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Predictability is grounded by causality while may be practically restricted by the occurrence of chaos.
To reveal the relation between these two popular notions, we study chaos in geodesic motion in generic
curved spacetimes with external potentials, where causality is controlled by a scalar potential. We develop
a reparametrization-independent method to analytically estimate the Lyapunov exponent λ of particle
motion. We show that causality gives the universal upper bound λ ∝ E ðE → ∞Þ, which coincides with the
chaos energy bound proposed by Murata, Tanahashi, Watanabe, and one of the authors (K. H.). We also
find that the chaos bound discovered by Maldacena, Shenker, and Stanford can be violated in particular
potentials, even with causality. Our estimates, although waiting for numerical confirmation, reveal the
hidden nature of physical theories: causality bounds chaos.
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I. INTRODUCTION

Predictability is an indispensable property of physics
since it enables us to justify theories through experiments.
The reason why causality is considered one of the most
fundamental principles is that it is the foundation for
predictability. However, even in completely causal (or
deterministic) theories, the practical predictability of
dynamical systems can be lost in time evolution. This
is chaos, in which the infinitesimal difference of initial
values can grow exponentially in time. What is the
relation between these two popular notions—causality
and chaos?
Causality is formulated in several contexts, but it is better

defined in relativistic theories. This “relativistic causality”
plays a key role in general relativity.1 The peculiarity is
enlightened when curved spacetimes have event horizons,
in the initial value problems using Cauchy surfaces.
Causality principle prohibits some spacetimes; for exam-
ple, the Gödel solution [1] in general relativity is regarded
as unphysical because of the presence of closed timelike
curves, which leads to pathological occurrences such as the
grandfather paradox. Hence, causality principle has been

used in confirming the relativistic consistencies, for in-
stance, of modified gravity theories [2–6].
Chaos, remember, was born in Poincaré’s analysis

of three-body problems, regarding gravitational motion of
stars in spacetimes. Consequently, the chaos of geodesic
motion in curved spacetime has been investigated for
decades and applied to the explications of the properties
of spacetimes [7–10]. For example, the Lyapunov exponent
of null rays was found to relate to quasinormal mode
frequencies of black holes [11]. Chaos of particle motion
around black holes has been studied extensively [12,13], and
it was revealed that the Lyapunov exponent λ for the motion
near the horizon becomes λ ¼ κ [14], where κ is the surface
gravity of the black hole.
Therefore, for the investigation of possible relations

between causality and chaos, geodesic motion of a particle
in curved spacetimes is a suitable ground. In classical
relativistic systems, causality bounds particle motion
in/on light cones, which should restrict the complexity
of motion. This leads us to the expectation that causality
generically gives some fundamental bound on the com-
plicated time evolution of degrees of freedom, chaos.
However, little literature has studied quantitatively the
relation between chaos and causality.
In this respect, we prepare two proposed upper bounds

on the Lyapunov exponents of chaos. The first one is the
renowned chaos bound proposed by Maldacena, Shenker,
and Stanford (MSS) [15]. It asserts that the Lyapunov
exponent of out-of-time-ordered correlators (OTOCs)
[16,17] defined in large N quantum field theory is
bounded as

λ ≤
2πT
ℏ

; ð1Þ
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1The importance of (relativistic) causality is hidden in New-
tonian theories. They are understood as the light speed c → ∞
limit of the relativistic ones.
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where T is the temperature of the system. Originally, this
bound was discovered with AdS=CFT correspondence [18]
through thought experiments of shock waves near black
hole horizons [17,19], whose surface gravity is expressed
as κ ¼ 2πT=ℏ. As the horizon is defined by causality,
the MSS chaos bound could be a manifestation of the
causality in the bulk curved spacetime, once the holo-
graphic principle is assumed.
Another proposal of a universal bound on the Lyapunov

exponent is the chaos energy bound [20]. This conjectures an
upper bound of the energy dependence of the Lyapunov
exponent λ,

