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Two spatial regions B and R are hyperentangled if the generalized entropy satisfies SB∪Rgen < SRgen. If in

addition all future (or all past) directed inward null shape deformations of B decrease SB∪Rgen , then we show
that the causal development of B, with R held fixed, must be incomplete. This result eliminates the null
energy condition from the assumptions of a recently proven singularity theorem. Instead, we assume a
quantum version of the Bousso bound. Taking R to contain the Hawking radiation after the Page time, our
theorem predicts a singularity in the past causal development of the black hole interior. This is surprising
because the classical spacetime is nonsingular in the past. However, one finds that Cauchy slices that are
required to contain R do not remain in the semiclassical regime. The quantum singularities predicted by our
theorem are an obstruction to further semiclassical evolution, generalizing the singularities of classical
general relativity.
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I. INTRODUCTION

A spacetime M is singular if it contains an incomplete
timelike or null geodesic [1] (an inextendible geodesic of
finite affine length). Physically relevant examples include
the past singularity in certain cosmological solution—the
“big bang”—and the future singularity that terminates time
evolution inside a Schwarzschild black hole.
Singularities are generic in classical general relativity. A

theorem by Penrose [2] guarantees that at least one of the
null geodesics orthogonal to a trapped surface is incom-
plete. A surface is trapped if both sets of future-directed
orthogonal null geodesics have negative expansion.
Penrose’s theorem requires two crucial assumptions

about the spacetime: M must admit a noncompact
Cauchy surface; and M must satisfy the null curvature
condition, Rabkakb ≥ 0, where Rab is the Ricci tensor and
ka is any null vector.
A recent result [3] has established a connection between

singularities and quantum information: the noncompact-
ness assumption can be eliminated from Penrose’s theorem,
if instead the spacetime is assumed to satisfy the Bousso
bound [4] on the entropy of matter.

The null curvature condition can also be eliminated.
This is important, because it is known not to hold in nature.
By Einstein’s equation, it is equivalent to the null energy
condition, that Tabkakb ≥ 0, where Tab is the stress tensor.
Any relativistic quantum field theory, such as the Standard
Model, contains states in which the expectation value of the
stress tensor, hTabi, violates this condition [5]. Wall [6]
eliminated the Null Curvature Condition from Penrose’s
theorem, by assuming instead that the generalized second
law (GSL) holds in M. The GSL is the statement that
the generalized entropy—the sum of horizon area and von
Neumann entropy of the matter fields outside a causal
horizon—cannot decrease. A causal horizon is the boundary
of the past of a timelike or null curve of infinite affine length;
examples include black hole, Rindler, and de Sitter horizons.
Unlike for the NCC, there is no known counterexample to
theGSL.There is considerable evidence for its validity, and it
has been proven to hold on Killing horizons [7].
In this paper, we combine the advances of Refs. [3,6],

using a single assumption, a quantum refinement of the
Bousso bound [8]. This bound says that if the generalized
entropy outside a Cauchy-splitting null hypersurface L is
decreasing towards the future (respectively, past) at some
moment of time, then it must be lower at all future (past)
times. See Fig. 1; and see Conjecture 2.22 below for a more
precise statement. The quantum Bousso bound implies the
GSL as a special case.
We will prove that the quantum Bousso bound implies a

singularity theorem for certain hyperentangled regions,
Theorem 3.1 below. We call a spatial region B hyper-
entangled if
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SB∪Rgen < SRgen ð1:1Þ

for some spacelike-separated region or external system R,
where Sgen is the generalized entropy. Suppose that, in
addition, B ∪ R has negative inward quantum expansion at
∂B; that is, SB∪Rgen decreases under shape deformations of B
along a past-directed (or a future-directed) ingoing null
congruence. See Fig. 2.
Under these assumptions, we prove that at least one null

geodesic in the congruence is incomplete, in any spacetime
obtained from semiclassical evolution on Cauchy surfaces
that all contain R.
We shall see through the study of examples that the

quantum Bousso bound, and indeed the GSL, are surpris-
ingly restrictive when Cauchy evolution is limited to slices
containing R. As a result, spacetimes that satisfy this
bound admit a novel, R-dependent notion of singularity.
Our theorem captures such singularities. We believe that

the notion of R-dependent singularities in semiclassical
gravity has not been discussed in the literature, so we will
do so now.
In classical general relativity, the inclusion of R in all

Cauchy slices would be a trivial restriction for the purposes
of our theorem. As shown in Fig. 3, slices that contain R
foliate M − IðRÞ, where IðRÞ is the union of the chrono-
logical past and future of R. The Cauchy horizon H�ðBÞ is
a subset of M − IðRÞ, so if it contains an incomplete
geodesic, then so does M.
However, in semiclassical gravity, Cauchy slices must be

“nice.” That is, the data on each slice must be compatible
with the validity of an effective field theory description with

(a) (b)

FIG. 2. Quantum singularity theorem for a hyperentangled
region B. (a) Collapsing star entangled with a distant reference
system. At late times the entanglement entropy exceeds the
surface area of the star and the theorem predicts a future
singularity. This is the (ordinary) singularity of the black hole.
(b) Evaporating black hole after the Page time. The black hole
interior B and distant Hawking radiation R are hyperentangled,
and the theorem predicts both a future and a past singularity. The
latter is a quantum singularity: it arises from the breakdown of
semiclassical evolution in the red region when R is held fixed.

