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Spectral rigidity in Hermitian quantum chaotic systems signals the presence of dynamical universal
features at timescales that can be much shorter than the Heisenberg time. We study the analog of this
timescale in many-body non-Hermitian quantum chaos by a detailed analysis of long-range spectral
correlators. For that purpose, we investigate the number variance and the spectral form factor of a non-
Hermitian q-body Sachdev-Ye-Kitaev (nHSYK) model, which describes N fermions in zero spatial
dimensions. After an analytical and numerical analysis of these spectral observables for non-Hermitian
random matrices, and a careful unfolding, we find good agreement with the nHSYK model for q > 2

starting at a timescale that decreases sharply with q. The source of deviation from universality, identified
analytically, is ensemble fluctuations not related to the quantum dynamics. For fixed q and large enough N,
these fluctuations become dominant up until after the Heisenberg time, so that the spectral form factor is no
longer useful for the study of quantum chaos. In all cases, our results point to a weakened or vanishing
spectral rigidity that effectively delays the observation of full quantum ergodicity. We also show that the
number variance displays nonstationary spectral correlations for both the nHSYK model and random
matrices. This nonstationarity, also not related to the quantum dynamics, points to intrinsic limitations of
these observables to describe the quantum chaotic motion. On the other hand, we introduce the local
spectral form factor, which is shown to be stationary and not affected by collective fluctuations, and
propose it as an effective diagnostic of non-Hermitian quantum chaos. For q ¼ 2, we find saturation to

Poisson statistics at a timescale of logD, compared to a scale of
ffiffiffiffi
D

p
for q > 2, with D the total number

of states.
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I. INTRODUCTION

The study of quantum chaotic dynamics attracts a great
deal of interest in different fields because of its robust
universal features. For sufficiently long timescales, the
evolution of very different quantum systems is qualitatively
similar provided that the dynamics is quantum chaotic. By
contrast, the quantum dynamics of integrable systems is very
sensitive to the details of the Hamiltonian. A central result in
the theory of quantumchaos is theBohigas-Giannoni-Schmit

(BGS) conjecture [1] that states that spectral correlations of a
quantum chaotic system are given by random matrix theory
(RMT). In the context of single-body quantum mechanics,
the conjecture has received strong analytic support [2–4] by
using periodic orbit theory techniques. The BGS conjecture
has been very influential because the spectrum of the
Hamiltonian (or another relevant operator) is one of the least
expensive quantities to obtain numerically even for quantum
many-body systems. Therefore, a relatively straightforward
spectral analysis is sufficient to determine the quantum
chaotic nature of the motion for sufficiently long times of
the order of theHeisenberg time—the timescale related to the
(inverse) mean level spacing.
However, the agreement with RMT extends in many

cases to substantially shorter times due to so-called spectral
rigidity—directly related to the power-law tails of the two-
level correlation function—which is responsible for the
slow logarithmic growth of the number variance or the
ramp of the spectral form factor. For sufficiently short
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times, level statistics of realistic quantum chaotic
Hamiltonians deviate from the random matrix prediction.
The timescale that marks the onset of these deviations and
delimits the region of universal quantumchaotic dynamics—
related to the so-called dip or correlation hole [5–8] of the
connected spectral form factor, or to power-law deviations of
the logarithmic growth of the number variance—depends on
details of the dynamics. For disordered systems, where it is
called the Thouless time [9], it is related to the typical
diffusion time needed for a single particle to cross the sample.
However, also in the context of disordered systems, this
timescale is sometimes determined by ensemble fluctuations
not directly related to the type of motion [10,11].
So far, the discussion has been restricted to Hermitian

quantum systems. A natural question to ask is to what
extent these ideas and results are applicable to non-
Hermitian quantum chaotic many-body Hamiltonians.
The main goal of this paper is to address this question.
We investigate long-range spectral correlations such as the
number variance and the spectral form factor, which probe
shorter timescales of the dynamical evolution of non-
Hermitian systems.
The theory of non-Hermitian random matrices is well

developed for some universality classes corresponding to
the so-called Ginibre ensembles [12]. However, no equiv-
alent of the BGS conjecture is known, and so the relation
between dynamics and level statistics is less clear than in
the Hermitian case. There are also technical problems:
correlations of complex eigenvalues are weakened, and
the necessary unfolding of eigenvalues may be proble-
matic [13,14] when the eigenvalue distribution is not
radially symmetric. Unfolding problems have been amelio-
rated in the last years for short-range observables with the
introduction of spectral observables such as the adjacent
gap ratios [15] for complex spectra [16] that do not require
unfolding. They have already been applied in a variety of
non-Hermitian systems: phase transitions in many-
body Liouvillians [17–20], non-Hermitian Anderson locali-
zation [21–24], nonunitary open quantum circuits [25,26],
two-color QCD at imaginary chiral chemical potential [27],
and, more recently, the Sachdev-Ye-Kitaev (SYK) model
[28–30].
Long-range spectral correlators such as the number

variance [31–36] or spectral form factor (SFF) [32,37]
have already been investigated in the context of non-
Hermitian systems but there are still problems with the
unfolding procedure, which is necessary, especially for the
SFF, for a correct dynamical interpretation of the results.
Moreover, the role of spectral rigidity, if any, and the
determination of the timescale that signals deviations from
universality are still poorly understood in quantum chaotic
non-Hermitian systems. We aim to shed light on this
problem by computing these spectral observables for the
non-Hermitian SYK model [29,38–40]. This model
is a natural building block of Euclidean [29,38] and

Keldysh [41] wormholes, models for Lindbladian dissipa-
tion [30,42], and entanglement dynamics [43].
The SYK model, describing N fermions with infinite-

range interactions in zero spatial dimensions, was intro-
duced more than 50 years ago [44–48] in the context of
nuclear physics as a toy model for nuclei. Later, it played an
important role in the development of so-called many-body
quantum chaos [49–52] and also in the description of
certain aspects of spin liquids [53]. The revival of interest in
the SYK model is motivated by its role in quantum gravity
as a toy model for holography [54–56] and also due to the
use of Majorana fermions, proposed by Kitaev [54],
that simplifies the model allowing analytical calculations
for some region of the parameters. For instance, it was
possible [54,55] to demonstrate that the SYK model
saturates a universal bound [57] on the exponential growth
in time of certain out-of-time correlation functions that
probe quantum chaos at short timescales of the order of the
Ehrenfest time—the time for which quantum effects start
to become relevant. It has also been shown that the SYK
model, both Hermitian and non-Hermitian, is quantum
chaotic with spectral correlations well described by
RMT [28,58–60]. By tuning q and N, the SYK model
can also reproduce several of the different universality
classes, controlled by the global symmetries of the system,
in which a many-body quantum chaotic system can relax to
ergodicity [28,61–66]. It is therefore a natural choice for the
problems we will be addressing.
We initiate our analysis in Sec. II with a description of

long-range spectral correlations of non-Hermitian random
matrices belonging to the Ginibre ensemble [12]. We will
focus on the number variance and the spectral form factor
of the real parts of the eigenvalues, which has recently been
proposed as a measure of quantum chaos in non-Hermitian
systems [37]. Some of the analytic results of this section
were already derived in Refs. [32,37,67,68], but we present
them here from a unified viewpoint. Then, in Sec. III we
apply the same tools to investigate the emergence of
random-matrix universality, and its limits, in the non-
Hermitian SYK model.

II. SPECTRAL FORM FACTOR AND NUMBER
VARIANCE OF NON-HERMITIAN RANDOM

MATRIX MODELS

For real spectra, somewidely used long-range correlators
are the number variance, the Δ3 statistic, and the spectral
form factor [69]. In this section, we study analog statistics
for non-Hermitian spectra of the Ginibre unitary ensemble
(GinUE) of random matrices [12].

A. The Ginibre ensemble

Throughout this paper, we frequently refer to the Ginibre
ensemble. Here, we collect some well-known results that
we use below. The Ginibre ensemble is the ensemble of
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D ×D complex random matrices H with probability
distribution given by [12]

PðHÞ ∼ e−DTrH†H: ð1Þ

With this normalization, in the limit of large D, the
eigenvalues zi of H are distributed uniformly inside
the complex unit disk. The real parts Ei ¼ Rezi of the
eigenvalues, therefore, follow the semicircular distribution

ρ̄ðEÞ ¼ 2D
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p
; ð2Þ

normalized as

Z
dEρ̄ðEÞ ¼ D: ð3Þ

At finite D, the connected two-point correlation function
of the eigenvalues is given by [12,69]

ρ2cðz1; z2Þ ¼ Kðz1; z1Þδ2ðz1 − z2Þ − jKðz1; z2Þj2; ð4Þ

with the kernel given by

Kðz1; z2Þ ¼
D
π
e−

D
2
ðjz1j2þjz2j2Þ

XD−1

k¼0

ðDz1z�2Þk
k!

