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Implementing the Wilsonian renormalization group (RG) transformation in a nonperturbative way, we
construct an effective holographic dual description with an emergent extradimension identified with an
RG scale. Taking the large-N limit, we obtain an equation of motion of an order-parameter field, here
the chiral condensate for our explicit demonstration. In particular, an intertwined structure manifests
between the first-order RG flow equations of renormalized coupling functions and the second-order
differential equation of the order-parameter field, thus referred to as a nonperturbative RG-improved
mean-field theory. Assuming translational symmetry as a vacuum state, we solve these nonlinear
coupled mean-field equations based on a matching method between UV- and IR-regional solutions. As
a result, we find an RG flow from a weakly coupled chiral-symmetric UV fixed point to a strongly
correlated chiral-symmetry broken IR fixed point, where the renormalized velocity of Dirac fermions
vanishes most rapidly and effective quantum mechanics appears at IR. Furthermore, we translate these
RG flows of coupling functions into those of emergent metric tensors and extract out geometrical
properties of the emergent holographic spacetime constructed from the UV- and IR-regional solutions.
Surprisingly, we obtain the volume law of entanglement entropy in the Ryu-Takayanagi formula, which
implies appearance of a black hole type solution in the limit of infinite cutoff even at zero temperature.
We critically discuss our field theoretic interpretation for this solution in terms of potentially gapless

multiparticle excitation spectra.
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I. INTRODUCTION

Renormalization group (RG) improved mean-field
theory (MFT) is not only a natural but also a general
framework at least in the conceptual aspect. Here, inter-
action vertices are renormalized in the one-loop level, or
resummed in the context of the Bethe-Salpeter equation [1].
These renormalized coupling functions enter a mean-field
equation for the description of a phase transition given by
an order-parameter field. Unfortunately, this “perturbative”
RG framework is not enough to understand the dynamics of
strongly coupled quantum field theories.

To generalize the Wilsonian perturbative RG trans-
formation in a nonperturbative way, we introduce an
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energy-scale dependent order-parameter field and propose
an intertwined RG structure between the RG flow equations
of renormalized coupling functions and an extended mean-
field equation of the order-parameter field at each energy
scale. Suppose the Wilsonian RG transformation for a
given quantum field theory at an energy scale A. Then, we
solve the resulting effective interacting field theory in a
mean-field fashion but with renormalized interaction ver-
tices at the scale A. Usually, this is the end of the procedure,
referred to as the RG-MFT mentioned above.

In this study, we extend this procedure in an iterative
way. After performing the first iteration in the RG-MFT, we
consider the second RG transformation for all dynamical
variables including the order-parameter field. This second
iteration is supported by the renormalized coupling func-
tions and the mean-field “background” value of the order-
parameter at the scale A in the first step of the RG-MFT.
Again, we take the large-N limit to perform the mean-field
analysis with the updated renormalized interaction vertices
after the second RG implementation. This completes the
second iteration in the RG-MFT.

Repeating these RG iterations with the scale-dependent
mean-field analysis in the large-N limit and expressing the
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discrete variable of the RG iteration with a continuous
“coordinate” z, we construct an effective field theory, where
the RG transformation manifests with an emergent extra-
dimension denoted by z [2—13]. Interestingly, we observe
that this nonperturbative RG-MFT not only shares some
characteristic features of the holographic dual effective
field theory [14-20] but also modifies them in two
ways. First, the background geometry in the dual holo-
graphic description corresponds to the RG flow equations
of renormalized coupling functions in the nonperturbative
RG-MFT [18-20]. Second, other fields besides the metric
tensor describe the dynamics of “order parameters” or
collective fields in a dual fashion [14—17]. For example,
the scalar field in the Einstein-scalar field theory corre-
sponds to the chiral condensate in the present descrip-
tion. These two aspects reinterpret the holographic
dual effective field theory in terms of nonperturbative
Wilsonian RG transformations. Third, the nonperturbative
RG-MFT introduces RG f functions of interaction vertices
beyond the holographic dual effective field theory with
gravity, where the RG flows for all dynamical variables
appear naturally to show conformal invariance only in the
low-energy limit [5—13,21-24]. Fourth, there is an essen-
tial difference on how to assign UV and IR boundary
conditions in the present description, where an effective
on-shell (boundary) action determines both boundary
conditions [5—13]. Here, the effective on-shell (boundary)
action may be regarded as a solution of the Hamilton-
Jacobi equation [6,7].

For concreteness, we consider spontaneous chiral sym-
metry breaking [1]. Here, we have three types of coupling
functions, corresponding to the wave-function renormali-
zation constant for Dirac fermions, the velocity of Dirac
fermions, and their effective interactions for chiral sym-
metry breaking, respectively. In addition, we have one
order-parameter field to describe the chiral symmetry
breaking. Taking the large-N limit in the nonperturbative
RG-MFT, where N is the flavor number of Dirac fermions,
we obtain four coupled differential equations, where three
of them are given by the first order to describe the RG flows
of the coupling functions and the last is the second-order
differential equation for the order-parameter field, sup-
ported by renormalized coupling functions at a given
energy scale. We verify that the wave-function renormal-
ization constant (the velocity renormalization constant) in
the nonperturbative RG-MFT corresponds to the space
(time) component of the metric tensor in the holographic
dual effective field theory.

We believe that it would not be an easy task to solve
these four heavily intertwined differential equations.
Here, we apply a matching method to solving these
coupled differential equations [25]. First, we solve such
coupled differential equations near both UV and IR boun-
dary regions, where these equations become simplified.

Second, we apply the UV (IR) boundary condition to the
UV-regional (IR-regional) solution. Since the number of
boundary conditions would be less than that of integration
constants, some of the integration constants remain unde-
termined in both UV- and IR-regional solutions. Third, we
require that the UV-regional solution should be smoothly
connected to the IR-regional solution in the extradimen-
sional space. Of course, there must be a certain condition
for the existence of this matching solution, which will be
clarified later. Based on this matching method, we find
an RG flow from a weakly coupled chiral-symmetric UV
fixed point to a strongly correlated chiral-symmetry
broken IR fixed point, where the renormalized velocity
of Dirac fermions vanishes most rapidly and effective
quantum mechanics appears at IR. It is a feature of the
nonperturbative RG-MFT: the appearance of this local
strong-coupling fixed point. Furthermore, we investigate
several geometrical objects in the holographic spacetime
constructed from the UV- and IR-regional solutions we
found. In particular, we calculate the minimal surface for a
single interval, which is essential for the holographic
entanglement entropy formula [26,27]. We uncovered the
volume law of entanglement entropy at zero temperature,
which implies appearance of a black hole type geometry at
A — oo to describe the strongly correlated chiral-symmetry
broken IR fixed point. We critically discuss our field
theoretic interpretation that strong correlations may allow
gapless multiparticle spectra between the single-particle
excitation gap due to spontaneous chiral symmetry
breaking.

This paper is organized as follows. First, we discuss a
general formulation of emergent dual holography in Sec. II.
Here, we introduce a general framework for the RG trans-
formation and clarify how the present construction imple-
ments the RG transformation in a nonperturbaive way. In
addition, we introduce an emergent dual holographic
description given by gravity with an extradimension and
argue that our nonperturbative RG framework may be
regarded as an effective holographic dual description.
Second, we take the large-N limit in this effective field
theory and obtain the equation of motion for an order-
parameter field, here the chiral condensate, in Sec. II. Here,
we find an intertwined structure for the RG flows between the
renormalized coupling vertices and the order-parameter
field. Third, we try to solve these coupled mean-field
equations based on a matching method between UV- and
IR-regional solutions in Sec. III, assuming translational
symmetry as a vacuum solution. In particular, we could
reveal some analytic behaviors in the low-energy limit and
find a local strong-coupling fixed point. In Sec. IV, we
compute the Ricci scalar curvature and the minimal surface
on the three-dimensional holographic spacetime. Then, we
summarize our main results and discuss several unresolved
issues in the last section.
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II. A NONPERTURBATIVE APPROACH OF THE
WILSONIAN RENORMALIZATION GROUP
THEORY FOR SPONTANEOUS CHIRAL
SYMMETRY BREAKING

A. A general framework for the renormalization
group transformation

We start our discussions, reviewing a general framework
of the RG transformation [1]. Here, we consider interacting
Dirac fermions described by

2= [ Dwintrrexp|- [ ax{mun(x)rote)
/21N Vo (X)W bo (X)W bt (X)W 1 (x)H (1)

W (X) is a Dirac spinor at x in D spacetime dimensions,
where ¢ is a flavor index from 1 to N and b is “bare” or
“unrenormalized.” ;,(x) = y/ZJ(x)yo is the canonical
conjugate variable to y,(x). y* with y =0,...,D —1 is
the Dirac matrix to satisfy the Clifford algebra in D
spacetime dimensions. 1,, is an interaction coefficient
for chiral symmetry breaking, where b also denotes bare
or unrenormalized.

Performing the Hubbard-Stratonovich transformation for
the chiral symmetry breaking channel, we introduce an
order-parameter field ¢, (x) as follows:

2= [ DDy exo [— / de{uvhr;(x)

X <7Tar - ivby/yiai> l//ba(x) - ileQDb (x)l/_/ba(x)l//bd(x)
g | @)

Here, we introduced v, as the bare velocity of Dirac
fermions. To describe quantum fluctuations of chiral
symmetry breaking, we integrate over short-distance fluc-
tuations of Dirac fermions and obtain

2= [ DD ) exo [— / de{Mx)
x (yfa, - wwfai) V3o () = g0y (3 (1)
+ N(pb(x)< —07 — v3,07 + m§¢> (pb(x)}] : (3)

Here, the kinetic energy of the order-parameter field results
from the polarization bubble of high-energy quantum
fluctuations of Dirac fermions, denoted by Il(x — x') =
/1%7)( <ll_/b{i (x)l//ho'(x)l/_/ba’ (x/)l//ho'/ (xl)>’ where < . > is an
ensemble average. Performing the Fourier transformation

and expanding it up to the second order with respect to
the frequency and momentum, we obtain II(iQ,q) =

2
N%(Qz—l—czvﬁqu)—l—ﬂ(O, 0), where ¢, and c, are

numerical constants. A, is the short-distance cutoff to
control high-energy fluctuations. Rescaling coordinates,
fields, and coupling constants appropriately, we obtain the
above expression for the kinetic energy of the order-
parameter field, where v, and m,,, are the bare velocity
and bare mass of the collective field ¢, (x).

Now, we consider the RG transformation. First, the
coordinate transforms as

X = px, (4)

where u is the scaling parameter. To make the time-
derivative term invariant under this coordinate transforma-
tion, both fermion and boson fields have to transform as
follows:

o, 1
szr(x) = _%Zsfy/ra( ) Py :/‘_¥Z?ﬂ(pr~ (5)

Here, Z,, and Z, are wave-function renormalization con-
stants to take divergent contributions from quantum cor-
rections and to relate fermion and boson bare fields with
their renormalized ones denoted by the subscript r.
Accordingly, fermion and boson velocities transform as

Vpy = 2y Zyy 0ry Uiy = 24" Z 205 (6)

vy TP

which lead the space-derivative term to be invariant under
this scaling transformation. Z, and Z, are velocity

4
renormalization constants for fermions and bosons, respec-
tively. The boson mass term remains invariant if the mass
parameter transforms as

my, = WZ,'Z zm,(/,, (7)

where Z,. is the mass renormalization constant. Finally,

the Yukawa coupling term is invariant if the Yukawa
interaction vertex transforms as

Ay

D=t | %
=P 22, 2,°Z) Ay, (8)
where Z 1, is the interaction renormalization constant.
Replacing all bare fields and coupling constants with

renormalized ones, we obtain the following effective field
theory:
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Z = (wzyz,)Vr / Dy,,(x)Dg,(x) exp [— / dPx

X {l/_/ra(x) <Zl//}/161 - iZUV,'Ury/}/iai> l//ra(x>
- iZAX/Irxqpr(x)l/_’ra(x)Wra(x) + N¢r(x)

X <—Z¢,0% -Zp 7,07 + Zméqu,> @, (x) H , 9)

where Vp is the volume factor of the D-dimensional
spacetime. Below, we find all these renormalization con-
stants in the nonperturbative RG-MFT.

B. Emergent dual holography for spontaneous
chiral symmetry breaking

1. General prescription for the appearance
of an extradimension through the Wilsonian
renormalization group transformation

Before going to a concrete example, here the pro-
blem of spontaneous chiral symmetry breaking, we
discuss how the extradimension appears through the

|

Wilsonian RG transformation. We start from the following
free energy:

Fltgax. )] = =i [ Dytxsyexpf - ["ar

0
<[ ddxc[w,,u,f);{ga<x,r>}1}. (10)

Here, L[y, (x,7);{g,(x,7)}] is an effective UV Lagrangian
to describe dynamics of electrons w,(x,7) under their
effective interactions with strengths { g, (x, 7) }. o represents
the electron spin, extended from 2 to N. a denotes the
number of effective interactions. f is inverse temperature.