λðEÞ ∝E→∞
Ec; c ≤ 1; ð2Þ

using the energy E of the system, which is consistent in
the large N limit with the MSS bound. This bound was
motivated by the thermodynamic consistency of OTOCs and
is applicable to any classical/quantum Hamiltonian mechan-
ics and field theories, on some reasonable assumptions such
as locality. It remains unclear whether this energy bound can
be derived from more fundamental principles of physics
such as causality.
The purpose of this paper is to find any relation between

chaos and causality, whose significance has tended to be
overlooked since causality is assumed for granted. We
especially focus on chaos in relativistic systems and
relativistic causality. Specifically, we study how chaos is
affected by a local expression of causality that physical
particles cannot be spacelike. We estimate the Lyapunov
exponent of the geodesic motion and elucidate that cau-
sality gives the upper bound of its energy dependence,
which coincides with the proposed chaos energy bound (2).
We consider generic situations in which a particle is

moving in a general stationary and spherically symmetric
spacetime and is coupled to general vector/scalar potentials.
There, the causality of the particle motion is controlled by
the scalar potential V with p2 ¼ −ðm2 þ VÞ, where p andm
are the four-momentum and the mass of the particle,
respectively. Requiring that the physical particle should
never go back to the past imposes the restriction m2þV≥0
on allowed scalar potentials. We find that, owing to this
restriction stemmed by causality, the energy bound (2) is
always satisfied. This is a partial derivation of the universal
bound on the energy dependence of chaos from the causality
principle. On the other hand, we also show that the MSS
bound can be violated under particular potentials, even
with the causality restriction. With these results, we claim
that the causality actually provides a bound on chaos, taking
the form of the chaos energy bound (2), while the MSS
bound (1) is a stronger one, possibly dictated by holography.
Note that our analytic study merely estimates, not calcu-

lates exactly, the upper bound of the Lyapunov exponent. It
points out the possibility of the violation of the MSS bound;
however, whether the bound is violated in actual chaotic

motion is another issue which we do not address because the
analytic calculation of Lyapunov exponents in our generic
situations is quite difficult. More numerical works are needed
for verifying the satisfaction/violation of the bounds in each
concrete model. In particular, the violation of theMSS bound
suggests that, beyond causality, some fundamental principle
that rules out those potentials which violate the bound is
missing for holographic descriptions of gravity.
This paper is organized as follows: First, in Sec. II,

we provide a method to analytically estimate the maximal
Lyapunov exponent λ of geodesic motion in generic
spacetimes with vector/scalar potentials. The method is
applicable in any parametrization of the geodesic with
an einbein e and is used to study two chaos bounds, the
energy bound and the MSS bound. In Sec. III, we evaluate
the Lyapunov exponent in the e ¼ 1 gauge and investigate
the energy bound (2). We show that this bound can be
violated by the scalar potential; however, causality restricts
its asymptotic behavior in the E → ∞ limit and protects the
bound. In Sec. IV, we convert the Lyapunov exponents in
the e ¼ 1 gauge to those in the static gauge, using the
method developed in Sec. II, and investigate the MSS
bound (1). There we show that for particular potentials the
Lyapunov exponent λ can diverge in the E → ∞ limit and
trivially violate the MSS bound. The final section is for our
conclusion and discussion.

II. REPARAMETRIZATION-INDEPENDENT
ESTIMATION OF THE LYAPUNOV EXPONENT

In this section, we provide a method to analytically
estimate the maximal Lyapunov exponent λ of geodesic
motion in generic spacetimes. First, in Sec. II A, we
illustrate how to estimate λ in the simplest case of the
four-dimensional Schwarzschild spacetime. Then, in
Sec. II B, we describe our method for generic situations
in which a particle is moving in a general stationary and
spherically symmetric spacetime and is coupled to general
vector/scalar potentials. The method is applicable in any
parametrization of the geodesic and will be used to study
the chaos bounds in the later sections.

A. Example: Schwarzschild spacetime

In generic situations, the Lyapunov exponent in chaotic
motion is measured numerically, while our interest in
the chaos bounds needs an analytic expression for the
exponent. Hence, in this paper, we rely on an intuitive
estimation method for the Lyapunov exponent focusing on
the accelerated particle motion at separatrices in the phase
space. This amounts to the estimation of a curvature of the
effective potential at its local maxima. The method was
used in [14] and subsequent papers in the context of chaotic
motion in spacetimes and the AdS=CFT correspondence.
In this subsection, as an introductory example, let us

consider the radial component of motion of a free
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particle in the Schwarzschild spacetime with four
dimensions. The illustration is for two purposes: a
demonstration in the simplest and well-known example,
and a caution for an unreasoning use of popular con-
servation laws without looking at the worldline gauge. In
fact, we will find in Sec. II B that the calculation in this
subsection depends on a special choice of the para-
metrization of the geodesic.
The metric in the four-dimensional Schwarzschild space-

time is given by

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

1 − 2M=r
þ r2dφ2; ð3Þ

where we put θ ¼ π=2 from the spherical symmetry. We
have the conserved quantities