: ð5Þ

In the large-D limit, this simplifies to [12,69]

ρ2cðz1; z2Þ ¼ ρ̄ðz1Þδ2ðz1 − z2Þ − ρ̄ðz1Þρ̄ðz2Þe−Djz1−z2j2 : ð6Þ

B. Unfolding

Depending on the long-range correlator, we may have to
unfold the eigenvalues (i.e., reparametrize them such that
the spectral density is constant in the new variables) in
order to obtain universal results. Since the number variance
is defined as the variance of the number of eigenvalues in a
fixed interval, there is no need for unfolding, although it is
convenient to do so if it is calculated by spectral averaging
or a combination of spectral averaging and ensemble
averaging. The spectral form factor is an observable that
involves the entire spectrum so in this case unfolding is
essential for making quantitative comparisons between
different systems. Since the contribution of eigenvalue
pairs with large spacings is suppressed by large phase
oscillations, the main contribution to the spectral form
factor is due to eigenvalues that are close. Therefore, it is
possible to give a local definition of the spectral form factor
that only includes the eigenvalues on a scale where the
average spectral density is approximately constant, see
Sec. II E below. Because our goal is to identify universal
features of the quantum dynamics, we only consider

connected two-point correlators in the analysis of the
spectral correlations.
For the Ginibre ensemble, there is no need to unfold the

spectrum because, well away from the spectral edge, the
spectral density is constant and a rescaling is enough.
However, for the nHSYK model, to be studied later, the
average spectral density is not constant and nonuniversal as
it is determined by the details of the phase space and the
dynamics. Therefore, we first provide a detailed explan-
ation of the unfolding of complex spectra. For simplicity,
we focus on the case of radially symmetric spectra.
For a radially symmetric spectrum, fzkgk¼1;…;D, the

spectral density ρ̄ðz; z�Þ satisfies

ρ̄ðz; z�Þd2z ¼ ρ̄ðjzjÞjzjdjzjdðargðzÞÞ: ð7Þ

Because of unfolding ambiguities, we only unfold the
eigenvalues in this case1 and we only have to reparametrize
the absolute value of the eigenvalues. The unfolding is
performed using the average radial spectral density, which
is a smooth function and therefore does not affect local
statistics. If the average radial density is given by ρ̄ðrÞ, the
unfolded eigenvalues, zunfk in terms of the original eigen-
values are given by

zunfk ¼
�Z jzkj

0

2πrdrρ̄ðrÞ
�

1=2 zk
jzkj

: ð8Þ

As a check of this transformation, we can take the flat
density ρ̄ðrÞ ¼ 1=π which results in zunfk ¼ zk. The
unfolded eigenvalues have constant density inside the unit
disk. Below, we will see that the spectral density of the
nHSYK model for q ≥ 6 is almost constant, and unfolding
can be approximated by just rescaling the eigenvalues to the
unit disk by

zk →
zkπρ̄ð0Þ

D
: ð9Þ

When the eigenvalue density is not strictly isotropic,
generically the spectrum is still locally isotropic. In that
case, unfolding ambiguities can be resolved by requiring
that local spectral isotropy is preserved.

C. Number variance

1. Complex eigenvalues

The best-known spectral correlator to probe the existence
of spectral rigidity is the number variance, defined as the

1There is still an ambiguity. For example, we could have
unfolded the eigenvalues zk so that the density of ReðzkeiθÞ (i.e.,
the projection of the eigenvalues along some axis with angle θ)
becomes constant. However, since analytical results are only
available for constant density inside the unit disk we unfold the
eigenvalues this way.
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variance of the number of eigenvalues in a spectral window
containing a fixed number of eigenvalues on average. Let
that window be a compact domain D inside the unit disk,
containing n eigenvalues. In terms of the connected two-
point correlation function, the number variance reads

Σ2ðnÞ ¼
Z
D
d2z1d2z2ρ2cðz1; z2Þ: ð10Þ

For spectra of Hermitian quantum chaotic systems and
Hermitian random matrices, the growth of the number
variance increases only logarithmically with the number of
eigenvalues, while it grows linearly in the case of a
nondegenerate uncorrelated spectrum typical of an inte-
grable system. For non-Hermitian systems, the spectral
rigidity takes a different form because the spectrum is now
two-dimensional. One can imagine theD eigenvalues in the
unit disk as small disks with area ∼1=D. For the compact
domain D containing n eigenvalues, only the eigenvalues
near the edge can diffuse in and out of the disk. There are
order of

ffiffiffi
n

p
eigenvalues near the surface. Therefore, the

number variance (i.e., the variance of the number of
eigenvalues insideD) behaves asΣ2ðnÞ ∼ ffiffiffi

n
p

for sufficiently
large n ≫

ffiffiffiffi
D

p
, while for n ∼Oð ffiffiffiffi

D
p Þ all eigenvalues can

move in and out resulting in Poisson statistics with
Σ2ðnÞ ¼ n. It is clear that the coefficient of

ffiffiffi
n

p
depends

on the length of theperimeter ofD forn eigenvalue inside this
domain. Below, we will see that for a disk [35] we have that
Σ2ðnÞ ¼ ffiffiffiffiffiffiffiffi

n=π
p

, while for a squarewe findΣ2ðnÞ ¼ 2
ffiffiffi
n

p
=π,

which behaves as the ratio of the perimeters for the same area.
Next, we calculate the number variance of the Ginibre

ensemble for two simple geometries, the rectangle and the
disk. Using Eq. (6), the number variance (10) for the
rectangle with sides 2a and 2b and centered at the origin is
given by

Σ2ðnÞ¼n−
D2

π2

×
Z

a

−a

Z
a

−a
dx1dx2

Z
b

−b

Z
b

−b
dy1dy2e−Dðx1−x2Þ2−Dðy1−y2Þ2 ;

ð11Þ

with

n ¼ D
π
4ab: ð12Þ

The second term in Eq. (11) factorizes into FðaÞFðbÞ with

FðaÞ ¼ D
π

Z
a

−a

Z
a

−a
dx1dx2e−Dðx1−x2Þ2

¼ 1

π
ðe−4a2D − 1Þ þ 2a

ffiffiffiffi
D

p
ffiffiffi
π

p erfð2a
ffiffiffiffi
D

p
Þ; ð13Þ

where erf stands for the error function. Using Eq. (12), this
result can be expressed in terms of n and the aspect ratio of
the rectangle, α≡ b=a,

FðaÞ ¼ 1

π
ðe−nπ=α − 1Þ þ

ffiffiffi
n
α

r
erf

� ffiffiffiffiffiffi
nπ
α

r �
; ð14Þ

which has a well-defined large-D limit. FðbÞ is obtained by
replacing α → 1=α. If the rectangle contains more than a
few eigenvalues, this result is well approximated by

FðaÞ ∼
ffiffiffi
n
α

r
−
1

π
: ð15Þ

This gives the number variance

Σ2ðnÞ ¼ 1

π

� ffiffiffi
α

p þ 1ffiffiffi
α

p
� ffiffiffi

n
p

−
1

π2
: ð16Þ

This approximation is already accurate to four digits forn ¼ 2
and becomes rapidly more accurate for larger values of n.
A second interesting case is a rectangle with b indepen-

dent of n and a ∼ b. We again have that 4abD=π ¼ n, but
now 4a2D ¼ n2π2=ð4Db2Þ instead of nπ=α. In this case,

FðaÞ ¼ 1

π
ðe−n2π2=4Db2 − 1Þ þ nπ

2b
ffiffiffiffiffiffiffi
πD

p erfðnπ=2b
ffiffiffiffi
D

p
Þ:

ð17Þ
If b is fixed we have in the large-D limit that

FðbÞ ≈ 2b
ffiffiffiffi
D

p
ffiffiffi
π

p −
1

π
: ð18Þ

The second term is subleading and will be neglected. This
gives the number variance

Σ2ðnÞ ¼ n−
2b

ffiffiffiffi
D

p
ffiffiffi
π

p

×

�
1

π
ðe−n2π2=4Db2 − 1Þ þ nπ

2b
ffiffiffiffiffiffiffi
πD

p erf

�
nπ

2b
ffiffiffiffi
D

p
��

¼ 2b
ffiffiffiffi
D

p
ffiffiffi
π

p 1

π
ð1− e−n

2π2=4Db2Þ þ n erfc

�
nπ

2b
ffiffiffiffi
D

p
�
:

ð19Þ
Note that this result for the number variance is nonuniversal:
it depends on D and b. A stable double scaling limit is
obtained by taking the large-D limit at fixed b

ffiffiffiffi
D

p
.

We now turn to the evaluation of the number variance
(10) for a disk of radius R centered at zero. This can be
done most simply by using the exact finite-D expression for
the connected two-point correlation function of the Ginibre
ensemble written in terms of the kernel, Eq. (4). Inserting it
into Eq. (10) we obtain
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Σ2ðnÞ ¼
Z
jz1j<R

d2z1Kðz1; z1Þ −
Z
jz1j<R

d2z1

Z
jz2j<R

d2z2jKðz1; z2Þj2; ð20Þ

with the kernel given by Eq. (5). Using polar coordinates, the integrals can be simplified to

Σ2ðnÞ ¼ 2D
Z

R

0

dr1
XD−1

k¼0

1

k!
r2kþ1
1 Dke−Dr2

1 − 4D2

Z
R

0

dr1

Z
R

0

dr2
XD−1

k¼0

1

ðk!Þ2 ðr1r2Þ
2kþ1D2ke−Dðr2

1
þr2

2
Þ

¼
XD−1

k¼0

�
1 −

Γðkþ 1; R2DÞ
Γðkþ 1Þ

�
−
XD−1

k¼0

�
1 −

Γðkþ 1; R2DÞ
Γðkþ 1Þ

�
2

¼
XD−1

k¼0

Γðkþ 1; R2DÞ
Γðkþ 1Þ −

�
Γðkþ 1; R2DÞ

Γðkþ 1Þ
�

2

; ð21Þ

which was first obtained in Ref. [35]. In the large-D limit, we have

DR2 ¼ n; ð22Þ

which allows us to take the large-D limit of Eq. (21). Using
the asymptotic expansion of the incomplete Gamma
function, the number variance for finite but large n is
approximated by

Σ2ðnÞ ¼ 1

4

X∞
k¼0

erfc

�
k − nffiffiffiffiffiffi
2n

p
�
erfc

�
n − kffiffiffiffiffiffi
2n

p
�

≈
ffiffiffiffiffiffi
2n

p

4

Z
∞

−∞
dxerfcðxÞerfcð−xÞ

¼
ffiffiffi
n

p
ffiffiffi
π

p : ð23Þ

2. Real parts of complex eigenvalues

In this paper, we also consider level correlations of the
projections of the eigenvalues on a line through the origin.
If the spectrum is radially symmetric, these are just the level
correlations of the real parts of the eigenvalues. Again only
eigenvalues near the surface can diffuse in and out of the
area jRe½z�j < n=D which contains OðnÞ eigenvalues with
2

ffiffiffiffi
D

p
eigenvalues near the surface. The number variance

saturates therefore at
ffiffiffiffi
D

p
for sufficiently large D. When

n < Oð ffiffiffiffi
D

p Þ all eigenvalues can diffuse in and out of the
segment, giving Poisson statistics with Σ2ðnÞ ¼ n. The
number variance of the real parts of the eigenvalues
therefore behaves roughly as

Σ2ðnÞ ¼ nθð2
ffiffiffiffi
D

p
− nÞ þ 2

ffiffiffiffi
D

p
θðn − 2

ffiffiffiffi
D

p
Þ; ð24Þ

where we expect a rounding to occur when n ≈ 2
ffiffiffiffi
D

p
.