Now, we perform a functional RG transformation in real
space. Although it is not easy to take such a task, one may
perform the Kadanoff block-spin transformation explicitly at
least in one dimension [5,7-10,12,13,28]. In higher dimen-
sions, it is more difficult to perform the functional RG
transformation because the lattice structure is modified to
depend on the RG transformation step. See Refs. [2—4,6—10]
for real-space RG transformations above one spatial dimen-
sion. Whatever the regularization is, the RG transformation
would give the following free energy:

Fl{ga(r.7)}] = —%m / Dy, (x.7) Dga(x. 7. 2)8(9alx.7.0) — ga(x. 7))

a{azgu (5,7,2) = iy [l 7, 2] }Det{azaah -
exp{—AﬂdT/ddx[,[l//(,(x,r);{ga(x, 72}

0
bl zm}

J-n [Pz [Mar ddxveff[{gau,r,z)}]} (11)

in terms of effective interactions {g,(x, 7, z)} renormalized at IR (z = z), given an interaction configuration {g,(x,z,0)} at

UV (z = 0). Here,

v [ e [ atvinltatee ) = =g [ Dwlso ew{~ ["ds [ atscip. e fanson} a2

is an effective potential at a given energy scale z with a
reduced cutoff A(z) for y,(x, 7), which arises from the RG
transformation at the scale of z. z is the RG transformation
scale.

All the interactions {g,(x,7,z)} evolve from their UV
bare values of g,(x,7,0) = g,(x,7) to their IR renormal-
ized ones of {g,(x,7,z¢)}, respectively, through the RG
transformation, given by their RG flows

azga(x’ T, Z) :ﬂga[{ga(x/[v Z)H (13)

Here, f, [{9.(x.7.2)}] are RG f functions [1], resulting
from high-energy quantum fluctuations of matter fields.
More precisely, they are given by the effective potential as
follows:

[

Py [{9a(x. 7. 2)}] = = Verr[{9a(x, 7. 2)}]. (14)

0
9g,(x. z)

Such fully renormalized coupling functions appear in the IR
renormalized effective Lagrangian L[y, (x.7);{g,(x.7.27)}]

for a given interaction realization at UV. Det{d.5,, —
mﬂga [{g.(x,7,2)}]} are Jacobian factors, which appear

in the Faddeev-Popov procedure [1]. In other words, we
obtain

/ D, (5. 7.2)5{0,94(x. 7.2) = B, {ga (5. 7.2)}]}

xDetf 0.0 = 50 —p Haulxr | =10 (19

_9
agb(xv Z)

066004-4



RENORMALIZATION GROUP FLOW TO EFFECTIVE QUANTUM ...

PHYS. REV. D 107, 066004 (2023)

which leads the partition function to be invariant under the RG transformation.
Introducing Lagrange multiplier [IT,, (x,z)] and ghost [f,(x, z)] fields into the above partition function, we reformulate

the effective field theory as follows:

Fl{ga(x.7)}] = - ;ln / Dy, (x.7)Dgy(x. 7. 2)DIL, (x. 2)DF o(x. ) Df o x.2)

3(9a05.5.0) = (o) x| = [ [ iy o) (a2

_NAZJ dZAﬂdr/ddx{Hga(x,Z)(azga(x,r,Z) = By {9a(x. 7. 2)}]) + Verr[{9a(x. 7. 2) }]

0

+ fa(x.2) <az6uh - m

This expression manifests the RG transformation in the
level of an effective action, claimed to be an emergent
holographic dual effective field theory. Although it would
be interesting to investigate the formal aspect of this
effective field theory more deeply, we do not discuss
possible Becchi-Rouet-Stora-Tyutin (BRST) symmetries
[1] and related Ward identities further in this paper.

Before going back to the problem of spontaneous chiral
symmetry breaking, we point out an essential approxi-
mation in this effective field theory. First of all, nonlocal
terms are neglected in the resulting effective action that
manifests the RG flows of the coupling fields. We recall
that the Wilsonian RG transformation generates nonlocal
terms inevitably. Suppose the Kadanoff block-spin trans-
formation in one dimension. Within this regularization
scheme, nonlocal hopping terms along the time direction
are generated and given by the even-site electron propa-
gator, when even-site dynamical fields are integrated out
in the RG transformation. Resorting to the gradient
expansion for the time derivative in the even-site electron
propagator, we keep the lowest order of 0} with n = 0. See
Ref. [5] for details. More generally, the RG f function
Eq. (14) is given by a Green’s function of the correspond-
ing matter field at a given energy scale z. Since the
Green’s function is bilocal, i.e., depending on x and X/,
nonlocality is unavoidable. Such emergent nonlocal inter-
actions can however be “localized” at the cost of introduc-
ing higher-spin fields to decompose them in a local fashion
based on the corresponding group structure [29-36]. In
other words, integrating over such higher-spin fields
gives rise to an effective gravity theory including only
up to spin two fields, but in the presence of effective
nonlocal interactions between gravitons. In most cases, we
will work with a proper local truncation of these RG-
generated nonlocal terms, keeping the original form of the
effective Lagrangian as in the conventional RG trans-
formation [4-10]. Here, based on the gradient expansion
in the limit of Ax = x — x’ = 0, we have only local terms in
the resulting effective action. This issue is well summarized
in Ref. [7].

Pullanxs. ) )1utr2)} (16)

2. Nonperturbative implementation of the Wilsonian
renormalization group transformation

We are ready to discuss the problem of spontaneous
chiral symmetry breaking based on the Wilsonian RG
transformation. To implement the Wilsonian RG trans-
formation in a nonperturbative way, we introduce w,, with
an order-parameter field as follows:

2= [ Duipetes |- [ @afpio
x (wwm - ivafai)w(,(x) — () (Ia(2)
+TX¢2(x)H. (17)

As expected, w,, will play the role of the wave-function
renormalization constant for Dirac fermions.

Now, we perform the RG transformation. First, we
separate fast and slow degrees of freedom from all
dynamical fields at a given energy scale A, here Dirac
fermions y,(x) and chiral symmetry breaking fluctuations
¢(x). Second, we integrate over short-distance fluctuations
for ¢(x) and obtain newly generated effective interactions
between Dirac fermions. Third, we perform the Hubbard-
Stratonovich transformation for such RG-transformation
generated interactions and have an additional collective
field variable, saying (p(l)(x) to decompose RG-generated
effective interactions. Calling the previous low-energy
mode ¢ (x) and shifting @) (x) to @) (x) — @ (x),
we finish the first RG transformation for chiral symmetry
breaking fluctuations. Fourth, we perform the path integral
for short-distance fluctuations of Dirac fermions. Actually,
this RG transformation gives rise to genuine renormaliza-
tion effects for all coupling functions introduced in the
above UV effective field theory. Although any concrete
procedures would depend on regularization, we have the
following structure in the Wilsonian RG transformation.
The path integral for high-energy quantum fluctuations of
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Dirac fermions generates an effective potential in terms of
unrenormalized coupling functions and ¢! (x). Fifth,
taking a functional derivative of the RG-generated effective
potential with respect to each coupling function and
@ (x), we obtain the so-called RG f function to encode
how the coupling function evolves through this RG trans-
formation. Calling the previous unrenormalized coupling
function that with a superscript (0), we update it to a
renormalized one with a superscript (1). This completes the
first iteration of the RG transformation.

To proceed the second iteration of the RG transforma-
tion, we consider quantum fluctuations of w,(x) and
¢V (x). Here, ¢©(x) is determined by free-energy min-
imization as usual. In this respect ¢(©) (x) is an energy-scale
dependent order-parameter field as discussed in the
Introduction. Now, it is straightforward to perform the
|

RG transformation in a recursive way. Each coupling
function with a superscript (k — 1) renormalizes into that
with a superscript (k) by its RG g function. Within these
background renormalized coupling functions, the energy-
dependent order-parameter field is determined by minimi-
zation of the free energy functional. To make the resulting
effective field theory be more tractable, we introduce a
continuum variable z to replace the discrete step (k) and
rewrite the RG transformation from (k — 1) to (k) in a form
of the z derivative. As a result, the RG flows of the coupling
functions and the RG evolution of the order-parameter field
become manifested through the emergent extradimensional
space denoted by the coordinate z. This completes our
nonperturbative RG-MFT [5-13].

All these discussions can be summarized by the follow-
ing effective field theory:

Z:/Dl//,,(x)D(p(x,z)Dﬂw(x,z)Dwy,(x,z)Dﬂww(x,z)DvW(x,z)Dﬂyw(x,z)D/lX(x,z)DﬂlX(x,z)

scexp| = [ @ a0) (s 520070 i 3,2 0, Jora) = i 2 o2 )+

N2, (x,0)
)

—NAZf dz/de{zrw(x, 2) (0Zgo(x,z)—ﬂ(p[(p(x,z),wy,(x, z),vu,(x,z),ﬂl(x,z)o —Lﬂi(x,z)

22,(x,2)

o, (6.2) (azwm, ) = B [p(x.2) oy (1.2). 1y (2.2 Ay z>])

+7,,(x,2) <0sz (x,2) = By, lo(x.2), w, (x,2), v, (x,2), 4, (x, Z)])

+my, (X, 2) (f%( (x,2) = B, lo(x, 2), wy, (x,2), 0, (%, 2), 4, (x, z)])

Vs, z>,ww<x,z>,vl,(x’z),mx,z)]}].

Although this expression looks rather complicated, we
explain several characteristic features of this effective field
theory below in detail. We recall that this effective field
theory is essentially the same as that of the previous
subsection, where the RG flows of all the coupling
functions manifest in the level of an effective action.
The only difference is the appearance of the
1

- Wﬂé (x, z) term, which results from random fluctua-

tions of chiral condensates, given by ~@?(x,0) in the UV
action. See our previous studies [5—13]. Here, we did not
introduce the ghost fields just for simplicity.

w,(x.2), v,(x,z), and 4,(x,z) are renormalized cou-
pling functions. In particular, w,(x, z) is related with the
field renormalization to be clarified in the next subsection.
7y, (%,2), 7, (x,2), and 7, (x,z) are their canonical con-
jugate fields, respectively. Integrating over these canonical

(18)

fields, we obtain the RG-flow equations for these coupling
functions as follows:

0w, (x.2) =Py, [@(x,2).w,, (x.2), v, (x,2), 4,(x.2)],  (19)
az”u/<x’ Z) = ﬂ”w [Qo(xv Z)? Wl//(x7 Z)? ”y/(xv Z)’ ’1)(()@ Z)]? (20)

0.4, (x,2) = By [(x,2). wy, (x, 2), v, (%, 2), 4, (x, )] (21)

Physical meaning of these first-order differential equations
is clear. The real question is how to find these RG f
functions in a nonperturbative way, to be clarified below.

¢(x, 7) is an energy-dependent chiral symmetry breaking
order-parameter field, whose dynamics is determined by
minimization of the bulk effective action in the large-N
limit, given by
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(X, 2)

S =N [[7dz [ dx{ 50000t = Bylote. 2w, (211, (). 5. 90) g

T Verlo(e,2)owy (2. 2). 0 (2. 2). 4y (2. )] } 22)

m,(x,z) is the canonical conjugate field to ¢(x, z). In this respect this effective bulk action is written in the Hamiltonian
formulation. The essential ingredient is an effective potential Veg[p(x. z), w,, (X, 2). v,,(x, 2), 4,(x, z)], generated by the RG
transformation for Dirac fermions and given by

Veit o (x. 2), wy, (x,2), v, (x, 2), 4, (%, 2)]
——yin [ Dwa<x>exp[— [ @ xl5) 0y 5, 21770, = 0, (5,27 0w 06) = iy . 2D i () (23)
N AG) v v X

Here, | AR) Dy ;(x) means that the fermion path integral is performed at a given energy scale A(z), which will be more

clarified in the next section. Accordingly, the RG f function of the chiral condensate is given by the functional derivative of
this effective potential with respect to the order-parameter field [1] as follows:

i

Polo(x.2). wy (2. 2). 0, (x.2). 4 (0. 2)] = =6, Vet [0 (x. 2). wy, (3, 2). 0, (30.2). Ay (0, 2)] = 5 {4y (0, 2)p ()i (1)) (24)

Here, (...) is an ensemble average with respect to the effective action functional

S/\(z) = /de{l/_/a(x)(Wv/(x’ Z)yTar - iv,/,(x, Z)yiai>ln’/0(x) - M)((x’ Z)(p(X, Z)lf/(,(x)l//(,(x)}. (25)

Three other RG f functions are given by functional derivatives of this effective potential with respect to the corresponding
coupling function in the following way:

B, lo(x.2). wy, (x, 2), 0, (x, 2). 4 (x. 2)] = =By, Verrlop(x. 2). Wy, (%, 2). 0, (. 2). 4 (x. 2)] = —%(l/‘/g(xw@f%(x)% (26)

(W (X)r oxys(x)),  (27)

=z~

B, l0(x,2), wy (%, 2), 0, (x, 2), 4 (%, 2)] = =6y, Vesr (%, 2), wy, (%, 2), v, (%, 2), 4, (x, 2)] =

B, i, 2), w4 (5, 2), 1, (3,2). 2 (5 2)] = =3, V(. )., (5,2), (5, 2), %, (5,9] = (o o). (28)

This procedure is completely consistent with what we learnt in the RG transformation [1].
It is straightforward to find the Hamiltonian equation of motion in the large-N limit, given by