FIG. 1. The quantum Bousso bound (Conjecture 2.22): if the quantum expansion at ∂B in the direction of B0 is nonpositive then
SB

0
gen ≤ SBgen.

FIG. 3. M=R (green) is a spacetime covered by nice slices that
contain R. In general this semiclassical region is a proper subset
of the region M − IðRÞ (redþ green) covered classically by
Cauchy slices that contain R. Generators of H�ðBÞ may be
incomplete in M=R even if they would be complete in M − IðRÞ.
This reflects a real obstruction to further semiclassical evolution
which we call a quantum singularity.
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a cutoff below the Planck scale.1 The boundary of M −
IðRÞ is null; therefore, it contains distinct points with zero
spatial distance, and nice slices that contain R cannot
approach it arbitrarily closely; see Fig. 3.
Thus, only a subset M=R ⊂ M − IðRÞ can be obtained by

semiclassical evolution along Cauchy surfaces that all
contain R. Hence it is possible for H�ðBÞ to contain a
geodesic that is incomplete in any semiclassically allowed
spacetime M=R, even though it would be complete in the
(larger but semiclassically unattainable)M − IðRÞ. We call a
singularity that arises in this manner a quantum singularity.

A. Outline

In Sec. II, we define a semiclassical spacetime as a
globally hyperbolic manifold M with metric gab and
quantum state ρ whose stress tensor expectation value
satisfies the Einstein equation, Gab ¼ 8πGhTabi. In addi-
tion, M must admit a “nice slicing.” That is, time evolution
must be consistent with the validity of an effective field
theory description, with an ultraviolet cutoff Λ ≪ MP,
where MP is the Planck mass. We formulate the main
assumption of our theorem, the quantum Bousso bound,
and we clarify that it applies to nice slices only.2

After proving our theorem in Sec. III, we discuss two
nontrivial applications. In Sec. IVA, we consider an
evaporating black hole formed from regular initial con-
ditions. We apply our theorem to the black hole interior B
after the Page time; R is the Hawking radiation emitted so
far. In this case a singularity is predicted along the black
hole horizon to the past of B.
This is a quantum singularity. It appears because we are

holding R fixed, thus excluding the region R from partici-
pating in the semiclassical evolution. On nice slices that
contain the Hawking radiation, the horizon cannot be
evolved far into the past. Hence the horizon generators
are incomplete in M=R. The semiclassically allowed space-
time M=R is substantially smaller than M − IðRÞ, which
contains the entire black hole horizon.
In Sec. IV B, we consider the Kerr-Newman solution in

thermal equilibrium with a bath. We again consider the
black hole interior B at a sufficiently late time, when it is
entangled with distant radiation R. Our theorem predicts a
singularity before the inner horizon. In the classical Kerr-
Newman solution, the region between the inner and outer
horizons is regular, so this conclusion is of some interest.

We discuss its potential relevance to the strong cosmic
censorship hypothesis.

II. SEMICLASSICAL GRAVITY

A. Causal structure

Convention 2.1.—Everywhere below, M will denote a
time-orientable globally hyperbolic spacetime. (M may be
extendible.) We use an overdot to represent the boundary of
a subset of M.
Convention 2.2.—Everywhere below, B will denote a

closed subset of a Cauchy slice N of M, such that ∂B is a
compact codimension two submanifold of M and
B − ∂B ≠ ∅. Here ∂B denotes the boundary of B in the
induced topology of N.
Definition 2.3.—The chronological and causal future

and past, I�ðKÞ and J�ðKÞ, of any set K ⊂ M are defined
as in Wald [1]. For K ¼ fpg, we drop the set brackets. Key
consequences of these definitions include p ∉ IþðpÞ but
p ∈ JþðpÞ, and IþðKÞ is open.
Definition 2.4.—For any set K ⊂ M, we define its

domain of influence as the union of K and all points that
can be reached by a timelike curve from K: IðKÞ≡
IþðKÞ ∪ I−ðKÞ ∪ K.
Definition 2.5.—For any closed achronal set K ⊂ M, the

future domain of dependence,DþðKÞ, is the set of points p
such that every past-inextendible causal curve through p
must intersect K. The past domain of dependence, D−ðKÞ,
is defined analogously. The domain of dependence is
DðKÞ≡DþðKÞ ∪ D−ðKÞ. The future Cauchy horizon
is HþðKÞ≡DþðKÞ − I−½DþðKÞ�.
Definition 2.6.—Let M be a spacetime with Cauchy

surface N. (N orM may be extendible.) Let B ⊂ Σ. We say
that B is future singular in M if its Cauchy horizon HþðBÞ
contains an incomplete geodesic; i.e., a geodesic that is
future inextendible in M but of finite affine length.
Otherwise, we call B future complete in M.

