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(Received 21 April 2022; accepted 13 February 2023; published 13 March 2023)

We extend our holographic analysis of the emission of photons by a strongly coupled plasma subject to a
very intense external magnetic field. We previously showed that in a particular model, any photon produced
by the plasma had to be in its only polarization state parallel to the reaction plane. In this paper we consider
a construction that relaxes a formerly imposed constraint, permitting the emission of photons with either
out-plane or in-plane polarization. This constitutes a completion of our former study because the fully back-
reacted equations decouple for these two polarization states in such a manner that those involving the in-
plane are identical to the ones we explored previously. In view of the above, part of the details concerning
the calculations and of the numerical results for the differential rate of emitted photons that we present here
correspond exactly to those omitted in our preceding letter. One of our main results is that the production of
photons is increased by the introduction of a nonvanishing magnetic field with an intensity up to a value Bϑ,
above which the effect is reversed and said production becomes lower than the B ¼ 0 case. The
characteristic intensity Bϑ depends on the propagation direction and tends to zero as the photon momentum
becomes aligned with the magnetic field. Additionally, we also show that the magnetic field has the effect
of increasing the value of the elliptic flow, providing a possible explanation for the excess measured in
collision experiments. The holographic model is constructed using an effective five-dimensional action that
includes a scalar field in addition to the constant magnetic field.
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I. INTRODUCTION

One of the most important probes to obtain information
about the quark-gluon plasma (QGP) are the thermal
photons emitted by it. Due to the weakness of the
electromagnetic coupling and the small extension in space
of the QGP, the emitted photons exit the plasma practically
unscattered, hence, providing an excellent source of infor-
mation about the emission point [1–5]. It has been
suggested that the QGP has global quark spin polarization
in noncentral heavy-ion collisions [6,7], and it was shown
later that this in turn leads to the polarization of the emitted
photons [8], either direct [9] or virtual [10–12].

Moreover, it has become increasingly accepted that an
intense magnetic field pointing perpendicularly to the reac-
tion plane is produced in high energy collisions [13–18] and
that understanding its effects is relevant to properly analyze
experimental observations [19–22]. The maximum estimate
for the intensity of said magnetic field was found in [18] to be
in the range of eB ¼ 5m2

π at
ffiffiffi
s

p ¼ 200 GeV in RHIC and
eB ¼ 70m2

π at
ffiffiffi
s

p ¼ 2.76 TeV in LHC, withmπ the mass of
the neutral pion. These maxima are predicted to be, respec-
tively, reached 1 fm=c and 0.4 fm=c after the corresponding
collision, and decay approximately two orders of magnitude
in about twice such times. It was suggested in [14] that the
existence of strong (electro)magnetic fields in heavy ion
collisions could account for the unexpected observations
regarding the total emission of photons in general and the
elliptic anisotropy of those with low transverse momentum
pT, both underestimated by the methods of perturbative
quantum chromodynamics [2,3]. Additionally, it was pro-
posed in [23] that this magnetic field could lead to the quark
spin polarization, and in turn induce a polarization on the
emitted photons.
Given that the QGP produced at high energy p-p

or heavy-ion collisions exists in a strongly coupled
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state [24,25], the gauge/gravity correspondence [26] has
been extensively used to explore some of its dynamical
properties. It should be noted however, that the theory that
can be studied with holographic methods is not properly
quantum chromodynamics (QCD), as the exact gravity dual
to this theory has not been found yet. What has been done
instead is to consider theories similar to QCD, such as
N ¼ 4 Super Yang-Mills (SYM) at finite temperature with
gauge group SUðNcÞ, and either modify them to bring them
as close to QCD as possible, or use them to compute
quantities that are not sensitive to the details of the theory.
An important example of the latter is the famous shear
viscosity to entropy ratio, which can be computed in the
strongly coupled plasma of the SYM N ¼ 4 theory using
holographic methods, and extrapolated to the QGP pro-
duced in high energy heavy-ion collisions [27]. On the
other hand, the modifications to SYM N ¼ 4 have been
extended to include spatial anisotropies [28–30] and, in
particular, the presence of a very intense external magnetic
field [31–35].
The photon production of strongly coupled plasmas has

been analyzed using many of the previously mentioned
holographic models. While the first holographic study only
considered SYM N ¼ 4 at finite temperature [36], many
developments have been considered to improve the
modeling of the experimental context. In [37] Nf flavor
degrees of freedom were added to the theory in the probe
limit, while the Veneziano limit was later considered
in [38]. Other modifications such as nonvanishing chemical
potential [39–41] and spatial anisotropies [42,43] have also
been considered.
Of particular interest to this work is the inclusion of an

external magnetic field. The photon production in this
context was studied in [44–46] using the holographic
model developed in [31], finding that in general the
magnetic field enhances it. The five-dimensional theory
presented there, that considers the full backreaction of the
magnetic field, is dual to the desired gauge theory because
it is a solution to a consistent truncation of supergravity
(SUGRA) IIB [47]. Given that the magnetic field is
introduced by factorizing aUð1Þ from the SOð6Þ symmetry
of the compact space and changing it to a gauge symmetry,
from the gauge theory perspective the magnetic field in this
case couples to the conserved current associated with a
Uð1Þ subgroup of the SUð4Þ R-symmetry.
The effect of the magnetic field on the polarization of the

emitted photon was studied in [23] by means of the Sakai-
Sugimoto holographicmodel [48], where saidmagnetic field
was introduced on the world volume of the D8=D8-branes.
However, the reported polarization was mild, given that the
backreaction on the embedding of the branes resulting from
the combined effect of the magnetic field and the electro-
magnetic perturbations was not taken into account.
Another important observable in the study of the emitted

photons is the elliptic flow v2, which characterizes the

momentum anisotropy of the particles produced in heavy-
ion collisions. Previous measurements of the elliptic flow at
the RHIC and LHC collaborations revealed a surprisingly
large value of v2 for pT < 4 Gev=c [3,5,49], and the
presence of an intense magnetic field presents itself as a
possible explanation for such a large elliptic anisotropy at
low pT momenta. A holographic model for this was given
in [23] using the Sakai-Sugimoto model, showing that
indeed the magnetic field has a strong influence over the
elliptic flow. Another model was given in [50], using a D3/
D7 system and including the magnetic field as an excitation
over the probe D7-branes. Their results are qualitatively
consistent with experimental observations, with the authors
stating that this should be regarded as an upper bound for
the contribution to v2 that solely a magnetic field could
have in a real QGP.
An alternative holographic setup to model the magnet-

ized QGP was introduced in [32] as a different five-
dimensional consistent truncation to SUGRA IIB. The
constructed family of solutions features the full back-
reaction of a constant magnetic field and a scalar field
dual to an operator of scaling dimension 2. Given that these
solutions are part of the same general truncation ansatz
studied in [47], from the gauge theory perspective the
magnetic field couples to the R-current. A critical intensity
for the magnetic field Bc, above which the system becomes
unstable, is induced by the presence of the scalar field. For
intensities below Bc, two branches of solutions exist, with
one of them being thermodynamically preferred over
the other.
The original motivation for this new model was to find a

feasible way of easily adding fundamental degrees of
freedom in the probe limit. This latter objective was
achieved in [33,34], where it was shown that the interplay
between the magnetic and scalar fields leads to a very
interesting thermodynamic behavior for the fundamental
matter. However, even without considering flavor degrees
of freedom the magnetized plasma features rich physics.
For instance, we recently showed in [51] that for the field
content considered there, the photons emitted by the plasma
in the adjoint representation are linearly polarized in its
state parallel to the reaction plane, the so-called in-plane
polarization state, for any nonvanishing magnetic field
intensity.
The main objective of this manuscript is to provide

additional details of the calculations and extend the analysis
in [51]. In particular, we relax one of our previously
imposed constraints, and present a numerical analysis of
the emission rate of photons in both in-plane and out-plane
polarization states. Said analysis includes the total energy
produced as a function of the magnetic field B and the
temperature of the plasma T, as well as the magnetic
contribution to the elliptic flow v2 as a function of the
frequency of the emitted photons ω and the intensity of
such field B. Regarding the latter, we found that the
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magnetic field indeed increases v2, while for the former we
found a very interesting behavior: for any given direction of
propagation, the production of photons is increased with
respect to the B ¼ 0 value if the magnetic field intensity lies
in the interval 0 < B < Bϑ, while it decreases for any
B > Bϑ. The magnetic field intensity Bϑ depends on the
propagation direction, in a manner such that it tends to zero
as the photon momentum is aligned with the magnetic field.
This last feature is true regardless of the polarization state.
As mentioned above, the reason why the details omitted

in our previous letter [51] are rigorously included in the
present report is that, as we will see, the fully back-reacted
equations involving the in-plane polarization photons are
identical to those found there.
The manuscript is organized as follows. In the Sec. II we

review the framework to study the emission of photons
from the gauge theory perspective. Section III is devoted to
the family of gravitational solutions that we use for the
holographic description. In Sec. IV we present the details of
the computations necessary to study the emitted photons
using the gauge/gravity correspondence. In Sec. V, we
focus on the in-plane polarization states, while in Sec. VI
we deal with the out-plane states. After that we show the
results for the total photon production and the elliptic flow
in Sec. VII and Sec. VIII, respectively. We close with a
discussion of our results in Sec. IX. Details about the
equations of motion are included in Appendices A and B.