(%, 2) = 4 (x.2)(0,0(x. 2) = B, [op(x. 2). W (x. 2). v, (%, 2), 4, (x. 2)]) (29)
and
07 (X, 2) = =Pylo(x, 2), Wy (%, 2), v, (%, 2), 4 (%, 2)] = 7, (%, 2)8, 8 [0 (x, 2), W (%, 2), v (%, 2), 4, (3, 2)], - (30)
respectively. UV and IR boundary conditions are determined by the following boundary effective action:

A (x,0)

Spe =N [ dbx{veffmx, 2o (22 0y (22 ) Ay ()] 1 (2 )00 z) + 2 020,0) = 1, (1. 0) o o>},
(31)

where renormalized Dirac fields y,(x) living in the D-dimensional spacetime IR boundary z = z, were integrated out to
give Verlo(x,z7), W, (x,25), v, (x,27). 4,(x,2¢)]. In addition, ,(x,zs)e(x,zs) — 7,(x,0)p(x,0) results from the
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integration by part for fozf dzm,(x,2)0,¢(x,z) in the bulk effective action, where equations of motion for all other fields
have been utilized. As a result, the UV boundary condition is

2, (x,0)p(x,0) = 7,(x,0), (32)
and the IR one is

m,(x.25) = Bolo(x, zp), wy (x, 2p), v, (x, 27), 4, (x. 2p)]. (33)

For completeness, we would like to point out the Lagrangian formulation. Integrating over renormalized Dirac fermions,
we obtain the following partition function:

Z= /D(p(x,z) exp [—N/de{Veff[go(x, 2 )Wy (X, 25), vy (%, 27) . A (%, 24)] +wq)2(x, 0)}
- [z [ xS 5.2 - gt 1oy 21y 5.2,y )
=+ Veff[¢(x’ Z)’ W,/, ()C, Z)’ U,/,<)C, Z)’ /1)(()6, Z)} }:| ’ (34)

supported by the RG-flow equations of three coupling functions. Then, the Lagrange equation of motion is given by

ﬂ ) 1 _ﬂ )
6§(p(x, Z) + /lj:((x)i ZZ)) az(p(xv Z) = _{/M/;(ZX)Z) - (ﬂ(ﬂ(x’ Z)élﬂ + ﬁw,,, (X, Z)éwq, + /Bv,,, (X, Z)(Sv,,, + ﬂ/ll(x’ 2)5/11) }ﬁ(p(x’ Z)’
(35)
supported by the IR boundary condition
1
6zf(p(x, 7)) = (1 —l—w)ﬁq)[(p(x, 2 )Wy (X, 25), vy (x, 27) . Ay (%, 2p)] (36)
and the UV one
0.0(x. 2)|.—g = @(x.0) + B, [9(x.,0), w, (x,0), v, (x,0), 4, (x, 0)]. (37)

Now, we have a complete intertwined structure between the RG flows of the coupling functions and the equation of
motion of the chiral condensate. It is interesting to notice that the mean-field equation of the order-parameter field is given
by the second-order differential equation instead of an algebraic equation. These renormalized coupling functions and the
order-parameter field appear in the IR boundary action functional as

Sk = / dPx{ ,(x) (wy, (x, 27)770: — 10, (x, 2p)7'0; )W o (x) — id,(x, 27 )p(x, 27 ) o (X)W (x) }. (38)

This discussion implies self-consistency of this framework, which means that everything is determined by the effective field
theory itself as it should. Actually, this point can be more clarified based on the Hamilton-Jacobi formulation [6], which will
not be further discussed in this study.

Finally, we obtain an effective on-shell free-energy functional, given by

N
F _ﬁ/de{Veff[(p(vaf)vww(xvZf)vUy/(xvzf)’/l;((xv 2+ Po(x.2p)p(x. 2p) + B, (x. 2 )w,, (x, 2¢)

By ) 0. 20) + 52 ) - 25 0 (39)

Here, the renormalized Dirac fermions were integrated out to give the boundary effective potential expressed by
Veel@(x.27),w,, (X, 27), v, (x,2¢),4,(x.27)]. Both the equation of motion for the chiral condensate and the RG-flow
equations for the coupling functions have been used to kill most parts of the bulk action. Both UV and IR boundary
conditions were also incorporated. One may regard this expression as the Legendre transformation for the effective
potential [1,37].
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C. Comparison between the renormalized effective
field theory Eq. (9) and the nonperturbative
RG-improved mean-field theory Eq. (18)

We are ready to read renormalization constants in a
nonperturbative way from the nonperturbative RG-MFT
Eq. (18). Comparing the renormalized effective field theory
Eq. (9) with the nonperturbative RG-MFT Eq. (18) or the
on-shell effective free energy Eq. (39) with the on-shell IR
effective action Eq. (38), we obtain

W'//(x’zf):Z'//’ AX(X’Zf):Zl;(ﬂ’Z

(40)

Uy (X.27) =2, Uny,

for renormalized coupling functions. It is natural to con-
sider the following identification:

o(x,27) = @, (x). (41)

Then, the comparison between the renormalized effective
field theory Eq. (9) and the on-shell effective free energy
Eq. (39) with the on-shell IR effective action Eq. (38) gives
rise to

Zugiity =052 (1w 5 2) 0.2 ol )
+ ﬂw,,,(x’ Zf)wl//(x’ Zf) +ﬁv,,,(x’ Zf)vy/(x’ Zf)

+ B, (x. 2p)A, (%, 2f) = M(,02()6, 0)) . (42)

Here, we neglected the kinetic energy term (spatial and
temporal fluctuations) in Eq. (9). As a result, the renorm-
alization constants of Z,, va, Z 4 and ng‘ are determined

by the nonperturbative RG-MFT Eq. (18).

D. A holographic dual effective field theory
in a gravity formulation

Our previous discussions show that the nonperturbative
RG-MFT not only shares several characteristic features of
|

the holographic dual effective field theory but also extends
the holographic duality conjecture to that away from con-
formal invariance, as pointed out in the Introduction. In this
subsection, we clarify this correspondence more explicitly.
To pursue this conceptual direction, we need to consider the
RG transformation in a gravitational background. We start
from the following effective field theory [38]:

7= /Dy/g(x)De’;(x)ﬁ(eZ(x) — &)

. (43)

Here, y,(x) is a Dirac spinor at x in D spacetime dimensions.
o runs from 1 to N, denoting the flavor degeneracy of Dirac
fermions. y“ is a Dirac y matrix, defined in a local rest frame
at x and satisfying the Clifford algebra {y%, y*} = 25 with
the Euclidean signature. ¢/ (x) defines the local rest frame
given by the tangent manifold at x, called vierbein. The
corresponding background metric is given by the vierbein as
follows: g, = etels,,. wi? = eld, e’ + efTy,e is a
background spin connection and 6,, =4[y, "] is a com-
mutator of Dirac gamma matrixes in the local rest frame.
Here, I'Y, = 1 ¢*°(0,9s, + 04905 — 0590y) is the Christoffel
symbol. 4} is the coupling constant of an effective interaction
term for dynamical mass generation. We point out that this
curved background geometry is introduced just formally,
denoted by §(ek(x) — &).

Following our previous works [5—10], the RG trans-
formation of which is essentially the same as that of the
previous subsection, we obtain

2= [ Dy, ()i (. 2) D (3,20 2D . 2) D .2) D 3. )0l (3.0) = )

wenp|= [ aox{\fatnczp) (molores(onz) (0.~ k(52w Yot

e n,z0) (0= ot () Jiro) = 082 oo 2

NI S 30 b= [ [ b 200, 002) - Bl )20 20 2)

1
225(x,2)7/g(x, 2)

0, 2)QA00.2) = Byl 5,2 ). 420 + Vel 2. 020, 24002 |

7y (%,2) + 1 (%, 2) (0.9 (%, 2) = B[ (%. 2). Gpu (¥, 2), A (x, 2)])
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Although this expression also looks quite complicated, its structure is essentially the same as what we have discussed in the
previous subsection. Again, we did not introduce the ghost fields for simplicity. Here, we consider the Gaussian normal
coordinate system ds* = dz* + g,,(x, z)dx*dx" in the Arnowitt-Deser-Misner (ADM) decomposition [39], given by

ds* = (N?(x,z) + N, (x, 2)N*(x, 2))dz* + 2N, (x, 2)dx*dz + g, (x, 2)dx*dx”, (45)

where the gauge fixing condition for the lapse function A'(x, z) = 1 and the shift vector \V,(x, z) = 0 is taken into account.
The Hamiltonian equation of motion for the chiral condensate can be found from the effective bulk action, given by

1

225(x,2)v/9(x, 2)

Vel z>,gﬂp<x,z>,z;<x,z>]}. (46)

ngz(x, )

San=n [ e [ de{nzu,zxaz%(x, 2) = 31y (26, 2), 6 (3, 2, 253, ) —

Here, we do not repeat to show it. Again, the effective potential is generated from the RG transformation for Dirac fermions
as follows:

N [ Vel (5.2). 9. 2). (x.2)
=i [ Dy e [— Px/g2) {u-/g(x)yaez(x, ) (af Lo (x,z>o-afb/>w6<x>
) eho2) (0= (5 2o o) = 2o o) | )

Then, the RG f function for the chiral condensate is given by

g(x’z) 5¢Veff[(pg( ’Z)vgﬂb( ,Z)a/b(( ’Z)] —N\/m@/a( )l//zr( )>7 (48)

where the ensemble average (...) is taken into account based on

Bolpg(x, 2), G (%, 2), A (x,2)] = —

—_ i ! 1/
Suo = [ e/ e (n,2) (0. g0t o Yoo

(05, 2) (0= ot (e i) = 0 2ok L) (49)

As a side remark, the gradient expansion of the RG-generated effective potential for both the metric tensor and the chiral
condensate order-parameter field with the effective interaction parameter gives rise to [6—8]

Vanli 5,2 (120, 2400 2] % VTR 51 (RGx.2) - 20,

g

+ 0O, ) DO o)) + ERG) 2JoP

(50)

[
The first Einstein-Hilbert action with D-dimensional  one x, can be determined in principle by performing the
Ricci scalar R(x,z) is referred to as induced gravity,  gradient expansion on a general curved spacetime mani-
well derived in Refs. [40,41], where higher curvature  fold explicitly. However, it is demanding in practice due
terms [42] are not taken into account. Here, both the  to renormalization effects. In this respect we regard them
cosmological constant A, and the effective gravitational — as some phenomenological parameters. The second term

066004-10



RENORMALIZATION GROUP FLOW TO EFFECTIVE QUANTUM ...

PHYS. REV. D 107, 066004 (2023)

counts the D-dimensional kinetic energy of the order-
parameter field at a given energy scale z. The last term
describes curvature-induced effective mass for scalar-field
fluctuations.

9%, 2) plays the role of coupling functions such as the
wave-function renormalization and the velocity renormal-
ization, which will be discussed below more clearly.
m"(x,z) is the canonical conjugate field to g,,(x.z).
Integrating over 7**(x, z), we obtain the RG-flow equation
for the metric tensor, given by

0.9 (%, 2) = Piwloy(x.2), g (x.2), 47 (x, 2)],  (51)

where the RG g function for the metric tensor is

PBinl0y(x.2). g (x.2). 27(x.2)]

2
= _7gﬂl/ﬂ}/('x’ Z)ég/,yveff[(pg(x’ Z)v g;w(x’ Z)’ l}?(x’ Z)]
9(x.2)

= = G (5. T (3,2)) (52)

Here, G,,,,,, (%, 2) = g,,,(x.2) 9y, (%, 2) = 55 G (%, 2) G (%, 2)
is the de Witt supermetric [43], taking into account trans-
verseness. T77(x,z) is the energy-momentum tensor for
Dirac fermions [8].

Bis[0y(x.2). g (6. 2). (2. 2)] = o
9(x.2)

Sy Vert [0y (x.2), g (x.2), Ay (x. 2)] =

One may point out why 4—=—7*(x,2)G,,,,(x,z) X
/g(x,z) HYpYy

77" (x, z) does not appear in this effective field theory. We

recall that %
22 (x.2)y/g(x.2)

for the chiral condensate originates from the mass term

vV g(x)%g(pz(x) in the RG transformation. To have

4L (x,2)G,p, (x, 2)7"" (x,2) in the bulk effective
g(x.z)

action for the metric tensor, we need a mass term for
gravitational fluctuations in the RG transformation.
These massive gravitational fluctuations can be generated
by the so-called TT deformation [44], here ~T*(x) x
Gyuupy(x)T?7(x), where T#(x) is the energy-momentum
tensor of Dirac fermions. We refer this aspect to our recent
studies [6-8]. Since we do not take into account such
effective interactions from the beginning, we do not have
the second-order differential equation for the RG evolution
of the metric tensor as the chiral condensate. We will
discuss this point in the last section.

The RG flow of the interaction vertex for chiral sym-
metry breaking is given by

7% (x, z) in the bulk effective action

0.4, 2) = Byly . 2), g (v, 2), A(x. D)), (53)

where the RG f function is

o g ). (59

N gx,

:

All these renormalized coupling functions and the order-parameter field appear in the IR boundary effective action

as follows:

S = [ @ fatnzp{oteestnzn

i ! 1,/
0ot zf>oa/b/) wol)

e sz (0= ot (o Jweld) = Bz o e w0 | (69

This effective action defines the IR boundary condition
unambiguously as discussed in the previous subsection.

