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Three-dimensional gravity is a topological field theory, which can be quantized as the Ponzano-Regge
state-summodel built from the f3njg symbols of the recoupling of the SU(2) representations, in which spins
are interpreted as quantized edge lengths in Planck units. It describes the flat spacetime as the gluing of three-
dimensional cells with a fixed boundary metric encoding length scale. In this paper, we revisit the Ponzano-
Regge model formulated in terms of spinors and rewrite the quantum geometry of 3D cells with holomorphic
recoupling symbols. These symbols, known as Schwinger’s generating function for the f6jg symbols, are
simply the squared inverse of the partition function of the 2D Ising model living on the boundary of the 3D
cells. They can furthermore be interpreted, in their critical regime, as scale-invariant basic elements of
geometry. We show how to glue them together into a discrete topological quantum field theory. This
reformulation of the path integral for 3Dquantumgravity, with a rich pole structure of the elementary building
blocks, opens a new door toward the study of phase transitions and continuum limits in 3D quantum gravity
and offers a new twist on the construction of a duality between 3Dquantumgravity and a 2Dconformal theory.
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I. INTRODUCTION

Spin foam models (see, e.g., [1–3] for reviews) provide a
rigorous, background-independent and nonperturbative
path integral quantization of gravitational theories based
on discrete topological quantum field theories and state-sum
models. They define probability amplitudes for histories
of quantum states of geometry defined as entangled collec-
tions of discrete excitations. They can be considered as a
quantum version of Regge calculus for discretized general
relativity [4]. They provide transition amplitudes for spin
network states in loop quantum gravity [1,5,6]. They also
provide the triangulation weights in sum-over-random-
geometries approaches to quantum gravity, such as matrix
models, tensor models, and group field theories [7,8].
Finally, they are a natural mathematical framework for
defining topological invariants, e.g., [9], and have been
shown to be related to noncommutative geometry, e.g., [10],
to lattice field theories with quantum group gauge sym-

metries, e.g., [11,12], and to higher gauge theories [13–16].

Retrospectively, the first spin foammodel was constructed
by Ponzano and Regge [17] and defines a discrete topologi-
cally invariant path integral for three spacetime dimensional
gravity in Euclidean signaturewith a vanishing cosmological
constant [9,18,19]. Let us underline that this is not a Wick-
rotated path integral, but it is truly the quantum theory of a
positive signature metric with probability amplitudes in
exp½iSgrav�. A posteriori, the Ponzano-Reggemodel has been
understood as the discretized path integral for 3D gravity
written in terms of veirbein-connection variables as a
topological BF theory with gauge group SU(2) [19].
There exists a Lorentzian version of this model based on
the SUð1; 1Þ gauge group [20–23]. One can also take into
account a nonvanishing cosmological constant through a q
deformation of the gauge group [11,12,24]. This yields the
Turaev-Viro topological invariant when the quantum defor-
mation parameter q is a root of unity [25]. Through this
relation, the Ponzano-Regge state sum has been understood
as a special case of the Reshetikhin-Turaev invariants [26]
and thereby related to the quantization of 3D gravity as a
Chern-Simons theory as advocated by Witten [27].
The Ponzano-Regge model is constructed as a path

integral over discrete 3D geometries. Considering a 3D
piecewise linear cellular complex Δ, which can be thought
of as a cellular decomposition of a Riemannian 3D
manifold, one has a hierarchy of cells with dimensions
between 0 and 3, which one dresses with algebraic data
following the logic from algebraic topology. Then one
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builds a probability amplitude for the 3D geometry from
the algebraic data, such that it is topologically invariant in
the sense that it does not depend on the details of the 3D
cellular complex but only on its topology (and on boundary
data). So the hierarchy of the Ponzano-Regge state sum is:

(i) Zero-cells (points):
This level is actually put aside by spin foam

models, which focus on geometrical structures with
co-dimensions less than or equal to 2. This allows
for conical singularities, e.g., [28], which can be
appropriately controlled in sums over random dis-
crete geometries, e.g., [29].

(ii) One-cells (edges):
Edges have the topology of a basic segment,

devoid of any winding information. One dresses
edges with irreducible representations of the Lie
group SU(2). These are labeled by half-integers
j ∈ N

2
, usually referred to as spins. The Hilbert space

Vj carrying the representation of spin j is of dimen-
sion dj ¼ ð2jþ 1Þ, and its standard basis is given the
spin basis labeled by the spin j and the magnetic
moment m running from −j to þj by integer steps.
The spin je carried by an edge e gives its quantized

length in Planck unit, le ¼ jelPlanck. A state in Vj is
then interpreted as a quantum three-vector of length j.
This is the key to the geometrical interpretation of the
Ponzano-Regge model.

(iii) Two-cells (faces):
Faces are assumed to have the topology of a two-

dimensional disk with a S1 boundary. They are
dressed with intertwiners, that is, SU(2)-invariant
states living in the tensor product of the spins living
on the edges forming the face’s boundary:

If ¼ InvSUð2Þ½ ⊗
e∈∂f

Vje �: ð1Þ

In the case of a triangle, consisting of three edges
carrying spins j1, j2, j3, this intertwiner state is one-
dimensional if the spins satisfy the triangular inequal-
ities and 0-dimensional in all other cases. When it is
nontrivial, the unique intertwiner state is given by
the Clebsh-Gordan coefficients, or equivalently, the
Wigner f3jg symbols, encoding the recouplings of
the three spins. In general, intertwiner states are
interpreted as the quantum version of polygons.

(iv) Three-cells (elementary 3D regions or bubbles):
Elementary three-cells σ have the topology

of a three-ball. Their boundary has the topology of
a two-sphere made of faces glued together along
edges. We focus on the boundary of each three-cell
and think of them as bubbles. For each bubble, we
usually introduce the dual graph Γ ¼ ð∂σÞ�1, defined
formally as the one-skeleton of the dual of the
boundary two-complex: Each face is represented

as a (dual) node, and each edge is represented as a
(dual) link linking two nodes. Each edge or link
comes with its spin. Each face or node comes with its
intertwiner state. Such graph with representations on
its links and intertwiners at its nodes, Γfjl;ιng, is called
a spin network, as illustrated in Fig. 1. We define the
probability amplitude for the geometry of the three-
cell as the evaluation of its boundary spin network:

Aσ½fje; ιfge;f∈∂σ� ¼ Trfjege∈∂σ ⊗
f∈∂σ

ιf ¼ Trfjngn∈Γ ⊗n∈Γ
ιn

¼ EΓ½fjl; ιngl;n∈Γ�: ð2Þ

The trace Tr here is a slightly abusive notation. It
means gluing the intertwiner states using the inner
product on each edge, in the tensor product Hilbert
space ⊗

e∈∂σ
Vje . In the case of a three-simplex, or

tetrahedron, the boundary graph consists of four
nodes connected to each other through six links, as
illustrated in Fig. 2. The links carry six spins j1;…;6

while the three-valent nodes carry the corresponding
unique intertwiner state numerically given by the
Clebsh-Gordan coefficients. The resulting spin net-
work evaluation is the celebrated Wigner’s f6jg
symbol.

In general, one could glue the intertwiner states by
inserting SU(2) group elements gl (or even SLð2;CÞ
group elements as in [30]) along each link. This
yields the spin network wave function ψΓ

fjl;ιng ∈
C∞ðSUð2Þ×EσÞ, whereEσ counts the number of edges
on the bubble boundary (or equivalently, the number
of links in the boundary graph Γ). The spin network
evaluation Aσ½Γ; fjl; ιng� then truly is the evaluation
of the spin network wave function ψΓ

fjl;Ing on trivial
group elements gl ¼ I in SU(2), reflecting the fact
that physical states in pure 3D (quantum) gravitywith

FIG. 1. (A portion of) the cellular decomposition of a two-
sphere made of faces glued along edges (in black and thick) and
its dual graph Γ (in red and thin) made of links and nodes. Each
link l is dressed with a spin jl and each node n is dressed with an
intertwiner ιn, which together represent a spin network Γfjl;ιng.
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vanishing cosmological constant have a flat curva-
ture. The Ponzano-Regge model can indeed be
understood as defining the projector onto the moduli
space of flat SU(2) connections, e.g., [22,31].

At the end of the day, the probability amplitude of a 3D
cellular complex Δ dressed with the algebraic data of spins
on its one-cells and intertwiners on its two-cells is obtained
by putting all those elementary building blocks together
and straightforwardly computing the product of the prob-
ability amplitudes of each three-cells together with appro-
priate weights for the edges and faces:

A½Δ; fje; ιfg� ¼
Y
e

ð−1Þ2jedje
Y
f

ð−1Þ
P

e∈∂f
je

×
Y
σ

Aσ½fje; ιfge;f∈∂σ�: ð3Þ

The edge weight only depends on the spin carried by the
edge and is simply the dimension of the corresponding
representation up to a sign. The face weight is a mere
parity factor. The bubble weight carries the nontrivial
dynamical information of the model. Such a structure with
a cellular complex dressed with representations and
intertwiner states and a probability amplitude defined
as the product of local amplitude for each cell depending
solely on the algebraic data it carries is called the local
spin foam ansatz for a path integral over discrete quantum
geometries. It has been shown in [7,32] that they are
Feynman diagram amplitudes of nonlocal noncommuta-
tive field theories, referred to as group field theories or

tensorial group field theories (see [33] on recent studies of
those Feynman diagrams and the renormalization of such
field theories).
A first important remark is that the Ponzano-Regge

ansatz is topologically invariant. Indeed, let us consider the
amplitude for a 3D cellular complex Δ obtained by
summing over all possible algebraic data. More precisely,
we allow Δ to have a 2D boundary, and we keep the
algebraic data on ∂Δ fixed while we sum over bulk spins
and bulk intertwiners:

A½Δ; fje; ιfge;f∈∂Δ� ¼
X

fje;ιfge;f∈Δo
A½Δ; fje; ιfge;f∈∂Δ;

fje; I ¼ ιfge;f∈Δo �; ð4Þ

where we have written Δo ¼ Δn∂Δ for the interior or bulk
of Δ. Under appropriate gauge fixing,1 this amplitude can
be shown to depend only on the boundary data and on the

FIG. 2. (a) From the tetrahedron T (in black) to the 2D dual boundary spin network graph Γ≡ ð∂TÞ�1 (in red): each triangle t ⊂ T is
replaced by a node n ⊂ Γ and each edge ei ⊂ T by a link li ⊂ Γ. The graph Γ also has the combinatorics of a tetrahedron. In the left
panel, the 3D dual T� of T is also shown (in blue), where the dual vertex v� is dual to the tetrahedron T, the dual edge eijk is dual to a face
or triangle bounded by edges ei, ej, and ek, and the dual face f� with e�156 and e

�
345 on the boundary (other dual edges on the boundary are

omitted) is dual to the edge e5. (b) Combination of ∂T (in black), which is the top view projection of the left panel, and its dual graph Γ
(in red).

1The sum over bulk spins and bulk intertwiners is usually
divergent, just as Feynman diagrams in quantum field theory. It is
possible to render those amplitudes finite by q-deforming SU(2)
at root of unity, with q ¼ expð2iπ=N þ 2Þ for an integer N ∈ N.
This gives the Turaev-Viro topological invariant [25] and is
interpreted as switching on a nonvanishing positive cosmological
constant Λ > 0. Even without quantum deforming the gauge
group, one can still identify the translational gauge symmetry
responsible for the divergences and gauge fix them, typically by
fixing the value of the spins on the edges belonging to a maximal
tree in Δo, in which case the gauge-fixed amplitudes never
depend neither on the choice of the gauge-fixing tree nor on the
bulk cellular complex Δo [9,19,34,35].
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topology ofΔ and to never depend on the details of the bulk
cellular complex Δo [19,22,36,37]. More precisely, the
amplitude for a 3D cellular complex with the topology
of a three-ball remains the evaluation of its boundary spin
network. For 3D cellular complexes with a nontrivial
topology, one needs to evaluate the spin network wave
function on the values of the nontrivial holonomies along
the noncontractible cycles of the bulk cellular complex or
integrate over possible values [22,36,37].
The second important remark is that the Ponzano-Regge

ansatz is locally holographic, in the sense that the probability
amplitudes associated to bounded regions of 3D space
entirely depend on their boundary data (and their topology).
The amplitude for each elementary three-cell σ depends by
definition solely on its boundary data: the spins je and
intertwiners ιf carried by the edges and faces on its boundary
e; f ∈ ∂σ. It is important to stress that there is no new
algebraic data associated to the three-cells (no maps between
intertwiner states as one could imagine). The probability
amplitude of the three-cell is the evaluation of its spin
network Aσ½fje; ιfge;f∈∂σ� ¼ EΓ½fjl; ιngl;n∈Γ�. Moreover,
this property is true also for nonelementary three-cells, that
is, for every bounded 3D region. Indeed, as long as one
considers a bounded 3D region R with the topology of a
three-ball, the topological invariance property of the
Ponzano-Regge amplitude, detailed above, implies that
the amplitude A½R; fje; ιfge;f∈∂R� is simply the evaluation
of the boundary spin network on ∂R. This means that any
bounded 3D region with the topology of a three-ball behaves
exactly as an elementary three-cell, and its probability
amplitude always only depends on its boundary data and
never on the details of its bulk cellular decomposition. In this
setting, the local holography principle is deeply interlaced
with the topological invariance of the theory.2

In the present work, we propose to revisit the Ponzano-
Regge model and write it in terms of coherent boundary
states for each three-cell instead of pure spin networks
sharply peaked on lengths. Those coherent states will be
peaked on both intrinsic geometries—the edge lengths—
and extrinsic geometry—the dihedral angles between faces,
which define a discrete measure of extrinsic curvature. This
reformulation has two important features:

(i) Using a coherent superposition of boundary spin
networks, defined as an infinite series over the spins
controlled by couplings dual to the spins, actually

amounts to considering a generating function for the
spin network evaluations. This is the same logic as
for a simple quantum harmonic oscillator, in which
matrix elements of an operator in the coherent state
basis. That is,

hzjÔjz̃i ¼
X
n;m∈N

z̄nz̃mffiffiffiffiffiffiffiffiffiffi
n!m!

p hnjÔjmi ð5Þ

can be understood as a generating function for the
matrix elements hnjÔjmi controlled by the complex
couplings z and z̃. Here, we focus on three-valent
boundary graphs, for which we don’t need inter-
twiner labels so that spin network evaluations
EΓ½fjl; ιngl;n∈Γ� simply depend on the spins on the
boundary graph links. We will simply write
EΓ½fjlgl∈Γ�. Then we define coherent spin network
evaluations similarly as for the harmonic oscillator as

EΓ½fYlgl∈Γ� ¼
X
fjl∈N

2
g
Y2jl
l W½fjlgl∈Γ�EΓ½fjlgl∈Γ�; ð6Þ

with the couplings Yl ∈ C and weights W½fjlgl∈Γ�
possibly involving factorials of the spins [30,38,39].
Generating functions is a powerful mathematical
tool. For instance, they typically map the asymptotic
behavior, here at large spins, i.e., the semiclassical
regime for length scales very large compared to the
Planck length, onto poles of the generating function.

(ii) The coherent spin superpositions, or equivalently the
generating functions, that we consider here allow for
exact analytical resummation of the Ponzano-Regge
amplitudes as rational functions in the couplings.
They are actually the generalization of Schwinger’s
generating function (SGF) for the f6jg symbols
[40,41], and they were introduced as coherent spin
network states in [42–44] and showed to lead to exact
closed formula for spin foam models in [45,46]. At
the end, the evaluations EΓ½fYlgl∈Γ�, for specific
well-chosen weights W½fjlgl∈Γ�, were shown to be
given by the inverse squared partition function of the
2D Ising model with inhomogeneous couplings
tan−1 Yl on the boundary graph [39]. For instance,
the generating function for the f6jg symbols corre-
sponds to the inverse of the square of the 2D Ising
model on the tetrahedron with six variables Y1;…;6

living on the edges and representing the strength of
the coupling between the four triangles [47]. Then, in
general for arbitrary three-cells and their boundary
graphs, this provides formulas for the Ponzano-
Regge amplitude as holomorphic functions of cou-
plings living on the boundary of the three-cells. These
formulas are at the heart of the proposed holographic
duality between 3D quantum gravity defined by
the Ponzano-Regge path integral and the 2D Ising
model [39].

2A nontopological invariant model could still be locally
holographic if one introduces the possibility of a nontrivial
renormalization flow under coarse graining, meaning that the
probability amplitude of a bounded region would still be an
evaluation of the boundary spin network wave function, but that
evaluation would now depend on extra parameters reflecting the
size of the region (and perhaps other basic coarse-grained
observables of the bulk geometry). The key would be that there
would be only a finite number of extra parameters, and that this
number would be the same for all regions.
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Building on those previous works, we show how to glue
the holomorphic amplitudes associated to the three-cells—
or in short, holomorphic blocks—defined as the evaluation
of the coherent spin network superpositions on their 2D
boundary. This gluing is done in a topologically invariant
way, that is so that overall amplitudes of a 3D region do not
depend on the chosen bulk cellular decomposition, and
ultimately reproduces the sum over spins of the original
Ponzano-Regge formulation.
This reformulation offers a new twist to the story of the

Ponzano-Regge path integral. We indeed formulate it as a
topological net of 2D Ising partition functions glued
together: Each three-cell defines a 2D Ising model on its
boundary, and then those three-cells, and thus those 2D Ising
models, are glued together in a topologically invariant
fashion. We refer to this construction as a topological
Ising net. It would be enlightening to investigate in the
future how general such topological Ising nets can be,
whether they can be defined in any dimension, using
arbitrary powers of the Ising partition function, if they
can be generalized to other condensed matter models, and
whether we can depart from topological invariance in a
controlled way with a nontrivial, yet integrable, renormal-
ization flow encoding the fusion of the three-cell algebraic
structure and amplitudes.
Moreover, one can look at this construction from the

perspective of (finite distance) holographic dualities à la
AdS=CFT correspondence. As the 2D Ising model becomes
a conformal field theory (CFT) in its critical regime, the
exact equivalence of the present formulation between the 3D
quantum gravity and the 2D Ising partition function, which
holds for every value of Ising couplings, can be understood
as a noncritical version of the gauge-gravity holography.
Interpreting the Ising partition function for noncritical
couplings as a noncritical version of conformal blocks,
the 3D Ponzano-Regge path integral is realized as gluing
such 2D noncritical blocks. This version of holography holds
for discrete quantized geometries and not only at the level of
field theories in the continuum limit (see, e.g., [48,49] for
holographic duality at the field theory level). More recent
work following this line of thought and investigating the
holographic behavior of the Ponzano-Regge path integral
can be found in [50–52]. A hope is that this reformulation
will lead to new developments in the investigation of the
phase diagram of 3D quantum gravity and the implementa-
tion of quasilocal holography in spin foams and loop-
gravity-inspired path integrals for quantum gravity.
In Sec. II, we review the standard formulation of the

Ponzano-Regge state sum as a path integral for discretized
3D gravity in its first-order formulation in terms of
vierbein-connection variables. We show that the Ponzano-
Regge amplitude for a 3D region is the spin network
evaluation on the 2D boundary of the region and that gluing
neighboring 3D regions is implemented by a fusion of
those spin network evaluations done in a topologically

invariant way, which leads to a locally holographic for-
mulation of 3D quantum gravity.
In Sec. III, we introduce the generating function for spin

network evaluations and compute it as a rational holomor-
phic function. The f6jg symbol for the tetrahedron
becomes a holomorphic f12z×2g symbol, equal to the
inverse squared partition function of the 2D Ising model on
the tetrahedron. We write the Ponzano-Regge model in
terms of those holomorphic blocks and show the topologi-
cal invariance of this new formulation.
Section IV analyzes the pole structure of the f12z×2g

symbol and of the tetrahedron gluing factors and inves-
tigates their geometrical interpretations in terms of gluing
tetrahedra up to scale factors.