II. PHOTON PRODUCTION IN A STRONGLY
COUPLED MAGNETIZED PLASMA

The gauge theory we consider is four-dimensional SYM
N ¼ 4 over Minkowski spacetime, with gauge group
SUðNcÞ at large Nc and ’t Hooft coupling λ ¼ gYM2Nc.
All the matter fields of this theory are in the adjoint
representation of the gauge group. The produced photons
are modeled by adding a Uð1Þ kinetic term to the SYM
action that couples to the electromagnetic current associ-
ated to a Uð1Þ subgroup of the global SUð4Þ R-symmetry
group of the theory. Hence, the action adopts the form of a
SUðNcÞ ×Uð1Þ gauge theory

S ¼ SSYM −
1

4

Z
d4xðF 2 − 4eAμJ EM

μ Þ; ð1Þ

where F ¼ dA is the electromagnetic field, and the
electromagnetic current is given by

J EM
μ ¼ Ψ̄γμΨþ i

2
Φ�ðDμΦÞ − i

2
ðDμΦ�Þ�Φ: ð2Þ

In the previous expression Ψ and Φ represent the fermionic
and scalar fields of SYMN ¼ 4, respectively. In this same
expression there is an implicit sum over the color indexes,
and the derivative operator Dμ ¼ Dμ − ieAμ is the covar-
iant derivative of the full SUðNcÞ ×Uð1Þ group.

Given that the electromagnetic coupling αEM ¼ e2=4π is
small compared to ’t Hooft coupling λ ¼ gYM2Nc (at large
Nc), even if the two-point correlation function necessary to
compute photon production has to be calculated non-
perturbatively in the SUðNcÞ theory that involves λ, it is
enough to determine it to leading order in αEM and ignore
terms of order Oðα2EMÞ. It is because of this that we can
work exclusively in the gravitational dual of the SUðNcÞ
gauge theory.
If the plasma is in thermal equilibrium at temperature T,

the rate of emitted photons with wave null 4-vector
kμ ¼ ðk0; k⃗Þ and polarization 4-vector ϵνsðk⃗Þ is [36,37]

dΓs

dk⃗
¼ e2

ð2πÞ32jk⃗j
nBðk0ÞχsðkÞ

����
k¼0

; ð3Þ

where

χsðkÞ ¼ ϵμsðk⃗Þϵνsðk⃗ÞχμνðkÞ; ð4Þ

is the spectral density for the polarization state ϵνsðk⃗Þ and

nBðk0Þ ¼
1

ek
0=T − 1

; ð5Þ

is the Bose-Einstein distribution. The spectral density tensor
χμνðkÞ ¼ −2Im½GR

μνðkÞ� is given in terms of the retarded
two-point correlator of the electromagnetic current (2)

GR
μνðkÞ ¼ −i

Z
d4xe−ik·xΘðtÞh½J EM

μ ðxÞ;J EM
ν ð0Þ�i; ð6Þ

where the expectation value is taken in the state at temper-
ature T.
The spatial polarization four-vectors ϵμs are orthogonal to

the null wave four-vector with respect to the Minkowski
metric, ϵiskjδij ¼ 0 and without loss of generality they can

also be chosen to satisfy ϵi1ϵ
j
2δij ¼ 0. We will fix our

coordinate system such that the background magnetic field
is directed along the z-direction. This choice leaves us with
a rotational symmetry on the reaction plane (xy-plane),
allowing us to conveniently set the wave four-vector to lie
in the xz-plane. Denoting the angle that k⃗ forms with the
background magnetic field by ϑ, the wave and polarization
four-vectors take the form

kμ ¼ k0ð1; sin ϑ; 0; cosϑÞ;
ϵμout ¼ ð0; cosϑ; 0;− sinϑÞ;
ϵμin ¼ ð0; 0; 1; 0Þ; ð7Þ

where the notation makes reference to the in-plane and out-
plane polarization states. Hence, the spectral density (4) for
the polarization state ϵout is given by
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χoutðkÞ ¼ cos2 ϑχxx − 2 cos ϑ sin ϑχxz þ sin2 ϑχzz; ð8Þ

while for the ϵin state we have

χinðkÞ ¼ χyy: ð9Þ

We present a diagram with the described kinematics
in Fig. 1.
An important quantity which characterizes the aniso-

tropic properties of the medium where the photons are
produced is the elliptic flow v2, which gives a measure of
the degree of the momentum anisotropy of the particles
generated in the collision. Given the total differential rate of
emitted photons,

dΓ
dk⃗

¼ dΓin

dk⃗
þ dΓout

dk⃗
; ð10Þ

the elliptic flow v2 is given by the coefficient of the second
harmonic in the Fourier expansion in the azimuthal photon
distribution [49,52], which for central rapidity is

dΓ
dk⃗

¼ Γ0ð1 − 2v2 cosð2θÞ þ 2v4 cosð4θÞ þ � � �Þ: ð11Þ

The minus sign in front of v2 comes from the fact that the
Fourier expansion is done with respect to ϑ which is the
angle between the photon’s wave vector k⃗ and the magnetic
field B⃗, instead of using ϕ, the angle between k⃗ and the
reaction plane (where the relation between the two angles is

ϑ ¼ π
2
− ϕ). In this way, the elliptic flow can be obtained

from dΓ=dk⃗ by projecting it over cosð2θÞ:

v2¼−
2

πΓ0

Z π
2

0

dϑcosð2ϑÞdΓ
dk⃗

¼−

R π
2

0 dϑcosð2ϑÞdΓdk⃗R π
2

0 dϑ
dΓ
dk⃗

: ð12Þ

III. THE GRAVITATIONAL BACKGROUND

The holographic model that we consider is a family of
solutions to five-dimensional gauged supergravity with its
bosonic part of the action given by [32]

S ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂φÞ2

þ 4

L2

�
e

2ffiffi
6

p φ þ 2e−
1ffiffi
6

p φ
�
− e−

2ffiffi
6

p φðFÞ2
�
; ð13Þ

where the field content consists of the scalar φ, the Faraday
tensor F, and the components of the metric gμν. G5 is the
five-dimensional Newton constant and L is the AdS5
radius, which in what follows is set equal to one, L ¼ 1,
and therefore G5 ¼ π

2N2
c
.

As shown in [32], this family of solutions can be uplifted
to ten-dimensional supergravity using the results in [47],
while in five dimensions its elements take the general form

ds25 ¼
dr2

UðrÞ −UðrÞdt2 þ VðrÞðdx2 þ dy2Þ þWðrÞdz2;

F ¼ Bdx ∧ dy;

φ ¼ φðrÞ; ð14Þ
where r is the AdS5 radial coordinate, in terms of which the
boundary is located at r → ∞. All these backgrounds
feature a black hole, with a horizon located at r ¼ rh
where the metric function UðrÞ vanishes. Hence the
temperature of each solution is given by

T ¼ 3rh
2π

: ð15Þ

The magnetic field intensity B coincides with the one in the
dual gauge theory given that the metric in (14) asymptotes
five-dimensional anti–de Sitter spacetime at the boundary.
From the ten-dimensional perspective the Maxwell field is
interpreted as an infinitesimal rotation in the compact part
of the geometry (see [34,47] for additional details). Given
that the equations of motion coming from (13) are highly
nonlinear, the family of solutions given by (14) must be
obtained numerically for any nonvanishing intensity of the
magnetic field. The general integration procedure is
described in detail in [32]. It is important to mention that
the equations of motion deduced from (13) require a
nonconstant scalar field φðrÞ for any nonvanishing mag-
netic field. This means that the gravitational model found

FIG. 1. Spatial components of the photon momentum k⃗ and the
polarization vectors: ϵ⃗out out-plane and ϵ⃗in in-plane. The magnetic
field B⃗ points perpendicular to the reaction plane, which is
depicted as a disk in the xy-plane. Given the rotational symmetry
around the z-direction, without loss of generality we can choose
the momentum of the photon parallel to the xz-plane.
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in [31] cannot be recovered from ours for B other than zero.
For B ¼ 0, φ ¼ 0 and any T the geometries reduce to the
noncompact part of the black D3-brane metric.
The near boundary behavior of the scalar field is

φ →
1

r2
ðφ0 þ ψ0 log rÞ; ð16Þ

where the coefficients φ0 and ψ0 can be read from the
asymptotics of any specific numerical solution. This
behavior implies that φ saturates the Breitenlohner
Freedman bound [53,54]. Hence the scalar field φ is dual
to a scalar operator Oφ of scaling dimension Δ ¼ 2.
According to the holographic dictionary, ψ0 is dual to
the source of the operator and φ0 to its vacuum expectation
value hOφi [54]. From the gauge theory perspective, it
makes sense to specify the source of the operator and then
compute the vacuum expectation value that it generates in
response to such source.
It was shown in [32] that for any given ψ0 there exists a

critical magnetic field intensity Bc that the plasma can
tolerate, as it becomes unstable for higher values. From the
dual gravitational perspective, beyond this critical value Bc
the geometries develop a naked singularity. Below Bc there
are two branches of solutions for any fixed B=T2 that differ
in the value of hOφi=T2. In [32] it was also shown that one
of these branches is thermodynamically preferred over the
other. The one with the higher value for hOφi=T2 corre-
sponds to a state with negative specific heat, higher free
energy and lower entropy than the other, showing that the
solutions with smaller hOφi=T2 are thermodynamically
preferred. Throughout this manuscript we will fix the scalar
source to ψ0 ¼ 0 and work exclusively on the thermody-
namically favored branch. For this value of the scalar
source the maximum magnetic field intensity is given
by Bc=T2 ≃ 11.24.