The number variance of the real parts of the eigenvalues
(or the eigenvalues projected on a ray through the origin) is

not universal. It depends sensitively on the geometry of the
eigenvalue support. For example, for the elliptic Ginibre
ensemble supported on an ellipse with ax and ay as long
and short semiaxis (axay ¼ 1), order 2ay

ffiffiffiffi
N

p
eigenvalues

can diffuse in and out of a segment. More generally, the
number variance of the real parts depends on the vertical
dimension of the eigenvalue support. The geometry of the
eigenvalue support thus determines the fraction of eigen-
value pairs with projections that are much closer than their
spacing in the complex plane and are, therefore, essentially
uncorrelated. We refer to this as the Poisson admixture. For
the same reason, we expect that the number variance of the
projected eigenvalues is not stationary. Closer to the edge,
there is less Poisson admixture resulting in a smaller value
of the number variance.
The number variance of the real parts of the eigenvalues

at energy E can be obtained from the number variance in a
rectangle with fixed side b, Eq. (19). In this case, b is equal
to the range of the imaginary parts, i.e., b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p
¼

πρ̄ðEÞ=2D with ρ̄ðEÞ the density of the real parts of the
eigenvalues ρ̄ðEÞ ¼ ð2D=πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p
[see Eq. (2)]. Recall

that ρ̄ðEÞ is normalized as
R
ρ̄ðEÞdE ¼ D. This results in

the number variance

Σ2ðnÞ ¼ ρ̄ðEÞffiffiffiffiffiffiffi
πD

p ð1 − e
− n2D
ρ̄2ðEÞÞ þ n erfc

�
n

ffiffiffiffi
D

p

ρ̄ðEÞ
�
; ð25Þ

showing that the number variance

Σ2ðnÞ ¼ ρ̄ðEÞffiffiffiffi
D

p g

�
n

ffiffiffiffi
D

p

ρ̄ðEÞ
�

ð26Þ

is determined by a universal function g.
We shall employ these expressions in the comparison

with the number variance of the nHSYK model in Sec. III.
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D. Spectral form factor

For real spectra, the Fourier transform of the two-point
correlation function, called the spectral form factor,
although non-self-averaging [70], is also a popular probe
of quantum chaos. The logarithmic growth in energy of the
number variance, which signals spectral rigidity, translates
into linear growth in time of the spectral form factor for
intermediate times much larger than the Ehrenfest time but
smaller than the Heisenberg time.
The connected spectral form factor of D (real) eigen-

values xk is defined by

KcðtÞ ¼
1

D

�X
kl
eitðxk−xlÞ

�
c

¼ 1

D

�X
kl

eitðxk−xlÞ
�
−

1

D

				
�X

k
eitxk

�				
2

: ð27Þ

The normalization is such that

lim
t→∞

KcðtÞ ¼ 1: ð28Þ

The second term in Eq. (27) is proportional to the
nonuniversal disconnected spectral form factor:

KdisðtÞ ¼
				
�X

k
eitxk

�				
2

: ð29Þ

Only KcðtÞ provides direct information on the quantum
dynamics.
A spectral form factor for complex eigenvalues was first

introduced in Ref. [32],

Kcðt; s1; s2Þ

¼ 1

D

�X
k;l

e
i
2
zkðtþs1Þþi

2
z�kðt−s1Þe−

i
2
zlðtþs2Þ−i

2
z�l ðt−s2Þ

�
c

¼
Z

dx1dx2dy1dy2eiðx1−x2Þtþiy1s1−iy2s2ρ2cðz1; z2Þ: ð30Þ

with z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2. For s1 ¼ s2 ¼ 0,
this becomes the spectral form factor of the real parts of the
eigenvalues. In Ref. [32], the spectral form factor was
calculated for the weak non-Hermiticity limit of the elliptic
Ginibre ensemble but, as stated by the authors, their
calculations are also valid in the case of interest here,
termed the strong non-Hermiticity limit. They found

KcðtÞ≡ Kcðt; 0; 0Þ ¼ 1 − e−
t2
4D; ð31Þ

in the normalization where the support of theD eigenvalues
is the unit disk. A derivation of this result from the finite-D
Ginibre kernel is given in Appendix; see also Ref. [37,71].
The spectral density of the real parts of the eigenvalues
of the Ginibre ensemble is given by the semicircle

distribution, Eq. (2). We note that unfolding the eigenvalues
from semicircular to constant density can almost entirely be
absorbed by rescaling the argument of the exponential in
Eq. (31) by 1.18.
More generally, setting t ¼ τ cos θ, s1 ¼ −iτ sin θ, and

s2 ¼ iτ sin θ in Eq. (30), we can define the spectral form
factor of the eigenvalues projected onto the direction
defined by the angle θ:

Kcðτ; θÞ ¼
1

D

�				
X

k
eiτReðeiθzkÞ

				
2
�

c
: ð32Þ

If the spectral properties are axially symmetric, this spectral
form factor does not depend on the angle θ onto which the
eigenvalues are projected. By averaging over θ it is possible
to increase the statistics of the form factor [37]. The spectral
form factor of the projected eigenvalues was recently
proposed [37] as a measure of quantum chaos in dissipative
systems; see also Refs. [71,72]. It was dubbed the dis-
sipative spectral form factor [37] not to be confused with
other closely related quantities: the dissipative form factor
introduced in Ref. [73] and the open-system spectral form
factor put forward in Refs. [74,75].
The spectral form factor (32) measures the same long-

range spectral correlations as the number variance of the real
parts and therefore depends sensitively on the geometry of
the spectrum. This can be seen explicitly from the relation
between the number variance and the spectral form factor [5]

Σ2ðnÞ ¼ n2

2π

Z
∞

−∞
dτKcðτÞ

sin2ðnτ=2Þ
ðnτ=2Þ2 ; ð33Þ

which is valid if the spectral form factor is calculated for
unfolded eigenvalues. Equation (33) shows that the number
variance and the spectral form factor are complementary
observables. In the normalization with D eigenvalues in
the complex unit circle, the spectral form factor for τ > T
determines the number variance for n < D=ð2TÞ. Likewise,
the spectral form factor for τ < T mostly contributes to the
number variance for n > D=ð2TÞ. This does not imply,
however, that the asymptotic behavior of the number
variance is given by the small-τ behavior of the spectral
form factor. In particular, the spectral form factor for τ ≪ffiffiffiffi
D

p
increases quadratically

KcðτÞ ¼
1

2D
τ2: ð34Þ

This region contributes to the number variance forn >
ffiffiffiffi
N

p
=2

but it does not determine the large-n saturation value of the
number variance.
Finally, we note that the limits D → ∞ and τ → 0 do not

commute (see Appendix for details). Indeed, the coefficient
of τ2 in the expansion of 1 − expð−τ2=4DÞ ¼ τ2=4Dþ
Oðτ4Þ, obtained by taking the large-D limit first, is not equal
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to the coefficient obtained by taking the small-τ limit first.
The latter is given by K00

c;exactð0Þ=2, where Kc;exactðτÞ is the
exact finite-D result for the Ginibre ensemble, Eq. (A8). Its
Taylor expansion to second order in τ is given by
Kc;exactðτÞ ¼ τ2=2DþOðτ4Þ. It is actually a factor of two
larger than the result obtained by taking the large-D limit first
and is equal to the perturbative coefficient

1

D

�X
k
ReðzkÞ

X
l
ReðzlÞ

�
c
; ð35Þ

which can be easily checked numerically, for example, for an
ensemble of 1000 of 100 × 100 Ginibre matrices. For a real
spectrum belonging to the Gaussian unitary ensemble
(GUE), we also find that for sufficiently small τ, the spectral
form factor KðτÞ ∼ τ2 with the perturbative prefactor given
by the analogous expression.

E. Local spectral form factor

1. Real eigenvalues

Let us again start by considering the case of real spectra.
Except for times much shorter than the inverse mean level
spacing, the main contribution to the spectral form factor
(27) comes from eigenvalue pairs that are sufficiently close.
That is, we can define a local connected spectral form factor

Kcðx; tÞ ¼
1

ρ̄ðxÞjπðxÞj
�X

xk;xl∈πðxÞe
itðxk−xlÞ

�
c

¼ 1

ρ̄ðxÞjπðxÞj
�X

xk;xl∈πðxÞe
itΔðxÞðxk−xlÞΔðxÞ

�
c
; ð36Þ

whereΔðxÞ is the average spacing of the eigenvalues at x, the
level density ρ̄ðxÞ ¼ 1=ΔðxÞ, and jπðxÞj is the length of an
interval located at x that satisfies ΔðxÞ ≪ jπðxÞj ≪ DΔðxÞ.
We have, for now, chosen a hard cutoff to enforce locality.

Other choices are possible, however, andbelowwewill find a
Gaussian cutoff more useful.
Locally, unfolding is just rescaling the eigenvalues by the

local level spacing ΔðxÞ. We thus have

Kunf
c ðx; tÞ ¼ Kcðx; tρ̄ðxÞÞ: ð37Þ

Integrating over the entire spectrum gives

Kunf
c ðtÞ ¼

Z
dxρ̄ðxÞKcðx; tρ̄ðxÞÞ: ð38Þ

We can also invert the relation (37):

Kcðx; tÞ ¼ Kunf
c ðx; t=ρ̄ðxÞÞ: ð39Þ

Using Eq. (33), the spectral form factor is related to the
number variance by [5]

Σ2ðnÞ ¼ n2

2π

Z
∞

−∞
dtKunf

c ðtÞ sin
2ðnt=2Þ

ðnt=2Þ2

¼
Z

dxρ̄ðxÞ n
2

2π

Z
∞

−∞
dtKunf

c ðx; tÞ sin
2ðnt=2Þ

ðnt=2Þ2

≡
Z

dxρ̄ðxÞΣ2ðx; nÞ; ð40Þ

where Σ2ðx; nÞ is the local number variance. Using
Eq. (37), it evaluates to

Σ2ðx; nÞ ¼ n2

2π

Z
∞

−∞
dt

1

jπðxÞjρ̄ðxÞ

×
X

xk;xl∈πðxÞ
heitðxk−xlÞ=Δxic

sin2ðnt=2Þ
ðnt=2Þ2 : ð41Þ

The integral over t can be evaluated analytically resulting in
the number variance