B. Kinematics

Definition 2.7.—A nice global slice is an inextendible
Cauchy surface Σ whose intrinsic and extrinsic geometry
and quantum state ρðΣ;ΛÞ can be fully described using a
cutoff scale Λ ≪ MP. In particular, curvature scalars and
energy densities that can be constructed from the normal
vector to Σ must be sub-Planckian.
Definition 2.8.—Let Σ be a nice global slice of M, with

associated cutoff scale Λ ≪ MP. Let B be defined as in
Convention 2.2. If the intrinsic and extrinsic geometry of
∂B is well resolved at the cutoff Λ (that is, when ∂B is
put on a lattice with characteristic scale Λ−1), then we
call B a nice partial slice, and the quantum state on B is
defined as

ρðB;ΛÞ ¼ trΣ−BρðΣ;ΛÞ; ð2:1Þ

1We are not aware of a first-principles derivation of the precise
inequalities that “niceness” implies for scalar quantities extracted
from the initial data on a slice. A plausible set of criteria was
outlined in Refs. [9,10]. To understand the quantum singularities
predicted by our theorem in the examples we study here, we need
only require a rather weak niceness condition on the trace of the
extrinsic curvature; see Sec. IV.

2We also comment on Ref. [11], which asserts a different
regime of validity of the quantum Bousso bound (and, implicitly,
of the GSL), and which arrives at conclusions different from ours.

QUANTUM SINGULARITIES PHYS. REV. D 107, 066002 (2023)

066002-3



Definition 2.9.—We call N a nice slice if N is a nice
global slice or a nice partial slice.
Definition 2.10.—Let N be a nice slice with associated

cutoff scale Λ. The generalized entropy of N is

SNgen ¼
Areað∂NÞ
4GðΛÞℏ þ � � � þ SðN;ΛÞ; ð2:2Þ

whereGðΛÞ is the effective Newton constant at the scale Λ,
and

SðN;ΛÞ ¼ −trNρðN;ΛÞ log ρðN;ΛÞ ð2:3Þ

is the von Neumann entropy of the quantum fields on N at
the scale Λ. The area term is the leading gravitational
counterterm. The subleading gravitational counterterms are
indicated by “…”; see Ref. [12] for details.
Remark 2.11.—Niceness of N is required in the above

definition since otherwise GðΛÞ is not operationally
defined, for example as the effective gravitational coupling
in a scattering process. The boundary of a nice global slice
(N ¼ Σ) vanishes. The boundary of a nice partial slice
(N ¼ B) is understood to be defined in a completion
Σ ⊃ N, where Σ is a nice global slice. Neither the boundary
area nor the generalized entropy of N will depend on the
choice of completion.
Conjecture 2.12.—The generalized entropy is cutoff

independent in the following sense. Suppose that the slice
N is nice with respect to two different scales Λ and Λ0.
Under Λ → Λ0, both terms in Eq. (2.2) will change, but
their sum will not. For references supporting this claim, see
the Appendix of Ref. [8].

C. Dynamics

Definition 2.13.—A slicing of the spacetime ðM; gÞ is a
continuous map from an open interval to achronal subsets
of M, t → NðtÞ, such that every point in M is contained in
at least one NðtÞ, and Nðt0Þ ⊂ Jþ½NðtÞ� for t0 > t. [Thus, a
slicing is not a foliation. Along a timelike curve γ, the
proper time of γ ∩ NðtÞ increases monotonically with t, but
not strictly so.]
Definition 2.14.—ACauchy slicing of ðM; gÞ is a slicing

such that each NðtÞ is a Cauchy surface of M.
Definition 2.15.—A nice Cauchy slicing of ðM; gÞ is a

Cauchy slicing such that each NðtÞ is a nice slice with the
same associated cutoff Λ ≪ MP. A collection of nice
Cauchy slicings with cutoff Λ will be denoted SΛ.
Definition 2.16.—A semiclassical spacetime is a quad-

ruplet (M, g, SΛ, ρ). Here M is a globally hyperbolic
manifold with metric g. SΛ is a nonempty set of nice
Cauchy slicings. For each slicing, ρðNðtÞ;ΛÞ solves the
Schrödinger equation of the quantum fields. The expect-
ation values of local operators do not depend on the slicing.
Finally,

Gab ¼ 8πGðΛÞhTabi þ…; ð2:4Þ

where Gab is the Einstein tensor computed from g, Tab is
the stress tensor (viewed as an operator), and “…” stands
for higher-curvature corrections.
Remark 2.17.—The above definition ignores gravitons;

this can be justified by taking the number of matter fields to
be large. The Cauchy slices of M may be partial and hence
extendible; and in any case M may be extendible.
Remark 2.18.—Given a nice slice Nð0Þ, one can solve

the quantum field theory and Einstein’s equation iteratively
in Gℏ, in some open neighborhood of Nð0Þ, and thus
generate a semiclassical spacetime.
Definition 2.19.—Let N be a nice Cauchy slice in a

semiclassical spacetime M, and let R ⊂ N, R ≠ N. A
semiclassical spacetime with nice slicing N=RðtÞ will be
called a reduction of M by R and will be denoted M=R,
if for every t, N=RðtÞ ∪ R is a nice slice of M. (See Fig. 3
for an example.)
Definition 2.20.—Let M be a semiclassical spacetime,

and let B ⊂ M be a nice partial slice. The future-directed
ingoing quantum expansion of B at y ∈ ∂B is the rate of
change of the generalized entropy under a shape deforma-
tion of B along the ingoing future-directed null congruence
orthogonal to ∂B:

ΘBþðyÞ ¼
4Gℏffiffiffiffiffiffiffiffiffi
hðyÞp δSgen½V�

δVðyÞ
����
∂B
: ð2:5Þ

Here h is the area element of the induced metric on ∂B. The
functional derivative is taken with respect to the affine
parameter VðyÞ along the congruence that specifies the
location of cuts of the congruence such as ∂B.
The past-directed ingoing quantum expansion is defined

analogously. Outgoing quantum expansions are related to
the ingoing ones by a change of sign and exchange of past
and future.
Remark 2.21.—The functional derivative in Eq. (2.5) is

an idealization that suppresses the cutoff Λ. The quantum
expansion is well defined only if one of the nice Cauchy
slicings of M contains slices that contain B and its shape
deformation. In particular, this excludes deformations
whose transverse support near y is localized to better than
Λ−1 [13].
Conjecture 2.22 (Quantum Bousso bound).—LetM be a

semiclassical spacetime, and letN andN0 be slices in one of
the nice Cauchy slicings of M. Let B ⊂ N be a nice partial
slice, and let ∂Bþ (∂B−) be the subset of ∂B with positive
future (past)-directed inward quantum expansion. Let
B0 ¼ DðBÞ ∩ N0. If N0 ∩ Iþð∂BþÞ ¼ N0 ∩ I−ð∂B−Þ ¼ ∅,
then

SB
0

gen ≤ SBgen: ð2:6Þ

Remark 2.23.—The above conjecture was originally
obtained as a consequence of the quantum focusing
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conjecture [8]. However, its derivation was somewhat
heuristic and omitted a careful regularization of points
where null generators leave _IðCÞ. Here we will assume
Conjecture 2.22 directly. The original Bousso bound [4]
follows in the limit where Θ is well approximated by the
classical expansion and M satisfies the null curvature
condition.
Remark 2.24 (Note added.).—Compared to our

Conjecture 2.22, Sec. 2 of [11] imposes the additional
requirement that B0 ≠ ∅, and more strongly that N0 must
intersect every connected component of DðBÞ. We believe
this restriction is too strong and also unnecessary. An
important manifestation of the GSL is the fact that the
generalized entropy outside the horizon of a black hole is
larger than the (ordinary) entropy before the black hole has
formed. This key feature follows from the quantum Bousso
bound only ifB0 ¼ ∅ is allowed.On the other hand,Ref. [11]
does not restrict the application of the bound and of the GSL
to nice slices. We believe that this is too permissive, even
when combined with the restriction to nonempty B0 advo-
cated in Ref. [11]. As we discuss at the end of Sec. IVA, the
generalized entropy becomes negative and stops making
sense on slices allowed by this set of criteria.3

III. SINGULARITY THEOREM

Theorem 3.1 (Singularity theorem for hyperentangled
regions). Let M be a semiclassical spacetime with nice
Cauchy slice N. Let the disjoint union B ∪ R ⊂ N be a nice
slice, with ∂B compact. Suppose that the future-directed
inward quantum expansion of B ∪ R is negative every-
where on ∂B:

ΘB∪Rþ ðyÞ < 0 for all y ∈ ∂B: ð3:1Þ

Suppose moreover that B is hyperentangled with R, that is:

SBRgen < SRgen: ð3:2Þ

Let M=R be a reduction of M by R (see Definition 2.19).
Assuming Conjecture 2.22 (quantum Bousso bound), B is
future singular in M=R, i.e., HþðBÞ ∩ M=R contains an
incomplete null geodesic.
Proof.—The Cauchy horizon HþðBÞ is topologically

the direct product of ∂B with the future-inward directed
null geodesics orthogonal to ∂B, up to possible identi-
fications of their endpoints on HþðBÞ. By Eq. (3.1), no

null geodesic can remain on HþðBÞ for infinite affine
time [7].4 Assuming for contradiction that B is future
complete in M=R, it follows that HþðBÞ contains the end

points of all of its generators. Compactness of ∂B then
implies that HþðBÞ is compact.
Let N=Rð0Þ ¼ N − R, and assume for contradiction that

N=RðtÞ ∩ HþðBÞ ≠ ∅ for all t ≥ 0. Let tn be a monotoni-

cally increasing sequence that converges to the upper
bound of the time interval for which the slicing N=RðtÞ
is defined (or diverges to ∞ if there is no upper bound),
and let xn ∈ N=RðtnÞ ∩ HþðBÞ.5 By compactness ofHþðBÞ,
the sequence xn has an accumulation point p ∈ HþðBÞ. Let
q ∈ IþðpÞ and let N=RðtqÞ be a slice that contains q.

Because a slicing moves forward in time monotonically
by Definition 2.13, there exists a small neighborhoodOðpÞ
that no slice with t ≥ tq can intersect. This contradicts the
fact that p is an accumulation point.
Therefore M=R admits a nice slice such that N=RðtaboveÞ ∩

HþðBÞ ¼ ∅, tabove > 0, and by Definition 2.19,M admits a
nice slice

N0 ≡ N=RðtaboveÞ ∪ R ð3:3Þ

that contains R and fails to intersect DðBÞ. N0 satisfies the
assumptions of the quantum Bousso bound as applied to
B ∪ R ⊂ N. (In Conjecture 2.22, substitute B → B ∪ R.)
Hence