II. THE PONZANO-REGGE SPIN FOAM
FOR 3D QUANTUM GRAVITY

A. 3D gravity with boundary

Throughout this paper, we consider gravity on a three-
dimensional Euclidean manifold M with two-dimensional
boundary ∂M; thus, the Einstein-Hilbert action with the
GHY boundary term reads

S½gμν� ¼
1

16πG

�Z
M

d3x
ffiffiffi
g

p
R − 2

Z
∂M

d2x
ffiffiffi
h

p
K

�
; ð7Þ

where G is the 3D gravitational constant proportional to
the Planck length lp, hab is the induced metric on the
boundary, and K the extrinsic scalar curvature. In this
paper, we put the length dimensions into the metric so that
the coordinates carry no dimensions. We have used the
natural unit ℏ ¼ c ¼ 1.
We introduce a co-triad e field, which is an suð2Þ-valued

one-form on M, and a connection A on a principle SU(2)
bundle over M, which can be viewed as an suð2Þ-valued
one-form on M. e is an orthonormal local frame of M,
while A is uniquely defined as the solution to the torsion-
free condition, dAe ¼ deþ ½A; e� ¼ 0, of the co-triad. In
components, they read

eiμe
j
νδij ¼ gμν;

Ai
μ ¼ −ϵijkeνk∇μejν ¼ ϵijkðΓρ

μνejρ − ∂μejνÞeνk; ð8Þ

where Γρ
μν is the Christoffel symbol. We have used Greek

letters to denote the coordinates on the manifold and Latin
letters to denote the Lie algebra indices. The action (7) thus
can be written as

S½e;A� ¼ 1

16πG

�Z
M
Trðe∧FðAÞÞþ

Z
∂M

Trðe∧AÞ
�
; ð9Þ

where FðAÞ ≔ dAþ 1
2
½A;A� is the curvature two-form of

A, and the trace is over the Lie algebra indices.
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It is well-known that the bulk term recovers the Einstein-
Hilbert action. We now show that the boundary term in (9)
is also consistent with the GHY term imposing the torsion-
free condition of the connection (8). We choose a gauge for
the co-triad e0μ ¼ nμ on the boundary ∂M, where n⃗ is the
vector normal to ∂M that links the metric and the induced
metric on the boundary by

gμν ¼ hμν þ nμnν: ð10Þ

The torsion-free connection on the boundary can be
written as Ai

μ¼−ϵij0nν∇μejν−ϵi0keνk∇μnν¼2ϵijeνj∇μnν.
Therefore, the boundary term reads

Z
∂M

ϵμνρeiμAiνn̂ρ ¼ 2

Z
∂M

ϵμνρϵijeiμeλjn̂ρ∇νnλ

¼ 2

Z
∂M

det e∇μnμ ¼ −2
Z
∂M

d2x
ffiffiffi
h

p
K;

ð11Þ

which recovers the GHY boundary term in (7). ⃗n̂ is a
dimensionless normal direction vector to ∂M that is
proportional to n⃗, say, n⃗ ¼ N ⃗n̂.3 On the other hand, the
variation is well-post upon the Dirichlet boundary con-
dition δeiμj∂M ¼ 0, which is consistent with the boundary
condition δgj

∂M ¼ 0 of the action (7).
In the first-order formalism, e and A are treated

independently; thus, the action is of the BF type. The
theory possesses two kinds of gauge symmetries, namely
the Lorentz transformation, performed by an SU(2) group
element g [infinitesimally parametrized by an suð2Þ-valued
function λ], and the translation, performed by a scalar field
Φ [infinitesimally parametrized by an suð2Þ-valued func-
tion ϕ]. The finite and infinitesimal transformation laws are
given by4

���� e ↦ geg−1

A ↦ gAg−1 þ gdg−1
;

���� e ↦ eþ dAΦ
A ↦ A

:

���� δLλ e ¼ ½λ; e�
δLλA ¼ dAλ

;

���� δtϕe ¼ dAϕ

δtϕA ¼ 0.
: ð12Þ

The variation of the BF action with boundary term (9) is

δS½e;A�¼
Z
M
Trðδe∧FþδA∧dAeÞþ

Z
∂M

Trðδe∧AÞ:

ð13Þ

The equations of motion recover the torsion-free condition
and, in addition, enforce the flatness of the manifold,

dAe ¼ 0; FðAÞ ¼ 0; ð14Þ

subject to the boundary condition δe ¼ 0.5

It has been well-known that (9) can be rewritten as
a Chern-Simons action with the Poincaré gauge group
ISU(2),

SCS½A� ¼ k
4π

Z
M

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
;

Aμ ¼ l−1
p eiμPi þAi

μJi; ð15Þ

where Ji and Pi are the generators of Lorentz trans-
formation and translation, respectively, [27,54].6 Explicitly,

SCS½e;A� ¼ k
4πlp

�Z
M

Tr½e ∧ FðAÞ� þ
Z
∂M

Tr½e ∧ A�
�
:

ð16Þ

We have used the Killing form hJi; Pji ¼ δij, and others
vanish. It is remarkable that both the bulk term and the

boundary term of (9) are recovered with k ¼ lp
4 G.

Upon quantization, the manifold M is discretized into
local blocks packed compactly. The structure of these local
blocks depends on that of the discrete phase space and
the quantization process. We shall see in Sec. IV that, by
considering the conformal class of the boundary action,
natural discretization and the quantization process results in
local blocks with scale-invariant nature, i.e., it represents
the conformal geometry of the discretized manifold, and are
glued locally in a scale-invariant way.

B. 3D quantum gravity as a discretized gauge
field path integral

In this subsection, we review the spin foam model for 3D
quantum gravity, which is the discretized path integral of
the BF action. We set 1

16πG ¼ 1 and will continue to apply
this simplification in the rest of the article since we no
longer need to deal with lp. Consider the gravity on a three-
manifold M with boundary ∂M. The path integral is an

3It is important to note the difference between nμ and n̂μ. As
the metric carries square of length dimensions, nμ is with a
dimension of length according to (10), while n̂μ is dimensionless
so that the dimension of the boundary action (11) is correct.

4The subscript “L” denotes Lorentz transformation, and “t”
denotes translation.

5The boundary condition δA ¼ 0 requires no boundary term to
give a well-post variation that leads to the equations of motion
(14). Different boundary conditions lead to different quantization
results. See [53] for a discussion.

6According to our agreement of dimension assignment, e is
with dimension of length and A; thus, F is dimensionless.
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integration over the gauge equivalent class of the
bulk configuration subject to an admissible boundary
condition ∂,

Z½M; ∂� ¼
Z

DAB

Z
DeB exp ðiS½e;A�Þ

¼ Z½∂M; ∂�
Z

DABδðFðABÞÞ; ð17Þ

where Z½∂M; ∂� depends on the boundary condition, and
the subscript “B” denotes the configuration in the bulk. The
idea of spin foam is to write the path integral (17), which
reduces to the flatness condition in the bulk, in a discrete
fashion that encodes the local geometrical information.
The quantization program proceeds firstly with the

cellular decomposition of the spacetime, then with the
discretization of variables so that they are concentrated on
the cells of a particular dimension, in particular, when the
cellular decomposition is the triangulation, denoted as T,
a three-simplex is a tetrahedron, denoted as T, and a
2-simplex is a triangle, denoted as t.
Apart from working on the cellular decomposition △ of

the 3D spacetime manifoldM and the graph Γ ¼ ð∂△Þ�1 on
the boundary of △, we will also work on the dual cellular
decomposition △�. In the graph Γ, a node n is dual to a
plaquette p, and a link l is dual to an edge e; while in the
dual cellular decomposition, a dual face f� is dual to one
edge e, an oriented dual edge e� is dual to one face f, and a
dual vertex v� is dual to one three-cell σ. When e� is on the
boundary of f�, we denote e� ∈ ∂f�. An example is
illustrated in Fig. 2, in which li is dual to ei, and the
orientation of Γ is chosen to be the Kasteleyn orientation,
for the reason related to the duality between spin network
and 2D Ising model [39]. A Kasteleyn orientation is such
that each plaquette has an odd number of links oriented
opposite the orientation induced by the plaquette.7

As (17) integrates out the triads and reduces to a function
of the connection in the bulk, it is natural to define the
discrete variables related to the connection. With the
cellular decomposition of M and its dual skeleton at hand,
we assign an SU(2) group element ge� called holonomy to
each dual edge e�, which encodes the discrete information
of the connection. The reverse of the dual edge orientation
maps ge� to its inverse g−1e� . Then the curvature is naturally
defined by the path-ordered product of holonomies for a
dual face with a randomly selected starting dual vertex.

The e∂ field on the boundary, by applying the same
technique as in LQG, is discretized to be the flux variable
Xe, which is an suð2Þ Lie algebra object, each assigned to
an edge e ∈ ∂△ on the discretized boundary. This leads to
the discrete version of (17),

Z½△; ∂△� ¼ C½∂△; ∂�
Z
SUð2Þ

Y
e�∉ð∂△Þ�

dge�
Y
f�
δ

� Y!
e�∈∂f�

ge�
�
;

ð18Þ

where the measure dg is the Haar measure of SU(2), and the
delta distribution on the SU(2) group imposes the group
element in the argument to be identity. The discrete flatness
is thus understood as the trivial holonomy associated to
each dual face. C½∂△; ∂� is a term that depends on the
boundary cellular decomposition and the discrete boundary
condition. Upon quantization, these boundary condition
becomes boundary states; thus, the quantization of (17) will
depend on the boundary states ψΓ on the graph Γ, which is
the dual of the boundary discretization.
The machinery of the spin foam to achieve localization is

to express the delta distribution in (18) as a plane wave of
SU(2) in a certain representation, which is then able to be
decomposed into the product of plane waves localized in
different cells. In other words, it is to construct the spin
foam path integral, also understood as the total amplitude,
with a product of local amplitudes associated to dual
vertices (or tetrahedra), dual edges (or faces), and dual
faces (or edges), which capture the (admissible) local
representations and local intertwiners, and then sum over
all possible local configurations. It is called the local spin
foam ansatz, which postulates that one can formally
decompose the total amplitude into8

Z½△;ψρ
Γ� ¼

X
ρB;ιB

Y
f�

Af�
Y
e�
Ae�

Y
v�
Av� ; ð19Þ

where ρ and ι denote the representation and the intertwiner,
respectively, and the sum of representations is only over
those associated to the bulk (denoted with the subscript
“B”). The boundary state ψρ

Γ encodes the representation ρ
associated to the boundary graph Γ, which is left in the
expression of the total amplitude. The summation symbol
was used as we assumed the representations ρ are discrete,
which will no longer be the case when we consider the spin
foam model with spinor representation in Sec. III. In the

7It was shown in [55] that there exists a Kasteleyn orientation if
and only if the number of nodes in a graph Γ embedded in a
surface Σ is even, and there are 22g equivalence classes of
Kasteleyn orientations of Γ, where g is the genus of Σ. Two
Kasteleyn orientations are called equivalent when one can be
obtained from the other by a sequence of moves, in which
the orientation of all the links incident to a node are reversed.
Thus, there is a unique equivalence class of Kasteleyn orientation
for the graph Γ ¼ ð∂TÞ�1 dual to the boundary of a tetrahedron.

8We change from now on the notations and terminology for
amplitudes based on the dual cellular decomposition △� com-
pared to (3) to be consistent with most of the literature in spin
foams. The two notations are in one-to-one correspondence: An
edge amplitude Ae� is equivalent to a face weight Af , a face
amplitude Af� is equivalent to an edge weight Ae, and a vertex
amplitude Av� is equivalent to a bubble weight Aσ .
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latter case, the summation symbol is changed to the
integration symbol.
The edge amplitude Ae� and the face amplitude Af� are

both kinematical. The former describes the gluing of
adjacent three-cells, while the latter is there in order to
compensate the factors to recover the delta distribution in
(18), whose contribution dominates only in the quantum
regime. In contrast, the vertex amplitude Av� contains the
dynamical information of the spin foam and thus deserves a
deeper investigation.

C. Fourier transform and spin
network evaluations

The Ponzano-Regge model [17] is a realization of (19)
based on the triangulation of the manifold, where ρ is given
by the SU(2) irreducible representation labeled by spin
j ∈ N=2. j is interpreted into the edge length suggested by
the LQG framework. The vertex amplitude of the Ponzano-
Regge state sum geometrically describes the 3D geometry
of the tetrahedron it is associated to, and an edge amplitude
describes how two neighboring tetrahedra are glued
together.
We start from the discrete path integral (18) for a general

cell decomposition and work on the dual picture. δðgf� Þ can
be decomposed over the SU(2) spin representation using
the Peter-Weyl theorem,

δðgf� Þ ¼
X
jf�

djf� χ
jf� ðgf� Þ; with gf� ¼

Y!
e�∈∂f�

ge� ; ð20Þ

where dj ≡ 2jþ 1 is the dimension of the spin j representa-
tion space Vj, and χjðgÞ ¼ TrDjðgÞ the character of g
in the spin j representation, formulated as the trace
of the Wigner matrix DjðgÞ of g in the j representation.
Thus, equivalently in the cellular decomposition picture, each
edge e is dressed with a spin je. When decomposing δðgf� Þ
into spin representation, one has an SU(2) group integration
for each dual edge e�, which is dual to anN-gon, ofN copies
of theWignermatrixDjiðgÞ (i ¼ 1…N). This is the projector,
also called intertwiner IH ¼ P

a jIaihIaj, of the kinematical
Hilbert space onto the SU(2)-invariant Hilbert space
InvSUð2ÞðVj1 ⊗ �� �⊗VjN Þ⊗ InvSUð2ÞðV�j1 ⊗ �� �⊗V�jN Þ. In
components, the integration takes the formZ

SUð2Þ
dge�D

j1
m1m0

1
ðge� Þ � � �Djn

mnm0
n
ðge� Þ

¼
X
a

hfji; migjIaihfji; m0
igjIai; ð21Þ

where a runs from 1 to the dimension of this SU(2)-
invariant space. Decomposing the intertwiner into a
particular a basis

P
a jIaihIaj corresponds to separating

anN-valent node (N ≥ 3) intoN − 2 three-valent nodes in a
tree way. In the cellular decomposition picture, equally, it

corresponds to adding edges in the N-gon on the boundary
of a three-cell so that the boundary is made of gluing
triangles. One example of separating a six-valent node into
four three-valent nodes and its correspondence of separat-
ing a hexagon into four triangles is given in Fig. 3.
Performing the group integration to all the dual edges,
one ends up with a f3njg symbol (up to a sign) for each
three-cell given a basis of the intertwiner jIe�

a ihIe�
a j for each

boundary face. This f3njg symbol defines a spin network
evaluation (we will see why it is called so in the next
subsection), which is the contraction of the intertwiner
basis Ie�

a on all the dual edges incident to v�:

f3njgv�;a ¼ Tr⊗f�V
jf�

�
⊗
e�
Ie�
a ⊗ ⊗

f�
IVjf�

�
: ð22Þ

Therefore, the discrete partition function can be written as
the gluing of f3njg symbols with edge amplitudes simply
given by a sign. Symbolically,

Z½△;ψ j
Γ� ¼

X
fjf� g

Y
f�
ð−1Þ2jf�djf�

X
fag

Y
e�
ð−1Þ

P
f�je�∈f� jf�þ2Ja

×
Y
v�
f3njgv�;a; ð23Þ

where the power of the edge amplitude is the sum of spins
over all the dual faces whose boundary contains a given
dual edge e� and twice the spins corresponding to the a
basis of the intertwiner on the dual edge (for the example in
Fig. 3, Ja ¼ k1 þ k2 þ k3). The double counting for Ja is
due to the fact that when separating the boundary polygon
into triangles by adding internal edges, each internal edge
is on the boundary of two triangles.
In the case of triangulation, one encounters intertwiners

for three-valent nodes, which are one-dimensional. The
integration (21) simply becomes

FIG. 3. Splitting a six-valent node into four three-valent nodes
(in red) and its corresponding change on the boundary two-cell
(in black), which, in this case, is to split a hexagon into four
triangles by adding three internal edges (dashed lines). The
splitting is not unique, and each way of splitting corresponds to
choosing one set of basis fag as in (21). Here, the basis is labeled
by the three internal spins k1, k2, k3 whose coupling with the
j1;…; j6 is as shown in the right.
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Z
SUð2Þ

dge�D
j1
m1n1ðge� ÞDj2

m2n2ðge�ÞDj3
m3n3ðge� Þ

¼
�

j1 j2 j3
m1 m2 m3

��
j1 j2 j3
n1 n2 n3

�
; ð24Þ

which is the product of two normalized Clebsh-Gordan
coefficients, or equivalently, the f3jg symbols. The recou-
pling of the f3jg symbols ends up with f6jg symbols, each
associated to a tetrahedron T, or equivalently, a dual vertex
v�. For a tetrahedron with the notation in Fig. 2 and each
edge ei dressed with a spin ji, the f6jg symbol is given by�
j1 j2 j3
j4 j5 j6

	
¼
X
mi

ð−1Þ
P

6

i¼1
ðji−miÞ

�
j1 j2 j3
m1 m2 −m3

�

×

�
j1 j5 j6

−m1 m5 m6

��
j4 j2 j6

−m4 −m2 −m6

�

×

�
j4 j5 j3
m4 −m5 m3

�
: ð25Þ

It ends up with a state sum formulation of the discrete
partition function (18), i.e., the Ponzano-Regge model,

Z½T;ψ j
Γ� ¼

X
fjf� g

Y
f�
ð−1Þ2jf�djf�

Y
e�
ð−1Þ

P
3

i¼1
ji

×
Y
v�

�
j1 j2 j3
j4 j5 j6

	
v�
: ð26Þ

It easily reads that the vertex amplitude Av� is the f6jg
symbol associated to the tetrahedron dual to v�, and the
edge amplitudeAe� is a sign given by the spins on the sides
of the triangle dual to e�, and the face amplitude Af� is the
dimension djf� of the spin representation space associated
to the face f�. See, e.g., [9] for detailed explanation of the
sign factors. When there’s no boundary, the edge amplitude
term can be absorbed in the vertex amplitude [9], and then
the state sum can be written as

Z½T�¼
X
fjf� g

Y
f�
ð−1Þ2jf�djf�

Y
v�
ð−1Þ

P
6

i¼1
2ji

�
j1 j2 j3
j4 j5 j6

	
v�
:

ð27Þ
Geometrically, the vertex amplitude describes a tetrahedron
with edge lengths specified by the spins in the f6jg symbol.
The edge amplitudedetermines that thegluingof twoadjacent
tetrahedra is performed by matching the side lengths of the
triangles, thus, the full 2D geometrical information of the
triangles. This trivial way of gluing can be viewed as resulting
from the flatness of themanifold, imposed by δðgeÞ for all the
edges of the triangulation. The face amplitude is simply a
weight factor, which is important only in the quantum regime.