Σ2ðx; nÞ ¼ 1

ρ̄ðxÞjπðxÞj
�X

xk;xl∈πðxÞ
ΔðxÞ
D

�
n −

jxk − xlj
ΔðxÞ

�
θ

�
n −

jxk − xlj
ΔðxÞ

��
c
− n2

¼
Z
πðxÞ

dx̄
ρ̄ðx̄Þ

ρ̄ðx̄ÞjπðxÞj
��X

jxk−x̄j<nΔ1

��X
jxl−x̄j<nΔ1

��
c
− n2: ð42Þ

This shows that the local number variance can be obtained by
integrating the local spectral form factor. The spectral form
factor of the entire spectrum is thus related to the spectral
average of the number variance. This is not an issue if the
number variance is stationary (i.e., independent of the point
x) but, as we will see below, the number variance of the real
parts of the eigenvalues of both theGinibre ensemble and the

nHSYKmodel are not stationary.On the other hand, the local
spectral form factor turns out to be stationary.
The local spectral form factor (36) shows strong oscil-

lations resulting from the Fourier modes of the hard cutoff.
These oscillations can be eliminated by introducing a
smooth cutoff. For a Gaussian cutoff, we obtain the local
spectral form factor [76]

UNIVERSALITY AND ITS LIMITS IN NON-HERMITIAN MANY- … PHYS. REV. D 107, 066007 (2023)

066007-7



Kloc
c ðx̄; tÞ ¼ 1

N

Z
dx1dx2ρ2cðx1; x2Þeitðx1−x2Þ−

ðx1−x̄Þ2þðx2−x̄Þ2
2w2 ;

ð43Þ

where N is a normalization factor chosen such that
Kloc

c ðx̄; tÞ asymptotes to 1 for large t and w is the width
of the cutoff. The large-t behavior determined by the
contribution of the self-correlations is given by

Z
dx1dx2ρ̄ðxÞδðx1 − x2Þeitðx1−x2Þ−

ðx1−x̄Þ2þðx2−x̄Þ2
2w2

¼
Z

dxρ̄ðxÞe−
ðx−x̄Þ2
w2 : ð44Þ

This results in the normalization factor

N ¼
Z

dxρ̄ðxÞe−ðx−x̄Þ2
w2 : ð45Þ

2. Real parts of complex eigenvalues

So far, we have only considered the local spectral form
factor of real eigenvalues. We now turn to the local spectral
form factor of the real parts of complex eigenvalues,
i.e., the local counterpart of Eq. (30). A straightforward
generalization of Eq. (43) yields

Kloc
c ðx̄; τÞ ¼ 1

N

Z
d2z1d2z2ρ2cðz1; z2Þeiτðx1−x2Þ−

ðx1−x̄Þ2þðx2−x̄Þ2
2w2 ;

ð46Þ

where zj ¼ xj þ iyj.
We now show that this local spectral form factor for

eigenvalues unfolded to constant density inside the unit
disk is stationary. The non-Hermitian two-point correlator
is given by

ρ2cðz1;z2Þ¼ ρ̄ðz1Þδ2ðz1−z2Þ− ρ̄2ðzcÞRunivðjz1−z2j2ρ̄ðzcÞÞ;
ð47Þ

where Runiv is the universal two-point correlator and
zc ¼ ðz1 þ z2Þ=2. Changing to variables

z1 ¼ zc þ δz=2; z2 ¼ zc − δz=2; ð48Þ

the universal contribution to the spectral form factor in
Eq. (46) can be written as

−
1

N

Z
d2zcρ̄2ðzcÞe−ðxc−x̄Þ2=w2

×
Z

d2δzeiτδx−
1
4
δx2=w2

Runivðjz1 − z2j2ρ̄ðzcÞÞ: ð49Þ

For eigenvalues unfolded to the complex unit disk, this becomes

−
2

N

�
D
π

�
2
Z

1

−1
dxc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2c

q
e−ðxc−x̄Þ2=w2

Z
d2δzeiτδx−

1
4
δx2=w2

Runivðjz1 − z2j2ρ̄ðzcÞÞ: ð50Þ

For the Ginibre universality class with universal two-point correlator (6), the second integral can be worked out:

1

N

Z
d2δzeiτδx−

1
4
δx2=w2

Runivðjz1 − z2jρ̄ðzcÞÞ ¼
1

N

Z
d2δzeiτδx−

1
4
δx2=w2

e−Dðδx2þδy2Þ

¼ 1

N
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðDþ 1=4w2Þ
p e−τ

2=ð4Dþ1=w2Þ: ð51Þ

Collecting all terms and using that the normalization factor
is equal to [see Eq. (45)]

N ¼ D
π

Z
dxc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2c

q
e−ðxc−x̄Þ2=w2

: ð52Þ

We find that, for eigenvalues unfolded to a constant density
inside the unit disk and in the limit w2 ≫ 1=D, the local
spectral form factor of the real parts of the eigenvalues is
given by

Kloc
c ðx̄; τÞ ¼ 1 − e−τ

2=ð4DÞ: ð53Þ
This shows that the spectral form factor is stationary. In
contrast, the global spectral form factor, given by Eq. (38),
is the integral of a nonstationary quantity due to the
semicircular distribution of the projected eigenvalues
multiplying the local spectral form factor.

3. Relation to the local number variance

It is possible to calculate the number variance of the real
parts of the eigenvalues from the spectral form factor using
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the relation (33) which is valid for unfolded eigen-
values [32]. If the local eigenvalue density is ρ̄ðEÞ
(normalized to

R
ρ̄ðEÞdE ¼ D), the spectral form factor

unfolded to the unit density is given by [see Eq. (37)]

Kunf
c ðE; τÞ ¼ 1 − e−τ

2ρðEÞ2=4D: ð54Þ
The resulting integral can be performed analytically [32]
leading to

Σ2ðn;DÞ ¼ n erfc

�
n

ffiffiffiffi
D

p

ρ̄ðEÞ
�
þ ρ̄ðEÞffiffiffiffiffiffiffi

πD
p ð1 − e−Dn2=ρ̄2ðEÞÞ: ð55Þ

This is in agreement with the previous result (25) obtained
from the number variance of a rectangular geometry with
vertical side b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2

p
. If we take the limit D → ∞ at

fixed n, we get Poisson statistics:

lim
D→∞

Σ2ðn;DÞ ¼ n: ð56Þ

However, the expression for the number variance also has a
nontrivial double scaling limit

lim
D→∞

ffiffiffiffi
D

p

ρðEÞΣ
2

�
nρðEÞffiffiffiffi

D
p ; D

�
¼ nerfcðnÞ þ 1ffiffiffi

π
p ð1 − e−n

2Þ:

ð57Þ

It is tempting to interpret the existence of this scaling limit
as a signature of quantum chaos in non-Hermitian systems.
However, a similar scaling behavior has been observed
for the number variance of integrable systems at a finite
distance above the ground state [2,77–79].
As a check of the analytical result (55), we compare in

Fig. 1 this expression to the numerically calculated number
variance at the center of the spectrum for an ensemble of
8192 realizations of 1024 × 1024 complex Ginibre matri-
ces. The normalization is such that the support of the
eigenvalues is the complex unit disk but this does not affect
the number variance. The discrepancy between the ana-
lytical and numerical results for large D is due to finite-size
corrections. There is also a correction due to the semi-
circular shape of the spectral density, but because n ≪ D,
this correction is much smaller and can be neglected.

F. Spectral form factor for universality
classes AI† and AII†

So far, we have restricted our discussion to the
spectral form factor of the GinUE (also known as symmetry
class A). However, there exist two other classes of bulk
level repulsion, depending on the behavior of the
Hamiltonian under transposition [27,28,80] besides class
A, which has no transposition symmetry. If there exists an
antiunitary operator Cþ such that CþH†C−1þ ¼ H, then H

belong to class AI† if C2þ ¼ þ1 and to class AII† if
C2þ ¼ −1. In contrast, if no such operator exists, H belongs
to class A. As in the Hermitian case, where the spectral
form factors of the GOE, GUE, and GSE distinguish the
increasing degrees of level repulsion, so do the spectral
form factors of classes AI†, A, and AII†.
The spectral form factor for the other two universal bulk

statistics, AI† and AII†, is much less understood and no
analytical results are available. Some numerical results
were presented in Ref. [72] for class AI†, while the
spectral form factor for class AII† has not been inves-
tigated before. We obtained them numerically and plot
them in Fig. 2. As for class A, for classes AI† and AII†

there is also an early quadratic growth, albeit with a
different prefactor—for class AI† it is twice the prefactor
of A, while for class AII† it is half. Note that the prefactor
for class A, 1=ð2DÞ, is in agreement with our previous
considerations, see Eq. (34). As can be seen from Fig. 2
(right), in all three cases, the prefactor of the τ2 depend-
ence decreases by a factor of 2 going from the perturbative
to the nonperturbative domain [see the discussion below
Eq. (34) for an explanation of this anomaly for class A].
The approach to the late-time plateau is slower for AI†

than for A, while it is faster for AII†. Contrary to the
Hermitian case, there is no nonanalyticity in the spectral
form factor around the Heisenberg time.
The spectral form factor is a bulk observable, namely, it

is defined as a sum over all eigenvalues, so in principle it
can identify only three different classes A, AI†, and AII†.
However, we will show in the next section, that for
ensembles with chiral symmetry, the number variance
calculated for a symmetric interval around zero is a factor
of 2 different with respect to the Ginibre ensembles, so that

Ginibre

Poisson

Analytical

N = 1024

0 10 20 30 40 50 60 70
0

5

10

15

n

2
(n

)

FIG. 1. Number variance of the real parts of the eigenvalues in
an interval located symmetrically about zero. The dotted line
corresponds to the numerical result for an ensemble of 8192
1024 × 1024 random matrices belonging to the GinUE (class A).
The agreement with the analytical expression (55) (red curve) is
excellent. We also show the result for Poisson statistics
(green line).
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it can be employed to identify non-Hermitian systems with
chiral symmetry.