Our final question in the formulation perspective is how
the nonperturbative RG-MFT in the previous subsection
can be linked to the emergent holographic dual effective
field theory in the present subsection. Comparing the
effective potential Eq. (23) in the RG-MFT with that in
Eq. (47) in the emergent holographic dual effective field
theory, we identify the field renormalization and the
velocity one with the time and spatial component of the
vierbein tensor, respectively, as follows:

wy (x,2) = Vg(x.2)ei(x.2), v,(x,2) = /g(x,2)e(x.2).

(56)

|
The chiral condensate order-parameter field matches as

Ay (x, 2)p(x, 2) = \/g(x, D) A (x, 2)@g(x, 2).  (57)

Based on this identification, we obtain equivalence between
two effective potentials,

Vertlo(x. 2), w, (x,2), v, (x, 2). 4, (x, 2)]
= Veff[(pg(x’ Z)v gﬂv(x7z)7’1)?<x’z)]' (58)

Here, we did not take into account the spin connection in
the gravity formulation. Frankly speaking, we do not find
the corresponding observable to the spin connection in
the RG-MFT framework. Although we do not have a
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definite answer for this discrepancy, we suspect that
diffeomorphism invariance may not be taken into account
carefully in the RG-MFT framework.

III. A VACUUM SOLUTION OF THE
HOLOGRAPHIC DUAL EFFECTIVE
FIELD THEORY

A. Renormalized partition function
with translational symmetry

In the previous section, we obtained heavily inter-
twined nonlinear first- and second-order differential
equations between renormalized coupling functions and
|

order-parameter fields in the large-N limit. To solve these
coupled differential equations, we take the “perturbative”
approach as usual. First, we consider a vacuum solution,
characterized by translational symmetry. Second, we intro-
duce small fluctuations around this translational invariant
solution and linearize all coupled nonlinear differential
equations based on this vacuum solution. Solving such
linearized coupled differential equations, we find corre-
sponding collective-mode spectra from the vacuum state in
the holographic dual description [45—48].

Now, we enforce the translational symmetry for all the
coupling functions and the chiral symmetry breaking field.
Then, we obtain the following partition function:

Z- / D, (x)Dg(z) D, (2)Dw, (2) D7, (2D, (2) D, (2)D2,(2)Dr, (2)

2

< exp [— / afzx{uva<x><ww<zf>yfaf iy ()0 (x) — iy ()0 Vi (a3 + w«ﬂ(e)}

— LN Azf dz{ﬂ(p(z)(az(p(z) = Bolo(2), wy (), v, (2), 4,(2)]) =

1
22,(2)

75 (2)

+ 7, (2)(0:w (2) = B, [0(2), wy (2), 0, (2), 4, (2)]) + 74, (2) (9., (2) = B, [0(2) Wy (2), 0, (2), 4, (2)])

t 1, (D@ (2) = B [0(2). wy (D). 2, (2). Ay (D)) + Vel (), (2). 1 (2)- 4, (2)] H , (59)

where the spacetime dependence disappears in all the dynamical fields except for the Dirac-spinor field. Although one may
consider general spacetime dimensions, we focus on two spacetime dimensions here just for simplicity, which will be more

clarified below.

The presence of the translational symmetry allows us to perform the path integral for Dirac fermions in the energy-
momentum space. As a result, we obtain the following effective potential:

Veff[(l)(z)7 Wl// (2)7 1]1// (Z)’ j')((Z)]
1

=-—n /A . Dy, (x) exp [— / dPx{p,(x) (W, (2)770; — iv,, (2)7 0w, (x) — id, (2) (), (x)y, (x) }

— _%{;@ IH{ZWW(Z) cosh <2wf(z) \/115,(z)k2 - /1)2((1)(,02(1)) } (60)

after the Matsubara frequency summation at finite temperatures [37]. f = T~! is inverse temperature. Here, the path integral
for Dirac fermions has been performed at a given energy scale A(z). In this respect the momentum k is determined by A(z),

which will be clarified below.

Taking functional derivatives for this effective potential with respect to the coupling functions and the order-parameter

field, we obtain RG f functions as follows:

1 4 (2)o(z)

p

Bylo(2).wy (). v, (2). 4, (2)] = =

tanh
wy, (2) Py \/vs,(z)kz —/Iﬁ(z)goz(z) : <2wu,(2>

VAR -500@). )

'BWW[(p(Z),WW(Z>,UU,(Z>7/1;((Z)}_ Z {%W;(Z)_Wz;(Z)\/D

k=A(z) v

(2)k* = 22(2)9*(z) tanh (% \/1;5,(1)162 - lﬁ(z)goz(z)) }

(62)
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v, (2)k*

B, lo(z). w

-2z

1 2 (2)9(2)

p T
)(pZ(Z) tanh(wa(z) \/UW(Z)k ’1)((2)§0 (Z)), (63)

Wy (2) k=A(z) \/vﬁ,(z)k2 - 22(2)¢*(z

vy )tanh(zwﬁ(z) \/vi(z)kZ _ﬂf(z)(pz@)' (64

74

Introducing the effective potential and all these RG f functions into the partition function, we obtain the following

expression:

Z= / 9(2)Dr,(2)Dw, (2) Dz, (2) Do, (2) D7, (2) DA, (2) D1, (2)

X exp {—ﬁLN( % {ZWV,(Zf ) cosh (ZW,,,ﬁ(zf) \/vg,(zf)[A —-z* - ﬂf(zf)goz(zf)) } + @goz(O))
4 @) (2)

1
_ﬁLN/ dz{ﬂ(p ( wl,,(z)\/Ui(z)[A_Z]Z—/lf(z)qoZ(z)

x tanh <2wf(z) \/vi(z) [A—2? = 22(z)¢? (Z)> > _ 2/11

+ 1, (2) (azww(@ - {%;—%\/vi(z) [A = 2 = 22(2)¢*(2) tanh <#3(Z) V@A - —z;@)qﬂ(z)) })

Bwy(2) wy(z2)

174

+ 771/'.,/(2) (5Z1)W(Z) + WW(Z) \/yi(z) [A - Z]2 _/1)2((Z @

1 A, (2)9*(2)

1 v, (2)[A =2 p
e tanh <2W,,,(Z) \/vg,(z) [A—z)? - /I%(Z)W(Z)))

1, (2) (azuz) -

wy (2) \/vg,(z)[A

-z = 2(2)¢?

- /%ln{Zwy,(z) cosh <2wf(z) \/Uf,(z) [A -

Although this expression is quite lengthy, which may not
be intuitive, we show this complete formulation to emphasize
that the vacuum state is determined by this effective partition
function. Here, L is the size of our one-dimensional system.
A is the UV cutoff, where our interacting field theory is
introduced. z; represents the final recursion step of the RG
transformation, given by z, = fdz, where f counts the total
number of RG transformations and dz is an RG scale [7,8].
When Zp = A is reached, whole Dirac fermions are inte-
grated out to give the bulk effective action except for the IR
|

2] - ﬂﬁ(Z)coz(Z)) }H :

p S
D) talnh<2w BRGSO (z)>>

(65)

boundary condition. One more important point is that the
momentum k is identified with an energy scale of A(z) as
k = z. We believe that this is our natural choice in a
dimensional ground, regarded to be consistent gauge fixing
for the coordinate of the extradimensional space.

Recalling the on-shell free-energy F = % [dPx x
WVete(x. 25) + By(x, zp)@(x, 2¢) + P, (X, 2)wy, (x, 25) +

A, (x,0
Bu, (x.2p)v, (x, 2¢) + By, (X, 2p) 4, (%, 2f) = %(p2 (x,0)}
of Eq. (39), we obtain

1

1 A5(zp)9(zy)

2 i
LNF( zp) = —ﬁln{2ww(zf)cosh<2mp(zf) \/yi(zf)[/\ -

SF =B ) |- 250

. g 'B 2 2 2 2
- nh v — —
WII/(Zf) \/Ugj(zf)[A _ Zf]Z _ )’)2((Zf>(,02(zf) ta <2Wy/<zf) \/ U/(Zf)[A Zf] /1;((Zf)(ﬂ (Zf)>(p(zf)

2 1 1 ) 2 2 2
+ (Em_m\/vw(zf)[/\_zﬂ —AZ(Zf)(ﬂ (Zf)
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x tanh <2"VL(Zf> \/vf,(zf) A=z - A;(zf)(pZ(zf)) ) wy, (z5)
1 vy, (27)[A = 2] tanh p
wy (25) \/”i(zf)[/\ — o P = R (z)) § (2Ww(1f

1 A (27)9% () tanh( p
(@) \/”i(Zf) A -2 =B NPl

) VoA -2 - ﬂ?(zf)fpz(zf)) vy (27)

+

VRGN =5 =B )il (66)

Taking the zero-temperature limit of f — co, we obtain

1 3 1 (z0)0*(zy) 2,(0)
L Ee(e) = = SV = P = Bt ep) — e e = S 2(0),
vz v &) [ @) I8 - 54 = Bz ()
(67)
If we perform the RG transformation completely, we are allowed to set z; = A. Then, we obtain
1 A (Mp(A)  4,(0)
—Eg(A) = -2+~ £ 9*(0), 68
Iy Folh) = 2220+ 2200 (68)

where ¢(0) — ip(0) and ¢(z;) — ip(z;) have been taken into account. Here, we assumed that both 4,(A) and ¢(A) are

ilf::)((f\()/\ ) gives the possibility of spontaneous chiral symmetry breaking, the solution of

positive. The negative sign in —2

which will be discussed below.
Considering the high-temperature limit of § — 0, we obtain

T () = (1=, ) =P (S 2)lA = 5 =307 ) 0 0. ()
Taking z; = A, we have
2 2
L) = 5 1=z () ~p R B ), (70)

where ¢(0) — ip(0) and ¢(z;) = ip(z;) have been taken into account.
Before going further, we discuss what happens above two spacetime dimensions. Suppose

/dT/dD lx-/d’[/ - lk / / - ZQ ng—zs/dr/dw), (71)

where f D 5 represents D — 2 dimensional solid-angle integration. The last equality results in

pz) & P2 (72)

on a dimensional ground. In this respect a pseudogap behavior appears in the density of states, where the integral is more
“regularized” at IR above two spacetime dimensions.

B. Renormalization group flows for all the coupling functions and the chiral condensate

RG-flow equations for three coupling functions are given by

2 1 1 2 2 2 2 ﬁ 2 2 2 2
000, ) = 5o = RO =~ B0 (L RO =P - £ ). (73
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! vy (2)[A -2 p S —
J.v,(z) = - anh 12 (2)[A - 2> - 22 ’ 74
) w, (2) \/vﬁ,(z)[/\ - 7> - ﬂ%(z)qﬂ(z)t <2ww(Z) \/ (2)[A~1] (2)e (Z)) (74)
1 4 (2)9*(2) P 5 .
01/1)( = anh Uy A — — )“)( . 75
(z) wy,(z) \/115/(2)[/\ — 22 = 2(2)¢*(z) t (ZWV/(Z) \/ @)A -4 (2)o (Z)> (75)

These first-order differential equations are supported by their UV boundary conditions, i.e., their initial values at a given UV
cutoff A.

The Hamiltonian equation of motion for the chiral condensate is given by

o) — 1 A (2)o(z) P o a2
o =40 000+ SO -P- 2@ (o VRO - -E0)). 9
] 4(2)e(2) ahl—P 2 (AT — 2 — (e
e e e (5L VA= - @)
A(2) p
+ 7,(2) 2 tanh vy (A =2 = ()9 (2)
"2 [0} (2)A = 2 - B()(2) (ZWN) / )
. 1 4(2)¢*(z) P [ YR
) T e G VI =500
1 A (2)¢*(2) B
- pr,(z) 2W$,(Z) vg,(z)[/\ o ﬂ%(z)(pz(z) sech? <2ww(z) \/vl%,(z)[A — 72— 1}2{(z)(p2(z)> . (77)

These coupled first-order differential equations or the corresponding second-order differential equation needs two
boundary conditions, here IR and UV ones

! 4(2)o(zp) P
ix(zf>> "oE) 03 (2N = 2P = (e () ¢ <2ww(zf)

0, 0(z) == (1+ VRN =5 = Bz )

(78)

1 7(0)9(0)

90.9(2)|.—0 = ¢(0) =
9(2)|:=0 = ¢(0) w, (0) \/vgy(o)/\z—/lﬁ(o

2Ww

p 5 Ty
)(pz(o)tanh( (0) \/ 12 (0)A% = 22(0)gp (0)>. (79)

C. Possible vacuum solutions at high temperatures (f — 0)

First, we solve all these coupled equations in the high-temperature limit of # — 0. The RG-flow equations of the coupling
functions are simplified as

21 ;i 2 1
0.w,(z) = BWU/(Z) - 23(2) (v (2)[A = 2> = (2)9*(2)) = Em
v — 72 2(z
YRR T T w“

up to the first order in f. If we focus on the zeroth order in /3, we obtain vanishing RG f functions, denoted by the long right
arrow. These vanishing RG f functions define the UV fixed point that we start from. On the other hand, the RG f function of
wg,(z) shows the divergence of w2 (z). This implies the classical nature of the dynamics at the UV fixed point, where the
time-derivative term may be neglected safely.
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The Hamiltonian equation of motion is also reduced as

2l0) = 40) (0.0 550 = 1 ool
2
0.7,(z) =p A )(fz()z ) + pr,(z) 23’2(2) - 0. (81)
Then, the Lagrange equation of motion is given by
2 2 2

#ole) - 00 1 p g (e - p D 0 2p(e) - 2D o ®)

This equation is supported by the UV boundary condition

2

000 = 0(0) L) ). (53)

2w, (0)

Considering the zeroth order in # and introducing the UV boundary condition into this equation, we obtain

225(2) - wy, (0) 273(0)
%o(z) = Wi (2) 0.9(z) = ¢(z) = ¢(0) 22(0) {CXP(W; 0) Z> - 1} +¢(0) (84)

for the chiral condensate. ¢(0) is the UV value of the chiral symmetry breaking. Here, we do not discuss this high-
temperature physics further.