D. Topological invariance and local holography

The Ponzano-Regge state sum formula,

Z½T;ψ j
Γ� ¼ C½∂T�

Z
SUð2Þ

Y
e�∉ð∂MÞ�

dge�
Y
f�
δ

�Y
!
e�∈∂f�ge�

�

ð28Þ

¼
X
fjf� g

Y
f�
ð−1Þ2jf�djf�

Y
e�
ð−1Þ

P
3

i¼1
ji

×
Y
v�

�
j1 j2 j3
j4 j5 j6

	
v�
; ð29Þ

is invariant under the Pachner moves in the bulk, which is
the discrete version of the bulk diffeomorphism, but only
depends on the topology of the manifold M [18] and the
boundary states. This reflects the holographic nature of
the spin foam model for 3D quantum gravity. Consider
the smallest 3D spacetime block with trivial topology, a
tetrahedron, one can define the boundary state to be the spin
network state (defined in II D 2) coming from the loop
quantum gravity. In this way, instead of splitting a delta
distribution into local amplitudes as above, one can start
from the local amplitude ansatz (19) and construct first the
vertex amplitudes then recover total amplitude (18) by the
chosen edge and face amplitudes.
In this subsection, we first review the Pachner moves for

the Ponzano-Regge state sum formula (28) or (29) to show
the topological invariance of the total amplitude and then
reconstruct the Ponzano-Regge amplitude from the local
amplitude ansatz.

1. Topological invariance from Pachner moves

In 3D, there are two types of Pachner moves, namely the
2–3 moves and the 1–4 moves as shown in Fig. 4. To prove
the topological invariance, one can either start from the
group formulation (28) and apply the change of variable
method or start from the spin formulation (29) and apply
the recursion relation of f6jg symbols.
To apply the change of variable method, one simply uses

the invariance property of the SU(2) group measure under
(left and right) SU(2) transformation. In the case of 2–3
moves, the dual triangulation T�

2 for two tetrahedra T2 and
the dual triangulation T�

3 for three tetrahedra T3 are given in
the left panel of Figs. 5(a) and 5(b), respectively (projected
onto a plane). For both T�

2 and T�
3, one can choose a base

dual vertex and redefine the holonomies starting from the
base dual vertex. Using the notation in Fig. 5(a), one can
write the partition function (28) for T2 by transforming
hi → Hi ¼ hik−1 as
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Z½T2;ψ
j
Γ� ¼ C½∂T2�

Z
SUð2Þ

�Y
e0�

dge0�
�Y

f0�
δ

�Y
!
ge0�

�Z
SUð2Þ

�Y3
i¼1

dgidhi

�
dkδðg1kh−11 � � �Þδðg2kh−12 � � �Þ

δðg3kh−13 � � �Þδðg1g−12 � � �Þδðg2g−13 � � �Þδðg3g−11 � � �Þδðh1h−12 � � �Þδðh2h−13 � � �Þδðh3h−11 � � �Þ

¼ C½∂T2�
Z
SUð2Þ

�Y
e0�

dge0�
�Y

f0�
δ

�Y
!
ge0�

�Z
SUð2Þ

�Y3
i¼1

dgidHi

�
δðg1H−1

1 � � �Þδðg2H−1
2 � � �Þ

δðg3H−1
3 � � �Þδðg1g−12 � � �Þδðg2g−13 � � �Þδðg3g−11 � � �ÞδðH1H−1

2 � � �ÞδðH2H−1
3 � � �ÞδðH3H−1

1 � � �Þ; ð30Þ

where we have denoted the irrelevant part of the integration with primes and holonomies not in T2 with � � �.
For T3, one can transform

������
g1 → G1 ¼ g1k−11 ; h1 → H1 ¼ h1k−11
g2 → G2 ¼ g2k2; h2 → H2 ¼ h2k2
k3 → K3 ¼ k1k3k2:

Thus, the partition function for T3 can be rewritten as (we again denote the irrelevant part of the integration with
primes)

FIG. 5. (a) Dual triangulation T�
2 and the effective graph after acting gauge transformation on hi and redefine them from the base dual

vertex (in red) as hi → Hi ¼ hik−1; i ¼ 1;…; 3. (b) Dual triangulation T�
3 and the effective graph after acting gauge transformation on

g1;2; h1;2; k3 and redefine them starting from the base dual vertex as ðg1; h1; g2; h2; k3Þ → ðG1 ¼ g1k−11 ; H1 ¼ h1k−11 ; G2 ¼
g2k2; H2 ¼ h2k2; k3 → K3 ¼ k1k3k2Þ. The extra loop (dashed) for δðK3Þ can be eliminated by the integration over the delta function
in the spin foam amplitude:

R
SUð2Þ dK3δðK3Þ ¼ 1.

FIG. 4. (a) 2–3 Pachner move: adding an internal edge. (b) 1–4 Pachner move: adding an internal vertex.
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Z½T3;ψ
j
Γ� ¼ C½∂T3�

Z
SUð2Þ

�Y
e0�

dge0�
�Y

f0�
δ

�Y
!
ge0�

�Z
SUð2Þ

�Y3
i¼1

dgidhidki

�
δðg1k3g−12 � � �Þδðh1k3h−12 � � �Þ

δðg2k2g−13 � � �Þδðh2k2h−13 � � �Þδðg3k1g−11 � � �Þδðh3k1h−11 � � �Þδðg1h−11 � � �Þδðg2h−12 � � �Þδðg3h−13 � � �Þδðk1k3k2Þ

¼ C½∂T3�
Z
SUð2Þ

�Y
e0�

dge0�
�Y

f0�
δ

�Y
!
ge0�

�Z
SUð2Þ

�Y2
i¼1

dGidHi

�
dg3dh3dK3δðG1K3G−1

2 � � �ÞδðH1K3H−1
2 � � �Þ

δðG2g−13 � � �ÞδðH2h−13 � � �Þδðg3G−1
1 � � �Þδðh3H−1

1 � � �ÞδðG1H−1
1 � � �ÞδðG2H−1

2 � � �Þδðg3h−13 � � �ÞδðK3Þ

¼ C½∂T3�
Z
SUð2Þ

�Y
e0�

dge0�
�Y

f0�
δ

�Y
!
ge0�

�Z
SUð2Þ

�Y2
i¼1

dGidHi

�
dg3dh3δðG1G−1

2 � � �ÞδðH1H−1
2 � � �Þ

δðG2g−13 � � �ÞδðH2h−13 � � �Þδðg3G−1
1 � � �Þδðh3H−1

1 � � �ÞδðG1H−1
1 � � �ÞδðG2H−1

2 � � �Þδðg3h−13 � � �Þ: ð31Þ

To arrive at the last equation, we have used δðK3Þ to eliminate
K3 in the expression. The boundary term C½∂T2� and C½∂T3�
are the same sinceT2 andT3 possess the sameboundary, so as
the irrelevant parts. Therefore, (30) and (31) are exactly the
same (although they are written with different notations).
In the case of 1–4 moves, one can apply the same method

on T4, resulting in a divergent term δSUð2ÞðIÞ. Indeed, the
holonomies surrounding the four edges incident to the
internal vertex are on four loops patched together to form
a two-sphere. Thus, only three of the four delta functions of
these holonomies are independent, which gives one extra
delta function evaluated on identity. This divergence corre-
sponds to the translational symmetry of the internal vertex of
T4, which is the infinite gauge volume of the Lie algebra
suð2Þ [26,56]. To remove the divergence, one can go through
the partial gauge fixing method [57] (or equivalently, the
Fadeev-Popov gauge fixing procedure illustrated in [19,56]).
On the other hand, starting from the spin formulation

(29), one can apply the Biedenharn-Elliott identity,�
j1 j2 j3
j4 j5 j6

	�
j7 j8 j3
j4 j5 j9

	

¼
X
j

ð−1ÞJþ
P

9

i¼1
jidJ

�
j1 j6 j6
j9 j7 J

	�
j2 j6 j4
j9 j8 J

	

×

�
j1 j2 j3
j8 j7 J

	
; ð32Þ

and directly show that the partition function after 2–3
moves is unchanged. For the 1–4 move case, the corre-
sponding identity for f6jg symbols is [58]

dJ

�
j1 j2 j3
j4 j5 j6

	
¼
X
li

ð−1Þ
P

6

i¼1
jiþ

P
3

i¼1
liþJdl1dl2dl3

×

�
j1 j2 j3
l1 l2 l3

	�
j6 j5 j1
l2 l3 J

	

×

�
j4 j2 j6
l3 J l1

	�
j3 j4 j5
J l1 l2

	
; ð33Þ

which is true for any admissible J corresponding to the
length of one of the internal edges as shown in Fig. 4(b).
Equation (33) is the partial gauge fixing version of the
apparent but divergent result [58]

X
J

d2J

�
j1 j2 j3
j4 j5 j6

	
¼
X
li;J

ð−1Þ
P

6

i¼1
jiþ

P
3

i¼1
liþJdl1dl2dl3dJ

×

�
j1 j2 j3
l1 l2 l3

	�
j6 j5 j1
l2 l3 J

	

×

�
j4 j2 j6
l3 J l1

	�
j3 j4 j5
J l1 l2

	
;

ð34Þ

which is obtained by writing the amplitude for the four
tetrahedra and then applying the Biedenharn-Elliott identity
and the orthogonal relations of f6jg symbols. The diver-
gence comes from

P
J d

2
J ¼ δSUð2ÞðIÞ whose degree is

related to the topology ofM (see [9,34,35] for discussion).
Regularization was originally performed by introducing a
cutoff on spin J [17]. It was then realized that the
divergence is correspondent to the suð2Þ gauge that
generates the translational symmetry of the internal vertex;
thus, the regularization can be performed by a partial gauge
fixing procedure [19,56].
These two methods can be straightforwardly extended to

arbitrary cellular decomposition with f3njg symbols, from
which one can show that the Ponzano-Regge state sum
model is topological invariant and only depends on the
boundary states.

2. Locally holographic amplitude

Due to the topological invariance of the Ponzano-Regge
model, the total amplitude is determined by the boundary
state for a manifoldM of fixed topology. Such a boundary
state can be provided by the spin network state, which is
defined in the loop quantum gravity framework. We first
work on an arbitrary cellular decomposition of the
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manifold in order to give a general construction of the
boundary spin network state. The results from the tri-
angulation naturally follow, which will be the building
blocks of the original Ponzano-Regge model.
Consider a cellular decomposition of M whose boun-

dary is a union of two-cells. We construct the oriented
graph Γ dual to this boundary cellular decomposition
made up with jLj links l’s, jNj nodes n’s, and jPj
plaquettes p’s. On Γ, we associate a spin jl to each
oriented link l and an intertwiner ιn to each node n. This
specifies a covariant phase space on Γ.9 An intertwiner is
an SU(2)-invariant map from the tensor product of the
spin representation spaces (or the dual spin representation
space), associated to the links incident to the same node,
to the trivial space:

ιnðjlÞ∶
�

⊗
ljsðlÞ¼n

Vjl

�
⊗

�
⊗

ljtðlÞ¼n
Vj�l

�
→ 0; ð35Þ

where sðlÞ and tðlÞ denote, respectively, the source and
target node of the link l. Or equivalently, the basis of the
intertwiner can be written as the tensor product of the
magnetic basis followed by a group averaging

ιnðjlÞðmlÞj0i ¼
Z
SUð2Þ

dhn

�
⊗

ljtðlÞ¼n
hjl; nljh−1n

�

⊗
�

⊗
ljsðlÞ¼n

hnjjl; mli
�
; ð36Þ

which is indeed SU(2) invariant. Finally, the spin network

state sðjl;ιnÞΓ on Γ is simply defined as the tensor product of
the intertwiners. Conventionally, the spin network state is
evaluated on the group elements fglg ∈ SUð2ÞjLj associ-
ated to the links; thus.

sfjl;ιngΓ ðglÞ¼
X
ml;nl

Y
l

hjl;mljgljjl;nli

×
Y
n

h⊗ljtðlÞ¼n jl;nljιnðjlÞj⊗ljsðlÞ¼n jl;mli: ð37Þ

Its evaluation on identity sðjl;ιnÞΓ ðIÞ plays the role of the
vertex amplitude Av�ðjl; ιnÞ of the spin foam partition
function (19), and it describes the 2D boundary quantum
geometry of an elementary three-cell, which can be taken
to be a polyhedron with no lose of generality.
In short, the spin foam can be viewed as a gluing, under

certain gluing conditions, of “bubbles,” which are

homogeneously two-spheres dressed with spin network
evaluation. When working on the spin network states, the
gluing condition is to identify the shape of the glued
boundaries; i.e., they have the same number of sides as
polygons, and the spins are assigned on the glued links. The
spin foam can thus be written as

Z½△;ψ j
Γ¼ð∂△Þ�

1

� ¼
X
fjf� g

Y
f�
ð−1Þ2jf�djf�

Y
e�
Signðιe� Þ

×
Y
v�
sfjl;ιngv� ðIÞ; ð38Þ

where sfjl;ιngv� ðIÞ is the spin network evaluation on
each bubble, and the edge amplitude Signðιe� Þ is a sign
depending on the spins of the intertwiner on (the node dual
to) the shared face dual to the dual edge e�. The exact value
of this sign depends on the choice of basis of the
intertwiner.
When the cellular decomposition is specified to be a

triangulation, each boundary is made up of a triangle,
and thus, Γ is identically three-valent, in which case
the intertwiner is one-dimensional and thus, uniquely
defined under a chosen basis. In this case, the spin
network evaluation is simply a f3njg symbol. For a
cellular decomposition whose boundary is not a two-
complex but a general two-cell, Γ can be higher valent.
In this case, one can add s − 3 virtual links to separate
an s-valent node into three-valent nodes (in a tree way)
and obtain a “fattened node” in the same spirit as
in Fig. 3. One then assigns all admissible spins to each
virtual link. For each admissible assignment, say
fkαg; α ¼ 1;…; s − 3, the intertwiner for this fattened
node corresponds to one basis jIaihIaj of the intertwiner
for the original s-valent node. This intertwiner basis
combinatorial gives a f3njg symbol associated to the
boundary “fattened graph” given by the original links plus
the added virtual links. Thus, we reproduce the result of
the Ponzano-Regge amplitude by separating the delta
distribution on the SU(2) group described in the last
subsection; i.e.,

Z½△;ψ j
Γ�¼

X
fjf� g

Y
f�
ð−1Þ2jf�djf�

X
fag

Y
e�
ð−1Þ

P
s
i¼1

jiþ2
P

s−3
α

kα

×
Y
v�
f3njgv�;a;

where the power in the edge amplitude is the sum of spins
on the links dual to edges surrounding the s-gon plus
twice of the spin on the links on the virtual links. These
spins need to be added twice since each added link is dual
to a virtual edge that is on the boundary of two triangles
(see black dashed line in Fig. 3).
The smallest three-valent graph embedded on a two-

sphere is indeed a tetrahedron graph Γ ¼ ð∂TÞ�1, as

9The phase space is called covariant because the boundary ∂M
of the M is not specified to be a spacelike slice Σ of M but a
general 2D hypersurface. The spin network state on such a graph
Γ is also called the projected spin network state, introduced
in [59], which is used in the construction of the covariant LQG,
see, e.g., [60,61].
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illustrated in Fig. 2. The spin network state trivially
evaluated on a tetrahedron graph gives a f6jg symbol,10

sfjlgtet ðIÞ ¼
�
j1 j2 j3
j4 j5 j6

	
; ð39Þ

which is exactly the vertex amplitude we obtained through
decomposing the delta distribution on SU(2). This is the
Ponzano-Regge state sum for the simplest triangulation
of a three-ball (with no summation at all), describing the
boundary quantum geometry of a tetrahedron. In the
semiclassical limit, seen from scaling j to λj and taking
λ → ∞, the f6jg symbol is given by the Hartle-Sorkin
action [62] in Regge calculus for a tetrahedron in terms of
the edge lengths and dihedral angles:

�
λj1 λj2 λj3
λj4 λj5 λj6

	
⟶
λ→∞ 1ffiffiffiffiffiffiffiffiffiffiffi

12πV
p cos

�
SHS

��
λjlþ

1

2

	�
þπ

4

�
;

with SHSðfllgÞ¼
X6
l¼1

llΘl; ð40Þ

where Θl is the dihedral angle around the edge e (dual to
link l), and V is the volume of the tetrahedron with edge
length ll ¼ λjl þ 1

2
; l ¼ 1;…; 6 (see also Sec. IVA for a

more detailed analysis). This asymptotic was postulated
by Ponzano and Regge [17] and proven in different
methods [63–66]. The Hartle-Sorkin action (40) is the
discrete version the GHY boundary term [62]:Z

∂M
d2

ffiffiffi
h

p
K ⟶

discretize X
l∈ð∂△Þ�

1

llΘl: ð41Þ

For a general f3njg symbol, the semiclassical limit also
encodes the geometry of the boundary two-cell it
describes [36]. The reproduction of the vertex amplitude
with the boundary states exposes the fact that the vertex
amplitude is a local-holographic amplitude, encoding only
the boundary data of the three-cell it is associated to. The
gluing process for two adjacent three-cells can be under-
stood as smearing the data on the shared boundaries. In
this way, the degrees of freedom on the shared boundaries
become gauge through gluing, and the only physical
degrees of freedom are on the union of the unglued
boundaries, i.e., the cellular decomposition of ∂M.
This is exactly why the bulk part of the amplitude is
independent of the cellular decomposition, and we can
refine it up to the quantum limit.
In the Ponzano-Regge state sum (29), the boundary data

are the lengths of the one-skeleton encoded in the f6jg

symbols. Therefore, the path integral constructed as such
depends on the boundary metric and thus the length scale.
Apparently, the scale invariance of the bulk is merely
obtained by the summation of the spin labels in the bulk,
i.e., the smearing of the length scale.
In the next section, we will study a scale-invariant path

integral even if with boundary configuration. To this end,
it is natural to choose a scale-invariant boundary state, and
then one can define a scale-invariant vertex amplitude as
the evaluation of this new quantum state on the boundary
of an elementary three-cell. These states should encode
the conformal geometry, i.e., angles, on the boundary
surface. Technically, to define such a conformal boundary
quantum state means to find an “alternative” representa-
tion of SU(2) that can be geometrically interpreted as
angles. Given a different formulation of the partition
function from (29), the recursion relation of f6jg symbols
would be replaced by other identities in order to reproduce
the topological invariance, which will be the case illus-
trated in Sec. III D.