G. Spectral form factor for Poisson statistics

In this section, we calculate the spectral form factor for
spectra with Poisson statistics (i.e., 2d uncorrelated
points) unfolded to constant density inside the complex
unit disk. The connected two-point correlation function is
given by

ρPc ðz1; z2Þ ¼ ρ̄ðz1Þδ2ðz1 − z2Þ −
1

D
ρ̄ðz1Þρ̄ðz2Þ: ð58Þ

The connected spectral form factor is given by

KP
c ðτÞ ¼

1

D

Z
d2z1d2z2ρPc ðz1; z2Þeiτðx1−x2Þ

¼ 1 −
1

D2

				
Z

d2z1ρ̄ðz1Þeiτx1
				
2

¼ 1 −
				2
Z

1

−1
dx1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x21

q
eiτx1

				
2

¼ 1 − 4

�
J1ðτÞ
τ

�
2

: ð59Þ

In Fig. 3, we show a numerical verification of the result
of Eq. (59), finding perfect agreement. We will see in the
next section that although the q ¼ 2 nHSYK model is
integrable, its spectral form factor has more structure than
plain Poisson statistics of completely uncorrelated random
variables.

III. LONG-RANGE SPECTRAL CORRELATIONS
OF THE SACHDEV-YE-KITAEV MODEL WITH

COMPLEX COUPLINGS

We now probe the dynamics of the non-Hermitian SYK
(nHSYK) model for timescales shorter than the Heisenberg
time by a detailed comparison of the unfolded spectral
form factor and the number variance with the random
matrix predictions worked out in the previous section.
The nHSYK Hamiltonian is defined as [54,55]

H ¼
XN

i1<i2<���<iq

ðJi1i2���iq þ iMi1i2���iqÞψ i1ψ i2 � � �ψ iq ; ð60Þ

where N and q are integers (N is taken to be even), Ji1���iq
and Mi1���iq are real Gaussian random variables with zero
mean and variance

FIG. 2. The spectral form factor of the real parts of the eigenvalues of non-Hermitian matrices from the three bulk universality classes,
A, AI†, and AII†. The solid curves correspond to the numerically obtained results for an ensemble average of 104 2048 × 2048 matrices
drawn from the respective RMT ensemble. The right panel shows a magnification of the region close to the origin, where the spectral
form factor shows quadratic growth in time (dashed lines) with a coefficient that decreases by a factor of 2 going from the perturbative to
the nonperturbative domain.

FIG. 3. The spectral form factor of the real part of uncorrelated
random variables uniformly distributed on the unit disk. The full
blue line corresponds to the numerically obtained spectral form
factor for 104 sets of 2048 independent random complex numbers
with a flat distribution on the unit disk, while the dashed black
line gives the analytical prediction of Eq. (59). There is a perfect
agreement between the two.

GARCÍA-GARCÍA, SÁ, and VERBAARSCHOT PHYS. REV. D 107, 066007 (2023)

066007-10



σ2 ¼ 1

6ð2NÞq−1 ; ð61Þ

and ψ i are Majorana fermions satisfying fψ i;ψ jg ¼ 2δij.
To be precise, we note that for odd q, H corresponds to a
supercharge (not Hamiltonian) operator.
The symmetry classification of the nHSYK model was

put forward in Ref. [28]. It was found that, depending on
q mod 4 and N mod 8, it belongs to nine out of the 38 non-
Hermitian symmetry classes. However, the bulk correlators
we are employing here only capture the local level

repulsion, i.e., only distinguish the bulk universality classes
A, AI†, and AII†. The bulk universality classes for different
q and N [27,28] are tabulated in Table I.
We obtain the spectrum by exact diagonalization tech-

niques. We carry out an ensemble average to suppress
statistical fluctuations, reaching at least 105 eigenvalues for
a given q and N. Since the spectrum is radially symmetric,
the necessary unfolding is carried out as explained in
Sec. II B. Depending on q, we shall employ polynomials of
different degrees to approximate ρ̄ðrÞ. For q ¼ 4, the radial
spectral density is well approximated by a fourth-order
even polynomial, while for q ¼ 2 it is close to a Gaussian,
and for q ¼ 6 the radial spectral density is almost constant
so that unfolding is basically a rescaling of the eigenvalues.
For q ¼ 3, the radial spectral density can be unfolded by an
eighth-order even polynomial.
In what follows, we will compare the spectral form factor

and number variance of the nHSYKmodel with the random
matrix prediction in the corresponding universality class
(Table I). We start our analysis with the spectral form factor.

A. Spectral form factor of the nHSYK model

We carry out the numerical evaluation of the ensemble-
averaged spectral form factor corresponding to the real parts

TABLE I. Classification of the nHSYK Hamiltonian into non-
Hermitian bulk universality classes for all q and evenN. Note that
this does not correspond to the full symmetry classification,
which is richer and goes beyond bulk level statistics [28].

N mod 8 0 2 4 6

q mod 4 ¼ 0 AI† A AII† A
q mod 4 ¼ 1 AI† AI† AII† AII†

q mod 4 ¼ 2 A A A A
q mod 4 ¼ 3 AI† AII† AII† AI†

FIG. 4. The connected part of the spectral form factor of the real parts of the unfolded eigenvalues, Eq. (32), normalized by the number
of eigenvalues D ∼ 2N=2−1, of the q ¼ 4 nHSYK model for N ¼ 26 (upper) and N ¼ 22 (lower). The results are compared to the
analytical prediction for the GinUE (red curves) with the same number of eigenvalues. The right panels, which are a magnification of the
left panels, show that the spectral form factor of the nHSYK model differs from the spectral form factor of the GinUE up to a scale of
about τ ∼

ffiffiffiffi
D

p
.
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of the eigenvalues,Kcðτ; θÞ, for various values ofN andq.As
before, the spectral form factor is normalized such that it
asymptotes to 1 for large times. Since the spectrum is
rotationally invariant, we additionally average the spectral
form factor over 10 values of θj ¼ πj=5; j ¼ 1;…; 10.

1. Ginibre universality for q = 4

In Fig. 4, we depict the results for the q ¼ 4 nHSYK
Hamiltonian for N ¼ 22 and N ¼ 26 (black curves) and
compare them to the analytical result (31) for the Ginibre
ensemble (red curves). We find agreement with the
random matrix prediction for τ >

ffiffiffiffi
D

p
but the two results

differ for smaller times. This is fully consistent with the
results of short-range correlations [28] which are insensi-
tive to these deviations. In Fig. 5, we show the results for
N ¼ 24 and N ¼ 28. The agreement with the correspond-
ing random matrix universal result is excellent for
τ >

ffiffiffiffi
D

p
. In these two cases, which are in the universality

class of AI† (N ¼ 24) and AII† (N ¼ 28), no analytical
formula is available and the random matrix result was
obtained numerically for D ¼ 2048. The spectral form
factor for other values of D can be obtained by using the
scaling relation

KD2
c ðτÞ ¼ KD1

c

� ffiffiffiffiffiffi
D1

p
ffiffiffiffiffiffi
D2

p τ

�
: ð62Þ

2. The limits of universality: Collective scale fluctuations

To better understand the short-time behavior of the
spectral form factor we have enlarged the region close to
the origin in the plots of the right column of Figs. 4 and 5.
The local minimum of KcðτÞ for τ > 0, usually termed
correlation hole [5–8,81], defines, for a real spectrum, the
maximum timescale for which the dynamics did not fully
relax to the universal prediction of RMT. In the Hermitian
SYK model [62], it is determined by the collective
fluctuations of the spectrum that arise because the number
of independent matrix elements (∼Nq) is much smaller than
the number of matrix elements of the Hamiltonian (2N=2).
The same mechanism is at work in the non-Hermitian case,
where we have the same mismatch in the number of matrix
elements.
The oscillations for small times are mostly due to

collective scale fluctuations [82]. They correspond to
fluctuations in the overall scale of eigenvalues from one
realization to the next: xn → xnð1þ ξÞ, for all n, where xn
are the real parts of the eigenvalues. ξ is a random variable

FIG. 5. The connected part of the spectral form factor of the real parts of the unfolded eigenvalues, Eq. (32), normalized by the number
of eigenvalues D ∼ 2N=2−1, of the q ¼ 4 nHSYK model for N ¼ 24 (upper) and N ¼ 28 (lower). The red curves are the random matrix
prediction which was obtained numerically for the AI† and AII† universality classes. The right plots are a magnification of the left ones.
We find excellent quantitative agreement without any fitting up to relatively small τ ∼

ffiffiffiffi
D

p
, of the order of the correlation hole, which

signals the timescale for which the quantum chaotic dynamics is universal.
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with zero mean and gives rise to the scale fluctuation of the
spectral density:

ρscaleðxÞ ¼ 1

1þ ξ
ρ̄

�
x

1þ ξ

�
; ð63Þ

where ρ̄ is the ensemble-averaged spectral density. The
connected two-point correlator for these scale fluctuations
is given by

hρscaleðxÞρscaleðyÞic ¼ h½ρ̄ðxÞð1 − ξÞ − ξxρ̄0ðxÞ�½ρ̄ðyÞð1 − ξÞ − ξyρ̄0ðyÞ�i − ρ̄ðxÞρ̄ðyÞ
¼ ½ρ̄ðxÞ þ xρ̄0ðxÞ�½ρ̄ðyÞ þ yρ̄0ðyÞ�hξ2i; ð64Þ

where the prime denotes the derivative, we have used
hξi ¼ 0, and we have dropped all terms of order hξ4i and
above. Recall that ρ̄ðxÞ is normalized as

R
ρðxÞdx ¼ D.