D. Possible vacuum solutions at zero temperature (f — o0)
1. Matching method

We enforce the reality condition for the chiral condensate as ¢(x) — ip(x) and z,(x) — iz,(x), where x = % is a
“normalized” coordinate of the extradimension. Taking the zero-temperature limit of f — oo, we have the RG flow
equations for the coupling functions as

1

Aaw (1= x)20% (x) + 22(x)p*(x), (85)
1 A*(1=x)?v,(x)

—dxvy,(x) , (86)
A \/A2 (1 —x)?v (x) + 22(x)9? (x)

1 Ay (x)g? (x)

de/ll(x) , (87)

\/Azl-x (x) + 22(x)g? ()

and the Hamiltonian equation of motion for the chiral condensate as

1 A (X)e(x)
7, (x)=4,(x 0, , 88
o) A)(A szl_x _@+%%ﬂ¢(>> (58)
Ly 2@o() 2()
A \/A2 -+ e \/A2(1 V20 () + B2 (x)
e’ ()

— 7, (x) WW(X) (A2(1 = x)%02 (x) + 2(x)g?(x))3
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Both IR and UV boundary conditions in the zero-
temperature limit are given by

1 1\ 4,(1)
sowle ==(1+ 5 ) o0
1 1 lﬁ(O)(p(O)
—0,¢(x)|,—o = ¢(0) — ,
A @(x)|,—o = @(0) w,(0) \/vi(O)Az—i—/@%(O)(pz(O)
(91)

supporting the Hamiltonian equation of motion for the chiral
condensate. Here, we introduce the following notations

Wy/(o) = Wo, 11,,,(0) = Vo, /1)((0) = Ao. (p(O) = @0
(92)

for the UV boundary values and

wy (1) =wp, v, (1) =vs, 4L(1) =24 (1) =0
(93)

for the IR boundary values. w, vy, and A, are given at UV
while wg, vy, and 1, are unknown to be determined by the
matching method. In addition, ¢, and ¢, are also unknown to
be determined by the matching method.

To solve these coupled nonlinear differential equations,

we consider the matching method as follows:

(1) 4,(x), w,(x), and v, (x): We say 4,(x) [w,(x) and
v, (x)] near UV boundary as 4,,(x) [w,,(x) and
vuy(x)] and A,(x) [w,(x) and w,(x)] near IR
boundary as 4;.(x) [w;.(x) and v;.(x)]. Then, we
consider the matching condition at x; (x, and x3),
given by )*uv(xl) = /?'ir(xl) [WMU(XZ) = Wir(x2) and

|

~ A% (x = 1)22,(x)22,(x)?

Uy (X3> = Uir(x3)] and axluv (x)|x=x1 = axﬂir(x)|x=x1
[axwuv(x) |x:x2 = axwir(x)|x:x2 and axvuv(x)|x:x3 -
0,0;(x)],—,,]. Solving these two equations, we
obtain x; (}cz and x3;) and determine A; (w; and
vy) in a self-consistent way.

@(x): Unlike the above three cases, ¢(x) satisfies
the second-order nonlinear differential equation.
Then, we consider the following matching equa-
tion of (1) §0uv(x4) = (pir(x4)’ (2) ax(puv(x)‘x:)u =
ax(pir(x)|x:x4’ and (3) a,%(/)ul)(x>|x:X4:a)zcwir(x)|x:x4'
Solving these three equations, we determine x4, ¢,
and ¢y.

(@)

2. wy, (x), v, (x), A,(x), and @(x) near IR boundary

Based on three RG flow equations of (85)—(87), we
obtain

vy (X)9:4, (x)
Ay (X)0,,, (x)

Substituting Eqgs. (85)—(88) and Eq. (94) into (89), we find
the following second-order nonlinear bulk equation for ¢(x):

p(x) = A1 =) (94)

Ax)@" (x) + B(x)¢' (x) + C(x)p(x) =0, (95)

where

(96)

(97)

and

) = (= 122 1, (07 e

(wy, (x) (A =22 (x)) + 4, (x)w), (x))

= A2(x = 1), (x)?wy, (x) (A = 34, (x)) + 4, (x)*w,, (x)>w}, (x)
+ A (1= x)A, (x) 2, (2)((x = Dwy, (x)23, (1) + 0, (1) ((x = Dw, (x) +w, (x)))

A*(x—=1)4,

V4 (%) 25 (%)
vy (%)

Here, the " symbol denotes a derivative with resect to the
argument of the corresponding function.

Taking the x — 1 limit (IR boundary), we observe that
Eq. (95) becomes simplified as

A ()9 (x) + 24, (x)¢" (x) = 0. (99)

(v () wy, (){ (x = 1) (2A = 52, (x)) + 4, (x)} + 2(x = D)4, (x)w, (x)]

(98)

|
Its solution is given by

¢/x) = - (100)

A (%)’

where k is an integration constant.
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25¢

= 207

Air(

151

101

0.80 0.85 0.90 0.95 1.00
X

FIG. 1. Comparison between the iteration solution of Eq. (113)

and the solution of the full differential equation (106) near the IR
boundary x ~ 1.

Again, as x — 1, Egs. (85)—(87) become

1 A (x)p(x)
Xaxwv,(x) = —W, (101)
1 B _A (1-x)%v,(x)
RO = e (1
1 __olx)
Aok == (103)

These simplified RG flow equations near the IR boundary
result in

wy, (X)wy, (x) = 4,(x) 2, (x) = 0. (104)
Then, we obtain
W, (x) = \/Ax(x)z + w2 — 2, (105)

Substituting Egs. (100) and (105) into Eq. (103), we find
the second-order nonlinear differential equation for 4, (x) as

A, (%), (x)? B kA

:0'
2 w22
Ay (X)" + Wi =25 Ay (X)3 /A, (X)* +wh = 23

Ay (x) +

(106)
|

To this end, we use the following recursion equation
n n+1)
iy AT @R ()
b )+ /1<n) 2 2 g2
(x) +wy— A5

x)\//l

=0, (107

wi— A7
starting with
(108)
For n = 0, the solution of Eq. (107) is given by
2 (x) = 2, (x)
=+ Mj {log (cosh <\/%\/K(x _ Cl/lfw})))

ﬂf ;/2
—log (cosh (ﬁﬂ(l ;chﬁfwf)> ) } (109)

Wy

where ¢; is an undetermined constant. We point out that
Eq. (103) gives

/! ‘ f
f

(110)

Taking the first derivative in Eq. (109), we see that this
result should be equivalent to Eq. (110). Then, c; is
determined as

1 1 VA 1
cf = — —tanh—1< f f>+—}. 111
: ﬂf{\/E\/wa/z fwm v (1)

The IR boundary condition Eq. (90) with Eq. (100) gives

Ap(Ap+ 1)

wg

k= (112)

Substituting Egs. (111) and (112) into Eq. (109), we obtain
A,(x) for n = 0 near the IR boundary as

A. A(l — X )
f o 2
lr( ) f + — ; og ( ]f 181n <

From now on, we change the notation as l;((l)(x) = A,(x).

Wy

2
/

Zﬂf(xf + 1)) ©eosh (A(l - Xz)w A (s + 1))) C(113)

To justify this solution, we compare it with the solution of the full differential equation (106) near the IR boundary x ~ 1.

The red curve in Fig. 1 is the numerical result of Eq. (106). Here, we set A =

100,4; =5, ¢; = 1,w; = 2. The blue curve

is the plot of Eq. (113), obtained by the iteration method. As x — 1, the two curves become identical.
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Substituting Eq. (113) into Eq. (105), we obtain

2

2
p A = x2)\/Z7 0 + 1 A = x2)\/Z7 0 + 1
wip(¥) = | W2 = 2+ |2+ L1og (2L |2 inh (1= x) 2,»(,+ )\ 4 cosn (AUL=%2) 2f(er Y
' Ap T \wp A+ wi w2

(114)

Substituting Egs. (113) and (114) into Eq. (103), we find

2 0

1 1 (T+1 2 W%(%Hog((u—l)sinhz(%log<%)+2x)))
2 (x) = wpy [1+—coth (=1 Z )\ 1= ! 115
Pl = [ g0 (2 Og<7 —1>+ > Wi’ 422 e

with

_ e
VA + Dwy
_ e
A+
A(1 —x)
Wy

Z, = Ap(Ap + 1),

To find v;,(x), we consider Egs. (113)—(115) to expand —WM at x = 1. Then, we obtain
v V4

NN i(—l)”<(1 (AW, 1)))” _ A (116)
wy, (x) 4, (x)p(x) Awrps 4 W Af(A(x = 1)(Ap + 1) —wrey)
Substituting Eq. (116) into Eq. (105), we obtain
)
Al —x)(Ap+1 Tk 2A(x —1)(A; + 1 A2(x —1)2(A, +1)2
Uir(x) _ Uf( ( .X')( f+ )+1> p(Ap+1) exp( (X )( f+ )Wf(pf+ 3()( ) ( f+ ) ) (117)

All these procedures are rather tedious but straightforward. However, we show them explicitly to demonstrate how all
these analytic solutions can be found.

3. wy,(x), v, (x), 4,(x) and @(x) near UV boundary
Substituting Eqgs. (85)-(88) into Eq. (89), we obtain

L) A’ LOPA® W0l (A =32 )

v+ )< 2,00 T A= 10, (2w <x>) N0 =00y (), () (= x), (D ()

BN =, () + Py () (Pl
(T = 20, (3w, (2 (1= V0, (1) (e

X (= 1w, (x)1, (3) + 1 ()0, () = (1 = Xl ()} = 0. (118)

Here, we point out ¢y < 0 although this sign does not change the spectrum. We further simplify this equation, neglecting
higher-power terms in ¢"(x). As a result, Eq. (118) is more simplified as

go”(x) T ( /lx(x) _ MX(X) /lx(x) (W,I,<x)11{,,(x) + Uu/<x)W{//<x)> Al(x) )

(1 =220, (x)wy (x) (1= x)v, (x)w,, (x) (1= x)v, (x)*w, (x)? (=270, (0w, (x)?
x @(x) = 0. (119)
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/

Considering the x — 0 limit (UV boundary), we find wy,(x), v},

simplified as

(x) = 0. Then, this equation becomes further

/ AX(X)Z M)((x) /1;(<x)4 _
7t ((1 = %)%, (x)w, (x) - (1 = x) vy, (x)wy (x) - (1 —x)zvv,(x)zww(xy) ¢(x) =0 (120)

near x = 0. To this end, we consider the following recursion equation

, A(”) (x)Q M(")<x) /1(”) (X)4
(n+1)" ( 4 — X _ X (1) () =
' <)+<<1—x>2v$’><x>w$)<x> (1 =x)2,” (wy,” (x) (1—x>2v£;’><x>2w$><x>2>“” e

starting with

As a result, we find

(p“)(x) = 9un() pov1—x (_”ﬂg/zﬂvowop%_l CSC(”j)Il—j(z\/ p(1=x))[A0(j +2A)oF1(:jip) + AgF1(5j + 15 p)]

~ (vowy)? rG+1)
(vowo)>"?1;-1 2/ (1 = x))[oF1(:2 = js p) {0+ 20)gF1(: js ) + AgF1 (i + 15 p)} = 2o + 240]

- | 2= D)ol 2P) ) (122)

for n = 0, where j = vi/vléo and p = % The F symbol (1) Similarly, Eqs. (123)~(125) become
represents a hypergeometric (modified Bessel) function, (n+1)? (D N 201 ey ()
given by Mathematica. wy T wy () = —AN(T = x)oy (), (127)
For sufficiently large A, the RG flow equations of (n1y A2(1 — x)
Egs. (85)~(87) and the UV boundary condition Eq. (91) vy (%) = (128)
L wy (x)
become simplified as
(nt1) 2
Y (x) o ()
w2 (x)0,w,, (x) = =A2(1 — x)v,(x), 123 " == P " ) (129)
p(9900, () = AL =y ). (123) 0@ (1 - e ()
A2 1 — . .
d,v, (x) = — ( x)7 (124) starting with
wv,(x) A’ vox
0
i Wi (x) = wp — w2° , (130)
ax/l)((x) _ (p (x) 25 0
400~ =nn w1 o Ax .
| Uy (x)—vo—wiov (131)
an
9 (x) = ¢o + ¢oAx. (132)
0x(%)] =0 = Ago. (126) ,
As a result, we find
|
5 3 2 3
(1) Wo Wo o Wwo
= v,,(x) = 1 ——log| —5— , 133
o0) = run(s) = o+ o8 (r) =28 (g (0 ) +x) (133)

066004-20



RENORMALIZATION GROUP FLOW TO EFFECTIVE QUANTUM ... PHYS. REV. D 107, 066004 (2023)

700} 1 900}
680 - -
880"
660 - :
= X 860"
> 640+ 1 3
620 - ] 840
600 - ] 820
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
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FIG. 2. Verification of the iteration solution near the UV boundary x ~ 0. (a) v,,(x) vs x. (b) w,,(x) vs x.