E ¼
�
1 −

2M
r

�
pt; ð4Þ

L ¼ r2pφ; ð5Þ

where they are the Killing energy and the Killing angular
momentum, respectively, and pμ is the four-momentum of
the particle. The standard normalization of four-momentum

−m2 ¼ p2 ð6Þ

leads to

−m2 ¼ −
E2

1 − 2M=r
þ _r2

1 − 2M=r
þ L2

r2
; ð7Þ

which is rephrased as

E2 ¼ _r2 þ
�
m2 þ L2

r2

��
1 −

2M
r

�
: ð8Þ

We define the effective potential as

VeffðrÞ ≔
�
m2 þ L2

r2

��
1 −

2M
r

�
; ð9Þ

then the energy integral (8) describes a particle moving in
the potential Veff .
To estimate the Lyapunov exponent, we closely look at

the motion around a stationary point r ¼ r0 of the potential
VeffðrÞ. We expand the radial coordinate as r ¼ r0 þ ε,
then the energy integral (8) can be cast into the form

E2 − Veffðr0Þ ¼ _ε2 þ 1

2
V 00
effðr0Þε2 þOðε3Þ: ð10Þ

When V 00
effðr0Þ is negative, r0 is a separatrix where circular

orbits become unstable, and the system is described by an
inverted harmonic oscillator, which has solutions of the
form ε ¼ Aeλτ, where λ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00

effðr0Þ=2
p

. This λ is inter-
preted as the estimation of the Lyapunov exponent of the
geodesic motion, which is given in the case of the
Schwarzschild spacetime as

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
L2

r5

�
−
2Mm2

L2
r2 þ 3r − 12M

�s
: ð11Þ

B. Generic spacetimes

In the analysis in Sec. II, we borrowed the popular
conserved quantities and the four-momentum (6). However,
the gauge dependence of the worldline time τ was hidden
in such a formulation. Since the Lyapunov exponent λ is
defined through the form r ∼ eλτ, it should depend on
the worldline parametrization of the geodesic. In this
subsection, we describe a reparametrization-independent
estimation of the Lyapunov exponent applicable for more
general situations: We formulate geodesic motion without
fixing the gauge of the worldline time τ and apply the
inverted-harmonic-oscillator approximation to estimate the
Lyapunov exponent.
Let us consider a relativistic particle with mass m and

charge q in a D-dimensional stationary spherically sym-
metric spacetime with the metric given by

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2dφ2; ð12Þ

where we put the D − 3 angular coordinates to take the
value π=2 from the spherical symmetry, and name the
remainder φ. Note that we do not specify the gravity theory.
The Lagrangian of the particle coupled to an electro-

magnetic potential Aμ ¼ AμðrÞ and a scalar potential
V ¼ VðrÞ is given by

L ¼ 1

2e
gμν _X

μ _Xν −
em2

2
þ qAμ

_Xμ −
1

2
eV; ð13Þ

where dots denote the derivative with respect to the
geodesic parameter τ and e ¼ eðτÞ is an einbein, which
is the worldline metric. The equations of motion derived
from this Lagrangian are

Ẍμ þ Γμ
νρ _Xν _Xρ −

_e
e
_Xμ ¼ eqFμ

ν _Xν −
1

2
e2V ;μ; ð14Þ

−gμν _Xμ _Xν ¼ e2ðm2 þ VÞ: ð15Þ
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Here (14) is the geodesic equation,2 and Eq. (15) is the
one corresponding to (6) in Sec. II A. We can also find
conserved quantities

E ¼ f
e
_t − qAt; ð16Þ

L ¼ r2

e
_φþ qAφ; ð17Þ

whose conservation follows from the geodesic equations.
Note that these are invariant under reparametrization.

The most important remark is that the norm of the four-
momentum of the particle (15) is no longer conserved due
to the scalar potential VðrÞ. This external potential allows
a timelike (or null) particle to change to be spacelike
depending on its radial coordinate. In this sense, the
causality of the particle is controlled by V.
Let us assume the solution of the form r ¼ r0 þ Aeλτ and

e ¼ eðr0Þ þ e0ðr0ÞAeλτ expected in the inverted-harmonic-
oscillator approximation and determine r0 and λ from
the equations of motion (14) and (15). Substituting these
solutions gives

