗·σ⃗
2 ; ðB5Þ

which is the canonical form of a pure boost with rapidity η
and axis −m⃗. It is clear, for arbitrary m⃗ (jwi) and rapidity η
we obtain all the possible boosts. The canonical form (4)
can be decomposed in a pure boost times an arbitrary
rotation. Therefore, it represent the most general Lorentz
transformation g ∈ SLð2;CÞ

g ¼ ðeReω
2 jwihwj þ e−

Reω
2 jw�½wjÞðeiImω

2 jwihzj þ e−
iImω
2 jw�½zjÞ:

ðB6Þ

APPENDIX C: SPHERICAL COSINE LAWS
AND LOCAL FLATNESS

This section derives the spherical cosine and sine laws
from the local flatness conditions. The calculation is
straightforward, although lengthy. We start from the local
flatness condition (10) where we isolate the wedge hol-
onomy gab

g−1ab ¼ gcagbc: ðC1Þ

It is more convenient to work with scalar equations than
matricial ones. We take the matrix elements

½zacjg−1ab jzbci ¼ ½zacjgcagbcjzbci;
hzacjg−1ab jzbc� ¼ hzacjgcagbcjzbc�; ðC2Þ

with the intent of isolating the complex angle ωab.
11

Substituting the explicit form of the wedge holonomies
(9) we get

e−
ωab
2 ½zacjzabi½zbajzbci − e

ωab
2 ½zacjzab�hzbajzbci

¼ e
ωcaþωbc

2 hzcajzcb�;
e−

ωab
2 hzacjzabi½zbajzbc� − e

ωab
2 hzacjzab�hzbajzbc�

¼ e−
ωcaþωbc

2 ½zcajzcbi: ðC3Þ

Taking the term-by-term product of these two equations,
we can eliminate the complex angles ωca, ωbc and obtain

11The alternative projection hzacj · jzbci and ½zacj · jzbc� leads to
the same result with an equivalent path.
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eωab ½zacjzab�hzbajzbcihzacjzab�hzbajzbc� þ e−ωabhzacjzabi½zbajzbc�½zacjzabi½zbajzbci
− ½zacjzab�hzbajzbcihzacjzabi½zbajzbc� − ½zacjzabi½zbajzbcihzacjzab�hzbajzbc� ¼ hzcajzcb�½zcajzcbi ðC4Þ

To isolate the complex angle ωab it is convenient to manipulate the equality using the properties (A4) and the definition of
the twist angle (14)

coshðωab þ iξcabÞ ¼
−jhzcajzcb�j2 þ jhzabjzacij2jhzbajzbcij2 þ jhzacjzab�j2jhzbajzbc�j2

jhzacjzabihzacjzab�hzbajzbcihzbajzbc�j
: ðC5Þ

Using the formulas to relate the absolute values of the spinor scalar products to the dihedral angles between framed
planes (A6), (A7) and (A8) we finally obtain (11)

coshðωab þ iξcabÞ ¼
cosϕc

ab þ cosϕa
bc cosϕ

b
ac

sinϕa
bc sinϕ

b
ac

: ðC6Þ

To find the equivalent equations for the complex angles ωca and ωbc we repeat the calculation isolating gca and gbc at the
fist step (C1).
The derivation of (12) is more complicated but involves only basic algebra and the spinorial calculus properties

we introduced in Appendix A.12We will sketch the main steps and omit the majority of the algebra. We start with a
particular combination of projections of the matrical equation (C1)

½zacjg−1ab jzbcihzacjg−1ab jzbci¼ ½zacjgcagbcjzbcihzacjgcagbcjzbci; ðC7Þ

hzacjg−1ab jzbc�½zacjg−1ab jzbc� ¼ hzacjgcagbcjzbc�½zacjgcagbcjzbc�: ðC8Þ

Then we substitute the explicit expression for the wedge holonomies (9), we divide the first equation by hzbajzbci½zbajzbci,
the second by hzbajzbc�½zbajzbc� and we subtract them. The result, after a few simplifications, is

eωab
hzacjzab�½zacjzab�
½zbajzbcihzbcjzbai

− e−ωab
hzacjzab�½zacjzab�
½zbajzbcihzbcjzbai

¼ eωbc
hzcbjzcaihzcajzcb�
hzbajzbci½zbajzbci

− e−ωbc
hzcbjzcaihzcajzcb�
hzbajzbci½zbajzbci

: ðC9Þ

If we extract the phases from the scalar product, we can recognize the twist angles and collect the remaining absolute value

2 sinhðωab þ iξcabÞ
jhzacjzab�hzacjzabij
jhzbajzbc�hzbcjzbaij

¼ 2 sinhðωbc þ iξabcÞ
jhzcbjzcaihzcajzcb�j
jhzbajzbci½zbajzbcij

: ðC10Þ

In terms of the dihedral angles between framed planes (A6), (A7) and (A8) we obtain directly (12)

sinhðωabþ iξcabÞsinϕa
bc ¼ sinhðωbcþ iξabcÞ sinϕc

ab: ðC11Þ

If in (C7) we start from the product of the projections ½zacj · jzbci½zacj · jzbc� and the complementary one we obtain the
analog equation relating the complex angles ωab and ωca.