SRgen ≤ SBRgen; ð3:4Þ

which contradicts Eq. (3.2). Hence B must be future
singular in M=R. □

Remark 3.2.—Note that the assumption (3.2) cannot be
satisfied if R ¼ ∅, so any nontrivial application of the
theorem requires a nonempty choice of R. However, R
can be arbitrarily far from B. After a straightforward
adaptation of the relevant definitions, R can even be treated
as a nongravitating quantum system that is external to the
spacetime. In that case,M=R can be an inextendible spacetime.
Remark 3.3.—The singularity theorem for hyperentropic

regions [3] emerges in the limit as ℏ → 0. In this limit,
Θ → θ, so the quantum expansion is well approximated by
the classical expansion. Moreover, nice slices will cover all
of M − IðRÞ in this limit. If the entropy in B is not purified

3With Rolph’s conditions on the GSL and the quantum Bousso
bound, the proof of the “island finder” theorem [14] would indeed
have a loophole as claimed in Ref. [11]. With ours, it does not. In
the case of concern to Ref. [11], Conjecture 2.22 would be
violated, so a (possibly quantum) singularity must form. (In the
maximin formalism [15], it is necessary to assume that the
maximin slice is repelled by singularities. We propose that this
feature extends to quantum singularities.)

4For if such a geodesic γ did exist, then _I−ðγÞwould be a causal
horizon, and by the generalized second law, ΘðI−ðγÞ∩NÞ∪R

þ ≥ 0.
By construction, I−ðγÞ ⊂ B and ∂B touches _I−ðγÞ at p ¼ γ ∩ ∂B.
By Theorem 3 of Ref. [6], ΘB∪Rþ ðpÞ ≥ ΘðI−ðγÞ∩NÞ∪R

þ ðpÞ ≥ 0,
which contradicts Eq. (3.1).

5This step invokes the axiom of choice; perhaps this can be
eliminated.
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by some disjoint region R then an appropriate external
purification can be added.
Remark 3.4.—By the previous remark, Theorem 3.1

applies to all of the examples discussed in Ref. [3], which
include several settings where Penrose’s theorem would not
apply. In all cases we must first introduce an external
purification R of the matter entropy in Bi. In the following
section, we study examples of singularities predicted by
Theorem 3.1 that have no classical analogue.

IV. HYPERTANGLED BLACK HOLES

The conditions of Theorem 3.1 can be satisfied by
choosing B to be a region in an evaporating black hole
after the Page time, with R a region containing the Hawking
radiation. One can arrange that both quantum expansions
are negative, ΘB∪R

� jB < 0, so the theorem predicts a
singularity both along HþðBÞ and along H−ðBÞ when R
is held fixed.
Let us discuss this in more detail. A slice of the black

hole interior after the Page time is by definition hyper-
entangled with the Hawking radiation emitted so far; let R
be the region containing this radiation. By picking B to be
the interior of a sphere which is slightly outside of the
horizon one can arrange ΘB∪R

� jB < 0.
Alternatively, one can obtain a region B with these

properties by deforming the island I [16,17] associated to
R. By quantum maximin [18], islands generically satisfy
∂lΘk ¼ ∂kΘl < 0, where k and l are null future-directed
orthogonal vectors fields on ∂I outward and inward to I,
respectively. Therefore, by slightly deforming the island in
the future-outward and past-outward null directions, one
obtains a hyperentangled region which satisfies the con-
ditions of Theorem 3.1 both in the future and past
directions. One can also use this method in an eternal
black hole coupled to a bath [19] to find a region B with
these properties.
Naively, both the future and the past applications of

Theorem 3.1 to such a region are quite puzzling.
Schwarzschild black holes have a singularity along
HþðBÞ; but for a Schwarzschild black hole formed from
regular initial conditions, H−ðBÞ is complete by construc-
tion. At the classical level, even HþðBÞ is complete when
charge or angular momentum is present. Small classical
perturbations are believed to produce a spacelike singu-
larity before the inner horizon, but the conditions of our
theorem are satisfied in the unperturbed Kerr-Newman
solution (see Fig. 4).
However, the spacetime M=R covered by nice slices that

all contain R is smaller than M − IðRÞ. We will now argue
that this implies that the null generators of both HþðBÞ and
H−ðBÞ are incomplete in the semiclassically allowed
spacetime M=R, as predicted by Theorem 3.1. In particular,
we demonstrate that any Cauchy slicing of the spacetimeM
with slices that contain R, the slices that probe the region

beyond the end points of H�ðBÞ necessarily have expo-
nentially large extrinsic curvature.
In this section, we speculate on why the semiclassical

spacetime M=R might be smaller than M − IðRÞ leading to
the incompleteness of the generators of both HþðBÞ and
H−ðBÞ, upholding Theorem 3.1. We demonstrate that any
Cauchy slicing of the spacetime M with slices that contain
R, the slices that probe the region beyond the endpoints
of H�ðBÞ necessarily have exponentially large extrinsic
curvature.