0 ¼
�
f0

2f2
ðEþ qAtÞ2 −

1

r3
ðL − qAφÞ2 − q

A0
t

f
ðEþ qAtÞ − q

A0
φ

r2
ðL − qAφÞ þ

1

2
V 0
�
r¼r0

; ð18Þ

λ2

eðr0Þ2
¼
�
−
�
f00g
2f2

−
f02g
f3

�
ðEþ qAtÞ2 −

3g
r4

ðL − qAφÞ2 −
1

2
gV 00

þ qg

��
A00
t

f
−
2A0

tf0

f2

�
ðEþ qAtÞ þ

qA02
t

f
þ
�
A00
φ

r2
−
4A0

φ

r3

�
ðL − qAφÞ −

qA02
φ

r2

��
r¼r0

; ð19Þ

½ðL − qAφÞ2�r¼r0 ≃
�
r2
�ðEþ qAtÞ2

f
− ðm2 þ VÞ

��
r¼r0

ð20Þ

in the A ≪ r0 limit, where we have dropped the kinetic
term proportional to _r2 in (20). This is the case when the
particle starts to “roll off” the extremum of the effective
potential and is still moving in the vicinity of it. Here, r0
determined by OðA0Þ of the geodesic equation (18) is
identified as the position of the extrema of the effective
potential, and λ by OðA1Þ of the geodesic equation (19) is
the Lyapunov exponent. The energy integral (20) relates L
with E at r ¼ r0, which will be used in later sections. As a
consistency check, we note that (18) does not depend on
eðτÞ, which should be the case because the location of the
extrema should be independent of the intrinsic parameter τ.
In this manner, we have obtained the analytic estimation

(19) of the Lyapunov exponent for the geodesic motion
in generic spacetimes with the external fields, without
fixing the gauge of the worldline parameter. As a by-
product, we find that the formulation used in Sec. II A
implicitly assumed the e ¼ 1 gauge, as is seen in the
comparison between (6) and (15).
Our result shows that the einbein dependence

of λ appears, remarkably, only through the form of λ=e.

This characteristic dependence will be used to convert λ
between different gauge choices in Sec. IV.

III. CAUSALITY BOUNDS THE ENERGY
DEPENDENCE OF CHAOS

In this section, we elucidate that causality gives the
chaos energy bound (2) on the energy dependence of the
Lyapunov exponent λ. We choose a natural gauge e ¼ 1 in
which the gauge choice does not refer to the conserved
quantities such as energy. Although the expression (19)
appears complicated, we find that the high energy limit can
simplify the argument. We begin in Sec. III A with the
Schwarzschild case again and show that λ is proportional to
E in the E → ∞ limit, namely, the chaos energy bound (2)
is saturated. Then, in Sec. III B, we investigate the same
limit in our generic situations formulated in Sec. II B. The
important point is that the scalar potential V controls the
causality of the particle via (15). To reconcile the potential
with the causality, we impose

m2 þ VðrÞ ≥ 0

and reveal that this restriction gives an upper bound to the
asymptotic order of V, which results in the chaos energy
bound (2).

A. Saturation of the chaos energy bound
in the Schwarzschild spacetime

We have analytically estimated the Lyapunov exponent
λ (11) for the geodesic motion in the Schwarzschild

2Now, strictly speaking, the particle does not move on geo-
desics. It does not free-fall, but feels the external Lorentz and
scalar forces. However, since its motion obeys the geodesic
equation (14), we just call its trajectory “geodesic” below.
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spacetime in Sec. II A. Here, we prove that it saturates
the chaos energy bound (2), i.e., it realizes maximum
energy dependence on the bound. We find that the E → ∞
limit resolves the complicated energy dependence of λ and
extracts its universal behavior.
The extremum of the effective potential at which λ is

estimated is determined by the zero of the potential slope

V 0
effðrÞ ¼ −

2L2

r4

�
−
Mm2

L2
r2 þ r − 3M

�
: ð21Þ

Let us start with the massless particle case for which this
equation is simplified. In fact, Veff has the local maximum
at r0 ¼ 3M. The relation (8) reduces to E2 ≃ L2=27M2 at
r ¼ r0 when we drop the kinetic term, then we find

λ2 ¼ E2

3M2
: ð22Þ

In particular, this result shows λ ∝ E1, and the chaos energy
bound (2) is saturated. We note that we have not taken
the E → ∞ limit.
For the massive particle, Veff has the local maximum at

the inner one of two stationary points

r0 ¼
L2

2Mm2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12M2m2

L2

r !
: ð23Þ

We note r0 > 2M [in the case of jLj ≥ 2
ffiffiffi
3

p
M in which

V 0
effðrÞ ¼ 0 has real solutions]. Then, we find

E2 ≃
�
m2 þ L2

r2

��
1 −

2M
r

�

¼ m2

�
1 −

ð1þ uÞð1 − 2uÞ
9ð1 − uÞ

�
ð24Þ

at r ¼ r0, where u ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12M2m2=L2

p
. Solving this

about u offers

u ¼ 9ðE=mÞ2 − 8

4

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

9ðE=mÞ2 − 8

s
− 1

!