IV. HOLOGRAPHIC PHOTON PRODUCTION

According to the holographic dictionary, the correlation
function (6) can be determined by a perturbative calculation
on the gravitational dual [55–58]. To this end we write

gmn ¼ gBGmn þ hmn;

F ¼ FBG þ dA;

φ ¼ φBG þ ϕ; ð17Þ

where the superscript BG labels the background fields as
given by (14) while hmn, A, and ϕ are their first-order
perturbations, for which we will solve the field equations at
the corresponding order.
The general perturbation of our family of solutions

admitted by the five-dimensional theory that results from
the dimensional reduction of ten-dimensional supergravity

includes a second Uð1Þ field in addition to the one we have
considered so far. Nonetheless, the equations of motion
decouple in such a manner that the latter Uð1Þ field can
consistently be set to zero, which is the path we followed
in [51] and lead to the results therein.
A full treatment of the perturbations in the truncated

theory would demand the inclusion of said additional field,
which, unlike the previously considered Uð1Þ, couples
directly to the scalar field. This construction conducts to a
theory with rich physics that we will present shortly [59],
while in the present work we should limit ourselves to
study those perturbations consistent with the variation of
the action (13) with respect of the fields already included.
In the context that we just have set, the perturbation to the

Maxwell field A evaluated at the boundary, which we will
denote asAbdry, is dual to the source termof thegauge fieldA
in the dual theory (1). In other words, Abdry is dual to the
electromagnetic currentJ EM in the gauge theory side as long
as we work in the Ar ¼ 0 gauge. Moreover, given that the
boundary is perpendicular to r, wewill also impose thegauge
hmr ¼ 0 for the metric perturbations. The previous gauge
choices are consistent with the fact that these components are
not dual to a source on the gauge theory.
The procedure to compute the production of photons is as

follows: The equations of motion from (13) are numerically
solved at first order in the perturbationshmn,A, andϕ in (17).
Sinceweare interested in the retarded correlator,weconsider
only the corresponding ingoing and regular solutions
obtained by the Frobenius method applied near the horizon,
discarding the outgoing modes. Next, in order to obtain the
correlator (6) it is necessary to evaluate the action (13) on the
perturbedsolutionsandtake thesecondvariationwithrespect
to Abdry. Since all the perturbations are coupled by the
equations of motion, we apply the method to compute
correlators for mixing operators developed in [60,61].
First, the near boundary behavior of the equations reveal

that the asymptotic solutions for the scalar field and metric
perturbations are

hmnðrÞ ¼ r2h̃mnðrÞ;

ϕðrÞ ¼ 1

r2
logðrÞϕ̃ðrÞ; ð18Þ

where h̃mnðrÞ and ϕ̃ðrÞ tend to constant values as r → ∞. In
order to follow the procedure outlined in [45,60,61] wemust
solve for the normalized fields h̃mnðrÞ and ϕ̃ðrÞ. To keep a
clean notation, we will refer to these normalized fields as
hmnðrÞ and ϕðrÞ hoping that no confusion will arise.
We then look for all the linearly independent non-

outgoing solutions such that their behavior near the
boundary is

lim
r→∞

�
Að1Þ

Φð1Þ

	
¼

�
1

0

	
; lim

r→∞

�
Að2Þ

Φð2Þ

	
¼

�
0

1

	
; ð19Þ
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where A denotes any of the components of the gauge field
perturbation and Φ denotes any of the fields coupled to A.
Given that we are solving the equations for the perturba-
tions at linear order, the most general solution can be
written as a linear combination of (19)

�
A

Φ

	
¼ Abdry

�
Að1Þ

Φð1Þ

	
þΦbdry

�
Að2Þ

Φð2Þ

	
: ð20Þ

Note that in this way the Abdry dependence has been made
explicit, making it simple to take variations with respect to
this quantity. We can see from (20) that the values the
fields take at the boundary are independent of each other

δAjbdry
δAbdry ¼ 1;

δΦjbdry
δAbdry ¼ 0; ð21Þ

while this is not the case for the derivatives

δA0jbdry
δAbdry ¼ A0ð1Þjbdry;

δΦ0jbdry
δAbdry ¼ Φ0ð1Þjbdry; ð22Þ

where a prime denotes the derivative with respect to r. We
will use this generic fact to compute the retarded Green
function from the action (13). In Sec. V we will show how
to explicitly construct the solutions in (19).
After evaluating (13) in the perturbed solutions, we look

for the second derivative terms and integrate them by parts
to obtain a boundary term, keeping the calculations at
second order in the perturbations. Schematically we have

Sbdry∝
Z

d4xðOðAA0ÞþOðϕϕ0ÞþOðh2ÞþOðhh0ÞÞ; ð23Þ

where the limit r → ∞ is implicit and the zero, first and
greater than second order terms have not been written, as
they are not relevant to our computation. From the previous
discussion we see that theOðϕϕ0Þ,Oðh2Þ andOðhh0Þ terms
do not contribute to the Green function, as they vanish
when taking the second variation with respect to Abdry, thus
the only relevant part of the boundary action is

Sbdry ¼ −
1

8πG5

Z
d4xUVX−2

ffiffiffiffiffi
W

p �
−
AtA0

t

U
þ AxA0

x

V

þAyA0
y

V
þ AzA0

z

W

	
; ð24Þ

where X ¼ e
1ffiffi
6

p φ. The only other terms that could have
contributed are of the form Oðh0h0Þ, Oðϕ0ϕ0Þ, Oðϕ0h0Þ,
OðAh0Þ, OðAϕ0Þ, OðA0h0Þ, and OðA0ϕ0Þ, but none of them
appear in the action.
We need to solve the field equations to first order in the

perturbations and find the nonoutgoing solutions (19). To
this end, we note that even if the dual gauge theory is
anisotropic because of the presence of the magnetic field, it
is still invariant under translations, hence we can take the
Fourier decomposition of all the fields

Φðr; xμÞ ¼
Z

d4k
ð2πÞ4 e

−ikμxμΦðr; kμÞ;

kμ ¼ k0ð1; sin ϑ; 0; cosϑÞ; ð25Þ

whereΦ denotes any of the fields hmn, Am or ϕ. This results
in 21 ordinary differential equations that decouple in two
independent groups, corresponding to the independent
polarization states. It can be verified that the equations
involving the in-plane polarization presented here in
Appendix A, are identical to those that arise in the restricted
setting considered in [51].

V. IN-PLANE POLARIZATION STATE

In order to compute the production of photons in the
polarization state ϵin we need to solve thirteen differential
equations for nine components of the fields: Ay, ϕ, htx, htz,
hxz, htt, hxx, hyy, and hzz. Even when the number of
equations surpasses the number of variables, the system can
be solved consistently. Of the thirteen equations, four are
constraints that once imposed at a given r, they will be
satisfied at any other radial position. This leaves nine
second order differential equations, thus once the con-
straints have been taken into account, we have fourteen
linearly independent solutions to the system. We present
the equations explicitly in Appendix A.
The system does not have an analytical solution for any

nonvanishing magnetic field, and as a consequence we need
to resort to numerical methods to obtain a solution. The first
step is to solve the equations near the horizon, using a
Frobenius expansion around rh of the form

ΦðrÞ ¼ ðr − rhÞα
X∞
j¼0

Φjðr − rhÞj; ð26Þ

where Φ denotes any of the fields. This procedure gives
three independent solutions for α ¼ 0, five ingoing sol-
utions with α ¼ −ik0=6rh, five outgoing solutions with
α ¼ ik0=6rh and one with α ¼ 1=2. As a consequence, the
space of nonoutgoing solutions is nine-dimensional. In
what follows, we will denote an arbitrary element of this
space as