III. A NEW COHERENT HOLOMORPHIC
STATE INTEGRAL

The “alternative” representation we are going to apply is
the spinor representation of SU(2) [67], developed from the
UðNÞ formulation of LQG [42,43,68]. The quantum states
under this representation are called the coherent spin net-
work states (see below) [47]. After a concise review of its
general construction, we will specialize in the coherent spin
network state of a tetrahedron graph, whose evaluation on
identity after changing theweight gives the SGF [40,41].We
will construct a new Ponzano-Regge model with spinor
variables, where the SGF serves as the vertex amplitude.
Similar to the original one, it can also be seen as built with
local amplitudes associated to the elementary bubbles.

A. Generating function for spin networks

Let us introduce the SU(2) spin coherent state [or
the SU(2) coherent state for short] à la Perelomov,
denoted as jj; zi with a fixed spin j ∈ N=2 and a spinor
jzi ≔ ðz0z1Þ ∈ C2. It is a superposition state of a pair of
harmonic oscillators jn0; n1iHO, identified with a mag-
netic number basis jj; mi ∈ Vj by the relation j ¼
1
2
ðn0 þ n1Þ; m ¼ 1

2
ðn0 − n1Þ, and reads

jj; zi ≔ ðzAaA†Þ2jffiffiffiffiffiffiffiffiffiffið2jÞ!p j0i

≡ Xj

m¼−j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jÞ!

ðjþmÞ!ðj −mÞ!

s
ðz0Þjþmðz1Þj−mjj; mi;

ð42Þ
where aA† is the creation operator acting on the oscillator
nA, A ¼ 0, 1. This is the state that admits the generalized

10We have ignored the notation ιn for the intertwiners on the
left-hand side for simplicity. The intertwiners are implicit in the
definition of the f6jg symbol.
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minimal uncertainty given by the dispersion of the
SU(2) Casimir [69]. The norm is easily computed
hj; zjj; zi ¼ hzjzi2j. For a fixed spin j, jj; zi serves as an
alternative orthonormal basis spanning the representation
space Vj. We refer to [67] for more details.
It is easy to check that the creation and annihilation

operators act on the SU(2) coherent state as

aAjj; zi ¼
ffiffiffiffiffi
2j

p
zA
����j − 1

2
; z

�
;

aA†jj; zi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p ∂

∂zA

����jþ 1

2
; z

�
; ð43Þ

thus, aA decreases the spin by 1=2 as well as multiplying
the state by zA, while aA† increases the spin by 1=2 and
derives the state by zA.
We also introduce a dual SU(2) coherent state ½j; zj≡

hj; ςzj in terms of a dual spinor ½zj ¼ hςzj ≔ ð−z1; z0 Þ,
which is also holomorphic on zA, living in the dual
representation space Vj� [see (A2)].11 aA acts on ½j; zj as
the creation operator, while aA† acts as the annihilation
operator,

½j; zjaA ¼ −ϵAB
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jþ 1
p ∂

∂zB

�
jþ 1

2
; z

����;
½j; zjaA† ¼ −ϵAB

ffiffiffiffiffi
2j

p
zB
�
j −

1

2
; z

����: ð44Þ

Spinors have been used to construct the spinorial phase
space of loop gravity, which is equivalent to the holonomy-
flux phase space [67]. A brief summary is given in
Appendix A.
Consider an oriented graph Γ with jLj oriented links l’s,

jNj nodes n’s, and jPj plaquettes p’s. We dress each link l
with a spin jl, and associate a spinor jzli to the source sðlÞ
of l, and another spinor jz̃li to the target tðlÞ. For an
N-valent node n, we can construct an intertwiner living in
the tensor space ð⊗ljsðlÞ¼n VjlÞ ⊗ ð⊗ljtðlÞ¼n Vj�l Þ by SU(2)-
group averaging the tensor product of the SU(2) holomor-
phic coherent states; i.e.,

ιnðjlÞðzlÞj0i ≔
Z
SUð2Þ

dgn

�
⊗

ljtðlÞ¼n
½jl; z̃ljg−1n

�

⊗
�

⊗
ljsðlÞ¼n

gnjjl; zli
�
: ð45Þ

This is called the LS coherent intertwiner, first introduced
in [69] (see also [42]) and used to define the EPRL-FK spin
foam models [6,70]. It is also closely related to the UðNÞ
coherent states, which are, by definition, covariant under
the UðNÞ action [42].
Equations (36) and (45) are simply projections of a

general SU(2) intertwiner on different bases, the former on
the magnetic number basis, while the latter on the
coherent state basis. Equipped with the intertwiners (45),
one can define a spin network state evaluated on SU(2)
group elements fglg as a holomorphic function of the
spinors:

sfjl;zl;z̃lgΓ ðglÞ ¼
Z
SUð2ÞjNj

Y
n

dhn
Y
l

½jl; z̃ljh−1tðlÞglhsðlÞjjl; zli:

ð46Þ

It is also possible to eliminate the spins and define an
intertwiner associated to a node n with only spinor labels,
which can be viewed as a generating function of the
LS coherent intertwiners (45) with a chosen series of
weight [38]. The simplest weight is 1Q

l∈n

ffiffiffiffiffiffiffiffi
ð2jlÞ!

p , which

defines the coherent intertwiner,12

ιnðzlÞ ¼
X
fjlg

1Q
l∈n

ffiffiffiffiffiffiffiffiffiffiffið2jlÞ!
p ιnðjlÞðzlÞ: ð47Þ

It is indeed an SU(2) invariant state in ⨁fjlgð⊗ljsðlÞ¼n VjlÞ
⊗ ð⊗ljtðlÞ¼n Vj�l Þ. We associate a coherent intertwiner to
each node and glue them along links associated with SU(2)
holonomies. The gluing is performed in the standard way,
by taking different irreducible representations orthogonal.
The result defines the coherent spin network state [38]

Scohefzl;z̃lg
Γ ðglÞ ¼

X
fjlg

Z
SUð2ÞjNj

Y
n

dhn
Y
l

1

ð2jlÞ!
× ½jl; z̃ljh−1tðlÞglhsðlÞjjl; zli

¼
Z
SUð2ÞjNj

Y
n

dhn
Y
l

e½z̃ljh
−1
tðlÞglhsðlÞjzli: ð48Þ

A slightly different choice of weight, which is what

we will focus on in this paper, is ðJnþ1Þ!Q
l∈n

ffiffiffiffiffiffiffiffi
ð2jlÞ!

p ,13 where

Jn ≡P
l∈n jl is the sum of spins on the links incident to n.

11We remind the readers that ½j; zj is called the dual spinor due
to the fact that it is orthogonal to the regular spinor jj; zi, i.e.,
½j; zjj; zi ¼ 0, but not because it lives in the dual representation
Vj�. jj; z� ¼ jj; ςzi is the dual spinor living in Vj and antiholo-
morphic on zA.

12The term “coherent intertwiner” was used to denote the LS
coherent intertwiner (45) for short in some literature. We remind
the readers that these two terms have distinct definitions in
this paper, following [38].

13Other choices of weight lead to different generating func-
tions, which would be useful for different interests. See, e.g., [38]
for a discussion and the application of other generating functions
with alternative weights.
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It defines the scaleless intertwiner (as we will see in the
next section that it encodes the scale-invariant geometry of
a three-cell boundary):

ιsln ðzlÞ ¼
X
fjlg

ðJn þ 1Þ!Q
l∈n

ffiffiffiffiffiffiffiffiffiffiffið2jlÞ!
p ιnðjlÞðzlÞ: ð49Þ

Again, we associate a scaleless intertwiner to each node
and glue them in the same way as the coherent intertwiners.
We define it as the scaleless spin network state:

Sslfzl;z̃lg
Γ ðglÞ ¼

X
fjlg

Y
n

ðJn þ 1Þ!Q
l∈nð2jlÞ!

×
Z
SUð2ÞjNj

Y
n

dhn
Y
l

½jl; z̃ljh−1tðlÞglhsðlÞjjl; zli:

ð50Þ

It can be viewed as a generating function of the spin
network state (37). The use of spinors shifts the view of
building blocks of quantum geometries from the links to the
nodes, which is also the spirit behind the construction of the
UðNÞ coherent states [42,43,68].
Above we have defined the coherent intertwiners,

coherent spin network states, scaleless intertwiners, and
the scaleless spin network states for a general graph. The
goal is to use these notions to define a new vertex amplitude
in terms of spinors in the Ponzano-Regge model. To this
end, we will work on a three-valent graph in the next
subsection. More specifically, we will study the tetrahedron
graph as shown in Fig. 2 and study the evaluation of the
scaleless spin network state on this simple graph.

B. The holomorphic f12z×2g symbol
and 2D Ising on a tetrahedron

In this subsection and the next, we will fix the cellular
decomposition of M to be a triangulation unless specified
and intensively work on the tetrahedron graph Γ ¼ ð∂TÞ�1
that is a 2D dual graph of the boundary two-skeleton of a
tetrahedron T. The simplicity it brings helps to quantify the
scaleless intertwiners (49) and the scaleless spin network
functions (50). On the other hand, it turns out that the
scaleless spin network state for a tetrahedron graph, when
evaluated on the identity, possesses a closed form known as
the SGF.
For a three-valent graph, the intertwiner (45) for each

node is one-dimensional; thus, it must be proportional to
the f3jg symbol. The exact relation is well-known [45],
with the proportionality coefficient given by a holomorphic
polynomial of degree Jn. Consider three outgoing links
ðl1; l2; l3Þ meeting at the node n, and then the total spin as
Jn ¼ j1 þ j2 þ j3. One gets

ιnj1j2j3ðz1; z2; z3Þ ¼ Pj1j2j3ðz1; z2; z3Þιnj1j2j3 ; ð51Þ

with

Pj1j2j3ðz1; z2; z3Þ ¼
△ðj1j2j3Þ
ðJn þ 1Þ!

�Y3
l¼1

ffiffiffiffiffiffiffiffiffiffiffi
ð2jlÞ!

p �
× ½z1jz2iJn−2j3 ½z2jz3iJn−2j1 ½z3jz1iJn−2j2 ;

ð52Þ

where △ðj1j2j3Þ is the quantum triangle coefficient
defined as

△ðj1j2j3Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJnþ1Þ!
ðj1þj2−j3Þ!ðj1þj3−j2Þ!ðj2þj3−j1Þ!

s
:

ð53Þ

The scaleless intertwiner (49) for the node with incident
links ðl1; l2; l3Þ outgoing reads

ιsln ðz1; z2; z3Þ ¼
X

j1;j2;j3

ðJn þ 1Þ!Q
3
l¼1

ffiffiffiffiffiffiffiffiffiffiffið2jlÞ!
p ιnj1j2j3ðz1; z2; z3Þ; ð54Þ

which is an invariant vector on⊗3
l¼1 ð⊕jl V

jlÞ, and is also a
generating function of the f3jg symbol.
The proportionality coefficient (52) remains unchanged

when some links are incoming (except that, in this case, we
denote the spinor on an incoming link with a tilde). For
instance, for a node with links e1, e2 incoming and link e3
outgoing, the relation reads

ιnj�
1
j�
2
j3
ðz̃1; z̃2; z3Þ ¼ Pj1j2j3ðz̃1; z̃2; z3Þιnj�1j�2j3 ; ð55Þ

where j�1 and j�2 refer to the dual representations in the first
and second vector space, respectively.
The scaleless spin network state for the tetrahedron

graph naturally follows except that there is a sign
ambiguity as the graph is odd valent. The reason is that
the sign of the intertwiner (51) would be changed under
exchanging any pair of spinors in the argument; thus, it is
necessary to fix the ordering of links incident to a node in
order to specify (the sign of) the definition of the scaleless
spin network function. In practice, it is enough to fix a
cyclic order ≺ for each node. To do this, we first embed
the graph Γ on a 2D oriented surface Σ. Consider three
links ðl; l0; l00Þ incident to one node n. We call l0 as of
higher order than l, denoted as l ≺ l0 (or l0≻l), when the
sweeping from l to l0 (in the direction without touching l00)
induces a surface with the same orientation as Σ.
Otherwise, l0 is of lower order than l, denoted as l≻l0
(or l0 ≺ l). For an ordering ðl ≺ l0; l0 ≺; l00; l00 ≺ lÞ as in
Fig. 6, we fix an ordered holomorphic polynomial
P≺
jljl0 jl00

ðzl; zl0 ; zl00 Þ to be
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P≺
jejl0 jl00

ðzl;zl0 ;zl00 Þ ¼
△ðjljl0jl00 Þ
ðJnþ1Þ!

�Y
l∈n

ffiffiffiffiffiffiffiffiffiffiffi
ð2jlÞ!

p �
× ½zljzl0 iJn−2jl00 ½zl0 jzl00 iJn−2jl ½zl00 jzliJn−2jl0 :

ð56Þ

We have ignored the tilde of spinors for incoming links for
simplicity and unification.
Consider again a tetrahedron graph as in Fig. 2; it can be

naturally embedded in a two-sphere, which generates the
cyclic order for all the nodes at once. The scaleless spin
network function is then uniquely defined as

Sslfzl;z̃lg
tet ðglÞ ¼

X
j1;…;j6

Q
4
n¼1ðJn þ 1Þ!Q

6
l¼1ð2jlÞ!

sfjl;zl;z̃lgtet ðglÞ; ð57Þ

with

sfjl;zl;z̃lgtet ðglÞ¼
Z
SUð2Þ4

Y4
n¼1

dhn
Y6
l¼1

½jl; z̃ljh−1tðlÞglhsðlÞjjl;zli

¼P≺
j1j2j3

ðz1;z2;z3ÞP≺
j1j5j6

ðz̃1; z̃5;z6Þ
×P≺

j3j4j5
ðz̃3; z̃4;z5ÞP≺

j2j4j6
ðz̃2; z̃6;z4Þsfjl;ιngtet ðglÞ

ð58Þ

being the special case of (46) for a tetrahedron graph, which
can be factorized, as shown in the second line of (58), into
the standard spin network function independent of the

spinors, and a holomorphic polynomial independent of the
arguments fglg. In particular, its evaluation on identity
gives a holomorphic “f12z×2g symbol,” known as the SGF
of the f6jg symbols, which is a function of 12 spinors and
thus 24 complex variables,

Ssl
tetðfzl; z̃lgÞ ¼ Sslfzl;z̃lg

tet ðIÞ ¼
X
j1���j6

2
64Y4
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJnþ 1Þ!Q

l∈nðJn− 2jlÞ!

s 3
75

×

�
j1 j2 j3
j4 j5 j6

	Y4
n¼1

Y
l; l0; l00 ∈ n;

l≺ l0

½zljzl0 iJn−2jl00 :

ð59Þ

It was first found to be of the closed form by
Schwinger [40,41,47]. (See also [39] for the deduction
from the duality between the 2D Ising model and the
Ponzano-Regge model.) It is in a form of a scaleless
function:

Sðfzl;z̃lgÞ ≡ Ssl
tetðfzl;z̃lgÞ ¼ Gðfzl;z̃lgÞ−2;

Gðfzl;z̃lgÞ ¼ 1þ
X
L

Y
n⊂L;l≺l0

½zljzl0 i

¼ 1þ
X4
ð3cÞ

Y
n⊂ ð3cÞ
l≺ l0

½zljzl0 iþ
X3
ð4cÞ

Y
n⊂ ð4cÞ
l≺ l0

½zljzl0 i;

ð60Þ

where L’s denote the loops in the tetrahedron graph,
including three-cycles ð3cÞ’s and four-cycles ð4cÞ’s.
n ⊂ L denotes that node n lives on the loop L (and
implicitly l; l0 ∈ n for the inner product ½zljzl0 i). Using
the notation in Fig. 2(b), the cycle sums are explicitly

X4
ð3cÞ

Y
n ⊂ ð3cÞ
l ≺ l0

½zljzl0 i ¼ ½z1jz2i½z̃2jz̃6i½z6jz̃1i þ ½z̃3jz1i½z̃1jz5i½z̃5jz3i þ ½z2jz̃3i½z3jz4i½z̃4jz̃2i þ ½z̃6jz̃4i½z4jz̃5i½z5jz6i; ð61Þ

X3
ð4cÞ

Y
n ⊂ ð4cÞ
l ≺ l0

½zljzl0 i ¼ ½z̃3jz1i½z̃1jz6i½z̃6jz̃4i½z4jz3i þ ½z̃5jz3i½z̃3jz2i½z̃2jz̃6i½z6jz5i þ ½z̃1jz5i½z̃5jz4i½z̃4jz̃2i½z2jz1i: ð62Þ

FIG. 6. The cyclic order ðl ≺ l0; l0 ≺ l00; l00 ≺ lÞ of three links
l; l0; l00 incident to the same node.
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Examples of the three-cycles and four-cycles for the
tetrahedron graph are given in Fig. 7. Note that the SGF
(60) does not depend on the orientation of edges but only
the order of the half edges incident to each vertex, which is
already fixed to be consistent with the orientation of the
surface they are embedded on. Each inner product of a pair
of spinors ½zljzl0 i contained in a cycle is associated to an
angle; thus, we can understand the cycles as the result of
gluing those angles in cyclic order.