¼ 1 −
2

9

�
m
E

�
2

−
16

27

�
m
E

�
4

þO
�
m
E

�
6

ð25Þ

in the expansion for E2 ≫ m2. Now we have r0 ¼
6M=ð1þ uÞ, thus λ is calculated as

λ2 ¼ m2

108M2

uð1þ uÞ3
1 − u

¼ m2

�
1

3M2

�
E
m

�
2

−
29

27M2
þO

�
m
E

�
2
�

⟶
E→∞ E2

3M2
: ð26Þ

This asymptotic value coincides with the massless case (22),
and the energy bound is saturated again.
Here, we have shown that the chaos energy bound is

saturated irrespective of the particle mass, even though the
L dependence of r0 for the massive particle makes the E
dependence of λ complicated.3 This simplification suggests
that the E → ∞ limit unveils the existence of the universal
energy bound of chaos (2).

B. Causality ensures the chaos energy bound
in generic spacetimes

We investigate the E → ∞ limit of λ for generic
situations (19) in the eðτÞ≡ 1 gauge. This gauge choice
is natural for two reasons: First, it is equivalent to taking the
geodesic parameter as τ ¼ ðproper timeÞ=m (or its appro-
priate massless limit), and second, it does not refer to the
integral constants (such as energy) which do not appear
in the Lagrangian. We show that the scalar potential can
generically violate the chaos energy bound (2); however,
causality restricts its asymptotic behavior in the E → ∞
limit and protects the universal bound. We also find the
bound is always saturated in the potentials which vanish
asymptotically. Another gauge choice will be studied in the
next section.
In general, r0 determined by (18) must depend on E

complicatedly. Thus, as in (26), we adopt the E → ∞ limit
to extract the universal asymptotic behavior of the
Lyapunov exponent λ (19). We analyze the high energy
behavior based on the ansatz that the energy dependence of
the quantities showing up in the estimation of the Lyapunov
exponent can be expressed by a power. For r0, we assume4

r0 ⟶
E→∞

OðEnÞ ðn ∈ RÞ: ð27Þ

At high energy, while for n ¼ 0 the functions of r such
as f, g, A, and V are OðE0Þ, for the case of n ≠ 0 they
can have nontrivial E dependence depending on their
asymptotic form. We need to determine the form of these
functions.

3We can prove that, in any stationary spherical symmetric
spacetime, r0 for the free massless particle cannot depend on L
(so λ is proportional to E), while for the massive one it can.

4Note that many physical solutions hold our power ansatz;
exponential divergences correspond to the n → ∞ case; loga-
rithmic divergences or oscillations correspond to n ¼ 0.
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First, from now on, let us assume

fðrÞ; gðrÞ !r→∞
1 − Λr2 þO

�
1

r

�
ð28Þ

where Λ is a coefficient parameter corresponding to the
cosmological constant in pure Einstein gravity.5 The right-
hand side means that the geometry asymptotes to max-
imally symmetric spacetimes (Minkowski, de Sitter, or
anti–de Sitter). In addition, we consider only n ≥ 0; since
otherwise, in the high energy limit, the orbit may fall into
the event horizon for the case of black hole spacetimes.
Next, let us consider vector potential Aμ. If we assume

Aμ ⟶
r→∞

OðrkÞ ðk ∈ RÞ ð29Þ

⟶
E→∞

OðEknÞ; ð30Þ

then we get

kn ≤ 1; ð31Þ

otherwise, E is negligible compared to At, so (18), which
determines r0, becomes independent of E and contradicts
n > 0. Hence, we find Eþ qAt → OðE1Þ. Finally, for the
scalar potential V, which is the most important for our
causality analysis, we assume