Sol ¼

0
BBBBBBBBBBBBBBBB@

Ay

ϕ

htx
htz
hxz
htt
hxx
hyy
hzz

1
CCCCCCCCCCCCCCCCA

: ð27Þ
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Next we look for the nine linearly independent nonout-
going solutions (19) such that its near boundary behavior is

lim
r→∞

Solð1Þ ¼

0
BBBBBBBBBBBBBBBB@

1

0

0

0

0

0

0

0

0

1
CCCCCCCCCCCCCCCCA

;…; lim
r→∞

Solð9Þ ¼

0
BBBBBBBBBBBBBBBB@

0

0

0

0

0

0

0

0

1

1
CCCCCCCCCCCCCCCCA

; ð28Þ

hence, an arbitrary nonoutgoing solution can be written as

Sol ¼ Abdry
y Solð1Þ þ ϕbdrySolð2Þ þ � � � þ hbdryzz Solð9Þ: ð29Þ

From this expression we can compute the variation with
respect to Abdry

y , which gives

δSoljbdry
δAbdry

y
¼ Solð1Þjbdry;

δSol0jbdry
δAbdry

y
¼ Sol0ð1Þjbdry: ð30Þ

We can substitute (29) on the action (24) and take its
second variation with respect to Abdry using (30). The final
result is that the correlator function is

GR
yy ¼ −

1

4πG5

�
UX−2

ffiffiffiffiffi
W

p
A0
y
ð1Þ
�����

bdry
: ð31Þ

It is clear then that we need to compute the solution Solð1Þ
explicitly. In order to do this we look for nine nonoutgoing
solutions with an arbitrary behavior near the boundary, and
use them as columns of the matrix

M ¼ ðSolða1ÞSolða2Þ…Solða9ÞÞ: ð32Þ

We can use this matrix to invert (29) and obtain

ðSolð1ÞSolð2Þ…Solð9ÞÞ ¼ MðM−1jbdryÞ; ð33Þ

from where Solð1Þ can be read immediately.
The arbitrary solutions that constitute the matrix (32) can

be constructed by numerically solving the equations of
motion. In practice this procedure consists in solving
around the horizon using the expansions (26), choosing
the values for α that exclude the outgoing solutions. The
result of this is used as the initial conditions for the
numerical integration from r ¼ rh þ ϵ, with ϵ ≪ rh, to
the boundary at r → ∞.
With this procedure it is possible to compute the spectral

density for the in-plane polarization state (9) as a function
of the dimensionless frequency

ω ¼ k0
2πT

; ð34Þ

for different values of ϑ and B=T2. In Fig. 2 we show the
results for B=T2 ¼ 11.24 and different values of ϑ, each
one represented by a different color. We see that for high
frequencies the spectral density χin decreases as the value of
ϑ diminishes, while for small values of ω it displays the
opposite behavior. In other words, for high values of the
frequency, χin decreases as the direction of propagation is
aligned with the magnetic field, while for small ω the
spectral function decreases as the direction of propagation
aligns with the reaction plane. Although we only show here
the results for this specific magnetic field intensity, we
verified that the same qualitative behavior is shared for
any B=T2 ≠ 0.
In Fig. 3 we show the results for ϑ ¼ π=4 and several

values of the magnetic field, each one represented by a

FIG. 2. Spectral function χin for the in-plane polarization state
in terms of the photon frequency ω ¼ k0=2πT for fixed magnetic
field B=T2 ¼ 11.24. The blue, orange, green, red, and purple
curves (from top to bottom on the right side of the graph)
correspond to ϑ ¼ fπ=2; π=4; π=8; π=16; π=32g, respectively.

FIG. 3. Spectral function χin for the in-plane polarization state
in terms of the photon frequency ω ¼ k0=2πT for the propagation
direction given by ϑ ¼ π=4. The blue, orange, green, red, and
purple curves (from top to bottom on the left side of the graph)
correspond to B=T2 ¼ f0; 2.01; 4.22; 8.73; 11.24g, respectively.
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different colored curve. We see that for small frequencies,
χin decreases as the magnetic field intensity increases,
while for high frequencies this behavior is reversed.
Rephrasing the result, for small frequencies the spectral
function displays inverse magnetic catalysis (IMC),
whereas for high frequencies we observe magnetic catalysis
(MC). We present here the results only for ϑ ¼ π=4.
However, we verified that the same qualitative behavior
is reproduced for any ϑ.
Having computed the spectral function for the in-plane

polarization state, we can now proceed to calculate the
corresponding differential emission of photons. Given that
we have rotational invariance on the reaction plane, we can
integrate over this direction in (3) to obtain

G5

2αEMT3

dΓin

dk0d cosϑ
¼ G5ω

2T2
nBðk0Þχin: ð35Þ

We show the results for this quantity as a function of the
photon frequency and different values for the magnetic
field intensity and propagation directions.
In Fig. 4 we show the differential photon production for

the in-plane polarization state as a function of ω for fixed
magnetic field at B=T2 ¼ 11.24. The different curves
correspond to different values of the propagation angle
ϑ. We can see how for small frequencies 0 < ω < 0.3, the
photon production is increased as the propagation direction
is aligned with the magnetic field. However, for higher
frequencies this behavior is reversed, as the production of
photons is increased as the direction of propagation aligns
with the reaction plane, reaching its maximum precisely
when ϑ ¼ π=2. Even if we only show here the results for
B=T2 ¼ 11.24, we verified that the same qualitative behav-
ior is shared by any other nonzero magnetic field. Next, in
Fig. 5 we show the results for dΓin=ðdk0d cos ϑÞ at fixed
ϑ ¼ π=2 and different magnetic field intensities. It can be

seen how increasing the magnetic field decreases the
production of photons for small frequencies, that is, we
have IMC. However, for high frequencies the opposite
behavior is displayed and the photon production is
increased with the magnetic field, hence the phenomenon
of MC is present.
So far we have examined the different quantities as a

function of the photon frequency. Nonetheless, it is
possible to integrate ω in (35) to obtain the differential
photon production at a given direction and fixed magnetic
field. In Fig. 6 we show this quantity for the in-plane
polarization state as a function of the propagation angle ϑ
for different magnetic field intensities. For instance, for the
values B=T2 ¼ f4.22; 8.73; 11.24g we have the same
qualitative behavior, that is, the production of photons
increases as the momentum is aligned with the reaction
plane. Also, for these magnetic field intensities the pro-
duction is always less when compared to the B ¼ 0 case
for any ϑ. However, for B=T2 ¼ 2.01 this last behavior

FIG. 4. Differential photon production dΓin
dk0d cosϑ

for the in-plane
polarization state as a function of the photon frequency ω ¼
k0=2πT for fixed magnetic field at B=T2 ¼ 11.24. The blue,
orange, green, red, and purple curves (from top to bottom in
the middle) correspond to ϑ ¼ fπ=2; π=4; π=8; π=16; π=32g,
respectively.

FIG. 5. Differential photon production dΓin
dk0d cosϑ

for the in-plane
polarization state as a function of the photon frequency ω ¼
k0=2πT for fixed propagation direction at ϑ ¼ π=2. The blue,
orange, green, red, and purple curves (from top to bottom on the
left side of the graph) correspond to B=T2 ¼ f0; 2.01; 4.22;
8.73; 11.24g, respectively.

FIG. 6. Differential photon production dΓin
d cos ϑ for the in-plane

polarization state as a function of ϑ. The blue, orange, green, red,
and purple (from top to bottom on the left side of the graph)
correspond to B=T2 ¼ f0; 2.01; 4.22; 8.73; 11.24g, respectively.
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changes. While it is still true that the production increases
as ϑ → π=2, for ϑ > π=4 more photons are produced when
compared to the B ¼ 0 case.
The previously described phenomenon can be better

appreciated in Fig. 7, where we show the differential
photon production for the in-plane polarization state as a
function of the magnetic field for different directions of
propagation. It can be seen that for any fixed ϑ, there exists
a magnetic field intensity Bin

ϑ such as if B > Bin
ϑ less

photons are produced when compared to the B ¼ 0 case.
However, if 0 < B < Bin

ϑ the magnetic field enhances the
production of photons. Up to our numerical precision, we
were able to corroborate that Bin

ϑ → 0 as ϑ → 0, that is, as
the photon momentum is aligned with the magnetic field.

VI. OUT-PLANE POLARIZATION STATE

In order to compute the production of photons in the
out-plane polarization state ϵout, we need to solve eight
equations for the fields At, Ax, Az, hty, hxy, and hyz. Once
again, the number of equations surpasses the number of
fields. When we previously studied these gravitational
perturbation equations in [51], we imposed the constraint
F ∧ F ¼ 0 that resulted from setting the second Uð1Þ field
to zero, showing that the emitted photons were linearly
polarized, as no photons could be in the polarization state
ϵout. The equations considered here, listed explicitly in
Appendix B, do not have such constraint.
In the system of eight equations, two are constraints that

once imposed at a given r will be satisfied at all radial
positions, while the remaining six are of second order.