1. Duality between SGF and the 2D Ising
on a tetrahedron

It was shown in [39] that the SGF is related to the high-
temperature expansion of the Ising model defined on the
same tetrahedron graph. In fact, such a relation can be
generalized to an arbitrary three-valent planar graph (with
the Kasteleyn orientation). Explicitly, the scaleless spin
network evaluation, as a function of the spinors, is inversely
proportional to the square of the amplitude ZIsing

Γ , as a
function of the edge couplings fYlg in terms of the spinors
fzl; z̃lg, of the Ising model, which is a polynomial of the
couplings. Precisely,

Ssl
Γðfzl; z̃lgÞ ¼

�
22jNjY

e∈Γ
cosh2yl

�
1�

ZIsing
Γ ðfylgÞ

�
2
; with

ZIsing
Γ ðfylgÞ ¼

X
L∈Γ

Y
l∈L

tanh yl; ð63Þ

where the sum is over all the disjoint loops L’s in Γ. The
pole of the SGF thus corresponds to the zeros of the 2D
Ising amplitude for the same graph. The dependence of the
scaleless spin network states on the spinors can also be
rewritten as the dependence on the link couplings (defined
below in Sec. IVA) as one-to-one correspondence to the
edge couplings in the Ising mode. Thus, this duality
directly gives an exact and closed expression of the
scaleless spin network for a general three-valent graph
Γ (see [39]). The exact expression is also proven directly
in [46,71]. A similar result was also found for a square 2D
lattice [72]

Let us comment that the SGF can be understood in two
ways, leading to the application of different interests:
(1) As indicated by the name, the SGF is a generating

function of the f6jg symbols; thus, it contains all
the information of the spin network evaluation of a
tetrahedron graph in its expansion. That the spins are
restricted to be half-integers and admissible in the
f6jg symbols brings difficulties in numerical analy-
sis, which was often circumvented by looking at the
large j limit of the f6jg symbol. The computation
issues are translated to complex analysis when we
consider the SGF, which is expected to be easier to
deal with as it is a continuous function of 12
independent spinors. The large j limit of the f6jg
symbols then contributes dominantly at the poles of
the SGF [73].
Other than the possible computational benefits,

the SGF is attractive because of its remarkable
closed form. A similar closed form for the generat-
ing function of the 9j symbols was also constructed
in the original work by Schwinger [40]. Later on,
Bargmann [41] reproduced Schwinger’s results, and
his method was used to construct the generating
function of the 12j and 15j symbols [74] and more
generally the f3njg symbols [75], which can also be
expressed as loops.

(2) The SGF is also understood as (the evaluation of) a
quantum state—the scaleless spin network state—
that describes the physical state of a tetrahedron
graph in the spinor representation. The physical state
of a graph is most simply represented by the flatness
projection written in terms of the holonomies, which
is the product of the Dirac deltas on holonomies
corresponding to independent cycles in the graph.
For a graph embedded on the manifold of trivial
topology, the physical state is unique, which is the
case for the tetrahedron graph embedded in the two-
sphere. Using the notation in Fig. 2, the physical
state for a tetrahedron graph can be written as

ψphysðglÞ ¼ δðg6g1g−12 Þδðg−11 g−15 g−13 Þδðg3g−14 g2Þ:
ð64Þ

When projected onto the scaleless spin network
basis, ψphysðglÞ gives exactly the SGF,

ψphysðfzl; z̃lgÞ ¼
Z
SUð2Þ6

Y6
l¼1

dglS
fzl;z̃lg
tet ðglÞψphysðglÞ

¼ Sðfzl; z̃lgÞ: ð65Þ

This can be deduced from (57) and the fact that the
projection of the physical state onto the spin network
basis (37) is the f6jg symbol [76]:

FIG. 7. (in red) Cycle (126) as an example of three-cycles and
cycle (1643) as an example of four-cycles. The numbers in the
bracket denote the links on the cycle.
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ψphysðjlÞ ¼
Z
SUð2Þ6

Y6
l¼1

dgls
fjl;ιng
tet ðglÞψphysðglÞ

¼
�
j1 j2 j3
j4 j5 j6

	
: ð66Þ

The scaleless spin network states can be used to
describe the kinematical information in the Hilbert
space of quantum geometry. By the continuous
nature of the spinor arguments in a scaleless spin
network state, the dynamics given by the Wheeler–
DeWitt equation would be translated into a differ-
ential equation of the SGF [47], rather than a
recursion relation as for the f6jg symbols when
we consider the spin network states [76]. The
interested reader will find a short review with details
of this approach in Appendix B.

2. Symmetries of the SGF

The loop structure (60) of the SGF brings a large number
of degrees of symmetry. Compared to a f6jg symbol,
which has only six real variables, the SGF has 12
independent spinors, and thus 24 complex or 48 real
variables, in its argument. The symmetries would allow
us to work on a smaller set of variables. Firstly, the SGF
(59) is explicitly written only in terms of the inner product
½zljzl0 i of spinors, which is by definition invariant under the
SLð2;CÞ action that acts covariantly on the spinors

gn ⊳ jz0li ¼ gnjz0li; gn⊳½zlj ¼ ½zljg−1n ;

l; l0 ∈ n; gn ∈ SLð2;CÞ: ð67Þ

Thus, the spinors form a set with 12 complex or 24 real
variables. Secondly, notice that the exact evaluation (60)
takes the form as cycles, a (complex) rescaling of the spinor
zl → αzl ðα ∈ Cnf0gÞ on one end of each link and an “anti-
rescaling” of the spinor z̃l → z̃l=α on the other end leaves
the SGF unchanged. Therefore, the symmetries of the SGF
can be expressed as

Sðfznl ; z̃n
0

l gÞ ¼ Sðfgnznl ; gn0 z̃n
0

l gÞ ¼ Sðfαlznl ; α−1l z̃n
0

l gÞ;
∀ gn ∈ SLð2;CÞ; ∀ αl ∈ Cnf0g: ð68Þ

In other words, the SGF is invariant under the SLð2;CÞ
gauge transformation, one for each node, a total of 12
complex degrees of freedom, and antiscale transformation,
one for each link; hence, a total of six complex degrees of
freedom. These symmetries form the full redundant degrees
of freedom in the 12 spinors, leaving six complex degrees
of freedom in the SGF. The same redundancy appears when
we use the spinor representation to describe the scaleless
spin network states for a general graph. It is thus possible to
change the argument variables of the SGF to a smaller set.
We will see in Sec. IVA that a change of variables will

make it clear to see the geometrical information given by
this scaleless spin network state.

C. A new Ponzano-Regge state-integral formula

We now turn our attention back to the Ponzano-Regge
model. We aim to decompose the discrete path integral

Z½T; ∂T� ¼ C½∂T�
Z
SUð2Þ

Y
e�∉∂T

dge�
Y
f�
δ

�Y
!
e�∈∂f�ge�

�
;

into the product of vertex, edge, and face amplitudes
encoding local quantum geometries through the spinor
representation labels so that the global quantum geometry
can be understood as gluing elementary blocks with local
geometry information stored in these spinor variables.
The total amplitude should be written alternatively in the
form as

A½T;ψ sl
Γ � ¼

Z
½dμðzÞ�

Y
f�
Af� ½zf� �

Y
e�
Ae� ½ze� �

Y
v�
Av� ½zv� �;

ð69Þ

where ψ sl
Γ is the boundary scaleless spin network state, and

dμðzÞ ≔ 1
π2
e−hzjzidz0dz1 is the Haar measure of spinors (see

also Appendix A). With the use of spinors, therefore, the
amplitude would be written as a “state integral” instead of a
state sum.
Let us first introduce the notations we will use in the

state-integral formulas both in Proposition II. 1 [also in
(71), which is proved in Appendix C]. For the vertex
amplitude, we denote the spinors (or dual spinors) on the
source sðlÞ and target tðlÞ of a link l as zl and z̃l,
respectively. For the edge amplitude of a dual edge e�,
we consider the node n in a triangle shared by two adjacent
tetrahedra. Therefore, spinors on v have two independent
copies, one from the tetrahedron dual to sðe�Þ and the other
from the tetrahedron dual to tðe�Þ. For a link l ∈ n, we
denote the two spinors from the two tetrahedra respectively

as zsðe
�Þ

l and ztðe
�Þ

l . For the face amplitude, we consider a
dual face f� whose boundary loop connects Mð≥ 3Þ
tetrahedra. One needs to choose randomly a node on the
boundary of one of these tetrahedra, say T1 (see Fig. 8). We
denote the spinor on this node that will contribute to this
face amplitude as zf

�;T1 .
Our starting point is the expression of the SGF in terms

of the group integral similar to (48) [47]

Sðfzl; z̃lgÞ ¼
X
j1���j6

�Y4
n¼1

ðJn þ 1Þ!
Z
SUð2Þ

dhn

�

×
Y6
l¼1

1

ð2jlÞ!
½jl; z̃ljh−1tðlÞhsðlÞjjl; zli: ð70Þ
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Let us emphasize that there is a factor ðJn þ 1Þ! difference
between (48) and (70).
Another useful fact is that (the bulk part of) the Ponzano-

Regge amplitude (28) can be written in the following way
as the collection of local vertex, edge, and face amplitudes:

AT½M� ¼
Z

½dμðzÞ�
Y
f�
ðhzf�;T1 jzf�;T1i− 1Þ

×
Y
e�

�
e
P

l∈n
hzsðe�Þl jztðe�Þl �

�

×
Y
v�

�Z
SUð2Þ4

Y4
n¼1

dhne
P

6

l¼1
½z̃ljh−1tðlÞhsðlÞjzli

�
; ð71Þ

where ½dμðzÞ� is the collection of spinor measures, each of
which is defined as

dμðzÞ ≔ 1

π2
e−hzjzidz0dz1:

See Appendix A for more details. Each vertex amplitude in
(71) is given by the coherent state (48) associated to a
tetrahedron graph evaluated on identity. The proof of this
reexpression is given in Appendix C. This is a state-integral
expression of the Ponzano-Regge model since, instead of
summation of spins, it is written in terms of integrals over
spinors. A similar state-integral model for 4D BF theory
was explicitly constructed in [77]. The vertex amplitude in
(71) no longer depends on the spins; thus, it is expected to
be irrelevant to the size of the tetrahedron it is associated to.
The drawback of this construction is that the SU(2) group
elements are still included in the formula other than spinors,
making it hard to single out the geometrical information
stored in the spinors themselves. Thus, we aim to promote
the integral expression (71) in order that only spinors are
left in the integral expression.
To get rid of the SU(2) group integral in the vertex

amplitude, we replace the vertex amplitude by the SGF.

This is promising logically due to the fact that the vertex
amplitude is simply the spin network state evaluation on
the boundary of a tetrahedron. Therefore, the SGF, as the
scaleless spin network evaluation, is a natural replacement
of the f6jg symbol.
Notice that the difference between (70) from (48) is the

factor ðJn þ 1Þ! for each node. This can be canceled out by
modifying the edge amplitude, and the result is given in the
following proposition. The notations are the same as in
Proposition C. 1.
Proposition II.1. The spin foam model can be

expressed as a state integral

AT½M;ψ sl
Γ � ¼

Z
½dμðzÞ�

Y
f�
Af� ½zf� �

Y
e�
Ae� ½ze� �

Y
v�
Av� ½zv� �;

with the vertex, edge, and face amplitude written as

Av� ¼ Ssl
v� ðfzl; z̃lgÞ ¼

1

ð1þP
L

Q
v⊂L;l≺l0 ½zljzl0 iÞ2

ð72Þ

Ae� ¼
X∞
k¼0

1

ðkþ 1Þ!2ð2kÞ!
�X

l∈nhz
sðe�Þ
l jztðe�Þl �

�
2k

¼ 0F3

0
BBB@; 2; 2;

1

2
;

�P
l∈nhzsðe

�Þ
l jztðe�Þl �

�
2

4

1
CCCA ð73Þ

Af� ¼ hzf�;T1 jzf�;T1i − 1: ð74Þ

ψ sl
Γ is the boundary scaleless spin network state.
Proof.—This is a rearrangement of the vertex amplitude

and edge amplitude compared to (C1)–(C3). The difference
between the vertex amplitude in (71) (or (C1) and (72) is a
factorial factor. We first apply the identity,

1

ðM − 1Þ! ¼
1

2πi

I
jsj¼r0

ds
es

sM
; ð75Þ

to rewrite the vertex amplitude (C1) so that it is related to
the SGF (70):

Scohefzl;z̃lg
tet ðIÞ¼

X
j1���j6

�Y4
n¼1

1

2πi

I
dsn

esn

sJnþ2
n

ðJnþ1Þ!
Z
SUð2Þ

dhn

�

×
Y6
l¼1

1

ð2jlÞ!
½jl; z̃ljh−1tðlÞhsðlÞjjl;zli: ð76Þ

Then we expand the exponential of the edge amplitude
in (71)

FIG. 8. A dual face (in red) dual to the edge e (projected on the
paper to a black dot) surrounded by a loop ðe�1e�2 � � � e�Me�1Þ, with
e�i dual to triangle ti (each projected on the paper to a black line).
Two adjacent tetrahedra Ti and Tiþ1 (identifying TMþ1 ≡ T1) are
glued along the triangle ti.
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e
P

l∈n
hzsðe�Þl jztðe�Þl � ¼

X
k1���k3∈N=2

Y
l∈n

hkl; zsðe
�Þ

l jkl; ztðe
�Þ

l �
ð2klÞ!

: ð77Þ

The spinor integration in the total amplitude expression will
select kl ≡ jl; ∀ l from (76) and (77), so we are safe to

redefine Jn ¼
P

l∈n kl. This moves the contour integral
from the vertex amplitude to the edge amplitude, leaving the
vertex amplitude purely given by the SGF. As such, each
edge amplitude absorbs two contour integrals, one from the
tetrahedron sðe�Þ and the other from tðe�Þ, and is written as

Ae� ðfzlgÞ ¼
1

ð2πiÞ2
I

ds
I

dt
esþt

ðstÞ2
X

k1���k3∈N=2

Y
l∈n

1

ðstÞkl
hkl; zsðe

�Þ
l jkl; ztðe

�Þ
l �

ð2klÞ!

¼ 1

ð2πiÞ2
I

ds
I

dt
1

ðstÞ2 e
sþtþ 1ffiffi

st
p
P

l∈n
hzsðe�Þl jztðe�Þl �

¼ 1

ð2πiÞ2
I

ds
I

dt
X

k;m;u∈N

1

k!m!u!
sk−2−

u
2tm−2−u

2

�X
l∈n

hzsðe�Þl jztðe�Þl �
�

u

¼
X∞
k¼0

1

ðkþ 1Þ!2ð2kÞ!
�X

l∈n
hzsðe�Þl jztðe�Þl �

�
2k

¼ 0F3

0
BBB@; 2; 2;

1

2
;

�P
l∈n

hzsðe�Þl jztðe�Þl �
�

2

4

1
CCCA; ð78Þ

thus, (73). We have used the identity hkl; zsðe
�Þ

l jkl; ztðe
�Þ

l �≡
hzsðe�Þl jztðe�Þl �2kl to get the second line. To arrive at the fourth
line, we have identified u with 2k − 2 and m with k
followed with a change of variable k → kþ 1 since
1
2πi

H
dttu ¼ 1 for u ¼ −1 and zero otherwise. ▪

To summarize, Proposition II. 1 is a regrouped version of
(71). In order to have a simple vertex amplitude with a nice
geometrical interpretation, the edge amplitude becomes
more complicated. However, we will see in Sec. III B that
this new edge amplitude also possesses a nice geometrical
interpretation that is compatible with that of the new vertex
amplitude (72).

D. Topological invariance of the holomorphic blocks

The topological invariance of the new Ponzano-Regge
state-integral formula can also be proven by performing the
2–3 and 1–4 Pachner moves. To do this, one can either
express the vertex amplitudes (72) into the explicit form as
the generating function of the f6jg symbols (59) and then
use the recursion relation of the f6jg symbols (32) and (33),
or work on the spinors variables to prove the invariance of
total amplitude under Pachner moves. The former approach
is rather straightforward; hence, here we only illustrate the
latter approach. We consider in this section the gluing of
general three-cells through triangles and show that the
resulting total amplitude after gluing is given by the
boundary scaleless spin network state on the union boun-
dary, which means that the state-integral model is

topological invariant.Wewill show it through three different
types of gluing, which serve as the elementary steps to glue
disjoint three-cells. The first type is to glue two three-cells
through one triangle with no extra internal edge produced
(Proposition II. 3). The second type is to glue two adjacent
triangles sharing one edge on the boundary of one three-cell
and produce one extra internal edge (Proposition II. 4). The
third type is to glue two adjacent triangles sharing two edges
on the boundary of one three-cell and produce two internal
edges and one internal vertex (Proposition II. 5). The
topological invariance of the Ponzano-Regge state-integral
model, which can be directly derived by analyzing the total
amplitude under a combination of these three types of gluing
without changing the topological nature of the three-cell, is a
natural conclusion (Corollary II. 6).
The scaleless spin network state for a three-valent graph

can be expressed into a Gaussian integral [39,41]. Let us

introduce an auxiliary spinor jξnli ¼
�
ξ0nl
ξ1nl


∈ C2 attached to

each half link l incident to node n with the same spinor
measure dμðξnlÞ ¼ 1

π2
dξ0nldξ̄

0
nldξ

1
nldξ̄

1
nle

−hξnljξnli. The dual
auxiliary spinor is defined in the same way as z’s; i.e.,

jξnl� ¼
�
−ξ̄1nl
ξ̄0nl


. To unify the notation, we denote the new

spinors at the source sðlÞ and target tðlÞ of a link l as ξl and
ξ̃l. Consider a general three-cell △ whose boundary ∂△ is
made up by jointed triangles whose dual graph ð∂△Þ�1 is a
(closed) three-valent graph. The correspondent scaleless
spin network state is [39]
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Ssl
ð∂△Þ�

1
ðfzl; z̃lgÞ ¼

Z �Y
l

dμðξlÞdμðξ̃lÞ
�

× e
P

l
hξljξ̃l�þ

P
α
½zsðαÞjztðαÞi½ξsðαÞjξtðαÞi; ð79Þ

where α is the angle formed by two links sðαÞ and tðαÞ
incident to a same node with the cyclic order sðαÞ ≺ tðαÞ.
We denote α ∈ n if sðαÞ; tðαÞ ∈ n. Clearly, (79) contains a

link term e
P

l
hξljξ̃l� and an angle term e

P
α
½zsðαÞjztðαÞi½ξsðαÞjξtðαÞi.