A. Quantum singularity on a classically regular horizon

For concreteness, consider a maximally extended
Schwarzschild black hole of radius rS in the Hartle-
Hawking state, in 3þ 1 spacetime dimensions.
Advanced and retarded time are defined by u ¼ t − r�
and v ¼ tþ r�, where r� ¼ rþ rS log jðr=rSÞ − 1j. The
near horizon zone is the region rS < r < 3rS=2; its outer
boundary will be denoted Z. Below, we will also use
Kruskal coordinates, U ¼ −2rSe1−u=2rS and V ¼
2rSe1þv=2rS , which cover the entire spacetime. (These are
slightly nonstandard to match the standard Rindler coor-
dinates.) We define T ¼ ðU þ VÞ=2 and X ¼ ðU − VÞ=2.
Let R be the union of a right asymptotic bulk region and

its left mirror image; see Fig. 5. On the right, R is given by
the portion U < −U0 of a constant t slice, with t chosen
large enough for R to be far from the black hole. We choose
U0 past the Page time, that is, U0 ≲ rSe−γ1S where S is
the Bekenstein-Hawking entropy of the black hole and
γ1 ∼Oð1Þ. The boundary of the past of R intersects the
boundary of the near-horizon zone at v_IðRÞ∩Z. Choosing B
to be the black hole interior at the same (or slightly

FIG. 4. Reissner-Nordstrom black hole. The inner and outer
horizons are shown as dashed lines. In the Hartle-Hawking state,
the conditions of the singularity theorem can be satisfied if R is a
large enough region near null infinity containing Hawking
radiation and B the interior of the black hole containing the
purification of the radiation. This is puzzling since all null
generators of both Cauchy horizons H�ðBÞ contain their end-
points in the classical spacetime. However, semiclassically, H−

encounters a quantum singularity when R is fixed; Hþ does too,
or else quantum corrections significantly alter the geometry near
the inner horizon.
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earlier) value of v, Theorem 3.1 predicts a singularity
along H−ðBÞ.
Since the spacetime is classically regular in the past of B,

this must be a quantum singularity. We will now verify this
prediction.
For v < v_IðRÞ∩Z, _I−ðRÞ lies within the Rindler region

where the metric is well-approximated by

ds2 ¼ −dT2 þ dX2 þ r2SdΩ2 þOðT2; X2Þ: ð4:1Þ

Intuitively, this leaves little room between _IðRÞ for
spacelike slices that contain R and enter the horizon very
early. We will now argue that there exist no nice slices
containing R that intersect the horizon at or earlier than

v0 ¼ v_IðRÞ∩Z − γ2tPage; ð4:2Þ

where γ2 ∼Oð1Þ.
One of the necessary conditions for niceness is that the

trace of the extrinsic curvature, K, is not too large. The
precise condition is not clear to us. The early literature on
nice slices [9,10] suggests jKj ≪ 1=lP, but this may be too
stringent. (In four or more spacetime dimensions, it would
exclude slices that contain the Hawking radiation R and
its entanglement island.) We shall use the more lenient
necessary condition

jKj ≪ 1

lP

�
l
lP

�
n
; ð4:3Þ

where n > 0 is an unknown fixed constant, and l is a
characteristic scale of the geometry (here, l ∼ rS). We will
see that even this rather weak niceness condition cannot be
satisfied for any n, because jKj becomes exponentially
large at early times.
Let Σ be a left-right symmetric smooth Cauchy slice.

(Thus, we assume that niceness cannot be rescued by using

a slicing that spontaneously breaks the left-right sym-
metry.) Σ is fully determined by a function T ¼ TΣðXÞ.
_IðRÞ is given by T ¼ jXj −U0. For Σ to contain R we must
have TΣ > jXj −U0. In the Rindler region, the extrinsic
curvature is well approximated by

KΣ ¼ T 00

ð1 − T 02Þ3=2 : ð4:4Þ

So long as Σ is spacelike, this quantity is real.
Let Σ intersect the horizon at ðU ¼ 0; VhÞ. The timelike

proper distance between the intersection and ð−U0;−U0Þ is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðVh þU0ÞU0

p
. The smaller this distance, the

larger jKΣj needs to be if Σ is not to become spacelike
separated from R. To see this, first consider the special case
where TΣð0Þ is small enough to be in the Rindler region,
with T 0ð0Þ arbitrary. Given an upper bound Kmax on the
magnitude of the extrinsic curvature, one finds for
jXj ≫ 1=Kmax:

TΣðXÞ < TΣð0Þ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − T 0ð0Þ2
p 1

Kmax
½1 − T 0ð0ÞsgnðXÞ�

þ jXj: ð4:5Þ

Now consider the situation of interest: a slice Σ which
intersects the horizon at ðU ¼ 0; VhÞwithU0 ≲ rSe−γ1S and
Vh ≲ rS

U0
e−γ2S. [This corresponds tou0 past the Page time and

vh ≤ v0with v0 given byEq. (4.2).] In theRindler region, the
sphere ðU ¼ 0; VhÞ is related by a boost to the sphere ðX ¼
0; Tð0ÞÞwithTð0Þ ¼ −U0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðVh þ U0ÞU0

p
. ByEq. (4.5),

there exists no solution for Σ with subexponential extrinsic
curvature.
The only alternative to the presence of a quantum

singularity is that the theorem fails, which means that
one of its assumptions must fail. Indeed, if there were no
restriction on the extrinsic curvature on a semiclassical
slice, then the example in this subsection could be viewed
as a violation of the quantum Bousso bound. Moreover, in
the special case where B is precisely the black hole interior,
the example would furnish a violation of the generalized
second law of thermodynamics. Our viewpoint is that these
assumptions are valid in the semiclassical regime, and that
the theorem has simply uncovered a (possibly surprising)
limitation of the semiclassical regime.
In simple models models where the entropy is approxi-

mated by a two-dimensional conformal field theory (CFT)
(see, e.g., [16,17,19,20]), it is easy to show that the
quantum focusing conjecture is satisfied along H−ðBÞ,
even if we ignore the restriction to nice slices. In particular,
the quantum expansion formally exists and remains neg-
ative alongH−ðBÞ. However, the quantum Bousso bound is
still violated by the (non-nice) slice that stays below the
black hole. It is important to emphasize that starting with
Sgen on a nice slice, and then integrating the quantum