Hence, once the constraints have been taken into account
we are left with ten linearly independent solutions to the
system. The Frobenius expansion (26) near the horizon
gives two independent solutions for α ¼ 0, four ingoing
solutions with α ¼ −ik0=6rh and four outgoing solutions
with α ¼ ik0=6rh, meaning that we are left with a six-
dimensional space of nonoutgoing solutions.
We proceed as in Sec. V and denote an arbitrary

solution as

Sol ¼

0
BBBBBBBBB@

At

Ax

Az

hty
hxy
hyz

1
CCCCCCCCCA
; ð36Þ

and look for the basis of nonoutgoing solutions (19) such
that its near-boundary behavior is

lim
r→∞

Solð1Þ ¼

0
BBBBBBBBB@

1

0

0

0

0

0

1
CCCCCCCCCA
;…; lim

r→∞
Solð6Þ ¼

0
BBBBBBBBB@

0

0

0

0

0

1

1
CCCCCCCCCA
: ð37Þ

We can write an arbitrary nonoutgoing solution in terms
of (37) as

Sol ¼ Abdry
t Solð1Þ þ Abdry

x Solð2Þ þ � � � þ hbdryyz Solð6Þ: ð38Þ

The solution expressed in this form allows us to easily
compute the variation with respect to Abdry

x or Abdry
z ,

obtaining the following relations:

δSoljbdry
δAbdry

x
¼Solð2Þjbdry;

δSol0jbdry
δAbdry

x
¼ Sol0ð2Þjbdry;

δSoljbdry
δAbdry

z
¼Solð3Þjbdry;

δSol0jbdry
δAbdry

z
¼ Sol0ð3Þjbdry: ð39Þ

After substitution of (38) in the action (24), the Green
functions coming from the variations with respect to Abdry

x

and Abdry
z are given by

FIG. 7. Differential photon production dΓin
dk0d cosϑ

for the in-plane
polarization state as a function of B=T2. The blue, orange, green,
and red curves (from bottom to top on the right side of the graph)
correspond to ϑ ¼ fπ=32; π=8; π=4; π=2g, respectively. The
horizontal black line is a reference for the total photon production
for B=T2 ¼ 0. The vertical dashed lines correspond to the Bin

ϑ
magnetic field intensities below which the production of photons
is enhanced with respect to the B ¼ 0 case. For the propagation
angles considered we have Bin

π=2=T
2 ¼ 3.21, Bin

π=4=T
2 ¼ 2.46 and

Bin
π=8=T

2 ¼ 1.47.
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GR
xx ¼ −

1

4πG5

�
U

ffiffiffiffiffi
W

p
X−2A0

x
ð2Þ
	
jbdry;

GR
zz ¼ −

1

4πG5

�
UVX−2ffiffiffiffiffi

W
p A0

z
ð3Þ
	����

bdry
;

GR
xz ¼ −

1

8πG5

�
UV

ffiffiffiffiffi
W

p
X−2

�
A0
x
ð3Þ

V
þ A0

z
ð2Þ

W

		����
bdry

: ð40Þ

In order to compute the solutions Solð2Þ and Solð3Þ
explicitly, we proceed as before and look for six nonout-
going solutions with an arbitrary behavior near the boun-
dary. Using these solutions as columns of a matrix
analogous to (32), we can invert (38) and read Solð2Þ

and Solð3Þ from it. The six arbitrary nonoutgoing solutions
can be obtained numerically solving the equations of
motion following the same procedure described in
Sec. V. To compute the spectral density for the out-plane
polarization state (8) we require only the Green functions
listed in (40), so we have all the elements necessary to plot
χout for different values of ω, ϑ and B=T2.
In Fig. 8 we show χout as a function of the dimensionless

photon frequency ω for fixed magnetic field B=T2 ¼ 11.24
and various values for the propagation angle ϑ. It can be
seen that for all ω the spectral function decreases as the
direction of propagation of the photons aligns with the
magnetic field. This behavior is in stark contrast with
the in-plane polarization state, for which the dependence on
the frequency is monotonous. Here we show only the
results for B=T2 ¼ 11.24; however, we explicitly verified
that this qualitative behavior is reproduced for many
intensities of the magnetic field, allowing us to infer that
this characteristic feature is valid for any value B=T2 below
Bc. Meanwhile, in Fig. 9 we display the results for ϑ ¼ π=4
and several values of the magnetic field, each one repre-
sented by a different colored curve. We can see that for
small frequencies, χout decreases as the magnetic field

intensity increases, while for high frequencies we have the
opposite behavior. In other words, for small frequencies the
spectral function for the out-plane polarization state dis-
plays IMC, whereas for high frequencies we observe MC,
the same as it was for the in-plane state. We present here the
results only for ϑ ¼ π=4; however, we verified that the
same qualitative behavior is reproduced for many directions
ϑ, indicating that this qualitative behavior is common to all
propagation directions.
Once we have obtained the spectral function χout, the

differential rate of emitted photons can be computed from
(3) integrating k⃗ over the reaction plane as we did for the in-
plane polarization state (35). In Fig. 10 we plot this quantity
as a function of ω for a fixed value of the magnetic field
B=T2 ¼ 11.24 and different values of ϑ. We can see that for
any given frequency the rate of emitted photons increases
as the direction of propagation aligns with the reaction

FIG. 8. Spectral function χout for the out-plane polarization
state in terms of the photon frequency ω ¼ k0=2πT for fixed
magnetic field B=T2 ¼ 11.24. The blue, orange, green, red,
and purple curves (from top to bottom) correspond to
ϑ ¼ fπ=2; π=4; π=8; π=16; π=32g, respectively.

FIG. 9. Spectral function χout for the out-plane polarization
state in terms of the photon frequency ω ¼ k0=2πT for the
propagation direction given by ϑ ¼ π=4. The blue, orange, green,
red, and purple curves (from top to bottom on the left side of
the graph) correspond to B=T2 ¼ f0; 2.01; 4.22; 8.73; 11.24g,
respectively.

FIG. 10. Differential photon production dΓout
dk0d cos ϑ

for the out-
plane polarization state as a function of the photon frequency
ω ¼ k0=2πT for fixed magnetic field at B=T2 ¼ 11.24. The blue,
orange, green, red, and purple curves (from top to bottom)
correspond to ϑ ¼ fπ=2; π=4; π=8; π=16; π=32g, respectively.
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plane. In Fig. 11, we plot dΓout=ðdk0d cos ϑÞ as a function
of the frequency for a fixed propagation direction ϑ ¼ π=2
and different values of B=T2. It can be seen that the rate of
emitted photons decreases as the magnetic field intensity
increases for all values of ω. This behavior is different from
what we showed for the in-plane polarization state, where
the MC or IMC phenomena was present depending on the
photon frequency, while in the case of the out-plane
polarization state we have only the IMC phenomenon.
Once again, in spite of presenting only the results for a
single magnetic field in Fig. 10 or a single ϑ in 11, we have
verified that the qualitative behavior is the same for
different values of B or ϑ.
Next we integrate ω in (35) to obtain the differential

photon production for the out-plane polarization state at a
given direction and fixed magnetic field. In Fig. 12 we
show this quantity as a function of the propagation angle ϑ
for different magnetic field intensities. We can see that for
any B the production of photons increases as the momen-
tum is aligned with the reaction plane, and also that for

strong magnetic field (for instance B=T2 ¼ 11.24) less
photons are produced compared to the B ¼ 0 case.
However, for a sufficiently weak magnetic field, for
instance B=T2 ¼ 2.01, as it can be observed in Fig. 12,
this is no longer the case, as for ϑ > 1.35 more photons are
produced when compared to the B ¼ 0 case, as can be seen
in the insert of the graphic.
The behavior we have just described, which qualitatively

coincides with what we found for the in-plane state, can be
better appreciated in Fig. 13, where we show the differential
photon production as a function of the magnetic field for
different directions of propagation. It can be seen that for
any B=T2 the production of photons is reduced as the
ϑ → 0, that is, as the direction of propagation coincides
with the magnetic field one. However, for any given ϑ we
see the same phenomenon that we found for the in-plane
polarization: there exists a magnetic field intensity Bout

ϑ
such as for B > Bout

ϑ the production of photons is decreased
when compared to the B ¼ 0 case, while for 0 < B < Bout

ϑ
the behavior is reversed and more photons are produced
when compared to the B ¼ 0 case. Some values for Bout

ϑ are
shown in Fig. 13 as vertical dotted lines. Up to our
numerical precision, we were able to corroborate that
Bout
ϑ → 0 as ϑ → 0, and also that Bout

ϑ < Bin
ϑ for the

explored values of ϑ.

VII. TOTAL PHOTON PRODUCTION

Finally, in this section, we show the results for the total
photon production (10), that is, considering the contribu-
tions of both polarization states. In Fig. 14 we show
dΓ=ðdk0d cos ϑÞ as a function of the photon frequency

FIG. 11. Differential photon production dΓout
dk0d cos ϑ

for the out-
plane polarization state as a function of the photon frequency
ω ¼ k0=2πT for fixed propagation direction at ϑ ¼ π=2. The
blue, orange, green, red, and purple curves (from top to bottom)
correspond to B=T2 ¼ f0; 2.01; 4.22; 8.73; 11.24g, respectively.