Lemma II.2. Arbitrary gluing of three-cells through
triangles can be separated into a sequence of the following
three types of gluing:

(i) Type I: identifying three edges of two disjoint
triangles, each on the boundary of one three-cell
(Fig. 9(a)), whose result is one three-cell with no
extra internal edges produced [Fig. 9(b)];

(ii) Type II: identifying the two remaining edges of two
adjacent triangles sharing one edge on the boundary
of one three-cell [Fig. 10(a)], whose result is one

FIG. 10. Gluing two adjacent triangles (in thick, each visualized as a semicircle and one edge connecting the two ends) sharing one
edge e on one continuous boundary (visualized as the boundary of a three-ball removing a lemon slice). (a) Before gluing: The left
triangle is dual to a node with three links l1;2;3 outgoing, while the right triangle is dual to the other node with three links l1;4;5 incoming.
For l1, the source is assigned z1, ξ1 and the target is assigned w̃1; η̃1. For links l2;3, the sources are assigned z2;3; ξ2;3, and the targets are
assigned z̃2;3; ξ̃2;3. For links l4;5, the source are assigned w2;3; η2;3, and the targets are assigned w̃2;3; η̃2;3. (Only part of the spinors are
shown for clear visualization.) (b) After gluing: The shared edge e becomes internal, and the other two edges from different triangles
collapse (in thick). Spinor information in the bulk is integrated out, and only the spinors on the resulting boundary (as shown) are left.

FIG. 9. (a) Before the gluing of two three-cells△1 and△2 (visualized as three-balls) through identifying the left and right triangles (in
thick, each visualized as a circle embedding in the corresponding two-sphere with three vertices on it). The links (in red), each dual to
one edge of a triangle, are assigned spinor information. Fix the orientation of the links l1;2;3 on the left triangle to be outgoing, the
sources are assigned the spinors z1;2;3 and the auxiliary spinors ξ1;2;3 (not shown in the figure for clear visualization), and the targets are
assigned the spinors z̃1;2;3 and the auxiliary spinors ξ̃1;2;3; also fix the orientation of the links c1;2;3 on the right triangle to be incoming;
the sources are assigned the spinors w1;2;3 and the auxiliary spinors η1;2;3 and the targets are assigned the spinors w̃1;2;3 and the auxiliary
spinors η̃1;2;3 (not shown in the figure for clear visualization). (b) After gluing two three-cells△1 and△2 (visualized as a double bubble).
The spinor information in the bulk is integrated out, and only the spinors on the union boundary ∂ð△1 ∪ △2Þ are left.
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three-cell with one extra internal edge produced
[Fig. 10(b)];

(iii) Type III: identifying the remaining edge of two
adjacent triangles sharing two edges on the boun-
dary of one three-cell [Fig. 11(a)], whose result is
one three-cell with two extra internal edges and one
internal vertex produced [Fig. 11(b)].

We consider separately these three types of gluing and
analyze the total amplitude after gluing.
Proposition II.3. For gluing of Type I, the scaleless spin

network states Ssl
ð∂△1Þ�1 ;S

sl
ð∂△2Þ�1 on the boundaries ∂△1; ∂△2

of two three-cells △1, △2 glued with an edge amplitude
A∂△1∩∂△2

e� in the form of (73) produces a scaleless spin net-
work state Ssl

ð∂ð△1∪△2ÞÞ�1 on the union boundary ∂ð△1 ∪ △2Þ
after gluing. Using the spinor notation in Fig. 9 (also
introduced in the proof), it is symbolically expressed as

Ssl
ð∂ð△1∪△2ÞÞ�1 ¼

Z � Y
l;c∈∂△1∩∂△2

dμðzlÞdμðw̃cÞ
�

×Ssl
ð∂△1Þ�1ðfzl;z̃lgÞA

∂△1∩∂△2

e� Ssl
ð∂△2Þ�1ðfwc;w̃cgÞ:

ð80Þ

Proof.—Let us write explicitly, using the definition of the
scaleless spin network state (79), the relevant part of the
right-hand side of (80) in terms of the spinors on the two
triangles to be glued [see Fig. 9(a)]. Denote the links in the
graph ð∂△1Þ�1 on the left three-cell as l’s. For each link l, the
source sðlÞ [resp. target tðlÞ] is assigned a spinor zl (resp.
z̃l) and an auxiliary spinor ξl (resp. ξ̃l). Also, denote the
links in the graph ð∂△2Þ�1 on the right three-cell as c’s. For
each link c, the source sðcÞ [resp. target tðcÞ] is assigned a
spinor wc (resp. w̃c) and an auxiliary spinor ηc (resp. η̃c).
With no loss of generality, we can fix the orientation of the
relevant links. We fix that the links l1, l2, l3 on the left
triangle are outgoing from the node dual to the left triangle
and c1, c2, c3 are incoming toward the node dual to the right
triangle. Let △1 be the source of the dual edge dual to the
glued triangle and △2 the target. Then the edge amplitude
for the gluing is

A∂△1∩∂△2

e� ¼ 0F3

�
; 2; 2;

1

2
;
ðP3

l¼1hzljw̃l�Þ2
4

�

¼
X∞
k¼0

1

ðkþ 1Þ!2ð2kÞ!
�X3

e¼1

hzljw̃l�
�2k

:

The right-hand side of (80) reads

FIG. 11. Gluing of the two adjacent triangles (in thick, each visualized as a semicircle and two edges incident to the origin of the three-
ball) sharing two edges on one continuous boundary (visualized as the boundary of a three-ball removing a solid cone). (a) Before
gluing: The left triangle is dual to one node with three links l1;2;3 outgoing, while the right triangle is dual to the other node with three
links l1;2;4 incoming. sðl1Þ [resp. tðl1Þ] is assigned z1, ξ1 (resp. w̃1; η̃1), sðl2Þ [resp. tðl2Þ] is assigned z2, ξ2 (resp. w̃2; η̃2), sðl3Þ [resp.
tðl3Þ] is assigned z3, ξ3 (resp. z̃3; ξ̃3), and sðl4Þ [resp. tðl4Þ] is assigned ξ3, η3 (resp. w̃3; η̃3). (only part of the spinors are shown for clear
visualization). (b) After gluing: The shared edges become internal and one extra internal vertex (the origin of the three-ball) is created.
The remaining edge from different triangles collapses and lives on the resulting boundary. Spinor information in the bulk is integrated
out and only the spinors on the resulting boundary; i.e., z̃3; ξ̃3 and w3, η3, are left.
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Z �Y
l0
dμðξl0 Þdμðξ̃l0 Þ

Y
c0
dμðηc0 Þdμðη̃c0 Þ

�
e
P

l0 hξl0 jξ̃l0 �þ
P

c0 hηc0 jη̃c0 �þ
P

α0 ½zsðα0Þjztðα0Þi½ξsðα0Þjξtðα0Þiþ
P

β0 ½wsðβ0Þjwtðβ0Þi½ηsðβ0Þjηtðβ0Þi

Z �Y3
l¼1

dμðξlÞdμðη̃lÞ
�
e
P

3

l¼1
ðhξljξ̃l�þhηljη̃l�Þ

Z �Y3
l¼1

dμðzlÞdμðw̃lÞ
�
exp

� X
l;l0¼1;2;3

l≺l0

½zljzl0 i½ξljξl0 i þ ½w̃ljw̃l0 i½η̃ljη̃l0 i
�

�X
q∈N

1

ðqþ 1Þ!2ð2qÞ!
�X3

l¼1

hzljw̃l�
�2q�

: ð81Þ

We have denoted the irrelevant part with primes in the first line. The second line is the part of Ssl
∂△1

ðfzl; z̃lgÞ and
Ssl
ð∂△2Þ�1ðfwc; w̃cgÞ relevant to the triangles to be glued, and the third line is the edge amplitude gluing △1 and △2. We first

perform the spinor integration for z1;2;3 and w̃1;2;3.
Let us introduce the complex triples, following Bargmann’s trick [41],

a ¼ ðz01; z02; z03Þ; b ¼ ðz11; z12; z13Þ; c ¼ ðw̃0
1; w̃

0
2; w̃

0
3Þ; d ¼ ðw̃1

1; w̃
1
2; w̃

1
3Þ;

α ¼ ðξ01; ξ02; ξ03Þ; β ¼ ðξ11; ξ12; ξ13Þ; σ ¼ ðη̃01; η̃02; η̃03Þ; ρ ¼ ðη̃11; η̃12; η̃13Þ: ð82Þ

ā ¼ ðā1; ā2; ā3ÞT is the conjugate of a, and we denote the measure for the a as dμ3ðaÞ ¼ 1
π3
da1dā1da2dā2da3dā3—likewise

for b; c; d; α; β; σ; ρ. For simplicity, we also denote Σ ¼ α × β ¼ ð½ξ2jξ3i; ½ξ3jξ1i; ½ξ1jξ2iÞ and Λ ¼ σ × ρ ¼
ð½η̃2jη̃3i; ½η̃3jη̃1i; ½η̃1jη̃2i. We then arrange them in the matrices:

A ¼

0
B@Σ1 Σ2 Σ3

a1 a2 a3
b1 b2 b3

1
CA; B ¼

0
B@Λ1 Λ2 Λ3

c1 c2 c3
d1 d2 d3

1
CA; Γ ¼

0
B@ 0 0 0

0 0 −1
0 1 0

1
CA: ð83Þ

One can thus rewrite the integral of z1;2;3 and w̃1;2;3 in the second and third lines of (81) in a compact way:

1

ð2πiÞ2
I

dt
I

ds
esþt

ðstÞ2
Z �Y3

l¼1

dμðzlÞdμðw̃lÞ
�
edetAþdetBþ 1ffiffi

st
p TrðA†ΓB̄Þ

¼ 1

ð2πiÞ2
I

dt
I

ds
esþt

ðstÞ2
Z

dμ3ðaÞdμ3ðbÞdμ3ðcÞdμ3ðdÞe−ā·a−b̄·b−c̄·c−d̄·deðΣ×bÞ·aþðΛ×dÞ·ce
1ffiffi
st

p ðb̄·c̄−ā·d̄Þ; ð84Þ

where we have used the contour integral expression for the
inverse Gamma function 1

ðqþ1Þ! ¼ 1
2πi

H
dt et

tqþ2. One can
calculate this Gaussian integral for a, b, c, d one by
one. Note that given a complex n-ple v and a complex n × n
matrix A whose Hermitian part is positive definite, one has
the Gaussian integralZ

dμnðvÞe−v̄·Avþu·vþu0·v̄ ¼ detA−1eu·A
−1u0

; ð85Þ

where u and u0 are independent n-ples.
After integrating out a, b, c, one can use (85) to perform

the remaining integral for d:Z
dμ3ðdÞe−d̄·de1

stðΛ×d̄Þ·ðΣ×dÞ ¼
Z

dμ3ðdÞed̄·ðI−M
stÞd

¼ 1

detðI−M
stÞ

¼ 1

ð1−Λ·Σ
st Þ2

; ð86Þ

where the matrix M has entries

Mij ¼ ðΛ · ΣÞδij − ΛiΣj; i; j ¼ 1; 2; 3; ð87Þ

so that d̄ ·Md ¼ ðΛ · ΣÞðd̄ · dÞ − ðΛ · dÞðΣ · d̄Þ ¼ ðΛ × d̄Þ·
ðΣ × dÞ. The explicit form of Λ · Σ is

Λ · Σ ¼ ðα × βÞ · ðσ × ρÞ ¼ ðα · σÞðβ · ρÞ − ðα · ρÞðβ · σÞ
¼ ½ξ1jξ2i½η̃1jη̃2i þ ½ξ2jξ3i½η̃2jη̃3i þ ½ξ3jξ1i½η̃3jη̃1i:

ð88Þ

Now we perform the counter integral to complete the
integration in (84):
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1

ð2πiÞ2
I

dt
I

ds
esþt

ðstÞ2
1

ð1 − Λ·Σ
st Þ2

¼ 1

ð2πiÞ2
I

dt
I

ds
X∞

m;u;k¼0

kþ 1

m!u!
smtu

s2t2

�
Λ · Σ
st

�
k

¼
X∞
k¼0

1

k!ðkþ 1Þ! ðΛ · ΣÞk

¼ C1ðΛ · ΣÞ; ð89Þ

where C1ðzÞ is the Bessel-Clifford function of order one.
A Bessel-Clifford function of order m expands as

CmðxÞ ≔
P∞

k¼0
xk

k!ðkþmÞ!. The explicit form (88) of Λ · Σ
allows us to express C1ðΛ · ΣÞ into an SU(2) integral by the
following beautiful identity [39]:

Z
SUð2Þ

dge
P

i
½zijgjz̃ii ¼

X∞
k¼0

1

k!ðkþ1Þ!
�X

i<j
½zijzji½z̃ijz̃ji

�
k
;

∀ zi; z̃i∈C2: ð90Þ

Therefore,

C1ðΛ · ΣÞ ¼
Z
SUð2Þ

dge
P

3

l¼1
½ξljgjη̃li: ð91Þ

We next combine this result with the integral of the
auxiliary spinors in the second line of (81). It is straightfor-
ward to calculate that

Z
SUð2Þ

dg
Z �Y3

l¼1

dμðξlÞdμðη̃lÞ
�
e
P

3

l¼1
ðhηljη̃l�þ½η̃ljgjξliþhξljξ̃l�Þ

¼
Z
SUð2Þ

dge
P

3

l¼1
hηljgjξ̃l�: ð92Þ

Finally, one performs the SU(2) transformation with g on all
the auxiliary spinors ðξl; ξ̃lÞ → ðgξl; gξ̃lÞ from △1, which
preserves the inner products hξl0 jξ̃l0 � and ½ξsðα0Þjξtðα0Þi of the
irrelevant auxiliary spinors [see the first line of (81)]. Thanks
to the SU(2)-invariant property of the spinor Haar measure,

one can rewrite (92) into
R
SUð2Þ dge

P
3

l¼1
hηljξ̃l� ¼ e

P
3

l¼1
hηljξ̃l�,

which is exactly the link term for a general scaleless spin
network state [see (79) and Fig. 9(b)]. Combining this result
with the irrelevant part in the first line of (81), one arrives at a
scaleless spin network state Ssl

ð∂ð△1∪△2ÞÞ�1 on the union

boundary ∂ð△1 ∪ △2Þ after gluing. ▪
Proposition II.4. For gluing of Type II, the scaleless

spin network state Ssl
ð∂△Þ�

1
on the boundary ∂△ of a three-cell

△ glued with an edge amplitude At∩t2¼e
e� of the form (73),

which is for two adjacent triangles t1; t2 ∈ ∂△ sharing one
edge e, and a face amplitude Ae

f� , which is for the shared

edge e, produces a scaleless spin network state Ssl
ð∂△0Þ�

1
on

the resulting three-cell boundary ∂△0. It is symbolically
expressed as

Ssl
ð∂△0Þ�

1
¼

Z � Y
e∈t1∪t2

dμðzlÞ
�
Ssl
ð∂△Þ�

1
At1∩t2¼e

e� Ae
f� : ð93Þ

Proof.—Before gluing, the three-cell boundary ∂△ and
the dual graph are as shown in Fig. 10(a). The right-hand
side of (93) reads (we again denote the irrelevant part with
primes)Z �Y

l0
dμðξl0 Þ

Y
l0
dμðξ̃l0 Þ

�
e
P

l0 hξl0 jξ̃l0 �þ
P

α0 ½zsðα0Þjztðα0Þi½ξsðα0Þjξtðα0Þi

Z �Y3
l¼1

dμðξlÞdμðη̃lÞ
�
ehξ1jη̃1�þ

P
l¼1

ðhξljξ̃l�þhηljη̃l�Þ

Z �Y3
l¼1

dμðzlÞdμðw̃lÞ
�
exp

� X
l;l0¼1;2;3

l≺l0

½zljzl0 i½ξljξl0 i

þ½w̃ljw̃l0 i½η̃ljη̃l0 i
�

�X
q∈N

1

ðqþ1Þ!2ð2qÞ!
�X3

l¼1

hzljw̃l�
�2q�

ðhz1jz1i−1Þ: ð94Þ

With no loss of generality, we have fixed the half links
incident to the left node to be outgoing and denote the
spinors and auxiliary spinors on these half links to be z1;2;3
and ξ1;2;3, respectively, and fixed the half links incident to
the right node to be incoming and denote the spinors and
auxiliary spinors on these half links to be w̃1;2;3 and η̃1;2;3,
respectively. The difference of the relevant integral in (94)
(the last three lines) from that in (81) are the terms ehξ1jη̃1�,
since the two auxiliary spinors ξ1 and η̃1 are from the same
link l1, and ðhz1jz1i − 1Þ, which is the face amplitude on
edge e given that the left node is chosen to be the base node.
We now claim that the face amplitude ðhz1jz1i − 1Þ can

be replaced by ðhξ1jξ1i − 1Þ without changing the ampli-
tude. To prove that, we first rewrite ehξ1jη̃1� by introducing
two intermediate spinor integrals,

ehξ1jη̃1� ¼
Z

dμðξ̃1Þdμðη1Þehξ1jξ̃1�þhη1jη̃1�e½ξ̃1jη1i; ð95Þ

so that the second line in (94) can be expressed in a
symmetric way:

Z
dμðξ̃1Þdμðη1Þe½ξ̃1jη1i

Z �Y3
l¼1

dμðξlÞdμðη̃lÞ
�

× e
P

3

l¼1
ðhξljξ̃l�þhηljη̃l�Þ: ð96Þ
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We next notice for the edge amplitude that each term of the summation is a homogenous holomorphic polynomial of spinors
z1;2;3 and w̃1;2;3 of order 2q. Each term of order 2q can survive under the spinor integration only by matching with a
homogenous antiholomorphic polynomial of spinors z1;2;3 and w̃1;2;3 of order 2q. This means we can safely move the termP

q∈N
1

ðqþ1Þ!2 from the last line of (94) to the third line, and then the last two lines become

Z �Y3
l¼1

dμðzlÞdμðw̃lÞ
�X

k∈N

1

k!