This contributes to the spectral form factor as [83]

δKcðτÞ ¼
hξ2i
D

Z
dx

d
dx

½xρ̄ðxÞ�eiτx
Z

dx
d
dx

½xρ̄ðxÞ�e−iτx

¼ hξ2i
D

τ2
				
Z

dxxρ̄ðxÞeiτx
				
2

: ð65Þ

The spectral density of the real parts of the eigenvalues is
given by

ρ̄ðxÞ ¼ 2

π

D
E2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − x2

q
; ð66Þ

with E0 ¼ 1. The relevant Fourier integral is

2

π

D
E2
0

Z
E0

−E0

dxxeiτx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − x2

q
¼ 2iD

J2ðE0τÞ
τ

; ð67Þ

where J2 is a Bessel function, resulting in the contribution
of the scale fluctuations to the spectral form factor

δKcðτÞ ¼ 4hξ2iD½J2ðE0τÞ�2; ð68Þ

which decreases as 1=τ for large τ. The analytical result for
total spectral form factor in class A including the scale
fluctuations factor is then given by

KcðtÞ ¼ 1 − e−t
2=4D þ 4hξ2iD½J2ðE0tÞ�2: ð69Þ

The variance hξ2i can be computed as

hξ2i ¼ 1

4

�
M2;2

M2
2

− 1

�
; ð70Þ

with the moments defined as

M2 ¼
1

D

�X
k

E2
k

�
;

M2;2 ¼
�
1

D

X
k

E2
k
1

D

X
k

E2
k

�
: ð71Þ

Here, Ek are either the real eigenvalues or the real parts of
the complex eigenvalues and the brackets h·i denote
ensemble averaging. For the Hermitian SYK model, the
moments can be evaluated exactly and we find that [82]

hξ2i ¼ 1

2

�
N

q

�−1
: ð72Þ

For the real parts of the eigenvalues of a non-Hermitian
matrix with spectral density unfolded to constant density
inside the unit disk, hξ2i cannot be obtained from traces of
moments of the Hamiltonian, but its exact numerical value
can be obtained from the real parts of the eigenvalues using
the definition (70). For our non-Hermitian SYK model, we
find that it is approximately equal to

hξ2i ≈
�
N

q

�−1
: ð73Þ

In Fig. 6, we show the difference between the spectral
form factor of the real parts of the eigenvalues of the
nHSYK model for q ¼ 4 and the result for the Ginibre
ensemble. The numerical results (black curves) for N ¼ 22
(left) and N ¼ 26 (right), which are both in the Ginibre
universality class, are compared to the analytical result (68)
(red curves). In Fig. 7, we compare the full analytical
spectral form factor, Eq. (69), with numerical results. Given
that higher multipole collective fluctuations also contribute
to the difference, the agreement with the analytical result is
better than expected, in particular for small times. We thus
conclude that most of the oscillatory behavior is due to the
lowest-order multipole, i.e., the scale fluctuations. We
emphasize that the results for δKcðτÞ are obtained without
using fitting parameters. Note that the period of the
oscillations does not depend on N and is close to the
period of the oscillations of J22ðτÞ. The amplitude increases
with D and also varies as the amplitude of J22ðτÞ.
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The location of the correlation hole can be obtained by
equating the two contributions to the spectral form factor: the
universal Ginibre contribution, Eq. (31), and the collective
fluctuations contribution, Eq. (68). By replacing the oscil-
latory part of J22 by its asymptotic average, the location of the
correlation hole is thus given by the minimum of

4hξ2i 1
π

D
τ
þ 1 − e−

τ2

4D: ð74Þ

This condition cannot be solved analytically, but it gives the
rough position of the correlation hole and can be studied

numerically for small values of N. For the cases studied in
this paper belonging to class A, we compare in Table II the
position of the correlation hole obtained from the figures for
the spectral form factor with the result given by theminimum
of (74) and find good agreement between the two.
The condition (74) can be recast as

1

π
hξ2i ∼ τ3

8D2
e−τ

2=4D: ð75Þ

When hξ2i≳ 1.29=
ffiffiffiffi
D

p
, this condition no longer has a

solution for a real time τ and there is no correlation hole. In
the case q ¼ 4, this occurs for N ≳ 80. Since the contri-
bution of the scale fluctuation dominates the τ-dependence
of the spectral form factor all the way up to the Heisenberg
time, the spectral form factor of the real parts of the
eigenvalues is no longer a useful measure for spectral
fluctuations due to quantum chaos.
This result is to be contrasted with the Hermitian case,

for which the location of the correlation hole is roughly
determined by the condition,

FIG. 6. The difference δKc between the connected spectral form factor of the q ¼ 4 nHSYK model and the GinUE (black curves) for
N ¼ 22 (left) and N ¼ 26 (right) compared to the analytical result due to scale fluctuations, Eq. (68) (red curves).

FIG. 7. The spectral form factor including the collective scale fluctuations. The sum (dashed red curve) of the analytical results for the
scale fluctuations and the spectral form factor of the Ginibre ensemble (red curve) explains the oscillations in the spectral form factor of
the q ¼ 4 SYK model. Results are given for N ¼ 22 (left) and N ¼ 26 (right).

TABLE II. Comparison of the position of the correlation hole
obtained from the figures of the spectral form factors for the cases
belonging to class A (Figs. 5 and 9) with the estimate given by the
minimum of Eq. (74).

N q τhole τestimate

22 4 10 8
26 4 16 15
22 6 5 4
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hξ2i ∼ τ3

D2
: ð76Þ

Although hξ2i is approximately the same as before, the
Heisenberg time is now of order D (instead of

ffiffiffiffi
D

p
). As a

consequence, there are real solutions τ for all values of hξ2i.
Furthermore, the correlation hole would only be larger than
the Heisenberg time if hξ2i≳D, a condition that is never
satisfied. We conclude that for the Hermitian SYK model,
there is always a parametrically large separation between
the timescale where collective fluctuations are relevant for
the spectral form factor and the Heisenberg time, contrary
to the spectral form factor of the real parts of the
eigenvalues of the nHSYK model.
Finally, we note that it is possible to eliminate the

collective spectral fluctuations by unfolding the spectrum
realization by realization [76,82]. Then these oscillations
do not show up in the spectral form factor.

3. Dependence of nonuniversal features on q

Results for the q ¼ 3 and q ¼ 6 nHSYKHamiltonian, see
Figs. 8 and 9, confirm the picture obtained for q ¼ 4.
Agreementwith the randommatrix predictions corresponding

to the expected universality class is observed for τ >
ffiffiffiffi
D

p
.

The area below the small-time peak decreases markedly for
increasing values of q. This is expected since a larger q > 2
brings the nHSYKHamiltonian closer to a randommatrix, as
more entries of the Hamiltonian are nonzero. The area below
the peak is proportional to 2N=2=ðNqÞ. For N ¼ 24, it is given
by 14.84, 2.02, 0.39, and 0.03 for q ¼ 2; 3; 4, and 6,
respectively.
The oscillatory behavior in the small-τ region for q ¼ 3,

although not qualitatively different from q ¼ 4, has a much
larger amplitude than in the q ¼ 4 case (see the right panel
of Fig. 8). This results in a correlation hole that is shifted to
a larger value of τ. On the other hand, for q ¼ 6, the
amplitude of the oscillations is very small, and we barely
observe any deviation from the random matrix predictions.
For the SYK model with real couplings, it can be shown
[84] that for q ≫

ffiffiffiffi
N

p
the SYK Hamiltonian resembles a

random matrix with a semicircular spectral density. For the
nHSYK model, this corresponds to a constant level density
inside the eigenvalue disk so that the real parts of the
eigenvalues are distributed according to a semicircle. For
q ¼ 6, we are likely in this asymptotic region. Indeed, this
is confirmed by a comparison of the disconnected part of

FIG. 8. The connected part of the spectral form factor of the real parts of the unfolded eigenvalues, Eq. (32), normalized by the number
of eigenvalues D ∼ 2N=2−1, of the q ¼ 3 nHSYK model for N ¼ 26 (upper) and N ¼ 22 (lower). The results are compared to the AII†

ensemble for N ¼ 26 (red curves) and the AI† ensemble for N ¼ 22 (red curves) scaled to the same number of eigenvalues. The right
figures show the small-time behavior of the left figures in more detail. The spectral form factor of the nHSYK model differs from the
spectral form factor of the AII† ensemble only for τ ≲ ffiffiffiffi

D
p

. For N ¼ 26 and N ¼ 22, we employed 1279 and 10000 disorder
realizations, respectively.
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the spectral form factor, see Fig. 10, with the randommatrix
prediction KdisðτÞ ¼ 4D2J21ðτÞ=τ2, the square of the
Fourier transform of the semicircle law, where J1 is a
Bessel function. They are almost indistinguishable which

explains why, for q ¼ 6, the spectral density is very close to
that of the Ginibre ensemble. This also suggests that the
spectral correlations are very close to that of the Ginibre
ensemble. In contrast, for q ¼ 3, we observe larger

FIG. 9. The connected part of the spectral form factor of the real parts of the unfolded eigenvalues, Eq. (32), normalized by the number
of eigenvalues D ∼ 2N=2−1, of the q ¼ 6 nHSYK model for N ¼ 22 (upper) and N ¼ 24 (lower). We find excellent quantitative
agreement with the random matrix prediction for the GinUE. We note that this is a global observable and therefore the RMT prediction
for class D is indeed identical to class A because the two only differ for eigenvalues around E ¼ 0. A remarkable feature of the q ¼ 6
results compared to smaller values of q is that the correlation hole has almost disappeared.

FIG. 10. Disconnected part of the spectral form factor of the real parts of the eigenvalues (not unfolded), Eq. (29), normalized by the
number of eigenvaluesD ¼ 2N=2−1 of the Hamiltonian. Solid curves are the random matrix prediction. Squares correspond to the q ¼ 6
(left) and q ¼ 3 (right) nHSYK model for different N. Although this is a nonuniversal observable related to the Fourier transform of the
spectral density, for q ¼ 6, we find excellent agreement with the random matrix prediction, KdisðτÞ ¼ 4D2J1ðτÞ2=τ2 after an overall
rescaling. However, for q ¼ 3, the agreement is only qualitative. This is not surprising, as the spectral density for q ¼ 3 is not constant
while for q ¼ 6 it is already almost constant resulting in a semicircular spectral density of the real parts. We also expect that, for largerN,
some deviations will be observed in the latter case because the spectral density is less uniform.
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deviations with respect to the semicircle law in the
disconnected part. This is consistent with the fact that,
by reducing q, the Hamiltonian is much sparser and,
therefore, deviations from the RMT predictions should
be more visible. Another issue is that there is a systematic
difference between even q and odd q related to cancella-
tions that occur in the calculation of moments of eigen-
values of the supercharge [85] which we expect to persist in
the non-Hermitian case.

4. Integrable behavior for q = 2

The q ¼ 2 SYK and nHSYK models are both integrable
with all energy levels determined by N=2 single-particle
energies. In this case, we expect Poisson level statistics for
sufficiently long times, but deviations from Poisson sta-
tistics may be observed for shorter times. Indeed, as
illustrated in Fig. 11, the spectral form factor saturates
to the Poisson limit, KcðτÞ ¼ 1, at a scale of order logD,
which is much shorter than for q > 2, where the scale is
determined by

ffiffiffiffi
D

p
(for N ¼ 24 the two scales are of the

same order of magnitude and our data cannot really
distinguish between the two). The analytical result for
uncorrelated eigenvalues unfolded to constant density
inside the complex unit disk, given by Eq. (59), saturates
to Poisson statistics at τ ¼ Oð1Þ and does not match the
numerical result (see the solid red curve in Fig. 11, left). A
reasonable fit is obtained by replacing τ → τ= logD (solid
red curve in Fig. 11, right), but we have no rigorous
argument for this substitution.
Physically, the saturation scale of the q ¼ 2 spectral form

factor is related to the fact that the model can be mapped
onto free fermions with single-particle energies correlated
according to RMT [60]. The short-time dynamics, con-
trolled by the single-particle excitations, will be very
different from that expected for a generic integrable system.