FIG. 5. Schwarzschild black hole. In the Hartle-Hawking state,
B and R can be chosen such that the conditions of the theorem can
be satisfied towards the past of B. This is a quantum singularity:
Cauchy slices containing R which intersect the horizon around a
Page time in the past of B (red lines) have exponentially large
extrinsic curvature.
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expansion, is a valid method for computing the generalized
entropy of any other nice slice. In particular one is
permitted to continue past caustics and self-intersections.
Such features are generic, so this is a crucial ingredient in
important semiclassical generalization of classical theo-
rems. The problem in the present example is different: the
slices do not stay nice.
If one ignores this limitation, integration of ΘB∪R

−
formally yields negative values of Sgen well before the
tip of the event horizon is reached, followed by a dis-
continuity when the slices no longer intersect H−ðBÞ. (To
see this for an evaporating black hole, note that the
quantum expansion along the horizon is to a good approxi-
mation independent of whether slices end at spatial infinity
or at null infinity, and hence, so is the integrated change in
Sgen. But the latter can be much greater than the generalized
entropy of the complement of B ∪ R when R is the
Hawking radiation sufficiently far past the Page time.)
Sgen < 0 has no interpretation as a von Neumann entropy in
a fundamental theory, so this would be a nonsensical
conclusion.
One might be tempted to “save” the GSL and the

quantum Bousso bound for non-nice slices by observing
that the exact von Neumann entropy of R receives non-
perturbative corrections, which cause it to be bounded
above by the Bekenstein-Hawking entropy of the black
hole. This is not correct.
First, the quantum Bousso bound is a semiclassical

bound and is expected to apply to the semiclassical state,
not to the nonperturbatively correct state. The same is true
for the generalized second law. Calculating the generalized
entropy outside of an evaporating black hole using the
exact von Neumann entropy of radiation results in the
violation of the generalized second law after the Page time,
but in the semiclassical state the entropy of radiation
increases throughout the process of evaporation, upholding
the generalized second law.
Second, the conditions of our theorem can be satisfied

even when there is no difference between the semiclassical
and exact von Neumann entropy of R. For example, take
U0 to correspond to a few scrambling times, rather than the
Page time. Then there exists a nonminimal quantum
extremal surface associated to R. Now, consider moving
this surface in the outward past null direction towards _IðRÞ.
In simple 1þ 1 models with CFT matter, one finds that the
generalized entropy of the enclosed region union R
decreases without bound. Therefore, at some point along
the deformation the regions become hyperentangled.
Furthermore, one can check that the quantum expansion
also has the correct sign needed for the singularity theorem.
However, again any Cauchy slice containing R and dipping
below the past tip of the event horizon necessarily has
exponential extrinsic curvature. We view this as additional
evidence for our nice slice criterion. (In fact, the above
construction fails to yield a region that satisfies the
assumptions of our theorem on a nice slice.)

B. Classical vs quantum singularity in
Kerr-Newman black holes

Here we will discuss the singularity theorem applied to
the future of B. In the Schwarzschild solution, the gen-
erators of HþðBÞ are obviously incomplete due to the
curvature singularity at r ¼ 0, validating the prediction of
our theorem. In charged or rotating black holes, however,
the generators of HþðBÞ contain their end points, appa-
rently violating Theorem 3.1. For simplicity, we will
discuss this in detail for the Hartle-Hawking state of the
maximally extended Reissner-Nordstrom black holes of
nonzero charge, though we expect the main lessons to
generalize to Kerr and Kerr-Newman black holes. The
metric is given by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
d−1; ð4:6Þ

where

fðrÞ ¼
�
1 −

rþ
r

��
1 −

r−
r

�
: ð4:7Þ

We pick R to be the union of the asymptotic region similar
to Sec. IVA and B a late time slice of the interior such that
B is hyperentangled with R. Furthermore, the quantum
expansion of B ∪ R along HþðBÞ can be easily arranged to
be negative since the area variation towards the interior is
large and negative. Therefore, it is easy to satisfy the
conditions of our theorem towards HþðBÞ. See Fig. 4.
In the classical Reissner-Nordstrom background, the

generators of HþðBÞ contain their endpoints (see Fig. 6).
These lie on a sphere μ near the inner horizon bifurcation
surface, of radius r− þ δr. The region B is located around
the Page time at the earliest, which implies

FIG. 6. In the Reissner-Nordstrom geometry, the region that is
exponentially close to the inner horizon in area radius (shown in
red) has the property that any Cauchy slice intersecting it
necessarily has exponentially large extrinsic curvature some-
where. In the classical geometry, the generators of HþðBÞ come
to an end on a sphere μ inside the red region. Therefore, a Cauchy
slice (shown in black) that is nowhere to the past of HþðBÞ has
exponentially large extrinsic curvature.