32 — 2)x + 2w + A3 -2 A’
\s/ vowo (x ))HZ‘ wo + A3 —2x) wo — 1120)6 for near x = 0, (134)
) Wo

2
“0

20(x) = Ay (%) = 2o(1 = x)70% (135)

for n = 0.

In the same way as discussed before, all these n = 0 solutions are verified in the UV limit. The red curve in Fig. 2(a) is the
result of the full differential equation for v,, (x). Here, we set A = 1000, wy = 0.9A, vy = 0.7A. The blue curve is the plot of
Eq. (133), obtained by the iteration method. As x — 0, two curves are identical to each other. Similarly, the red (blue) curve
in Fig. 2(b) is the plot of the full differential equation [Eq. (134)] for w,, (x).

4. The matching solution for A,(x)

Substituting Egs. (113) and (135) into 4,,(x;) = 4;(x1) and 044,y (x)|,—, = 0xir(X),—,,,» We obtain two matching
equations as follows:

(1)
% w? y) Al - Ae(ds + 1 Al - Ar(dr +1
/10(1 —Xl)ﬁ :Zf+_flog ﬂ f Sinh( ( X2> 5 f< f >> +COSh< ( x2) - f( f )> ,

(136)

(@)

q,Z
Ao@2(1 = x; )iors ! e+ 1 A Al = 2+ 1
og(1—x))o0 f;’ tanh(tanh_1< 1P >+ (=) VA ))_Af. (137)
f

VoWo \/ﬂf(ﬂf-f— 1)Wf 2

Wi

Our numerical results show that the condition of 1y < v, wy should be satisfied. Otherwise, these two functions 4, (x)
and ;,(x) do not meet at any point in 0 < x < 1. In this respect we consider 4y ~ 1 and vy, wy ~ A as UV boundary values.
We discuss vy, wy ~ A below in more details.

Blue (yellow) curves in Figs. 3(a) and 3(b) represent contour plots of Eq. (136) [Eq. (137)]. We notice that the intersection
of these two curves occurs near x; = 1 and 4y = 4;. Then, Eqgs. (136) and (137) near x; = 1 become
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M
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0.998 —/ :
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Self-consistent solution for the matching point x; and the IR boundary value ;. (a) We set A =50, g =5, wy = 0.9A,

vp = 0.7200A, w; =05, @, = 1.007, gy =0.0211605. (b) We take A =50, Ay =35, wy=09A, vy=0.7200A, w; =2,

(1)
(1 = x1 )5 — Ay - A(xlv;fl)q’f, (138)

(2)
i () _xl)zﬁéo-l e

DoWo Wf

Based on these simplified equations, we find an analytic
expression for x; and 4, as follows:

For small ¢, Eq. (141) becomes

2 2
%0 log( Doty )) ~ 4. (142)
VoWo A’U()W()(pf

Figure 4 shows an RG flow of the interaction parameter
A (x) in the parameter range of A = 50, 49 = 5, wy = 1.1A,
vo = 1.305A, wy =2, ¢y =0.001, ¢y = 0.1. The green
curve in Fig. 4(b) is a plot of Eq. (135) while the red one is a
plot of Eq. (113). The matching point is given by Egs. (140)
and (141).

2
A
X =1- % , (140)
Agy(vowo — ¢p) 5. The matching solution for w,(x)
1o ) ot % Substituting Egs. (114) and (134) into w,,,(x,) = w;,(x5)
Ay = 0{PoWo — @ ( 0PoWr . )'0 0 (141)  and 0 Wiy (X) |1y, = 0w (X)],—,,, We obtain two match-
VoWo Agy(vowo — @) ing equations as follows:
|
(1)
A200X2
Wo — 5
wo
w3 P A= x) /2,0, F 1 A1 =) /A + N |
= w?-—ﬂ}—k /1f+—f10g br / sinh( ( 2) zf(f ))—i—cosh( ( 2) zf(f )> ,

(143)
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FIG. 4. RG flow of the interaction parameter 4,(x). (a) 4,(x) vs x overall. (b) ,(x) vs x zoomed.
(@)

A 1 Ar+1 A? 2 A Al =2xp)/Ap(Ap+ 1
—1}20 = e ! \/ AJ% - wj% + (WO - v;’xz) tanh  tanh~! | £ L+ (1-x) 5 AURR) .
Wy wy — At Af wi we\[ A +1 wy

2
Wo

(144)

Figure 5 shows a self-consistent solution for the matching ~ of wy, shown in Fig. 6. It turns out that w increases quite
point x, and the IR boundary value w. Blue (yellow) curves slowly as a function of A, confirmed in Fig. 7(a). However,
in Figs. 5(a)-5(c) are contour plots of Eq. (143) [Eq. (144)] we point out wy << wy, not easy to obtain in the conven-
with different values of A. Here, we set 49 =2, 4, =2,  tional quantum-field-theory calculation.
vy =75, wy = 56, ¢y = 0.0001. We notice that the inter- Finally, we discuss an RG flow of the wave-function
section point disappears as A increases, given Vg and wo. renormalization constant Wy, (x) The green curve in Fig. 4(b)

Now, considering 4o = 2, Ay = 2, vy = 1L.5A, wy = 1.12A, is a plot of Eq. (134) while the red one is a plot of Eq. (114).
@, = 0.0001, we investigate the UV cutoff A dependence ~ The matching point is obtained by Eqs. (143) and (144).

1.0 1.0F 1.0
0.8- 1 0.8r 1 0.8
0.6 (\ 0.6 q 0.6
oY N Y
x x x
0.4r 1 0.4 q 0.4
0.2r q 0.2r 1 0.2F
0.0k I I I Iui 0.0 L L . . . . 0.0L, I I I I I
0 5 10 15 20 0 10 20 30 40 50 0 10 20 30 40 50
ws Wi Wi
(a) (b) (©)

FIG.5. Self-consistent solution for the matching point x, and the IR boundary value wy, given vy and wy. (a) x, vs wy at A = 50, (b) x,
vs wp at A =51, and (¢) x, vs wy at A = 52.
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FIG. 6.  Self-consistent solution for the matching point x, and the IR boundary value w; as a function of the UV cutoff A. (a) x, vs wy
at A =50, (b) x, vs wy at A =100, (¢) x, vs wy at A =500, and (d) x, vs wy at A = 1000.

For sufficiently large A, we find an analytic expression for the matching point x, and the IR renormalized wave-function
constant w, from Egs. (143) and (144) as follows:

sz -1 Yr Ay
m=lo—t _tanh! |2 : (145)

Azﬂ%(/lf + 1) (v, —w3)?
\/—43.{16A2(zf + 1) (v, — wd)?(4Astanh™! (M)*02 — (4, + Dlog?(1 — J)w*) — K2} + KA,

(146)

224 (Ap + 1) (v, —w})

S,
(A + 1w log (1 = 2472) + 24/, (2 + v tanh”! ( — )

~ VA (147)
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40 | ]
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X 30F ]
> L
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20 - .
50+ [
10 F ]
0 L ]
o L 4 1 1 1 1 1 1
0 20000 40000 60000 80000 100000 0.0 02 04 06 08 1.0
A X
(a) (b)

FIG. 7. RG flow of the wave-function renormalization constant wv,(x). (@ wy vs A overall with dg =2, Af =2, vy = 1.5A,
wo = L.I2A, ¢, = 0.0001. (b) w,, (x) vs x overall. The matching point x, and the IR renormalized value w  are obtained from Fig. 6(a).

with

Vo = D,A,
Wo = WrAa
J = L
(A + Dwd’
K = 44;(A; + 1)(log(1 = J) = 1)w} + 8Ay/As(As + 1)v,(w} — v,) tanh™! ::2

We point out that Eq. (147) confirms w; ~ v/A.

We have to mention that there is a case in which w, does not depend on A. If we consider v, = % + w3 as a UV boundary
value in Eq. (146), we obtain

224+ )02,
wp=2V2 |- L - . (148)
\/—1}{16(/1f + 1)v3,(4Aptanh = (U)* (2 + wi)? — (A + D)wilog?(1 - T)) - 18-} 4+ 0
wiH{=2F | /A A+ 1) 0w+ /A+1 \/ U (Fo (A1) =4F2pwi ) +(Fo=1)2 23 (A Dwi-+(Fo=1)Ap (Ap+1)w7 }
(149)

where
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FIG. 8.

The case when the IR renormalized wave-function constant w; does not depend on the UV cutoff A. Here, we take v, =

a4 w3 with 1y = 2, Ar=2,v, = 1,w, =112, = 0.0001: (a) x, vs wy at A = 50, (b) x, vs wp at A = 100, (¢) x, vs w; at A = 500,

and (d) x; vs wy at A = 1000.

ﬂf(% + W%)2
()“f + 1)Wi ’

v 3
&+

1 bl
1/2+1W%

T =

U:

P = Aw}(24 /27 (27 + Dv,tanh™ (U) = 2, (45 + Dw,(log(1 = T) = 1)) +24/2,(4; + 1)vj,tanh™" (V)

0 = 422 + Dwi(log(1 = T) = 1) = 82,1 /4;(2; + 1)v,,tanh™" (V) (i’\" + wi),
Fo—log (1= 2
0= 08 A41)

A
F, =tanh!|  [—L—w, |.
A+ 1

We see that Eq. (149) is independent of A. Figure 8 confirms that w/ is independent of A if we set v, = % + w>. Roughly,
we have wy ~3.607. But, the matching point depends on A, given by x, — 1 as A — co.
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6. The matching solution for v,,(x)
Substituting Egs. (117) and (133) into v,,(x3) = v;.(x3) and d,v,,(x)|
equations as follows:

vy = OxVir(X)],—,,» We obtain two matching

(n
Aw’ 3 A2 3
Av, + V?log( 2 o ) il <log<—3 o ) —|—x3>
v2 W — X3, v, W — X350,
2.2
0 2 2 2
o, <A(1 —x3)(4; + 1) N ]),Nfﬂ)s eXp<2A(x3 = 1)(As + Doyw, + A3(1 —x3)% (A + 1) >’ (150)
‘ Prws 22¢(4p + 1)
2)
W22
A (x3 = Doy (1 AL - DA+ 1)>a,-<zf,-+fn3 exp (A(X3 —D)Q@wspy + Alxs — 1) (4 + 1)))
W
- _=0. 151
+ X30, — W) (151)

With the choice of the UV boundary value v, = %= + w3, we find an analytic expression for the matching point x5 and the
IR renormalized velocity vy from Egs. (150) and (151) at sufficiently large A as follows:

o1 W<AWf e%(A—wr(vm+Aw§))>’ (152)
Aw; Uy
Jy = 01 = Ay = Dy + 1) (1 Al = Dy + 1))—,W1)3 - (_ Alxs — 1) 2w, + Alxs — 1)k + 1)))‘
A% (x5 —1)%w, oWy 24¢(Ap +1)?
(153)
orof T T T T
o.es\ —
0.60 1
[ 1 oF
2 0.55) 1 30
7 ] 25"
0.50 ] = 20
7 T
045/ 10
st
040l of | | | ‘ .
0000 0002 0004 0006 0008 0010 00 02 02 06 o8 0
Vs X
(a) (b)

FIG. 9. (a) Self-consistent solution for the matching point x3 and the IR boundary value v, and (b) RG flow of the renormalized
velocity v, (x). Here, we take v, =%+ w; as a UV boundary value with A = 50, 4y =5, 1, =5, w, = 0.9, w; = 0.5, ¢, = 1.007.
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Here, W(z) is the Lambert W function. We observe

2 A w3 2
vp~exp (- W wr gk (nend) ) (154)
: 2wpdr(Ap + 1) U

at sufficiently large A. This indicates appearance of a strong-coupling IR fixed point, where the kinetic energy vanishes.

The blue (yellow) curve in Fig. 9(a) is a contour plot of Eq. (150) [Eq. (151)]. We notice that the intersection of these two
curves occurs near vy = 0.0065. The green curve in Fig. 9(b) is a plot of Eq. (133) while the red one is a plot of Eq. (117).
The matching point is obtained by Egs. (150) and (151).