VðrÞ⟶r→∞
OðrlÞ ðl ∈ RÞ

⟶
E→∞

OðElnÞ: ð32Þ

Then we find that (18) puts no restriction on l; however,
the causality with (15) does bound l; demanding physical
particles never to be spacelike, that is, −gμν _Xμ _Xν ≥ 0 for
∀ r along with the geodesic, gives the restriction

m2 þ VðrÞ ≥ 0 ð33Þ

on V. This is our causality constraint. Then, since
ðL − qAφÞ2 in (20) is positive, ln is bounded by the
asymptotic energy exponent of ðEþ qAtÞ2=f. This bound
depends on the behavior of fðrÞ in the E → ∞ limit or the
asymptotic geometry of spacetimes; thus, let us look at it
carefully in order.
For the asymptotically flat case, we have Λ ¼ 0

and f; g → 1. With n > 0, we have E2=f → OðE2Þ and
(20) with causality (33) bounds V as

ln ≤ 2: ð34Þ

Then the energy dependence of the terms in the right-hand
side of (18) is found as follows:

ðfirst termÞ ¼ OðE2ð1−nÞÞ; ð35Þ

ðsecond termÞ ¼ OðE2−nÞ; ð36Þ

ðthird termÞ ¼ OðE1þkn−nÞ ≤ OðE2−nÞ; ð37Þ

ðfourth termÞ ¼ OðE1þkn−2nÞ ≤ OðE2−2nÞ; ð38Þ

ðfifth termÞ ¼ OðEðl−1ÞnÞ ≤ OðE2−nÞ: ð39Þ

If kn < 1 and ln < 2, we find n ¼ 0; otherwise, in the
E → ∞ limit, only the second term is dominant in (18), so
r0 becomes independent of E and contradicts n > 0. In the
n ¼ 0 case, only the first and second terms are dominant
in (19), and λ → OðE1Þ is shown. Meanwhile, if kn ¼ 1
(ln ¼ 2), the third (fifth) term in (18) is of the same order as
the second, and r0 can depend on E nontrivially. Then, we
find λ → OðE1−nÞ and the energy bound is satisfied (but
not saturated in any cases).
For the asymptotically (anti–)de Sitter case, we have

Λ ≠ 0 and f; g → OðE2nÞ. With n > 0, we have E2=f →
OðE2ð1−nÞÞ and (20) with causality (33) bounds V as

ðlþ 2Þn ≤ 2; n ≤ 1: ð40Þ

Then the energy dependence of the terms in (18) is as
follows:

ðfirst termÞ ¼ OðE2−nÞ; ð41Þ

ðsecond termÞ ¼ OðE2−nÞ; ð42Þ

ðthird termÞ ¼ OðE1þkn−nÞ ≤ OðE2−nÞ; ð43Þ

ðfourth termÞ ¼ OðE1þkn−nÞ ≤ OðE2−nÞ; ð44Þ

ðfifth termÞ ¼ OðEðlþ1ÞnÞ ≤ OðE2−nÞ: ð45Þ

If kn < 1 and ðlþ 2Þn < 2, we find n ¼ 0; otherwise, in
the E → ∞ limit, only the first and second terms are
dominant in (18), so r0 becomes independent of E since
ðEþ qAtÞ2 is eliminated as an overall factor and contra-
dicts n > 0. Then, λ → OðE1Þ is shown as the flat case.
Meanwhile, if kn ¼ 1 (ðlþ 2Þn ¼ 2), the third and fourth
(only fifth) terms are of the same order as the first and
second, and r0 can depend on E nontrivially. Then we find
λ → OðE1−nÞ and the energy bound is satisfied in any
cases again.

5Here, we only specify the asymptotic behavior of the
spacetime but not the gravity theory or its matter contents.
Therefore, our argument can apply to any stationary spherically
symmetric spacetimes with at least one unstable circular orbit in
any gravity theory.
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We have evaluated the energy dependence of the Lyapunov exponent λ in the E → ∞ limit in both the asymptotically
flat/(A)dS cases, and we obtained

λe¼1 →

�
OðE1Þ ðkn < 1 and ln < 2; hence n ¼ 0Þ
OðE1−nÞ ðkn ¼ 1 or ln ¼ 2; n > 0Þ ðΛ ¼ 0Þ ð46Þ

λe¼1 →

�
OðE1Þ ðkn < 1 and ðlþ 2Þn < 2; hence n ¼ 0Þ
OðE1−nÞ ðkn ¼ 1 or ðlþ 2Þn ¼ 2; 0 < n ≤ 1Þ ðΛ ≠ 0Þ: ð47Þ

Without the causality constraint, the asymptotic energy
exponent l of VðrÞ can be arbitrarily large, and the chaos
energy bound is violated. On the other hand, we have
discovered that causality gives the upper bound on l and
protects the chaos energy bound.6 Since causality is one
of the most fundamental principles of physics, our result
suggests that causality ensures the universal bound (2) for
any chaotic system.