FIG. 12. Differential photon production dΓout
d cos ϑ for the out-plane

polarization state as a function of ϑ. The blue, orange, green, red,
and purple (from top to bottom on the left side of the graph)
correspond to B=T2 ¼ f0; 2.01; 4.22; 8.73; 11.24g, respectively.

FIG. 13. Differential photon production dΓout
dk0d cos ϑ

for the out-
plane polarization state as a function of B=T2. The blue, orange,
green, and red curves (from bottom to top on the right side of the
graph) correspond to ϑ ¼ fπ=32; π=8; π=4; π=2g, respectively.
The horizontal black line represents the total photon production
for B=T2 ¼ 0. The vertical dashed lines correspond to the Bout

ϑ
magnetic field intensities below which the production of photons
is enhanced with respect to the B ¼ 0 case. For the propagation
angles considered we have Bout

π=2=T
2 ¼ 2.58, Bout

π=4=T
2 ¼ 1.05,

Bout
π=8=T

2 ¼ 0.92 and Bout
π=32=T

2 ¼ 0.87.
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for fixed B=T2 ¼ 11.24 and different values of ϑ. It can be
seen that for all ω the production of photons is reduced as
ϑ → 0. Comparing qualitatively this result to what we
obtained previously for each polarization separately, we see
that in this case the behavior is the same as the out-plane
case (we explicitly checked that this is true for other values
of B=T2). On the other hand, as displayed in Fig. 15, for
fixed ϑ ¼ π=2 and small ω the production of photons
decreases as the magnetic field intensity is increased
(IMC), while for large ω the opposite is true (MC). This
coincides with what we previously obtained for the in-plane
polarization state.
Next, we analyze dΓ=d cosϑ after integrating the photon

frequency. In Fig. 16 we plot this quantity as a function of
the propagation angle ϑ for different values of the magnetic
field. The behavior is the same as the one we observed for
each polarization state individually: for small ϑ increasing
the magnetic field results in a decrease in the production of
photons, while for sufficiently large ϑ there exists a window

where increasing the magnetic field also increases the
production of photons. For instance, in Fig. 16 for fixed
B=T2 ¼ 2.01 and ϑ < π=4 less photons are produced when
compared to the B ¼ 0 case (the black line in the plot), but
for ϑ > π=4 the opposite is true.
This phenomenon can be better appreciated in Fig. 17,

where we show dΓ=d cosϑ as a function of the magnetic
field for different values of ϑ, representing them as curves
of different colors. It can be seen that, for each value
of ϑ there exists a magnetic field intensity Bϑ that is a
threshold for the production of photons with respect to the
vanishing magnetic field case; that is, for B < Bϑ more
photons are produced with respect to the B ¼ 0 case, while
for Bϑ < B the opposite is observed. To our numerical
accuracy we were able to find that Bϑ → 0 as ϑ → 0.

FIG. 14. Differential photon production dΓ
dk0d cos ϑ

as a func-
tion of the photon frequencyω ¼ k0=2πT for fixed magnetic field
at B=T2 ¼ 11.24. The blue, orange, green, red, and purple
curves (from top to bottom) correspond to ϑ ¼ fπ=2; π=4; π=8;
π=16; π=32g, respectively.

FIG. 15. Differential photon production dΓ
dk0d cos ϑ

for the out-
plane polarization state as a function of the photon frequency
ω ¼ k0=2πT for fixed propagation direction at ϑ ¼ π=2. The
blue, orange, green, red, and purple curves (from top to bottom)
correspond to B=T2 ¼ f0; 2.01; 4.22; 8.73; 11.24g, respectively.

FIG. 16. Differential photon production dΓ
d cos ϑ as a function of ϑ.

The blue, orange, green, red, and purple (from top to bottom on
the left side of the graph) correspond to B=T2 ¼ f0; 2.01; 4.22;
8.73; 11.24g, respectively.

FIG. 17. Differential photon production dΓ
dk0d cos ϑ

as a function
of B=T2. The blue, orange, green, and red curves (from bottom
to top on the right side of the graph) correspond to
ϑ ¼ fπ=32; π=8; π=4; π=2g, respectively. The horizontal black
line represents the total photon production for B=T2 ¼ 0.
The vertical dashed lines correspond to the Bϑ magnetic field
intensities below which the production of photons is en-
hanced with respect to the B ¼ 0 case. For the propagation
angles considered we have Bπ=2=T2 ¼ 3.18, Bπ=4=T2 ¼ 2.08 and
Bπ=8=T2 ¼ 1.28.
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We were also able to corroborate that for a given ϑ we have
that Bout

ϑ < Bϑ < Bin
ϑ .

VIII. ELLIPTIC FLOW

In this section, we present in Fig. 18 the magnetic
contribution to the elliptic flow (12) as a function of the
photon frequency for various field intensities.
It can be seen that the general effect of the magnetic field

is to increase the value of v2 for all ω ≠ 0. This result
suggests that the magnetic field generated in the collision
could be responsible for the results reported in [3,49] or at
least play a significant role in the measured v2 for thermal
photons at low transverse momentum. Given that the
magnetic field is the only source of anisotropy, it can be
observed that as B → 0 we have a lower value of compo-
nent v2 for all ω ≠ 0. The only exception for this behavior
is in the limit ω → 0, in which the value of v2 approaches
1=2 regardless of the intensity of B just as long as it is not
vanishing.
The universal behavior just highlighted can be under-

stood noticing from (11) that v2 ¼ 1=2 is the maximum
value that the elliptic flow can take, as in this case cosð2θÞ
is the only component in the azimuthal expansion. This
saturation in the ω → 0 limit is an indication that the effect
of any nonvanishing magnetic field on the ellipticity of the
flow becomes overwhelming for photons with extremely
low energy, a response that is well captured by the
dimensionless quantity B=ω2, that diverges as the fre-
quency goes to zero, unless B ¼ 0.
In Fig. 19 we display the elliptic flow distinguishing the

contribution of each of the polarization states separately
and the full result for fixed B=T2 ¼ 8.73. The dashed line
corresponds to the in-plane state, the dotted one to the out-
plane state and the continuous line to the result from both
contributions. It can be seen that for high frequencies v2
is larger for the in-plane polarization state than for the

out-plane one. However, for sufficiently small ω the elliptic
flow is larger for the out-plane state.

IX. DISCUSSION

In this paper we employed holographic methods to study
the effect that an external magnetic field has in the
production of photons in a strongly coupled plasma.
While there have been other studies on this topic in the
past [23,44–46,50], our holographic model features many
novel results. In particular, an important difference of our
model in comparison to the one considered in [45] is
that we feature a bulk scalar field. We will discuss those
differences below.
We show the numerical results for the production of

photons for the in-plane (Sec. V) and the out-plane (Sec. VI)
polarization states independently and the total production
taking into account the contributions coming from both
(Sec. VII). In general, we find that whether a polarization
state is preferred over the other depends on the intensity of
the magnetic field. For instance, from Fig. 7 and 13 it can be
seen that for B > Bin

ϑ more photons are produced in the out-
plane polarization state that in the in-plane one, in agreement
with [46]. However, for B < Bin

ϑ the opposite effect occurs:
more photons are produced in the in-plane polarization state.
Other works have reported that the presence of an external
magnetic field (or other spatial anisotropies) can cause an
increase in the production of photons in one polarization
state over the other [23,42,45,46].
From our results, we conclude that for any fixed nonzero

magnetic field, the production is increased when the photon
momentum is aligned with the reaction plane. This differs
from the results from [42], where the emission of photons
propagating along the anisotropic direction is increased,
indicating that the source of the anisotropy is very relevant
when studying the emission of photons; nonetheless, our
results agree with previous models with a magnetic field.

FIG. 18. Magnetic contribution to the elliptic flow v2 as a
function of ω. The blue, orange, green, red, and purple curves
(from bottom to top at the right) correspond to B=T2 ¼ f0.1;
2.01; 4.22; 8.73; 11.24g, respectively.