� X
l;l0¼1;2;3

l≺l0

½zljzl0 i½ξljξl0 iþ½w̃ljw̃l0 i½η̃ljη̃l0 i
�

k
δk;2q

�X
q∈N

1

ðqþ1Þ!2ð2qÞ!
�X3

l¼1

hzljw̃l�
�2q�

ðhz1jz1i−1Þ

¼
Z �Y3

l¼1

dμðzlÞdμðw̃lÞ
�X

q∈N

1

ðqþ1Þ!2ð2qÞ!
� X

l;l0¼1;2;3
l≺l0

½zljzl0 i½ξljξl0 iþ½w̃ljw̃l0 i½η̃ljη̃l0 i
�

2q
e
P

3

l¼1
hzljw̃l�ðhz1jz1i−1Þ: ð97Þ

Now the third line in (97) is a summation of homogenous holomorphic polynomial of the auxiliary spinors ξ1;2;3 and η̃1;2;3,
each of order 2q. For the same reason, one can further move the term

P
q∈N

1
ðqþ1Þ!2 to the second line of (94). We also

separate zl and w̃l in the last line of (97) by adding six intermediate spinor integral over z̃1;2;3 and w1;2;3. As a result, the last
three lines of (94) can be rewritten as

Z
dμðξ̃1Þdμðη1Þe½ξ̃1jη1i

Z �Y3
l¼1

dμðξlÞdμðη̃lÞ
�X

q∈N

1

ðqþ 1Þ!2ð2qÞ!
�X3

e¼1

ðhξljξ̃l� þ hηljη̃l�Þ
�2q

Z �Y3
l¼1

dμðzlÞdμðw̃lÞ
�
exp

� X
l;l0¼1;2;3

l≺l0

½zljzl0 i½ξljξl0 i þ ½w̃ljw̃l0 i½η̃ljη̃l0 i
�

Z �Y3
l¼1

dμðz̃lÞdμðwlÞ
�
e
P

3

l¼1
½z̃ljwlie

P
3

l¼1
hzljz̃l�þhw3jw̃l�ðhz1jz1i − 1Þ: ð98Þ

We now realize from comparing (98) and the last three lines of (94) that ξ1;2;3 and z1;2;3 take the exchanged expressions. This
means one can simply replace the face amplitude ðhz1jz1i − 1Þ in (94) with ðhξ1jξ1i − 1Þ without changing the total
amplitude. This allows us to use the same Bargmann’s trick as in (82)–(89) as well as the identity (91) so that the last three
lines of (94) arrive atZ

dμðξ̃1Þdμðη1Þdμðξ1Þe½ξ̃1jη1i
Z
SUð2Þ

dgehξ1jξ̃1�þhη1jgjξ1iehη2jgjξ̃2�þhη3jgjξ̃3�ðhξ1jξ1i − 1Þ

¼
Z
SUð2Þ

dg
Z

dμðξ1Þðhξ1jξ1i − 1Þehξ1jgjξ1iehη2jgjξ̃2�þhη3jgjξ̃3�

¼
Z
SUð2Þ

dgδðgÞehη2jgjξ̃2�þhη3jgjξ̃3�

¼ ehη2jξ̃2�þhη3jξ̃3�; ð99Þ

which is the link term for a general scaleless spin network
state. To arrive at the third line of (99), we have used the
identity for delta distribution on SU(2)

δðgÞ ¼
Z

dμðzÞðhzjzi − 1Þehzjgjzi: ð100Þ

Combining the result of (99) and the irrelevant part in the
first line of (94), one arrives at a scaleless spin network state
Ssl
ð∂△0Þ�

1
on the three-cell boundary ∂△0 after gluing. ▪

Define a function of the face amplitude, which is defined
with the spinor z sitting on the base node, as

GðAf� ðzÞÞ ≔ e−ð1þAf� ðzÞÞ ¼ e−hzjzi: ð101Þ

We then have the following proposition.
Proposition II.5. For gluing of Type III, the scaleless

spin network state Ssl
ð∂△Þ�

1
on the boundary ∂△ of a three-cell

△ glued with an edge amplitudeAt1∩t2¼fe1;e2g
e� in the form of

(73), which is for two adjacent triangles t1; t2 ∈ ∂△ sharing
two edges e1, e2, a face amplitude Ae1

f� in the form of (74),
which is for one of the shared edge e1, and the function
GðAe2

f� Þ of the face amplitude for the other shared edge e2 in
the form of (126), produces a scaleless spin network state
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Ssl
ð∂△0Þ�

1
on the resulting three-cell boundary ∂△0. It is

symbolically expressed as

Ssl
ð∂△0Þ�

1
¼

Z � Y
l∈̃t1∪t2

dμðzlÞ
�
Ssl
ð∂△Þ�

1
At1∩t2¼fe1;e2g

e� Ae1
f�GðAe2

f�Þ;

ð102Þ

where the l∈̃t1 ∪ t2 denotes that the integral is for all the
spinors on (the dual node of) the two triangles t1 and t2
except the one defining the face amplitude Ae2

f� .
Proof.—This gluing can be visualized as collapsing a

cone into a triangle bounded with two edges connecting
the apex and two points on the base circle, as shown in
Fig. 11(a). With no loss of generality, we again consider
half links associated to one of the nodes [the left one in
Fig. 11(a)] are outgoing and are assigned the spinors z1;2;3,
and half links associated to the other node are incoming and
are assigned spinors w̃1;2;3. With this setting, it is not hard to
get a similar expression for the relevant part of the right-
hand side of (102) as in (99) after integrating out z1;2;3,
w̃1;2;3 and other auxiliary spinors. We choose the two
(function of) face amplitudes to be

Ae1
f�ðz1Þ ¼ hz1jz1i− 1; GðAe2

f� ðz2ÞÞ ¼ e−hz2jz2i: ð103Þ

The same analysis as in the proofs of Proposition II. 3 and II.
4 leads the simple expression of the right-hand side of (102)
[we use here the spinors z1;2 instead of the auxiliary spinors
ξ1;2 as in (99), which does not change the final result]:Z
SUð2Þ

dg
Z

dμðz1Þðhz1jz1i−1Þehz1jgjz1iehz2jgjz2i−hz2jz2iehη4jgjξ̃3�

¼
Z
SUð2Þ

dgδðgÞehz2jgjz2i−hz2jz2iehη4jξ̃3�

¼ehη4jξ̃3�: ð104Þ

The result is again the link term for the general scaleless spin
network state. Together with the irrelevant part of the right-
hand side of (102), we arrive at the scaleless spin network
state for the three-cell boundary after gluing and thus, the
left-hand side of (102). ▪
Note that (102) is a finite equation because we

did not perform the integration over z2. The dependence
of the final result on z2 is removed simply by δðgÞ.
If one replaces GðAe2

f� Þ by Ae2
f� ðz2Þ and further integrate

z2 on the right-hand side, one gets a delta distribution
of SU(2) group evaluated on the identity on the left-hand
side; i.e.,

Ssl
ð∂△0Þ�

1
δSUð2ÞðIÞ¼

Z � Y
l∈t1∪t2

dμðzlÞ
�

×Ssl
ð∂△Þ�

1
·At1∩t2¼fe1;e2g

e� ·Ae1
f� ·A

e2
f� ; ð105Þ

which diverges, and the divergence corresponds to the
translational symmetry of the extra internal vertex produced
after gluing as in the original Ponzano-Regge state sum
model [19,56]. In the state sum model, this divergence can
be eliminated by fixing the spin (thus, edge length, say ll,)
of one internal edge incident to this internal vertex. In a
similar spirit, (102) can be viewed as the gauge-fixing
version of (105), which fixes one spinor z2 in the bulk.
Another way of gauge fixing is to gauge fix (the norm of)
the inner product j½z1jz2ij of the two spinors z1, z2 used to
define the face amplitude Ae1

f� and Ae2
f� , which encodes the

angle information of the triangle dual to the node that z1, z2
lives on (see Sec. III A below). This can be seen by
rewriting δSUð2ÞðIÞ in terms of j½z1jz2ij as

δSUð2ÞðIÞ ¼
Z
SUð2Þ

dg
Z

dμðz1Þdμðz2Þðhz1jz1i − 1Þðhz2jz2i − 1Þehz1jgjz1iehz2jgjz2i

¼
Z

dμðz1Þdμðz2Þðhz1jz1i − 1Þðhz2jz2i − 1Þej½z1jz2ij2 : ð106Þ

One can straightforwardly conclude from Lemma II. 2 and
Proposition II. 3, II. 4, II. 5 the following corollary.
Corollary II.6 The Ponzano-Regge state-integral for-

mula given in Proposition II. 1 is topological invariant.
This means the total amplitude is independent of the bulk
configuration and is equal to the boundary scaleless spin
network state upongauge fixings, one for each internal vertex.

In particular, in the 2–3 Pachner move, the gluing of two
tetrahedra is of Type I; the gluing of three tetrahedra
includes three steps, two of which are of Type I, and the
other is of Type II. In the 1–4 Pachner move, the gluing of
four tetrahedra includes six steps, three of which are of
Type I, two of which are of Type II, and the remaining one
is of Type III.
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IV. GEOMETRIC INTERPRETATION
OF THE STATE INTEGRAL

Spins are geometrically interpreted as lengths; thus, the
geometrical meaning of the original Ponzano-Regge state
sum is rather simple as reviewed above. In contrast, the
geometrical interpretation of spinors, or the inner product
of spinors, which are used in the new Ponzano-Regge state
integral described in Proposition II. 1, is not as apparent.
To understand what the new model describes about the
geometry, we analyze in this section separately the
geometrical information of the tetrahedron described by
the new vertex amplitude and that of the gluing process
described by the new edge amplitude. This will also
unravel the geometry described by the boundary state ψ sl

Γ
in the dependence of the total amplitude and hint at the
correspondence boundary condition in the classical
counterpart.

A. Poles of the f12z×2g symbol

In this subsection, we come back to the tetrahedron
graph and look into the geometrical interpretation of the
SGF. To this end, we rewrite the SGF in terms of the new
variables, namely the angle couplings and the link cou-
plings. They are both invariant under the SLð2;CÞ gauge
transformation of spinors, and the latter is further invariant
under the antiscale transformation [see (68)], thus forming
a minimum set of variables.
At first glance, since the SGF encodes the summation of

spins, which geometrically represent lengths of the one-
skeleton of a tetrahedron, the length information is
expected to be washed out, and it leaves the rest of the
geometrical information, thus angles. Angle information of
a tetrahedron includes internal angles of triangles (called
internal angles for short) on the boundary of the tetrahe-
dron, and the dihedral angles between each pair of
triangles. We will find, by taking the large j limit of the
f6jg symbols, that these angle information are exactly
stored in the norms and phases of the six independent link
couplings.
On the other hand, while the angle couplings contain

redundant degrees of freedom in the SGF, it will become
important when we describe the geometrical interpretation
of the edge amplitude (73) in the newly constructed spin
foam amplitude. Therefore, it is necessary to explore what
the angle couplings represent geometrically as well. This
can be realized from the relation of the angle couplings
and the link couplings quantified below. In other words,
by solving the angle couplings from the link couplings,
one can directly translate the geometrical interpretation of
the link couplings to that of the angle couplings. The
obstacle is that we have 12 angle couplings at hand but

only six link couplings, which means we need to choose a
“gauge” to determine the solution. This is at the same time
a benefit since we are free to choose a gauge such that it is
the most geometrically reasonable then the angle coupling
can be interpreted “nicely.”
Before we dig into details, let us first summarize what

we will analyze in this subsection. The expression of the
SGF (60) is purely in terms of the inner products of
spinors, which we will call the angle couplings. We first
rewrite the SGF into an expression (116) in terms
of the link couplings (109) and then do a stationary
analysis at large spins to find the geometrical interpreta-
tion of the link couplings, which is illustrated in (123) and
(124) [39,73]. Link couplings encode the conformal
geometry of a tetrahedron both in their norms and phases.
This geometrical interpretation can be translated back to
the angle couplings. However, the map from the angle
couplings to link couplings is only surjective but not
bijective. We choose a “geometrical gauge” (135), which
has the most local sense, to fix the angle coupling
definition in terms of the link couplings. The geometrical
interpretation of the angle couplings is not relevant to the
later analysis in this subsection but will be important for
Sec. III B, where we investigate the geometrical meaning
of the edge amplitudes. We plug the critical points of the
link couplings into the SGF (116) and write the semi-
classical version of the SGF (143), which can be
expressed as a Laplace transform of (the exponential
of) the Regge action of a tetrahedron. We also give a
formal expression of the classical correspondence (145) of
the SGF. Finally, we conclude this subsection in the
diagram (146) with the relations between the f6jg symbol
and the SGF as well as their classical and semiclassical
correspondences.

1. From angle couplings to link couplings

Each pair of links incident to the same node form an
angle. We define the angle coupling Xll0 by the (holomor-
phic) inner product of the spinors associated to the pair of
links ðl; l0Þ with the order l ≺ l0 as

Xll0 ≡ Xl0l ≔ ½zljzl0 i ¼ jXll0 jeiΦll0 ; l ≺ l0; l; l0 ∈ n;

Φll0 ∈ ½0; πÞ: ð107Þ

We have separated the norm jXll0 j and the phase Φll0 of the
angle coupling. These angle couplings can be grouped to
form the link couplings Yl’s [39] such thatY

n∈Γ

Y
l;l0;l00∈v

XJn−2jl00
ll0 ¼

Y
l∈Γ

Y2jl
l : ð108Þ
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Consider two three-valent nodes connected with an ori-
ented link l, where l1, l2 are the other two links incident to
the source sðlÞ of the link l, and l̃1; l̃2 are the two other
links incident to the target tðlÞ, as shown in Fig. 12. The
link coupling Yl is expressed in terms of the angle
couplings as

Yl ≡ jYljeiΨl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½zljzl1i½zl2 jzli

½zl1 jzl2i
½z̃ljzl̃1i½zl̃2 jz̃li

½zl̃1 jzl̃2i

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xll1Xll2

Xl1l2

Xll̃1
Xll̃2

Xl̃1 l̃2

s
; Ψl ∈ ½0; πÞ: ð109Þ

The norm jYlj and the phase Ψl of the link coupling read
explicitly

jYlj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXll1 jjXll2 j
jXl1l2 j

jXll̃1
jjXll̃2

j
jXl̃1 l̃2

j

s
;

Ψl ¼mod

�
1

2
ðΦll1 þΦll2 −Φl1l2 þΦll̃1

þΦll̃2
−Φl̃1 l̃2

Þ;π
�
:

ð110Þ

It will be convenient to introduce the “shared” spins for
angles on the same node as

kll0 ≔ Jn − 2jl00 ; ke0l00 ≔ Jn − 2jl; kl00l ≔ Jn − 2jl0 ;

where Jn ¼ jl þ jl0 þ jl00 and l; l0; l00 ∈ n: ð111Þ

kll0 can be understood as the number of threads (equal
to twice the spin value) shared by the links l and l0,
as illustrated in Fig. 13. These shared spins are not
independent. Referring to the relative position of the
links l; l1; l2; l̃1; l̃2 shown in Fig. 12, the constraint for
kll0’s is

kll1 þ kll2 ¼ kll̃1 þ kll̃2 ¼ 2jl; ∀ l: ð112Þ

Therefore, we have six constraints for 12 shared spins
kll0’s, which results in six independent shared spins as
expected.
Let us recall the SGF (59) written with the angle and link

couplings,

SðfXll0 gÞ ¼
X
j1���j6

2
64Y4
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJn þ 1Þ!Q

l;l0∈nkll0!

s 3
75� j1 j2 j3

j4 j5 j6

	

×
Y4
n¼1

�Y
l;l0∈n

Xkll0
ll0

�
; ð113Þ

or

SðfYlgÞ ¼
X
j1���j6

�Y4
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJn þ 1Þ!Q
l;l0∈nkll0!

s ��
j1 j2 j3
j4 j5 j6

	Y6
l¼1

Y2jl
l :

ð114Þ

For any loop L, the following equality holds

Y
n∈L

Xn
ll0 ¼

Y
l∈L

Yl: ð115Þ

Thus, (60) can also be written in two ways:

Sðfzl; z̃lgÞ ¼ Gðfzl; z̃lgÞ−2;
Gðfzl; z̃lgÞ ¼ 1þ

X
L

Y
l;l0∈n⊂L

Xll0 ¼ 1þ
X
L

Y
l⊂L

Yl: ð116Þ

2. Link couplings at the stationary point

Now that we have the expression of the SGF in terms of
the link couplings, we would like to apply the stationary
analysis at the large j limit of the SGF to look into the
poles. We first take the Stirling approximation of the
factorials:

M! ∼
ffiffiffiffiffiffiffiffiffiffi
2πM

p �
M
e

�
M
¼ eM lnMþOðMÞ: ð117Þ

FIG. 12. Two three-valent nodes sðlÞ and tðlÞ connected by an
oriented link l. Links l; l1; l2 are incident to sðlÞ, and links l; l̃1; l̃2
are incident to tðlÞ.