However, for longer times of the order logD, multiparticle
excitations will reveal the generic integrable nature of the
quantum dynamics.
As is the case for q ¼ 3 and q ¼ 4, we find oscillations

for small values of τ with the same period but with a larger
amplitude. These oscillations, which dominate the quad-
ratic τ-dependence, are due to scale fluctuations of the
average spectral density.

B. Number variance of the nHSYK model

We now turn to the analysis of the number variance of
the real parts of the eigenvalues of the nHSYK model. We
only compute this observable for q ¼ 2 (N ¼ 22 and
N ¼ 26), q ¼ 3 (N ¼ 26), and q ¼ 4 (N ¼ 22 and
N ¼ 26), which are in the Poisson, GinUE, and AII†

bulk universality classes, respectively (the q ¼ 3, N ¼ 26
case also has chiral symmetry and the full symmetry
class is AII†−). For the GinUE, we can compare with
the analytical expression (55), while in the case of class
AII† we have to rely on a numerical calculation of the
spectrum of the corresponding random matrix ensemble.
We assume that the number variance of AII† still has the
scaling behavior (26) obtained analytically for the
Ginibre ensemble,

Σ2ðnÞ ¼ ρ̄ðEÞffiffiffiffi
D

p f
�
n

ffiffiffiffi
D

p

ρ̄ðEÞ
�
; ð77Þ

where ρ̄ðEÞ is the eigenvalue density on the real axis, for
some universal function f.

1. q = 4 and nonstationarity

We first discuss the q ¼ 4 case. In Fig. 12, we plot the
number variance of the real parts, Σ2ðnÞ, versus the average
number of levels, n, in an interval that is chosen to be

FIG. 11. The connected part of the spectral form factor of the real parts of the unfolded eigenvalues, Eq. (32), normalized by the
number of eigenvalues D ∼ 2N=2−1, of the q ¼ 2 nHSYK model for N ¼ 24. The solid red curves show the result for Poisson statistics,
Eq. (59), in the left panel, and the same expression with the horizontal axis rescaled by a factor of log D in the right panel. As was
expected, the q ¼ 2 SYK model shows correlations that are in between Poisson statistics and RMT statistics. The reason is that the
integrable many-body spectrum is determined by a small number (N=2) of chaotic single-particle energies. The oscillations observed for
small, but nonzero, τ are due to collective fluctuations of the spectral density.
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symmetric around zero. No unfolding is necessary this
way—if we would have unfolded the real part of the
eigenvalues (times a phase factor) we would have obtained
the same result. In order to suppress statistical fluctuations,
we also average feiθjzkjg over ten values of θ as we did for
the calculation of the spectral form factor. The results are
compared to the analytical result (55) for the Ginibre
ensemble (red curves) and the result obtained by integrating
the numerical spectral form factor for τ <

ffiffiffiffi
D

p
using

Eq. (33) (blue curves) instead of using the analytical result
of the spectral form factor all the way to τ ¼ 0. ForN ¼ 22,
this correction explains the difference between the number
variance for the nHSYK model and the Ginibre ensemble,
but for N ¼ 26 a discrepancy remains. One issue, as was
discussed above, is that by integrating the spectral form
factor, we obtain the spectral average of the number
variance, while in Fig. 12 we show the number variance
for intervals centered about zero energy. The conclusion is
that the number variance is not stationary, but this is also
the case for N ¼ 22 and the Ginibre ensemble. Apparently,
the nonstationarity of the real parts of the eigenvalues for
N ¼ 26 is different from the nonstationarity for the Ginibre
ensemble.
The nonstationarity at N ¼ 26 is illustrated in Fig. 13,

where we show the number variance of the real parts of the
eigenvalues for an ensemble of 3000 N ¼ 26; q ¼ 4
nHSYK matrices for intervals centered at Ec ¼ 0, 0.3,
0.6, 0.8, and 0.9. In the upper left panel, we show all
nHSYK curves in one figure. This shows that the number
variance loses its stationarity as soon as it starts deviating
from Poisson at a few level spacings. In the other panels, we
compare each of the curves with the numerically obtained
random matrix result for a Ginibre ensemble of 2048
4096 × 4096 matrices. For up to about 10–20 level spac-
ings, the Ginibre and nHSYK results are in agreement, but
they start deviating for larger values of n, in particular, if Ec
is close to the edge.
Remarkably, for Ec ¼ 0.6 we find agreement between

the nHSYK model and the Ginibre ensemble for the entire

range of n we looked at. Since the number variance of the
nHSYK model ensemble overshoots the Ginibre number
variance for Ec > 0.6 and undershoots it for Ec < 0.6, its
spectral average will agree with the random matrix
prediction up to a larger value of n, i.e., to n ≈ 50.
This is the spectral average related to the spectral form
factor of the real parts of the eigenvalues. We thus expect
it will agree with RMT for τ > 4096=100 ≈ 40, which is
consistent with Fig. 6. This calculation also shows that the
good agreement we find for the spectral form factor for
q ¼ 4 is due to the fact that the stationarity behavior of the
nHSYK model and the Ginibre ensemble are similar. We
find that the analytical number variance away from the
center of the spectrum resulting from the replacement
D → Dð1 − E2

cÞ in Eq. (55) is in excellent agreement with
the numerical results.
Although a good agreement has also been observed in

other systems [37,71,72], we do not expect that the spectral
form factor of the real parts of the eigenvalues is a good
observable for detecting universal random matrix behavior
in generic quantum dissipative systems. The reason for that
is that the statistical properties of the real parts of the
eigenvalues depend sensitively on the shape of the spectral
density which is not universal. In addition, as seen in the
previous section, the contribution due to collective fluctu-
ations may dominate the spectral form factor all the way up
to the Heisenberg time.

2. q = 3 and the effect of chiral symmetry

We turn now to the q ¼ 3 case. In Fig. 14, we show the
number variance for intervals centered at Ec ¼ 0, 0.3, 0.5,
0.8, and 0.9 (black curves), and compare it to the number
variance of the AII† random matrix ensemble rescaled to
match the number of eigenvalues. In the upper left figure,
we compare the curves with different values of Ec. We note
that the number variance for Ec ¼ 0 is a factor 2 larger than
the random matrix result for other values of Ec (see blue
and red curves). This is due to the chiral symmetry of the
AII†− symmetry class which doubles the number variance

FIG. 12. The number variance of the real parts of the eigenvalues. The black dots are the result for the nHSYK model for q ¼ 4 and
N ¼ 22 (left) andN ¼ 26 (right). We find a good agreement with both the analytical result for the Ginibre ensemble [Eq. (55), red curve]
and the result obtained by integrating the numerical spectral form factor for the nHSYK model [Eq. (33), blue curve].
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only for Ec ¼ 0. The agreement with the random matrix
result decreases rapidly for increasing Ec and the number
variance is close to Poisson for Ec ¼ 0.9.
The same behavior is also visible in the nearest neighbor

spacing distribution, PðSÞ where S is the absolute value of
the distance between neighboring eigenvalues in units of
the mean level spacing. It is illustrated by the log plot in
Fig. 15, where we compare the spacing distribution of the
unfolded nHSYK eigenvalues for Ek ∈ ½0.85; 0.9� (blue
curve), Ek ∈ ½0.9; 0.925� (black curve), and the correspond-
ing random matrix result for AI† (red curve). We find
excellent agreement for S < 1.75, but for larger spacings
the distribution becomes exponential (characteristic of
Poisson statistics) instead of Gaussian (characteristic of

random matrix statistics) as we move close to the edge.
Note that the average spacing is 0.024 so that there are no
edge effects for the interval [0.9, 0.925].

3. q = 2 and deviations from Poisson statistics

For q ¼ 2, for which the nHSYKmodel is integrable, we
still observe large deviations from Poisson (green line) also
for smaller values of N, see Fig. 16. Although there are
substantial statistical fluctuations for n > 50, we can see
the onset of the quadratic behavior due to the peak in the
spectral form factor near τ ¼ 0. For comparison, we also
give the analytical result for the Ginibre ensemble evaluated
for D ¼ 2N=2=2.

FIG. 13. The number variance of the real parts of the eigenvalues for the q ¼ 4 andN ¼ 26 nHSYKmodel. The upper left panel shows
the number variance for intervals centered at different points of the spectrum: Ec ¼ 0, 0.3, 0.6, 0.8, and 0.9. In the other panels, we
compare the number variance for each of these values of Ec (SYK) with Poisson, the numerical random matrix (Ginibre) result, and the
analytical result. The latter is obtained by replacing D → Dð1 − E2

cÞ in Eq. (55).
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C. Local spectral form factor and stationarity

In this and the next section, we study the stationarity of
the local spectral form factor and the relation with the
number variance in the context of the nHSYK model. In
Fig. 17, we show the local spectral form factor of the real
parts of the eigenvalues, Eq. (43), for N ¼ 24 and q ¼ 6
(left) and N ¼ 26 and q ¼ 4 (right). The local spectral
form factor is calculated at x̄ ¼ 0, x̄ ¼ 0.4, and x̄ ¼ 0.8.
The width of the Gaussian cutoff is w ¼ 0.05. As
expected, the oscillations for small times are absent.
Contrary to the number variance though, we observe only
a weak dependence of the local spectral form factor on x̄.