12We suspect there is a more straightforward derivation of these equations.
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APPENDIX D: SINGULAR SUPPORT OF FEPRL

We start from the expression (53), and we explicit the form of the γ-simple unitary irreducible representations. We find

FEPRLðgab; g̃baÞ ¼
X
jab

ð2jab þ 1Þ
Z

ð2jab þ 1Þdζab
Z

ð2jab þ 1Þdζba
Z

ð2jab þ 1Þdζ̃ab
Z

ð2jab þ 1Þdζ̃ba

× ð2jab þ 1Þ
Z

dzab
½ζbajzabi2jabhzabjgabjζabi2jab

kzabk2jabþ2iγjabþ2kg†abzabk2jab−2iγjabþ2
hζabjζ̃ab�2jab

× ð2jab þ 1Þ
Z

dz̃ba
½ζ̃abjz̃bai2jabhz̃bajg̃bajζ̃bai2jab

kz̃bak2jabþ2iγjabþ2kg̃†baz̃bak2jab−2iγjabþ2
hζ̃bajζba�2jab : ðD1Þ

We group the integrations over the various spinors under a single symbol dΩ, and we collect the integer 2jab from
the exponent

FEPRLðgab; g̃baÞ ¼
X
jab

ð2jab þ 1Þ7
Z

dΩðfEPRLðgab; g̃baÞÞjab ; ðD2Þ

where we denoted with

fEPRLðgab; g̃baÞ ¼
½ζbajzabihzabjgabjζabi
kzabk1þiγkg†abzabk1−iγ

hζabjζ̃ab�
½ζ̃abjz̃baihz̃bajg̃bajζ̃bai
kz̃bak1þiγkg̃†baz̃bak1−iγ

hζ̃bajζba�: ðD3Þ

We recast the sum over half-integer spins in terms of integers since 2jab ∈ N. The function FEPRLðgab; g̃baÞ has the form of
(the seventh derivative of) a geometric series that is defined in the whole complex plane but 1, where it is singular. Therefore
we find the singular support of (D2) for values of the holonomies such that wEPRLðgab; g̃baÞ ¼ 1 or

½ζbajzabihzabjgabjζabi
kzabk1þiγkg†abzabk1−iγ

hζabjζ̃ab�
½ζ̃abjz̃baihz̃bajg̃bajζ̃bai
kz̃bak1þiγkg̃†baz̃bak1−iγ

hζ̃bajζba� ¼ 1: ðD4Þ

Note that we are integrating all the spinors. In general, there are no holonomies such that (D4) is satisfied. Taking
the absolute value of the left-hand side of the (D4) and applying the Cauchy-Schwarz inequality to all the scalar products at
the numerator

jfEPRLðgab; g̃baÞj ¼
���� ½ζbajzabihzabjgabjζabikzabkkg†abzabk

hζabjζ̃ab�
½ζ̃abjz̃baihz̃bajg̃bajζ̃bai

kz̃bakkg̃†baz̃bak
hζ̃bajζba�

���� ≤ 1: ðD5Þ

The inequality is saturated if all the vectors in the scalar product are proportional, in particular, if for some real parameters
ρi ∈ R and βi ∈ R

jzabi ¼ eiβ1 jζba� gabjζabi ¼ eρ2þiβ2 jzabi jζ̃ab� ¼ eiβ3 jζabi
jz̃bai ¼ eiβ4 jζ̃ab� g̃bajζ̃bai ¼ eρ5þiβ5 jz̃bai jζba� ¼ eiβ6 jζ̃bai: ðD6Þ

Combining Eq. (D6) we find an eigenvalue equations for the face holonomy

g̃bagabjζabi ¼ e
ωf
2 jζabi; ðD7Þ

where ωf

2
¼ ρ2 þ ρ5 þ iðβ1 þ β2 þ β3 þ β4 þ β5 þ β6Þ. From the Cauchy-Schwarz inequality we also get the extra

equations

jζabi ¼ eρ7−iβ7ðg†abÞ−1jzabi jζ̃bai ¼ eρ8−iβ8ðg̃†baÞ−1jz̃bai; ðD8Þ

or equivalently
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gabjζab� ¼ eρ7þiβ7 jzab� g̃bajζ̃bai ¼ eρ8þiβ8 jz̃bai: ðD9Þ

From these equations we find that also jζab� is an eigenvector of the face holonomy

g̃bagabjζab� ¼ e
ω̃f
2 jζab�: ðD10Þ

From the orthonormality of the eigenvectors and det g̃bagab ¼ 1 we conclude that ω̃f ¼ −ωf. We insert Eqs. (D6) and (D8)
into (D4) to derive a condition on the real and imaginary part of the face complex angle

γReωf þ Imωf

2
¼ 0 mod 2π or γReωf þ Imωf ¼ 4kπ k ∈ Z: ðD11Þ

Since we are integrating over jζabi we can conclude that g̃bagab can be an arbitrary 4-screw with the relation (D11) between
rapidity and rotation angle.

SingðFEPRLðgab; g̃baÞÞ ¼ fgab; g̃bajg̃bagab ¼ e
ωf
2 jζihζj þ e−

ωf
2 jζ�½ζj with γReωf þ Imωf ¼ 0 mod 4πg: ðD12Þ

The calculation for a general face with any amount of wedges (vertices) is the same. For example, the singular support of the
EPRL function associated with a face with 1;…; n wedges is

SingðFEPRLðg1;…; gnÞÞ ¼ fðg1;…; gnÞjgf ¼ e
ωf
2 jζihζj þ e−

ωf
2 jζ�½ζj with γReωf þ Imωf ¼ 0 mod 4πg; ðD13Þ

where gf ¼ gn � � � g1 is just the (ordered) product of all the wedge holonomies belonging to that face.
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