FIG. 19. Magnetic contribution to the elliptic flow v2 as a
function of ω for fixed B=T2 ¼ 8.73. The dashed and dotted
curves corresponds to the in-plane and out-plane polarization
states, respectively. The continuous curve correspond to the one
from the averaged emission rate of two types of polarizations.
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By introducing an external magnetic field in the model as
in [42], the authors in [46] found an enhancement in the
plane perpendicular to the magnetic field. Interestingly, they
also found that this enhancement is more notorious for the
out-plane state, meaning that using their holographic model
it can be concluded that more photons are produced in its
state perpendicular to the reaction plane. In our model, as
described above, the effect seems to be more subtle.
As previously stated, a study of the production of

photons in the presence of a magnetic field was performed
in [45] using the holographic model from [31]. In that
work, due to the intricacy of the equations of motion, two
directions of propagation were considered only, namely
parallel and perpendicular to the magnetic field. In that
sense, here we present an extension to that work, as we
were able to explore the emission of photons in any
propagation direction. In [45] it was previously discovered
that the spectral function for the in-plane polarization state
χin dropped to zero at ω ¼ 0 for any B=T2 along parallel
and perpendicular directions with respect to the magnetic
field. Here we confirmed that this is indeed the case for any
direction of propagation, as can be seen in Fig. 3. We also
show that this is not true for the out-plane polarization state
χout in Fig. 9, where it can be seen that the curves tend to a
constant finite value as ω → 0 instead.
Another main result of our study is that for any given

direction of propagation, the production of photons is
increased with respect to the B ¼ 0 value if the magnetic
field intensity lies in the interval 0 < B < Bϑ, while it
decreases for any B > Bϑ. The magnetic field intensity Bϑ

depends on the propagation direction in a manner such that
it tends to zero as the photon momentum is aligned with
the magnetic field. This effect is true regardless of the
polarization state, although the magnetic field intensity at
which it happens does indeed depend on the polarization;
that is, Bout

ϑ < Bin
ϑ for any given ϑ. This is a novelty of the

holographic model studied in this work.
We also computed the magnetic contribution to the

elliptic flow v2 for the emitted photons. This flow char-
acterizes the momentum anisotropy of the produced par-
ticles in heavy-ion collisions. The effect that an external
magnetic field has v2 was previously computed holo-
graphically in [50]. In their model the magnetic field
was introduced as an excitation over probe D7-branes.
Considering massless quarks, the authors found that for
small frequencies ω the elliptic flow is bigger for the out-
plane polarization state, while for higher frequencies the
opposite behavior is displayed and the flow is bigger for the
in-plane polarization states. This behavior coincides with
our results in Fig. 19. We also show in Fig. 18 that the
general effect of the magnetic field is to increase the value
of v2, thus it can explain the puzzling excess observed in
heavy-ion experiments in RHIC and LHC [3,5,49]. It was
previously argued that the magnetic field was the cause
of this excess by a perturbative computation in QCD

in [62,63]; hence, the results presented here confirm the
effect of the magnetic field on v2 using a nonperturbative
calculation.
There are two further comments that might be relevant

concerning the applicability of what we have concluded to
a real world quark-gluon plasma. One is that the magnetic
field created in a collision experiment is expected to have a
lifetime of a fraction of a fm=c even at top energy in either
RHIC or LHC. During this time the temperature is also
very high, so a careful determination of the ratio B=T2 is
necessary to do any comparison with our plots. A second
comment is that a word of caution has been put forward
in [64], where the authors indicate that if the time it takes
for Ohm’s law to be applicable is longer than the above
mentioned lifetime, the electromagnetic response would be
incomplete, and the maximum intensity of the magnetic
field could be diminished by up to two orders of magnitude.
If this is indeed the case, the experiments could be in a
range of B=T2 where the effects we have predicted are
difficult to observe.
We would like to close commenting that the results

presented in this manuscript constitute a completion of the
ones we previously showed in [51], as all the results for the
in-plane polarization state apply to both setups. The reason
is that the fully back-reacted equations involving the in-
plane polarization photons are identical to those we found
in [51]. A generalization of our work, which wewill present
elsewhere [59], is to return to the setting of [51] and
consider a full treatment of the perturbations in the
truncated theory.
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APPENDIX A: EQUATIONS OF MOTION
FOR THE IN-PLANE POLARIZATION STATE

For the polarization state ϵin we need to solve thirteen
differential equations for nine components of the fields: Ay,
ϕ, htx, htz, hxz, htt, hxx, hyy, and hzz. Even when the number
of equations surpasses the number of variables, the system
can be solved consistently by the procedure described in the
main text. The metric fields hmn are the rescaled versions
given in (18), while the logðrÞ has yet to be factorized from
the scalar field ϕ. The reason for this is that numerically it is
more efficient to solve for this variable ϕ and then divide by
logðrÞ at the end of the computation.
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The thirteen equations are:

0¼Vð8i
ffiffiffi
6

p
Bk0r4Ay sinϑUW2− rUWð8B2rWϕ−e

φffiffi
6

p
V2ð2ϕðWð−6e φffiffi

6
p
U0 þ8re

ffiffi
3
2

p
φþ4rÞ−3k20rcos

2ϑe
φffiffi
6

p Þ
−3re

φffiffi
6

p
Wðr3ðrh0ttþ2httÞφ0−2U0ϕ0ÞÞþ6k20rsin

2ϑe
ffiffi
2
3

p
φVWϕÞþ3r2e

ffiffi
2
3

p
φV2W2ðr4httU0φ0 þ2k20ϕÞ

þ3U2e
ffiffi
2
3

p
φVðrW2ðr5φ0ðh0xxþhyy0Þþ2rV0ϕ0−4ϕV 0ÞþVðrWðr4ðrh0zzþ2hzzÞφ0 þ rW0ϕ0−2ϕW0Þ− r6hzzφ0W0

þ2W2ðrðrϕ00−4ϕ0Þþ6ϕÞÞÞÞ− r5hxxUW2ð4
ffiffiffi
6

p
B2r−3Ue

ffiffi
2
3

p
φVφ0ð2V − rV 0ÞÞ

− r5hyyUW2ð4
ffiffiffi
6

p
B2r−3Ue

ffiffi
2
3

p
φVφ0ð2V− rV 0ÞÞ

0¼ 3k20r
2VAyðUðV−WÞcosð2ϑÞþUðVþWÞ−2VWÞþ r2UV2ðUð−3W0A0

yþ2
ffiffiffi
6

p
Wφ0A0

y−6WA00
yÞ−6WU0A0

yÞ
þ iBk0ð3r4VWhtt sinϑþ6r4VWhtxþUðsinϑð−3r4Vhzzþ3r4Whyyþ2

ffiffiffi
6

p
VWϕÞþ6r4Vhxz cosϑþ3r4Whxx sinϑÞÞ

0¼−ð8e−
ffiffi
2
3

p
φð−6iBk0r2VAy sinϑþ3B2r4hxxþ3B2r4hyyþ

ffiffiffi
6

p
B2Vϕ−2

ffiffiffi
6

p
e2

ffiffi
2
3

p
φV3ϕþ2

ffiffiffi
6

p
e

φffiffi
6

p
V3ϕÞÞðr2UV3Þ−1

− ð36φ0ðrϕ0−2ϕÞr−3þU−3ð9ðhttð−2r2UU00 þ r2U02−2rUU0 þ4U2Þ− ðUðrVWðV2W2h0ttðrU0−8UÞ
þUðW2h0xxðrVU0−2rUV 0 þ8UVÞþW2h0yyðrVU0−2rUV 0 þ8UVÞþVð2rWð−VWh00ttþUVh00zzþUWh00xxþUWh00yyÞ
þVh0zzðrWU0−2rUW0 þ8UWÞÞÞÞþUV3hzzð2UðWð2W− r2W00Þþ r2W02−2rWW0Þþ rWU0ð2W− rW0ÞÞ
þUW3hxxð2UðVð2V − r2V 00Þþ r2V 02−2rVV 0Þþ rVU0ð2V − rV 0ÞÞþUW3hyyð2UðVð2V − r2V 00Þþ r2V 02−2rVV 0Þ
þ rVU0ð2V − rV 0ÞÞÞÞðV−3W−3ÞÞÞ

0¼ r3ðWð−2VðrUðWðsinϑh0txþh0xxþh0yyÞþVðcosϑh0tzþh0zzÞÞþWhtx sinϑð2U− rU0ÞÞþWhxxðrVU0 þ rUV 0−4UVÞ
þWhyyðrVU0 þ rUV 0−4UVÞÞ−2V2Whtz cosϑð2U− rU0ÞþV2hzzðrWU0 þ rUW0−4UWÞÞðUV2W2Þ−1−2ϕφ0

0¼−8Be−
ffiffi
2
3

p
φA0

yV−1−2ir−2k0ϕφ0 sinϑþðik0rð−WðVð−2rUðVWðsinϑh0ttþh0txÞþUVðcosϑh0xz− sinϑh0zzÞ
−UW sinϑh0yyÞþWhtt sinϑðrVU0 þ rUV 0−4UVÞþ2UWhtxðrV 0−2VÞÞþ2U2Whyy sinϑð2V − rV 0ÞÞ
þU2Vhzz sinϑðrWV 0 þ rVW0−4VWÞþ2U2VWhxz cosϑð2V − rV 0ÞÞÞðU2V2W2Þ−1

0¼ 2ϕφ0 cosϑþ r3W−1ðU−2ðhtt cosϑðrWU0 þ rUW0−4UWÞ−2UðrWðcosϑh0ttþh0tzÞþhtzð2W− rW0ÞÞÞ
þV−2ð2VðrWðcosϑh0xx− sinϑh0xzÞþhxz sinϑðrW0−2WÞÞ−hxx cosϑðrWV 0 þ rVW0−4VWÞ
þ ðcosϑð2rVWh0yy−hyyðrWV 0 þ rVW0−4VWÞÞÞÞ