7. The matching solution for ¢(x)

Substituting Eqgs. (115) and (122) into (1) @, (x4) = @ (x4), (2) 0xp100(¥)[s—, = 0x0ir ()]s, and (3) oy (¥) sy, =
0§(p,-,(x)|xzx4, we obtain three matching equations as follows:

(D
2 (%7 s 100 T+1 2
1 T4 /IJ% Wi (W—§+ log ((U — 1)sinh (Elog(ﬁ) + ZX))>
1 th [ =1 Z 1-—=
Uf «© (2 Og(T 1) * ) wi ' 42

= LSQ V1-— x((ninll—ﬂ?l (yx) + QreI2B]—l(:))x))

(vowy)

X=Xy

, (155)

X=Xy

(@)

222 . 2
Lol (1 (T N | A w3 (5 + log (U - Dsint® S log () + 2.)))
- t — - —_ L
RATRRIIF b (2 °g<7—1>+ ") wit 412

X=Xy

= {\/ (lel -2B, (y ) Qr(-:IZBI—l(:yX))}

, 156
(710W0)5/2 ox (136)

X=Xy

3

2
> 2 [ +1log ((U—1)sinh?(Llog(ZE) + 2,))
9 coth(110g<7+1>+2> 1——f2—|— ( )
!

wiy [1+———
Ay 0x2 T-1 47

__ % 9 2{\/ X(Qind1-28, (Vo) + Qeelog, -1 (Vo)) }

) 157
(vowy)/?ox (157)

X=Xy

where

ke
Ar(Ap + Dwy

Ar9f
_ A(l =x) l‘f(ﬂf +1)

X sz ’

u:

Ao
VoWo ’

BOZ
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/12
0
Bl = s
VoWo

V. =2By(1 —x),
_”’18/2/\3/2710%3(?1_2 csc (228,) 2By F 1 (;2B1; By) (A + By ) + BooF1(;2B) + 1; By)]

Qin =

Qre:_

(2B, + 1)

’

(U()WO)S/z[OF] (,2 - 26],Bo){z/’{OOFl(,zBl,Bo)(A + B]) + AOFl(sZBl + 1,80)} + 2&0(1 - 281)]

(220(2By = 1)1, -1 (2+/By) '

Blue (yellow) curves in Figs. 10(a)-10(d) are con-
tour plots of Eq. (156) [Eq. (157)] with different values
of A. ¢ is obtained from Eq. (155). We notice that the
intersection of these two curves occurs near ¢, ~ 13.11

of A. We point out that x, - 1 and ¢y — 0 as A - .
For various values of A =50, 100, 500, 1000, we
have (¢o, @f, x4) = {(0.2644, 13.11, 0.9805), (0.1353,
13.11, 0.9891), (0.0273, 13.11, 0.9977), (0.0136, 13.11,

and x, ~ 1. It is interesting to see that ¢, is independent ~ 0.9988)}.
1.000 \ 1 1.0001 ‘ ‘ ‘ .
T o
0.999f 1 0.999F / 1
0.998+ 1 0.998 \\ 1
< L ] & L ]
T 0997 5T 0997 \ :
’ \\,
0.996 ‘ 1 0.996 1
0.995 \ 1 0.995+ .
0.994 1, ‘ ‘ ‘ ‘ 3 0.994, ‘ ‘ ‘ ‘ ‘ J
0 10 15 20 25 30 0 5 10 15 20 25 30
Pt Pt
(a) (b)
f/—— -
- -
/ 0.9998 - - 1
0.9995+ . /
0.9996 - [ 1
< 0.9990f 1 5 \
x > 0.9004 1
\\ "
—— N
0.9985 1
0.99921 N |
\ -
0.9980% ‘ ‘ ‘ ‘ d 0.9990+, ‘ ‘ ‘ J
0 20 40 60 80 100 0 50 100 150 200
% 4
(© (d)

FIG. 10.  Self-consistent solution for the matching point x4 and the IR renormalized value ¢ of the chiral condensate as a function of
the UV cutoff A. Here, we take wy ~ 3.11568, given by Eq. (146). We use v, = % +w? with Ay = 2.1, Ap=21Lw,=12,v, =1
(@) x4 vs ¢ at A =150, (b) x4 vs @y at A =100, (c) x4 vs @, at A =500, and (d) x4 vs ¢, at A = 1000.
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FIG. 11. RG flow of the renormalized chiral condensate ¢(x). (a) ¢(x) vs x overall. (b) ¢(x) vs x zoomed.

Figures 11(a) and 11(b) are based on Fig. 10(d): A =1000, 4y =2.1, i, =21, w,=12, v, =1 with
(®0. @f,x4) = (0.0136,13.11,0.9988). Green (red) curves in Figs. 11(a) and 11(b) are based on Eq. (122) [Eq. (115)].
The matching point is obtained by Eqgs. (155)-(157).

E. Introduction of é¢(x,z) fluctuations near the fixed point

Now, we are in the position to discuss how to find correlation functions, considering perturbations around the previously
discussed vacuum solution. For example, we consider 6@ (x, z) fluctuations up to the Gaussian order around the vacuum
fixed point as follows:

Z =7 / Dég(x, z) exp {—N/ dzx{@&p(x, zy) / dxT(x = X', 2) 50 (X, ) + @5&@,0)}

_ NAZ/ dz/dzx{/l)(T(Z> <6Z5g0(x,z) + %ﬁ/ d*X'T(x — X', 2)6p (X, Z))Z
+ Léz)&p(x, z) / d?xX'T(x — X', 2)5¢(x, z)H . (158)

where the vacuum partition function is given by

Zyae. = EXP [—ﬁLN <—;1n{2wv,(zf) cosh <2Wy,ﬂ(Zf) \/vi(zf)[A zf]Z - ﬂ%(zf)(ﬁ(zf)) } + /l;féo) (p2(0)>
B g [2,(2) 1 4 @)o(2)
ﬁLNA dz{ > <GZ(P(Z) +wv,(z) \/vg,(z)[/\— - 222 (2)
x tanh (wa(z) \/vf,(z)[/\ -2 Aﬁ(z)(ﬁ(z)) ) 2
_ /%ln{Zwy,(z) cosh <2wf(z) \/vﬁ,(z)[/\ — - ﬂ%(z)(p2(z)) }H , (159)

and discussed before. Here, we focus on d¢(x, z) fluctuations only just for simplicity. In principle, we have to take into
account all possible fluctuations of dynamical fields, more precisely, éw,,(x.z), 6v,(x.z), and 6A,(x,z) in addition
to S¢(x, z).
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II(x — x’, z) is the polarization function, given by
N(x = x', 2) = (W, (x)y, () (K )y (X))
= [ Dy ()7, (o () (€ () exp [— / Py, (y)(w, (2)r70; = iv, (2)r*0, )y, (v)

_ iz;{(z)w(zm(y)w,,(y)}} , (160)

where the corresponding partition function for this correlation function is
Z(z) = / Dy 4(x) exp [— / dx{ip 5 (x) (w,, (2)170; = iv,, ()10 )w o (x) = i, (D) () (X)wo(X)} | (161)

The last term of @&p(x,z) Jdx'T(x —x',2)5¢(x', z) /12(z) [ d®x'TI(x — x', z)5¢(x', z)) results from the expansion of the
effective potential Veg[p(x.z), w, (x,2), v, (x, 2), 4, (x, )] (RG p function f,[¢(x,z). w,(x.2),v,(x.2).4,(x,2)]) with
respect to @(x,z) = ¢(z) + 6p(x, z) up to the Gaussian (first) order.

The equation of motion for 6p(x, z) is given by

az{x (z )(a Sp(x,z) + %= 4(2) /dlx/n x=x,2)8p(x, z))}
4(2)
2

2

- 40510, (azaqo(x,z) T R )

- 22(2) / PxT(x — X, 2)8p(x' . 2) = 0 (162)

in the large N limit. Taking 4,(z) = 4, near the IR fixed point discussed in the previous subsection and performing the
Fourier transformation, we obtain

/12 dD 1
0260 (i,. 4. 2) +3X (H(tﬂn,q z / (iQ,.q. Z)>0z5<ﬂ(i9n,q,Z)

/12 daP- 1 . . .
+ {2 a H(lQVl’q Z) ( ) ( Z/ 277: D 1 lQ‘mq Z))H(lgn,% Z) _A‘Zn(lgnaq7z)}5(p(lgna q’ Z) = 0

(163)
Both IR and UV boundary conditions for these fluctuations can be found as follows:
: N4 o ,
azfé(p(tﬂ,,,q, 7)) =—(1 —I—g EH(lQn,q,zf)é(p(zQ,,,q,zf), (164)
/‘LZ
0.6¢(i,,.4.2)|,—o = 6p(iQ,,q.0) — %H(iﬂn,q,O)&p(iQn,q, 0). (165)
Here, the polarization function is
I(iQ,.q,z) = ——Z/—tr{G(za)n +iQ,. k+ q)G(iw,, k)}, (166)
where the translational invariant vacuum Green’s function is
. 1
G(iw,, k) = (167)

wy, (2)7" (iw,) + v, (2)r'k = id,p(z)
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It is straightforward to calculate this polarization function
for the vacuum state, not performed explicitly here.
Solving the equation of motion with two boundary
conditions, we would find the “meson” spectrum in the
chiral symmetry broken vacuum state. Although we do not
perform this calculation here, the present discussion shows
how the nonperturbative RG-MFT takes the essential
features of the holographic dual effective field theory.

IV. CURVATURE AND MINIMAL SURFACE ON
THE THREE-DIMENSIONAL CURVED
SPACETIME

By using the identification Eq. (56) between the vierbein
and the renormalized coupling functions, one can con-
struct a curved spacetime metric containing information of
the RG-MFT. In this section, we investigate properties of
the curved spacetime constructed from the asymptotic
solutions of the RG flow equations. In particular, we
calculate the Ricci scalar curvature and area of the minimal
surface.

A. Three-dimensional Ricci scalar
Let us consider the following three-dimensional space-
time:
ds> = dz? + Gudxtdx* = dz?> + g,.drdr + Gyydydy,
(168)
where 0 < z < A, 7 is a time component, and y is a spatial

component. With the identification Eq. (56), the metric g,
is expressed by

) )
G = UI//’ gyy - WI//' (169)
Ryv (x)
0.005 - /
L Il L L L Il L L L Il L L L Il L L L Il

0.2 0.4 0.6, 0.8 1.0
—0.005
-0.010+
-0.015

(@

When v,, and w,, do not depend on 7 and y as studied in
Sec. III, the Ricci scalar R of the three-dimensional
spacetime Eq. (168) is given by

L 0.0)(@,) + (@0, + 1, (@)
VW, ’

(170)

In Sec. III, we obtained asymptotic IR solutions w;,(x)
Eq. (114) and v;,(x) Eq. (117) near x = 1 and asymptotic
UV solutions w,,(x) Eq. (134) and v,,(x) Eq. (133) near
x = 0, where x := z/A. By using them, we define two Ricci
scalars as

Ruv (x) = R|W|//:Wun (x),0, =0, ()

Ryy(x) = R, (171)

=Wy ()0, =03, (x)*

Figure 12 shows plots of R,,,(x) and R;,(x) with A = 50,
Ap=5 w, =09, w;=05 v, =24w, v,=1,
vy = 0.0065, ¢ » = 1.007. With the above parameters,
these two Ricci scalars have singular behaviors in certain
regions. Near x = 0.65, R,,(x) is singular because v,,(x)
vanishes. Near x = 1, R, (x) is not well defined since wj —
A?vox in Eq. (133) is negative, where v, = v,A and
wy = w,A. Of course, these features are artifacts of the
asymptotic UV solution extended to the IR region. A
physically relevant point is that it is given by a negative
constant near the UV boundary. The divergence of R;,(x)
near x = | is actually physical, which results from the
singular behavior of the derivative of w;,(x). On the other
hand, the asymptotic UV behavior of R;,(x) is not relevant.

Let us comment on the finiteness of the metric with finite
A. In Fig. 12, R, (x) at x = 0 is negative, which is similar
to asymptotic AdS geometries. However, when v, and w,
are finite, the metric Eq. (169) is finite at x = 0, which is

Rir (x)

al

ol

a4l

(b)

FIG. 12. Two Ricci scalars constructed from the asymptotic UV and IR solutions. (a) R,,(x) with A = 50, w, = 0.9, v, = % 4 wl,
v,, = 1. We observe that it is given by a negative constant near the UV boundary. The behavior near the IR boundary is not relevant.
(b) R;,(x) with A = 50, 4, =5, w; = 0.5, v, = 0.0065, @, = 1.007. It diverges as x — 1. The behavior near the UV boundary is not

relevant.
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L/
2 42 ) 7z Y
(@) (b)
FIG. 13.  Schematic pictures of the minimal surface for a single

interval at z = 0, where 7 is the size of the interval. (a) Connected
surface for # < 7. (b) Disconnected surface for £ > £ ... There is
a transition of the minimal surface at £ = 7..

different from the asymptotic AdS geometries. Rather, its
finiteness is similar to a property of the asymptotic AdS
geometries with a finite cutoff radius.

B. Minimal surface

The authors of Refs. [26,27] proposed the holographic
entanglement entropy as the holographic dual of entangle-
ment entropy in boundary QFTs. They gave a prescription
to calculate the entanglement entropy using the minimal
surface that anchored on the entangling surface. This
celebrated proposal is the pioneering work to study
quantum information from the viewpoint of holography.
In this subsection, we evaluate the minimal surface for a
single interval on the three-dimensional spacetime Eq. (168)
with Eq. (169).

For a given one-dimensional surface £ on a fixed time
slice, we define its area A by

A= / \/ 4z + gy, (2)dy*.
£

The minimal surface anchored on the boundary of a single
interval at z = 0 is defined by the surface that minimizes
the area A. Suppose that g, (z) = wj(z/A) is a decreasing
function of z like Fig. 7(b). Then a spatial distance
Gyy (z)dy* is minimal at z = A. Since the metric of
Eq. (168) is finite at z = A, the minimal surface can reach
z = Aif Ais finite. Such holographic geometries have been
studied for gapped systems, e.g., [16,49,50], and the shape
of the minimal surface would be as follows. When the size
of the interval is small, the minimal surface is a connected
surface as shown in Fig. 13(a), where ¢ is the size of the
interval. As ¢ increases, a disconnected surface becomes
the minimal surface at £ = £, as shown in Fig. 13(b). This
behavior is known as the confinement/deconfinement
transition at the critical length £ = ¢, [51,52].