This is in agreement with the stationarity of the local
spectral form factor shown in Sec. II E. We conclude that
the local spectral form factor overcomes the shortcomings
of the global spectral form factor (nonstationarity and a
diverging nonuniversal collective-excitation peak) and is,
therefore, a good diagnostic of non-Hermitian quantum
chaos.
More surprising is the fact that, for q ¼ 6, for which

the spectrum has a reflection symmetry across the origin,
the spectral form factor in the center of the spectrum is the
same as away from the center. The explanation is as
follows. The spectral form factor can be written as

FIG. 14. The number variance of the real parts of the eigenvalues for the nHSYKmodel for q ¼ 3 and N ¼ 26 for intervals centered at
different points Ec ¼ 0, 0.3, 0.6, 0.8, and 0.9. In the upper left panel, we show all the nHSYK curves. In the rest of the panels, we
compare each of these curves (labeled SYK) with the Poisson statistics and the result for the random matrix AII† universality class with
the same value of Ec.
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c
:

ð78Þ

Away from the center of the spectrum, the contribution of
both terms is equal. However, for x̄ ¼ 0, the term contain-
ing the sine functions vanishes because the eigenvalues
occur in pairs �xk. In the cosine term, we can restrict the
sum to the positive real parts only at the expense of an
overall factor of four. For a finite correlation length, we
then only sum over half the total number of eigenvalues so
that the cosine term in the reflection-symmetric case is
twice as large as without this symmetry. Since the sine term
does not contribute in the reflection-symmetric case, we
find that the spectral form factor is the same in both cases.

nhSYK [0.9, 0.925],
nhSYK [0.85, 0.9],
AI†
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FIG. 15. Log plot of the nearest neighbor spacing distribution
for N ¼ 22 and q ¼ 3. We compare the level spacing distribution
for intervals [0.85, 0.9] and [0.9, 0.925] to the random matrix
result for the ensemble AI†. The discrepancy in the tail decreases
rapidly as we move further into the bulk of the spectrum.
Note that 72% of the eigenvalues are larger than 0.85 in absolute
value.
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FIG. 16. The number variance of the real part of the eigenvalues of the nHSYK model for q ¼ 2 and N ¼ 22 (left) or N ¼ 26 (right).
The numerical data are given by the black dots, the Poisson result by the green line, and the analytical RMT result (55) by the red curve.
The results are for an ensemble of 1000 realizations averaged over 10 rays through the origin.
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FIG. 17. The spectral form factor of the real parts of the eigenvalues for the nHSYK model with N ¼ 24, q ¼ 6 (left), and N ¼ 26,
q ¼ 4 (right). The nHSYK results are given for x̄ ¼ 0 (black dots), x̄ ¼ 0.4 (green dots), and x̄ ¼ 0.8 (red dots). The solid red curve
shows the result for the GinUE (class A).
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We thus conclude that chiral symmetry does not affect the
local spectral form factor.

D. Local number variance

Contrary to the spectral form factor, the number variance
for an interval centered about zero is quite different from
the number variance in the bulk of the spectrum in the case
when the spectrum is reflection symmetric (see Fig. 18,
left), but they are the same when there is no reflection
symmetry (see Fig. 18, right). The analytical result in the
right panel of this figure is just the result for class A
(GinUE) evaluated at the center of the spectrum (red curve).
In the case of chiral symmetry in the left panel, the
analytical result is obtained by the following approxima-
tion. For the interval ½0; n� the number variance is half the
number variance of class A, Σ2

A, because the eigenvalues
can only fluctuate in and out of the interval at n, but ΣA has
to be evaluated at 2n,

Σ2ð0; nÞ ¼ 1

2
Σ2
Að2nÞ: ð79Þ

For the internal ½−n=2; n=2� we have that

Σ2

�
−
n
2
;
n
2

�
¼ 4Σ2ð0; n=2Þ ¼ 2Σ2

Að0; nÞ: ð80Þ

Finally, to show consistency between the spectral form
factor and the number variance we calculate the number
variance from the spectral form factor using Eq. (33). This
relation assumes translational invariance and is not appli-
cable in the center of the spectrum when the spectrum is
reflection symmetric, and we can only give results for the
q ¼ 4 case, see Fig. 19. In this figure, we compare the
direct evaluation of the number variance to the result
obtained from the local spectral form factor at x̄ ¼ 0 and
x̄ ¼ 0.8 (dashed curves). The agreement between the two
shows that the nonstationarity of the number variance is
“kinematical” and can be eliminated by a proper rescaling,
see Eq. (26).

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have studied long-range correlations
of the non-Hermitian SYK model by means of the number
variance and the spectral form factor of the real parts of
the eigenvalues with results for the Ginibre or Ginibre-like
ensembles as a benchmark. To eliminate unfolding ambi-
guities we have only considered non-Hermitian SYK
models with a radially symmetric spectrum. A feature
of spectral correlations of the real parts of the eigenvalues
is that eigenvalues that are many level spacings apart, and
are essentially uncorrelated, can have real parts that are
close. This results in Poisson statistics already after a
timescale of ∼

ffiffiffiffi
D

p
. The early onset of Poisson statistics

has the consequence that the collective spectral

FIG. 18. The number variance of the real parts of the eigenvalues for the nHSYK model with N ¼ 24, q ¼ 6 (left) and N ¼ 26, q ¼ 4

(right). The nHSYK results are given for the intervals ½0; n� and ½−n=2; n=2�. The analytical results are given by Σ2ð0; nÞ ¼ 1
2
Σ2
AðnÞ and

Σ2ð−n=2; n=2Þ ¼ 2Σ2
AðnÞ in the left panel and by Σ2

AðnÞ in the right panel.

FIG. 19. Comparison of the directly calculated number variance
(solid curves) to the number variance calculated from the spectral
form factor of Fig. 17 (right) using Eq. (33). Results are given for
x̄ ¼ 0.0 and x̄ ¼ 0.8.
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fluctuations can no longer be separated from universal
eigenvalue fluctuations.
For small times, the spectral form factor deviates from

the Ginibre result and shows an oscillatory behavior with a
period conjugate to the overall width of the spectrum and an
amplitude decreasing with time that is very sensitive to the
number q of interacting Majoranas, a parameter that
controls the fraction of independent matrix elements of
the Hamiltonian in Fock space. The area below the peak is
proportional to 2N=2=ðNqÞ and decreases rapidly going from
q ¼ 2 to q ¼ 6. Averaging over the oscillations, the small-
time behavior of the spectral form factor is similar to that of
Hermitian systems with a correlation hole. Although this is
a typical feature of strongly interacting quantum chaotic
systems, in this case, it is caused by collective ensemble
fluctuations rather than by the nonuniversal dynamics at
that timescale. Therefore, the nHSYKmodel describes both
generic features of the universal quantum ergodic state
reached around the Heisenberg time and nonuniversal, but
still rather generic, properties of quantum interacting
systems in its approach to ergodicity.
Having said that, we note that the spectral correlations of

the real parts of the eigenvalues are not stationary and show
deviations from the Ginibre ensemble that depend on the
region of the spectrum that is considered. Since the corre-
sponding spectral form factor is an average over the complete
spectrum, we expect that, in general, it is not universal with a
result that depends on the nonstationarity of the spectral
correlations. Remarkably, in the nHSYK model, deviations
from stationary compared to those of the Ginibre ensemble
seem to average out, resulting in a much better agreement
than could be expected. At this point, we do not have a good
understandingof this remarkable coincidence, butwehope to
further explore this in future work. Most likely it is related to
the stationarity of the local spectral form factor introduced in
this paper. In any case, our results also point to intrinsic
limitations of the global observables that we have inves-
tigated to describe dynamical features. Their local counter-
parts, on the other hand, overcome these shortcomings and
could prove an effective diagnostic of non-Hermitian quan-
tum chaos.
Other related problems that are worthwhile to pursue,

and seem within reach, are to find analytical results for the
spectral density of the nHSYK model and also to compute
analytically the spectral form factor, and number variance,
for other universality classes, such as AI† and AII†.
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APPENDIX: CALCULATION OF THE SPECTRAL
FORM FACTOR OF THE GINIBRE ENSEMBLE

In this appendix, we calculate the form factor of the
real parts of the eigenvalues of the Ginibre ensemble. It is
given by

KcðτÞ ¼
1

D

Z
d2z1dz22e

iτReðz1−z2Þρ2;cðz1; z2Þ ðA1Þ

with the connected two-point correlation function given
by [12,69]

ρ2;cðz1; z2Þ ¼ ρ̄ðz1Þδ2ðz1 − z2Þ − jKðz1; z2Þj2; ðA2Þ

and kernel given by

Kðz1; z2Þ ¼
D
π
e−

D
2
ðjz1j2þjz2j2Þ

XD−1

k¼0

ðDz1z�2Þk
k!

: ðA3Þ

This results in

KcðτÞ ¼ 1 −
D
π2

XD−1

p¼0

XD−1

s¼0

Dpþs

p!s!
Iðτ; pÞI�ðτ; sÞ; ðA4Þ

with

Iðτ; p; sÞ ¼
Z

d2zeiτðzþz�Þ=2zpz�se−D
2
jzj2 : ðA5Þ

This integral can be evaluated using polar coordinates

Iðτ;p;sÞ¼
Z

∞

0

rdr
Z

π

−π
dϕeirt cosϕrpþseiϕðp−sÞe−Dr2

¼ 2πð−iÞjp−sj
Z

∞

0

rdrJjp−sjðrτÞrpþse−Dr2 : ðA6Þ

The radial integral is evaluated as a hypergeometric
function, resulting in

Iðτ; p; sÞ ¼ ijp−sj2π
τjp−sj

2jp−sjþ1Dmaxðp;sÞþ1

maxðp; sÞ!
jp − sj! 1F1

�
maxðp; sÞ þ 1; jp − sj þ 1;

−τ2

4D

�
: ðA7Þ
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Our final expression for the spectral form factor is given by

KcðτÞ ¼ 1 −
1

D

XD−1

p¼0

XD−1

s¼0

Dpþs

p!s!

�
maxðp; sÞ!
jp − sj!

τjp−sj

2jp−sjDmaxðp;sÞ 1F1

�
maxðp; sÞ þ 1; jp − sj þ 1;

−τ2

4D

��
2

: ðA8Þ

This result differs from the expression quoted in Ref. [37] by
the factor 2−jp−sj. Asymptotically, for largeD, it simplifies to

KcðτÞ ∼ 1 − e−t
2=4D; ðA9Þ

which is in agreement with Ref. [37]. We note that the large-
D limit of the spectral form factor (A8) does not commute
with the τ → 0 limit. The Taylor expansion of Eq. (A8) gives

KcðτÞ ¼
τ2

2D
−
Dþ 3

32D2
τ4 þOðτ6Þ; ðA10Þ

while from the large D result (A9) we obtain

KcðτÞ ¼
τ2

4D
−

τ4

32D2
þOðτ6Þ: ðA11Þ
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