0¼ r−2ð8Ue−
ffiffi
2
3

p
φð−6iBk0r2VAy sinϑþ3B2r4hxxþ3B2r4hyyþ

ffiffiffi
6

p
B2Vϕ−2

ffiffiffi
6

p
e2

ffiffi
2
3

p
φV3ϕþ2

ffiffiffi
6

p
e

φffiffi
6

p
V3ϕÞÞ

þ24r2e−
ffiffi
2
3

p
φVhttðB2þ2e

φffiffi
6

p ðe
ffiffi
3
2

p
φþ2ÞV2ÞþðUW2Þ−1ð9VðrUðWðVðh0ttðrVWU0−Uð2rWV 0 þ rVW0 þ8VWÞÞ

þ rUðU0ðVh0zzþWh0xxþWh0yyÞ−2VWh00ttÞþ4k20rWhtx sinϑÞþWhxxð2k20rVþUU0ð2V − rV 0ÞÞ
þWhyyð2k20rVþUU0ð2V − rV 0ÞÞÞþ4k20rV

2Whtz cosϑþV2hzzð2k20rWþUU0ð2W− rW0ÞÞÞ
þVWhttð2rUðk20rðVcos2ϑþWsin2ϑÞþVWU0Þ− r2VWU02−2U2ð2rWV 0 þ rVW0 þ2VWÞÞÞÞ

0¼ 24iBk0e
−

ffiffi
2
3

p
φVAyþ8r2e−

ffiffi
2
3

p
φhtxðB2þ2e

φffiffi
6

p ðe
ffiffi
3
2

p
φþ2ÞV2Þ−W−1ð3Vðrð2rUVWh00txþ rUVW0h0txþ8UVWh0tx

þ k20rVhtz sinð2ϑÞ−2k20rVhxz cosϑþ2k20rVhzz sinϑþ2k20rWhyy sinϑÞ−2htxðk20r2Vcos2ϑþ r2WU0V 0

þ rUVW0 þ2UVWÞÞÞ
0¼ htzð8B2r2e−

ffiffi
2
3

p
φþ6rVðk20rsin2ϑ−2UV 0Þþ2V2ð8r2e

ffiffi
2
3

p
φþ16r2e−

φffiffi
6

p −3rW−1W0ðrU0−UÞ−6UÞÞ
−W−1ð3rVð2rUVWh00tzþ2rUWV 0h0tz− rUVW0h0tzþ8UVWh0tzþk20rWhtx sinð2ϑÞþ2k20rWhxx cosϑ

−2k20rWhxz sinϑþ2k20rWhyy cosϑÞÞ
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0¼−96iBk0e−
ffiffi
2
3
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ffiffi
2
3

p
φþ6k20rVsin
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ffiffi
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ffiffiffi
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3
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4U−1Vhtx sinϑþ36k20r

4VW−1hxz sinϑcosϑ−18k20r
4VW−1hzzsin2ϑ

þ9r3VU−1httð2k20rsin2ϑþV 0ðrU0−2UÞÞ−9r4UW−2VhzzV 0W0 þ18r3UW−1VhzzV 0

−16
ffiffiffi
6
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e

ffiffi
2
3
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φV2ϕþ16

ffiffiffi
6
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e−

φffiffi
6
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φffiffi
6
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2
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6
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3
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ffiffiffi
6

p
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φffiffi
6
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3
2
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3
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−9r3U2e
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2
3

p
φð2rVW2h00yyþV 0ðrWðVh0zzþWh0xxÞþVhzzð2W− rW0ÞÞþWh0yyð−rWV 0 þ rVW0 þ8VWÞÞ

−9r4e
ffiffi
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3

p
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ffiffi
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p
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φffiffi
6

p
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φffiffi
6

p
V2W

þ2rUVð3k20re
φffiffi
6

p ðVcos2ϑþWsin2ϑÞþ8rðe
ffiffi
3
2

p
φþ2ÞVW−6e

φffiffi
6

p
VWU0Þ

−3U2e
φffiffi
6

p ðr2WV 02þ2V2ðrW0 þ2WÞ−2rVWV 0ÞÞ
0¼−r−2ð8e−

ffiffi
2
3

p
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ffiffiffi
6

p
B2Vϕ−2

ffiffiffi
6

p
e2

ffiffi
2
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p
φV3ϕþ2

ffiffiffi
6

p
e

φffiffi
6

p
V3ϕÞÞ

þ24r2e−
ffiffi
2
3

p
φVhzzðB2þ2e

φffiffi
6

p ðe
ffiffi
3
2

p
φþ2ÞV2Þþ9Vð−ðUW2Þ−1ðVðrWðUð2h0zzðrVWU0 þUðrWV 0− rVW0 þ4VWÞÞ

þ rWð2UVh00zzþWðUðh0xxþh0yyÞ−Vh0ttÞÞþ2k20rWhxz sinð2ϑÞÞþVWhttð2k20rcos2ϑþW0ðrU0−2UÞÞ
þ4k20rVWhtz cosϑÞþhzzðk20r2W2ðU cosð2ϑÞ−Uþ2VÞþUð4rVW2U0 þUð4rW2V 0 þVðrW0−2WÞ2ÞÞÞÞÞ
þ rhxxð2k20rVcos2ϑþUW0ðrV 0−2VÞÞþ rhyyð2k20rVcos2ϑþUW0ðrV 0−2VÞÞÞ: ðA1Þ

APPENDIX B: EQUATIONS OF MOTION FOR THE OUT-PLANE POLARIZATION STATE

As explained in the main text, in order to compute the production of photons in the polarization state ϵout, we need to
solve eight equations for the field’s components At, Ax, Az, hty, hxy, and hyz. Note that the metric functions hmn here are the
rescaled versions described in (18). The eight equations are:

0 ¼ UWA0
x sin ϑþ VðWA0

t þ UA0
z cosϑÞ;

0 ¼ −6UV2WA00
t − 6UVWV 0A0

t − 3UV2A0
tW0 þ 2

ffiffiffi
6

p
UV2WA0

tφ
0 þ 6k20AtVðVcos2ϑþWsin2ϑÞ

þ 6k20AxVW sinϑþ 6k20AzV2 cos ϑþ 6iBk0r2htyW sinϑ;

0 ¼ 6k20VWAt sin ϑþ 6U2VWA00
x þ 6UVWA0

xU0 þ 3U2VA0
xW0 − 2

ffiffiffi
6

p
U2VWA0

xφ
0 − 6k20AxVðUcos2ϑ −WÞ

þ 6k20AzUV sinϑ cos ϑþ 6iBk0r2htyW þ 6iBk0r2 cosϑhyzU;

0 ¼ Vð6k20At cos ϑVW þ 6k20Ax sinϑ cosϑUW þ 6U2VWA00
z þ 6UVWA0

zU0 þ 6U2WA0
zV 0 − 3U2VA0

zW0

− 2
ffiffiffi
6

p
U2VWA0

zφ
0 − 6k20AzWðsin2ϑU − VÞÞ − 6iBk0r2 sin θhyzUW;

0 ¼ 4Be−
ffiffi
2
3

p
φVA0

x þ
ik0r
UW

ðVðrVðWhty0 þ cosϑUhyz0Þ þ htyWð2V − rV 0Þ þ r sin ϑUWhxy0Þ þ sinϑhxyUWð2V − rV 0Þ
þ cos ϑhyzUVð2V − rV 0ÞÞ;
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0 ¼ −24iBk0e−
ffiffi
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φffiffi
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2
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W
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þ 8Whty0Þ − 2k20r sinϑhxyW − 2k20r cosϑhyzVÞ þ htyð2r2WðU0V 0 − k20sin
2ϑÞ þ Vð2UðrW0 þ 2WÞ

− 2k20r
2cos2ϑÞÞÞ

0 ¼ 2hxyðrUðe φffiffi
6

p
V2ð3k20rcos2ϑe

φffiffi
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φffiffi
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ffiffi
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2e
ffiffi
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3

p
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ffiffi
2
3

p
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ffiffi
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p
φVð2k20r sin ϑhtyVW

þUð2rVWhxy0U0 þ UðVð2rWhxy00 þ rhxy0W0 þ 8Whxy0Þ − 2rWhxy0V 0ÞÞ þ k20r sinð2ϑÞhyzUVÞ;

0 ¼ 24iBk0e
−

ffiffi
2
3

p
φVðAx cosϑ − Az sin ϑÞ þ 8r2hyze

−
ffiffi
2
3

p
φðB2 þ 2e

φffiffi
6

p ðe
ffiffi
3
2

p
φ þ 2ÞV2Þ − 3V

UW
ðrðVð2k20r cos ϑhtyW

þUð2rWhyz0U0 þUð2rWhyz00 − rhyz0W0 þ 8Whyz0ÞÞÞ þ k20r sinð2ϑÞhxyUWÞ þ hyzð2k20r2VW
− 2rUWðk20rsin2ϑ − 2VU0Þ þ 2U2ðr2V 0W0 − rVW0 þ 2VWÞÞÞ: ðB1Þ
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