IV. CAUSALITY ALONE CANNOT AVOID
VIOLATION OF THE MSS BOUND

We have evaluated above the Lyapunov exponent λ in the
e ¼ 1 gauge and revealed that the causality of the particle
ensures the universal bound (2) on the energy dependence of
chaos. In this section, in contrast, we study another chaos
bound: the MSS bound (1). Since this bound is motivated by
theAdS=CFTcorrespondence, theLyapunov exponent needs
to be measured in the static gauge. We make a gauge
transformation upon the result given in the previous section
and show that, at high energy, theMSSbound can beviolated.
We first remind the reader that the MSS bound is for the

boundary theory of the AdS=CFT correspondence, thus the

Lyapunov exponent λ in the expression of the MSS bound
needs to be measured with the boundary time t. This
corresponds to the Killing time of the bulk spacetime on the
gravity side. The boundary time corresponds to the target
space time on the gravity side. Thus, we need to convert λ
in the e ¼ 1 gauge to that in the static gauge using the
reparametrization-independent representation (19).
Under this reparametrization, r0 is invariant, and the

conditions on n, k, and l are the same as those in Sec. III B.
The transformation law is simply

λstatic ¼ eðτ ¼ tðτÞÞjr0λe¼1: ð48Þ

Because, in the static gauge, we obtain

eðτ ¼ tðτÞÞ ¼ fðrÞ
Eþ qAt

ð49Þ

from (16), we find that eðτ ¼ tÞjr0 is OðE−1Þ in the
asymptotically flat case andOðE2n−1Þ in the asymptotically
(A)dS case. Hence, the energy dependence of λ becomes

λstatic →

�
OðE0Þ ðkn < 1 and ln < 2; hence n ¼ 0Þ
OðE−nÞ ðkn ¼ 1 or ln ¼ 2; n > 0Þ ðΛ ¼ 0Þ; ð50Þ

λstatic →

�
OðE0Þ ðkn < 1 and ðlþ 2Þn < 2; hence n ¼ 0Þ
OðEnÞ ðkn ¼ 1 or ðlþ 2Þn ¼ 2; 0 < n ≤ 1Þ ðΛ ≠ 0Þ: ð51Þ

Among the various cases, we find that in the last case,
for Λ ≠ 0 with kn ¼ 1 or ðlþ 2Þn ¼ 2, the exponent λ
diverges in the E → ∞ limit and violates the MSS bound:
Since the upper bound 2πT=ℏ in the MSS bound is
described only by the quantities of spacetimes, this diver-
gence obviously violates the bound.

The violation condition we have found here suggests that
spacetimes with external potentials having such values of k
or l, which are still causal, may not be realized holo-
graphically.7 This is a natural result from the viewpoint of
the expectation that the holographic duality works for not
all possible gravitational backgrounds which are causal.

6In particular, popular causal setups of the gravity-matter
actions may provide potentials which vanish in r → ∞, i.e., k,
l < 0. Our analysis in this section includes those cases and leads
to the saturation of the chaos energy bound.

7It is amusing to note that this divergence of λ can occur
particularly in the asymptotically AdS (Λ < 0) case, where the
MSS bound is motivated by the AdS=CFT correspondence.
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V. CONCLUSION AND DISCUSSION

We have considered the geodesic motion in generic
situations in which a particle is moving in a general
stationary and spherically symmetric spacetime with the
metric (12) and is coupled to general vector/scalar potentials
(13), and we have investigated the bound on the Lyapunov
exponent λ imposed by causality. In Sec. II, we estimated λ
as (19) without fixing the gauge of the worldline time. In
Sec. III, we described our main results that causality of the
particle motion gives a universal upper bound on the energy
dependence of λ, which coincides with the proposed chaos
energy bound (2). It was important there that causality was
reflected in (15) and gave the restriction (34) and (40) on the
asymptotic form of the scalar potential. In contrast, in
Sec. IV, we pointed out that the celebrated MSS bound
could be violated in the particular potentials (51), even with
such a causal restriction. This suggests that, beyond cau-
sality, some fundamental principle that rules out those
potentials which violate the bound is needed for holographic
descriptions of gravity. Causality is not strong enough to
ensure the holographic principle.
Let us make a brief comment on the gauges we chose in