First, we examine the connected surface [Fig. 13(a)],
whose area A.(?) is

ader= [ W () +anteon.  am

(172)

where z(y) is a function that represents the shape of the
surface. To determine the minimal connected surface, we
need to find z(y) that minimizes the area A.(¢), and a
differential equation of z(y) for the minimal connected
surface is

iaL(z, Z—;) ~ oL(z, Z—;)

dy ag—; 0z ’
dz dz\?2
L(z.22) =/ (= (2), 174
<Z dy) (dy> * () 174)
&’z dgy(z) (dZ)\? dgyy(z)
2 —*_9 Yy i _ ! yy =0.
= 200052 =27 (dy> @)=y
(175)

The minimal connected surface is given by a solution of
Eq. (175) with two boundary conditions

dz(y)
dy

2(£/2) =0, =0. (176)

y=0

We define A™"(#) by the area of the minimal connected
surface, which is Eq. (173) with z(y) for the minimal
connected surface.

Next, the area A, of the disconnected surface [Fig. 13(b)]
is given by

A
Ad—Z/ dz = 2A, (177)
0

which does not depend on 7. If AM"(#) < A, the con-
nected surface is the minimal surface. If A™"(£) > A, the
disconnected surface is the minimal surface.

Figure 14(a) shows z(y) for the minimal connected
surface with g,,(z) = wi,(z/A), A=50, w,=1.12,
v, = 1.5. We numerically solve Eq. (175) with Eq. (176)
and plot z(y) with the size of the interval # = 0.2, 0.4, 0.6,
0.8, 1.0. Figure 14(b) shows the ¢ dependence of the
minimal area AT (#). Note that w,, (z/A) is the asymptotic
solution near z = 0, and the approximation using w,,, (z/A)
would be reasonable when # is small. Near £ = 0, the plot
of the minimal area in Fig. 14(b) can be approximated by

Arsnm(f) N [f/2 dy /gyy(o) _ Wuv(o)f (f ~ O) (178)

)2

This linear behavior is different from the logarithmic
behavior for the asymptotic AdS geometries, and the reason
is that w,,(z/A) Eq. (134) does not decay exponentially
with respect to z. Due to dz? in Eq. (172) and the z
dependence of w,,(z/A), the approximation Eq. (178) is
not valid except near £ = (.
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FIG. 14. (a) Shape of the minimal connected surface with g,,(z) = w2, (z/A), A = 50, w, = 1.12, v, = 1.5. (b) ¢ dependence of the

minimal area ATI"(7£).

Figure 15(a) shows z(y) with £ = 0.5, 1.0, 1.5, 2.0, 2.5
for the minimal connected surface with g,,(z) = w.(z/A),
A =50, wp = 2, /1f =2, pr = 0.0001, and we plot the #
dependence of the minimal area A™"(¢) in Fig. 15(b). At
¢ =7¢.~24, the area of the minimal connected surface
AMn(£) is larger than the area of the disconnected surface
A; =2A =100, which means the transition from the
connected surface to the disconnected surface. Although
w;(z/A) is the asymptotic solution, this result implies the
existence of the critical length #,. for the minimal surface in
the three-dimensional spacetime Eq. (168) with finite A
constructed from information of the RG-MFT with
Eq. (169). We note that z(y) with £ = 2.5 in Fig. 15(a)
is similar to the minimal surface in a black hole type
geometry, which gives the volume law of the holographic
entanglement entropy.

Finally, we discuss the holographic geometry in the limit
A — 0. If we choose the UV boundary values as vy = v, A

— /=25
— (=2.0
— /=15
— /=1.0

— /=0.5

(@)

FIG. 15.

to AMn(£) > A, = 2A = 100.

(a) Shape of the minimal connected surface with g,,(z)
dependence of the minimal area A™"(£). At £ =7, ~2.4,

and wy = w, A, the metric Eq. (169) diverges in the limit
A — oo. In this case, the minimal area is not well defined,
which may be interpreted as the entanglement entropy of
QFTs is not well defined in the continuum limit. If v,
and w,, are finite in the limit A — oo, there is no transition
to the disconnected surface because Eq. (177) diverges.
Furthermore, if v, — 0 and w,, > w; #0 atz = A — oo,
the metric Eq. (169) behaves as

9= 0, gy —=w;#0  (z=A->00), (179)

which is similar to black hole geometries if z = A is
regarded as the horizon. Note that one can construct black
holes with zero temperature by introducing scalar or U(1)
gauge field sources [53].

Appearance of a black hole type geometry is rather
unexpected since spontaneous chiral symmetry breaking
occurs to cause a single-particle excitation gap. In this
resect the only physical picture that we can have in our

ATIn)

100 -
80|
60 -
40

20

05 1.0 15 2.0 25
(®)

=wh(z/A), A =50, wp =2, 2y =2, ¢ = 0.0001. (b) ¢
the disconnected surface becomes the minimal surface due
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mind at present is that the single-particle excitation gap has to
be filled with multiparticle excitations, here dual collective
fields involved with w,, and v, fluctuations. As discussed
in the previous section, this claim is certainly verifiable,
calculating correlation functions of éw,, év,, and S¢
fluctuations around this vacuum solution. Frankly speaking,
it is not clear at all whether the present effective UV field
theory allows such a strongly coupled local fixed point or not.
It is possible that the present theoretical framework, that is,
our nonperturbative RG-MFT, may overtake quantum fluc-
tuations more than expected. However, it is surprising that the
nonperturbative RG-MFT can access the strong-coupling IR
fixed point from the Gaussian UV fixed point beyond the
perturbation framework, interpreted as an emergent black
hole type geometry.

V. SUMMARY AND DISCUSSIONS

In this study, we proposed a nonperturbative Wilsonian-
RG improved mean-field theory in the large N limit, where
RG flows of the coupling functions manifest in the level of
an effective action and the equation of motion for the order-
parameter fields correspond to mean-field equations with
self-consistently renormalized coupling functions at a given

|

energy scale of the emergent extradimension. We argued
that this nonperturbative generalization of the RG-
improved mean-field theory takes into account essential
features of the holographic dual effective field theory,
where the dynamics of metric fluctuations describe the
RG flows of the coupling functions and the equation of dual
scalar and Maxwell fields correspond to the mean-field
equations of order-parameter fields. Here, two modifica-
tions have been introduced into the holographic dual
effective field theory. One is the appearance of RG pj
functions in the bulk equation of motion for all the coupling
functions, describing the RG flow from UV to IR. The
other is that all IR boundary conditions are given by
matching all the RG flows in the bulk to the renormalized
coupling functions and order-parameter fields in the IR
effective action, which can be identified with an effective
on-shell action as the solution of the Hamilton-Jacobi
equation in the holographic dual effective field theory.

However, the coupling functions were not dynamical in
the nonperturbative Wilsonian-RG improved mean-field
theory while metric fluctuations were in the holographic
dual effective field theory. To promote all the coupling
functions dynamically, we may introduce energy terms for
random coupling fluctuations as follows:

2= [ Dyo0)Dp(x)Dw, (5)D1, (3D () exp [— / de{w(;(x)(wy,(x)fa,—ivv,(x)yfaim(x)—i@(x)qo(x)%(x)w(x)

N2, (x N2, N2,
—l——*( >(p2(x)+

2

Wy _ \2 W = \2 Nﬂ’lx 73\2
S (0= P 1, 0 =3, 45 G -2 |

(180)

Taking 4,,, — o, 4, — o0, and 4; — oo, such random fluctuations become frozen, where this effective UV partition

function reduces into the original one that we discussed before. Based on this effective field theory, we obtain the following

IR effective partition function

Z= /Dwg(x)D(p(x,z)Dﬂ(p(x, z)Dw,(x,z)Dx,, (x,z)Dv,(x,z)Dm, (x,z)DA,(x,z)Dmy (x,2)

X exp {— / de{m)(wW(x, 1 0n — iy (.2 O () — i (5. 2 ). 2 ) (2 ()

N2, (x,0 N2,
+L(p2(x, 0) + 5 ~(wy, (x,0) = v‘vl,,)z +

Ni, o
5 (v, (x,0) = 7,)* +

N,

(l0) =17}

2
- NAZf dz / de{n'(p(x, 2)(0.9(x. 2) = B,lo(x, 2), w, (x,2), v, (x, 2). 4, (x. 2)]) — mn’é()@ 2
i, (3 2) (02w (3 2) = B [0 ).y (3. 2), (32, Ay (3. )]) = 55— 7 (x.2)
+ 7y, (%, 2) (0,0, (x.2) = By, [9(x. 2). wy (% 2). v, (x. 2). 4, (x. 2)]) — 2/11, o, (5:2)
7, (6, 2)(0:, (5. 2) = i [0(x. 2). Wy, (3.2). 0, (x.2). Ay (3. 2)]) - ﬁﬂiw )

T Valo(e,2)wy (x,2). 1 (. z>,ax<x,z>1}].

(181)
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As clearly seen in this IR effective field theory, all the
coupling functions are promoted to be dynamical, where
their RG flows are given by all coupled second-order
differential equations instead of the first order. One may
regard that this generalization is analogous to the TT
deformation, as discussed before.

As mentioned above, the key ingredient is the effective
potential Ve [g(x, 2), w,, (%, 2), v, (x, 2), 4, (x, )] at a given
energy scale of the extradimension, which occurs from the
path integral of matter fields, here Dirac fermions. It is quite
natural to take the RG g functions as functional derivatives
of the effective potential with respect to the corresponding
coupling function and order-parameter field, respectively,
completely consistent with the quantum field theoretical
framework.

Taking the large N limit, one finds all coupled second-
order differential equations in the presence of their RG f
functions, where their IR boundary conditions are given by
matching all the RG flows in the bulk to the renormalized
coupling functions and order-parameter fields in the IR
effective action, as discussed above. To solve these coupled
differential equations, we made several assumptions. First,
we took /1WW — 00, ﬂvw — o0, and /1,11 — 00, resulting in the
first-order differential equations for the coupling functions.
Second, we considered translational invariance as a vacuum
solution, where D-dimensional spacetime dependencies are
all neglected. Third, we focused on the zero temperature
limit, simplifying the manifold S' x RP~! at finite temper-
atures to R” at zero temperature. Even this simplification did
not allow us to solve such coupled differential equations.

To solve these complicatedly intertwined differential
equations, we applied the matching method to this problem.
First, we solved such coupled differential equations near
both UV and IR boundary regions independently, where
these equations become simplified. Second, we applied the
UV (IR) boundary condition to the UV-regional (IR-
regional) solution. Since the number of boundary condi-
tions would be less than that of integration constants, some
of the integration constants remain undetermined in both
UV- and IR-regional solutions. Third, we required that the
UV-regional solution should be smoothly connected to the
IR-regional solution at one point in the extradimensional
space. Of course, there must be a certain condition for the
existence of this matching solution. Based on this delicately
working matching method, we found an RG flow from a
weakly coupled chiral-symmetric UV fixed point to a
strongly correlated chiral-symmetry broken IR fixed point,
where the renormalized velocity of Dirac fermions vanishes
most rapidly and effective quantum mechanics appears at
IR. It is a feature of the nonperturbative RG-MFT the
appearance of this local strong-coupling fixed point.

From the renormalized coupling functions that are
solutions of RG flow equations, we can build the three-
dimensional curved spacetime metric. Geometrical quan-
tities on this emergent holographic spacetime may capture
characteristics of the RG-MFT. One important measure is
the minimal surface for the holographic entanglement
entropy, and we calculate the minimal surface of the
holographic spacetime associated with the UV- and
IR-regional solutions. Our interesting result is that the
holographic entanglement entropy shows the volume law
instead of the area one. This indicates that the emergent
geometry in the infinite cutoff limit is a black hole type
even at zero temperature. We speculated that the origin of
this emergent black hole type geometry is the appearance of
gapless multiparticle spectra dual to quantum fluctuations
of the coupling functions and order-parameter field, where
such gapless multiparticle spectra would fill the single-
particle excitation gap due to spontaneous chiral symmetry
breaking. We leave it as an interesting future study to
calculate the correlation functions of collective excitations
around the black hole type geometry.

Although we focused on the zero temperature limit, we
may reinterpret the present RG flow as follows. First of all,
there is an interesting crossover regime during this dimen-
sional reduction. We recall the appearance of spontaneous
chiral symmetry breaking in the intermediate regime of the
extradimension, where the renormalized velocity of Dirac
fermions remains to be finite. In other words, the present
self-consistent matching solution not only describes the RG
flow from a weakly coupled chiral-symmetric UV fixed
point to a strongly correlated chiral-symmetry broken IR
fixed point but also indicates the existence of a weakly
coupled chiral-symmetry broken intermediate regime.

Let us close the present paper by asking the following
question: What happens above two spacetime dimensions.
Does the locally quantum critical strong-coupling fixed
point appear ubiquitously in the vicinity of spontaneous
chiral symmetry breaking? Then, does the AdS, black hole
appear as a signature of the RG flow to a strong-coupling
fixed point?
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