RAPHAEL BOUSSO and ARVIN SHAHBAZI-MOGHADDAM PHYS. REV. D 107, 066002 (2023)

066002-8



δr≲ L exp

�
−
αr4þ
r2−G

�
; ð4:8Þ

where L is some function of rþ and r−, and α is an order
one coefficient. Therefore, μ is exponentially close to the
inner horizon bifurcation surface.
We do not expect that any nice slice containing R reaches

the future of μ. As evidence for this, consider a constant r
slice which crosses μ or its future. Its extrinsic curvature
satisfies

K ≳
�ðrþr− − 1Þ

Lr−

�1
2

exp

�
αr4þ
2r2−G

�
: ð4:9Þ

There is a second, seemingly independent reason why
the semiclassical geometry may not contain μ, and hence
will satisfy the prediction of a singularity by Theorem 3.1.
Quantum corrections to the matter stress tensor are known
to become important near the inner horizon for a generic set
of black hole parameters [21–25].6 For a simple toy model
in which this can be shown, consider conformal matter in a
(1þ 1)-dimensional Reissner-Nordstrom background. The
metric is

ds2 ¼ −fðrÞ du dv; ð4:10Þ

with u ¼ t − r� and v ¼ tþ r� where dr� ¼ dr=fðrÞ.
Setting the infalling flux to zero, the trace anomaly and
conservation of the stress tensor imply

hTμνkμkνi ∼ c
κ2− − κ2þ

r2
; ð4:11Þ

where kμ ¼ ∂v, κþ, and κ− denote the outer and inner
horizon surface gravities and c denotes the central charge of
the CFT. Here we have added powers of r by dimensional
analysis to turn (4.11) into an equation for 3þ 1 dimen-
sions. A detailed derivation of the stress tensor can be found
in [24] where it is shown that the coefficients in Eq. (4.11)
are more complicated. We assume here that Eq. (4.11) is
valid qualitatively for all d, though the detailed dependence
on r� may be more complicated.
The stress tensor given in Eq. (4.11) seems regular

because in ðu; vÞ coordinates the inner horizon is at infinity.
In coordinates which are regular in a neighborhood of the
inner horizon, the stress tensor can be shown to diverge.
Here it is important to show that Eq. (4.11) will cause a
large deviation of the metric from the classical geometry in
a neighborhood of the inner horizon. The location r at
which the geometry gets Oð1Þ corrections from this stress

tensor can be estimated by inspecting Raychaudhuri’s
equation for a spherically symmetric congruence near
the inner horizon:

∂vθv ¼ κvθv −
θ2v

d − 1
− 8πGhTvvi; ð4:12Þ

where κv is the inaffinity. The quantum stress tensor becomes
comparable to the other terms for r − r− ≲ rmax, where

rmax − r− ∼
ffiffiffiffi
G

p
: ð4:13Þ

Therefore, it is clear that the generators of HþðBÞ exit the
region, which is well approximated by the classical solution
(4.6). To further understand the nature of the incompleteness
ofHþðBÞ would require knowledge of the correct geometry
which is beyond the scope of this work. A natural guess
would be that the geometry terminates at a spacelike
singularity, directly upholding Theorem 3.1. See Fig. 7.
Our analysis has shown that quantum singularities blurs

the line between an ordinary singularities and a Cauchy
horizon. Even if quantum backreaction does not create an
ordinary singularity, a quantum singularity forms before a
Cauchy horizon can be reached. This may have some
bearing on the strong cosmic censorship hypothesis, that

(a)

(b)

FIG. 7. (a) Generically the expectation value of the quantum
stress tensor diverges near the inner horizon, causing large
backreaction (gray). The generators of HþðBÞ encounter this
region, and our singularity theorem predicts that they are
incomplete. The quantum-corrected geometry is not known,
but the singularity theorem predicts that it either fails to admit
nice slices or has a curvature singularity as shown in (b).

6For rotating Bañados-Teitelboim-Zanelli (BTZ), the stress
tensor at leading order can be regular at the inner horizon [26].
However, it has been argued that subleading corrections lead to a
divergence [27].
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physically reasonable spacetimes are globally hyperbolic.
Strong cosmic censorship appears to be violated in the final
stages of black hole evaporation and of the Gregory-
Laflamme instability. These violations are in some sense
small [28] and should perhaps be ignored. The classical
Kerr-Newman solution is of greater concern. The fact that
our theorem treats quantum singularities on the same
footing as classical singularities encourages us to think
of the evolution near the inner horizon as becoming
singular, since no nice slices are available. We should treat
this quantum singularity no differently than a classical one.
Hence we need not rely on arguments that the backreaction
from quantum effects would invalidate the classical Kerr-
Newman solution near the inner horizon. Let N be the past
neighborhood of the inner horizon that cannot be reached
by nice global Cauchy slices. We should treatN the same as
the small past neighborhood N of the Schwarzschild
singularity in which scalar curvature invariants approach
or exceed the Planck scale: N should not be part of the
physical spacetime, the semiclassical geometric description
terminates at the past boundary of N, and any geometric

extensions of M − N that we could consider are physically
meaningless.
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