this paper. For that purpose, we remind the reader of another
perspective in the study of chaos in gravity theories: chaos
in the time evolution of the gravitational field itself, which
plays an important role in cosmology [21,22]. There,
subtleties in defining chaos, which is characterized by a
positive Lyapunov exponent, are led by the noninvariance of
the exponent of the gravitational field under general coor-
dinate transformations [23–29]. One may notice that this
subtlety applies to our study, too, because of the non-
invariance under the reparametrizations of the worldline time
τ. In fact, the energy dependence of the Lyapunov exponent
in the e ¼ 1 gauge [(46) and (47)] has changed as in (50) and
(51) in the static gauge. However, we argue for several
reasons that this issue is resolved in our case and the
most important energy dependence is the one in the e ¼
1 gauge: First, the e ¼ 1 gauge is equivalent to choosing the
gauge of the worldline time for a massive particle as
τ ¼ ðproper timeÞ=m, which is the intrinsic time observed
in the comoving frame of the particle. Second, an einbein e is
unnatural if it depends on the energy E, whose conservation
follows from the equations of motion, since the gauge of the
worldline time must be fixed before integrating the equa-
tions. Then the energy dependence of λ should not change
from (46) and (47), and it should satisfy the chaos energy
bound (2) in the natural gauges.
Several discussions are in order. Below we make com-

ments on the need for (i) numerical simulations, (ii) analysis
in less-symmetric cases, and (iii) study in relation to
AdS=CFT correspondence. First, our analytic estimate uses
the separatrices of the effective potential which the moving
particle feels. Although the curvature of the potential
produces an exponential behavior of the particle motion,
it is merely an estimate of the Lyapunov exponent of the

whole motion of the particle. To determine the actual
Lyapunov exponent, one needs numerical studies for each
chosen setup of curved spacetimes and potentials. Our
study focused on universal properties and thus used the
analytic estimate, and it is obvious that more numerical
studies are necessary to check the violation of the MSS
bound. We emphasize that we have not specified the gravity
theory and our results apply to generic spacetimes not
only in general relativity but also in its extensions like
various modified gravity theories8, and numerical/analytic
calculation of the Lyapunov exponents in such theories
(see [30–37] for relevant studies) may lead to further
progress in chaos study.
Second, we should add a caveat about the symmetry of

our systems and chaoticity. We have focused on geodesic
motion in general stationary and spherically symmetric
spacetimes. As we have seen above, this reduces the
problem to just a one-dimensional one by extracting the
radial component of the particle motion, thus according to
the Poincaré-Bendixson theorem, there should be no chaos.
What we assume is that the separatrices we used would
serve as the nest of chaos in generic less-symmetric cases in
which chaos is present. The reason why we were forced to
use the symmetric spacetimes is that, for the analytic
evaluation of the Lyapunov exponent, we needed the
energy exponents of the conserved quantities coming from
the spacetime symmetry. In general, chaos emerges in
nonintegrable systems which have not enough number of
conserved quantities, thus it is important to extend our
reparametrization-independent estimation of the Lyapunov
exponent (19) to less symmetric spacetimes.
Third, what is “some fundamental principle for holo-

graphic description” suggested by the violation of the MSS
bound? The most conservative candidate is the causality of
the boundary theory, not of the bulk gravity theory which
we studied. In AdS/CFT correspondence, although a
particle in the boundary is described by a local operator,
one falling into the bulk is by a composite and nonlocal
operator. Hence, the causality constraint of the boundary
theory may be nontrivial and more constraining than
the bulk one.9 There is the possibility that this hidden
constraint rules out the potentials which violate the MSS
bound. It should be important to verify this conjecture.
Finally, we remark on a general perspective of the

antithetical nature of causality and chaos. The chaos energy

8It is expected that the asymptotic behavior of the metric
remains unchanged even if higher curvature terms are added to
the Einstein-Hilbert action because those are considered sub-
leading corrections in the effective field theory description.
Therefore, our assumption on the metric (28) would be consistent
with solutions in various gravity theories as well as in general
relativity.

9The gravity side could be a string theory, in which case the
chaos in the bulk is also nonlocal; see [38] for an early study of
string chaos in the AdS=CFT correspondence.
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bound (2) was motivated by the thermodynamic consis-
tency of the definition of the Lyapunov exponent. Is there
anything to do with the relativistic causality which was
important for deriving (2) in this paper? This question
reminds us of Hawking [39] having discovered
that causality division surfaces, i.e., event horizons, are
necessarily thermal. In other words, consistency of thermal
ensembles in quantum mechanics is required by the
singular causal structure. In this respect, what we see in
this paper may be just a tiny part of the physical consistency
conditions in the whole theory space unseen by us. It is

truly amusing to explore more on yet-to-be-discovered
relations between the antithetical notions in physics:
causality and chaos.
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