FIG. 13. Thicken the links l; l0; l00 incident to the node n into
threads. Each thread carries a spin 1

2
, and the number of threads

for each link is twice the spin value it is dressed with. The shared
spins kll0 can be viewed as the number of threads shared by the
links l and l0, similarly, for kll00 and kl0l00 .
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When V2 > 0,14 the f6jg symbol represents a tetrahedron
embedded in the 3D Euclidean space. It reads [17]

�
j1 j2 j3
j4 j5 j6

	
∼

1ffiffiffiffiffiffiffiffiffiffiffi
12πV

p cos

�X6
l¼1

llΘl þ
π

4

�
; ð118Þ

where ll ¼ jl þ 1
2
is the edge length of the edge e (with

abusive notation), V the volume of the tetrahedron with
edge lengths fllg calculated by the Cayley-Menger deter-
minant, andΘl the external dihedral angle about the edge e,
i.e., the angle between the outward normals to the faces
sharing the edge e.15 It is computed by the edge lengths as

sinΘl ¼
3

2

Vll

SsðeÞStðeÞ
; ð119Þ

where Sv is the area of the triangle opposite to the vertex v.
The large j limit of the SGF (114) is thus [73]

SðfYlgÞ¼
X
j1���j6

�Y4
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJnþ1Þ!Q
l;l0∈nkll0!

s ��
j1 j2 j3
j4 j5 j6

	Y6
l¼1

Y2jl
l

∼
Z

∞

minjl

�Y6
l¼1

djl

�
e
P

4

n¼1
1
2
ðJn lnJn−

P
l;l0∈n kll0 lnkll0 Þ

×e
P

6

l¼1
2jlðlnjYljþiΨlÞ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
12πV

p
X
ϵ¼�

eiϵð
P

6

l¼1
llΘlþπ

4
Þ

¼
X
ϵ¼�

Z
∞

minjl

�Y6
l¼1

djl

�
1

2
ffiffiffiffiffiffiffiffiffiffiffi
12πV

p eSϵðfYl;jlgÞ: ð120Þ

In the second line, we have used cos ðP6
l¼1 llΘl þ π

4
Þ ¼

1
2

P
ϵ¼� eiϵð

P
6

l¼1
llΘlþπ

4
Þ and approximated the summation of

spins by integration from the minimal admissible spins to
infinity.
As the volume V grows polynomially with the spins, its

derivative of spin will contribute to the subleading correc-
tion of the stationary point. Therefore, to the leading order,
one simply needs to consider the stationary point of the
exponent term SϵðfYl; jlgÞ of the SGF.
The real and imaginary part of Sϵ can be rewritten as

Re½SϵðfYl; jlgÞ� ¼
X4
n¼1

1

2

�
Jn ln Jn −

X
l;l0∈n

kll0 ln kll0
�

þ
X6
l¼1

jl ln jYlj2; ð121Þ

Im½SϵðfYl; jlgÞ� ¼
X6
l¼1

�
jlð2Ψl þ ϵΘlÞ þ

1

2
ϵΘl

�
þ ϵ

π

4
:

ð122Þ
Thanks to the Schläfli identity,

P
6
e jl

∂Θl
∂jl

¼ 0, the phase

term has a simple derivative expression
∂

P
l
jlΘl

∂jl
¼ Θl.

The saddle point ∂Sϵ
∂jl

can be separated into the real part and
the imaginary part. Using some trigonometry relations, the
result reads (neglecting subleading contributions) [39,73]

∂Re½Sϵ�
∂je

¼ 0 → jYlj2 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kll1kll2
kl1l2JsðlÞ

kll̃1kll̃2
kl̃1 l̃2JtðlÞ

s

≡ tan
ϕsðlÞ
2

tan
ϕtðlÞ
2

; ð123Þ

∂Im½Sϵ�
∂jl

¼ 0 → Ψl ¼ −
ϵ

2
Θl: ð124Þ

14We show here that it is safe to disregard the V2 < 0
contribution to the SGF at large spins. When V2 < 0, the
asymptotic expression of the f6jg symbol corresponds to a
tetrahedron embedded in the 3D Minkowski space. This can be
seen from the geometrical expression of the volume V

V2 ¼
4A2

sðeÞA
2
tðeÞ

9l2
l

ð1 − ð ⃗n̂sðeÞ · ⃗n̂tðeÞÞ2Þ;

where AsðeÞ (resp. AtðeÞ) is the area of the triangle opposite to the

source (resp. target) vertex of the edge e, and ⃗n̂sðeÞ (resp. ⃗n̂tðeÞ) the
normal to this triangle. (We have assumed the edges are oriented,
which can be arbitrarily decided.) When V2 < 0, any, hence all,
pairs of normals satisfy j ⃗n̂sðeÞ · ⃗n̂tðeÞj > 1. This is possible in the
Minkowski space, where the angle formed by the normal to two
faces, say a and b, is calculated by

Θab ¼ cosh−1ð ⃗n̂a · ⃗n̂bÞ:
This is called the internal Lorentzian angle. (There is a similar
formula for exterior Lorentzian angle; see [66].) The f6jg symbol
in this case reads [17,66]

�
j1 j2 j3
j4 j5 j6

	
∼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πjVjp cosϕ exp

�
−
����X6
l¼1

llImΘl

����
�
;

where ϕ ¼ P
6
l¼1ðll − 1

2
ÞReΘl, Θl being the external dihedral

angle about the edge e defined by the Euclidean formula

cosΘl ¼
⃗n̂sðeÞ · ⃗n̂tðeÞ

⃗n̂2sðeÞ
¼ − ⃗n̂sðeÞ · ⃗n̂tðeÞ:

It follows that j cosΘlj > 1, which implies that Θl is complex.
The smallest spin example of the f6jg symbol giving a negative
V2 is f1=2

1=2
1=2
1=2

1
1
g ¼ 1

6
with V2 ¼ − 9

512
. From the asymptotic

expression for V2 < 0 given above, the f6jg symbol is exponen-
tially suppressed even if the triangle inequality is satisfied.
Therefore, V2 < 0 will not control the behavior of the SGF.

15Note that the edges of the tetrahedron T are denoted as e’s, and
the links of the tetrahedron graph Γ ¼ ð∂TÞ�1 dual to the boundary
of T are denoted as l’s. It is on the links of Γ where we associate
spin labels fjlg, but they represent the lengths of the edges e’s on
T, which are dual to l’s. We denote the length ll and dihedral angle
Θl with subscript l instead of e to avoid a mixture of notation in the
same equation as much as possible in the main text.
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We have identified the length of edge ewith the spin values
jl as jl ≫ 1

2
. ϕsðlÞ is the internal angle opposite to the edge e

in the triangle dual to the source node sðlÞ of the link l,
likewise for ϕtðlÞ, as shown in Fig. 14. The saddle point
corresponds to the pole of the SGF, which is also the Fisher
zero for the Ising partition function on a tetrahedron
graph [73]. It clearly expresses the conformal geometry
of the (classical limit of) the tetrahedron: The norm of the
link coupling jYlj corresponds to the pair of internal angles
ðϕsðlÞ;ϕtðlÞÞ opposite to the edge e in the two triangles
sharing e, while the phase Ψl corresponds to half of the
external dihedral angle about the edge e.
As a consistency check, we numerically calculate

Gðfzl; z̃lgÞ defined in (116) with the saddle point values
(123) and (124) of the link couplings. We set the Cartesian
coordinates of the four vertices at A ¼ ð0; 0; 0Þ;
B ¼ ð1; 0; 0Þ; C ¼ ð1; 2; 0Þ, and D ¼ ð3; yd; 5Þ whose
faces have fixed orientations. Let

Yab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan

ϕsðlÞ
2

tan
ϕtðlÞ
2

r
eiϵ

Θl
2 ð125Þ

with ϕsðlÞ;ϕtðsÞ and Φl defined as in Fig. 14, and link ab is
one of the edges AB;BC; AD;BC; BD;CD that link l is
dual to. Then, Gðfzl; z̃lgÞ can be explicitly written as

G ¼ 1þ YABYACYAD þ YABYBCYBD þ YACYBCYCD

þ YADYBDYCD þ YABYBCYCDYAD þ YABYBDYCDYAC

þ YACYBCYBDYAD: ð126Þ

The plot in Fig. 15 illustrates that (125) does contribute to
the poles of the SGF.We also refer interested readers to [73]
for the analytical derivation of the poles (125).

3. Back to angle couplings

Suppose we have a solution to the link couplings fYlg,
and we aim at solving the angle couplings fXll0g from fYlg.
As there are 12 angle couplings Xll0 ’s, hence, 24 real
variables, but only six link couplings Yl’s, hence, 12 real
variables, there is a family of solutions for fXll0g in terms of
fYlg, and each solution can be parametrized by 12 real
parameters or six complex parameters.
A natural assumption is that each link coupling gains

equal contribution from the source and the target of the
link. Referring to (108), it means

Xll1Xl2l

Xl1l2

¼ Xll̃1
Xl̃2l

Xl̃1 l̃2

¼ Yl: ð127Þ

One then gets a symmetric solution to the angle coupling

Xll0 ¼
ffiffiffiffiffiffiffiffiffiffi
YlYl0

p
; ð128Þ

which indeed gives back (109). This result can be viewed as
obtained by splitting the power 2jl of each link coupling Yl
in (108), obeying the constraint (112), into

2jl ¼
kll1 þ kll2

2
þ kll̃1 þ kll̃2

2
; ð129Þ

and write Y2jl
l ¼ ffiffiffiffiffi

Yl
p kll1

ffiffiffiffiffi
Yl

p kll2
ffiffiffiffiffi
Yl

p kll̃1
ffiffiffiffiffi
Yl

p kll̃2 . After split-
ting all the link couplings in this way, the angle coupling
Xll0 is a collection of the terms with the power kll0.
With the same logic, one can obtain the most general

solution by arbitrarily distributing the contributions of the
power to the source and target of each link. That is to
separate the power 2jl as

FIG. 14. Two triangles (nonplanar) sharing one edge e and its
2D oriented dual graph (in red). The node sðlÞ is dual to the left
triangle and tðlÞ dual to the right one. ϕsðlÞ and ϕtðlÞ are the
internal angle opposite to the edge e within the left and right
triangles, respectively. Their relation with the norm of the link
coupling at the saddle point is given in (123). Θl is the external
dihedral angle about the edge e. Its relation with the phase of the
link coupling at the saddle point is given in (124).

yd

2. 10–16

4. 10–16

6. 10–16

8. 10–16

1. 10–15

1.2 10–15

G

FIG. 15. The absolute value jGj of the polynomial (126)
with Yab defined in (125) for a tetrahedron with its four
vertices located at A ¼ ð0; 0; 0Þ; B ¼ ð1; 0; 0Þ; C ¼ ð1; 2; 0Þ, and
D ¼ ð3; yd; 5Þ.
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2jl ¼ λsðlÞl ðkll1 þ kll2Þ þ λtðlÞl ðkll̃1 þ kll̃2Þ

→

������
Xll1

Xl2l

Xl1l2
¼ Y

2λsðlÞl
l

Xll̃1
Xl̃2l

Xl̃1 l̃2
¼ Y

2λtðlÞl
l

; λsðlÞl ; λtðlÞl ∈ ½0; 1� with

λsðlÞl þ λtðlÞl ¼ 1: ð130Þ

We call this set of parameters fλnl g, totally 12, “scaling
factors” as they scale the contribution of link couplings
from the two links forming the angle. The solution to the
angle coupling Xll0 parametrized with fλnl g is

Xll0 ¼ Y
λnl
l Y

λn
l0
l0 ; l; l0 ∈ n: ð131Þ

Separating into the norm and the phase, we have

jXll0 j ¼ jYljλnl jYl0 jλ
n
l0 ; Φll0 ¼mod ðλnlΨl þ λnl0Ψe0 ;πÞ:

ð132Þ

Apart from writing the scaling factors into the real
exponents, one can also write them into the multiplication
coefficients, which are complex, as

Xll0 ¼
1

αlαl0
YlYl0 ; with αl ¼ Y

1−λnl
l ; αl0 ¼ Y

1−λn
l0

l0 : ð133Þ

Note that, as we have fixed the range of the phase
Φl ∈ ½0; πÞ, there is no branch ambiguity for fαlg. This
choice of the phase range is related to the geometrical
interpretation of the link couplings, which we will describe
below. The most symmetric solution (128) corresponds to

λsðlÞl ¼ λtðlÞl ¼ 1
2
, or equivalently, αl ¼

ffiffiffiffiffi
Yl

p
; αl0 ¼

ffiffiffiffiffiffi
Yl0

p
.

4. Angle couplings with the “geometric gauge”
at the stationary point

Now we can transform from the link couplings fYlg to
the angle couplings fXll0g. Recall that there is no unique
solution for fXll0g from fYlg, but we can choose a family of
parameters to fix fXll0g so that it possesses a simple
geometrical interpretation. Comparing the formula struc-
ture of (110) and (123), we choose a geometric gauge
(using the notations as in Fig. 12)

λsðlÞl ¼
ln

kll1kll2
kl1l2JsðlÞ

ln
kll1kll2
kl1l2JsðlÞ

þ ln
kll̃1kll̃2
kl̃1 l̃2JtðlÞ

≃
ln ðtan ϕsðlÞ

2
Þ

ln ðtan ϕsðlÞ
2
tan

ϕtðlÞ
2
Þ
; ð134Þ

and define

jXll0 j≔
ffiffiffiffiffiffi
kll0

Jn

s
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan

ϕll00

2
tan

ϕl0l00

2

r
; l;l0;l00∈ n: ð135Þ

ϕll00 and ϕl0l00 are the remaining two internal angles in the
triangle other than ϕll0 formed with e and e0, as shown in
Fig. 16. Reversely, we can solve for these angles from the
angle couplings,

ϕll0 ≃ 2 tan−1
jXl0l00 jjXll00 j

jXll0 j
; ϕll0 ∈ ½0; πÞ: ð136Þ

This solution corresponds to the scale factors

λsðlÞl ¼
ln

kll1kll2
kl1l2JsðlÞ

ln
kll1kll2
kl1l2JsðlÞ

þ ln
kll̃1kll̃2
kl̃1 l̃2JtðlÞ

≃
ln ðtan ϕsðlÞ

2
Þ

ln ðtan ϕsðlÞ
2
tan

ϕtðlÞ
2
Þ
: ð137Þ

It indeed satisfies λsðlÞl þ λtðlÞl ¼ 1.
The norms of the angle couplings defined in (135)

satisfy the closure constraint, which corresponds to the
fact that the three internal angles of the triangle dual to a
node sum to π.

jXll0 j2 þ jXl0l00 j2 þ jXll00 j2 ¼ 1; ⇔ ϕll0 þ ϕl0l00 þ ϕll00 ¼ π;

l; l0; l00 ∈ n: ð138Þ

Note that this solution is only valid for jXll0 j ≤ 1, which is
indeed satisfied by the definition (135) of jXll0 j.
While the norm of an angle coupling Xll0 encodes the

information of the 2D angles in a triangle, the phase Φll0

encodes the information of the dihedral angles of edges l
and l0 dual to when considering that the triangle is on the
boundary of a tetrahedron, as shown in Fig. 17.
Given the scaling factors (137), the solution to fΦll0 g are

also set according to (132), although they possess a more
complicated expression and hence, more involved geomet-
rical interpretation. With no loss of generality, we choose
the orientation of the links l and l0 to be outgoing from the
node n, so then the phase is

FIG. 16. Three links (in red) l; l0; l00 incident to one node. The
triangle (in black) dual to the node is bounded by edges e; e0; e00.
The length of the edge e is given by the spin jl, likewise for e0 and
e00. The angle formed by the links l, l0 is ϕll0 , likewise for ϕl0l00 and
ϕll00 . Their relation with the norm of the angle coupling at the
saddle point is given in (135).
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Φll0 ≃mod

�
1

2
ðλnlΘl þ λnl0Θe0 Þ; π

�
; with

λnl ¼
ln ðtan ϕsðlÞ

2
Þ

ln ðtan ϕsðlÞ
2
tan

ϕtðlÞ
2
Þ
; λnl0 ¼

ln ðtan ϕsðe0Þ
2
Þ

ln ðtan ϕsðe0Þ
2

tan
ϕtðe0Þ
2
Þ
:

ð139Þ

In summary, the angle couplings encode the conformal
geometry of the tetrahedron, similar to the link couplings
but in a more “mixed” fashion determined by the scaling
fλnl g. The norms fjXll0 jg give the information about the
internal angles between edges, while the phases fΦll0 g give

the information about the dihedral angles between
triangles.
To determine the shape of a tetrahedron, one merely

needs the norm of the couplings or the phase of the
couplings. For sake of simplicity, we will make use of
the norms only.

5. Classical and semiclassical correspondences
of the SGF

Now that we know the relation between the SGF and the
f6jg symbols both rigorously and asymptotically, we
can also look into the classical and semiclassical corre-
spondences of the SGF and their relation with that of the
f6jg symbol, i.e., the GHY boundary action and the
Hartle-Sorkin boundary action in Regge calculus [62],
respectively.
We first rearrange the large j limit of the SGF in terms of

the f6jg symbols. For each link l, we again denote the three
links incident to the source sðlÞ as l; l1; l2 and those
incident to the target tðlÞ as l; l̃1; l̃2, which is illustrated
in Fig. 12. At large spins, jl can be taken as the length ll of
the edge dual to l (neglecting the 1=2 correction). Let ϕsðlÞ
(resp. ϕtðlÞ) be the internal angle opposite to the side with
length jl in the triangle with three side lengths jl; jl1 ; jl2
(resp. jl; jl̃1 ; jl̃2) (see Fig. 14). Trigonometry gives

tan
ϕsðlÞ
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJsðlÞ − 2jl1ÞðJsðlÞ − 2jl2Þ

JsðlÞðJsðlÞ − 2jlÞ

s
;

tan
ϕtðlÞ
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJtðlÞ − 2jl̃1ÞðJtðlÞ − 2jl̃2Þ

JtðlÞðJtðlÞ − 2jlÞ

s
: ð140Þ

Then (120) can be written as

SðfYlgÞ ∼
X
ϵ¼�

Z
∞

min jl

�Y6
l¼1

djl

�
eiϵð

π
4
þ1

2

P
6

l¼1
ΘlÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
12πV

p

exp

�X6
l¼1

jl

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JsðlÞðJsðlÞ − 2jlÞ

ðJsðlÞ − 2jl1ÞðJsðlÞ − 2jl2Þ
JtðlÞðJtðlÞ − 2jlÞ

ðJtðlÞ − 2jl̃1ÞðJtðlÞ − 2jl̃2Þ

s
þ ln jYlj2 þ iðϵΘl þ 2ΨlÞ

��

¼
X
ϵ¼�

Z
∞

min jl

�Y6
l¼1

djl

�
eiϵð

π
4
þ1

2

P
6

l¼1
ΘlÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
12πV

p
Y6
l¼1

eijlðϵΘlþ2ΨlÞ exp
�
−jl ln

tan
ϕsðlÞ
2
tan

ϕtðlÞ
2

jYlj2
�
: ð141Þ

To simplify the analysis, we only consider nondegenerate
triangulation and constrain the domain of the link couplings
to jYlj2 ≤ tan

ϕsðlÞ
2
tan

ϕtðlÞ
2
. In this way, the integrand is finite.

Further, the sum of dihedral angles of a tetrahedronP
6
l¼1Θl is between 2π and 3π [78]; hence, it is indepen-

dent of jl when we neglect the higher-than-linear jl terms in

the exponent. One can then take the term eiϵð
π
4
þ1

2

P
l
ΘlÞ out

of the integral. On the other hand, since the dependence of

tan
ϕsðlÞ
2
tan

ϕtðlÞ
2
on jl is also higher than linear order as can be

analyzed from the identities (140), one can take the term

tan
ϕsðlÞ
2
tan

ϕtðlÞ
2

as independent of jl when neglecting the
subdominant contribution as well. Lastly, the volume term
1ffiffiffi
V

p scales as 1ffiffiffiffi
V0

p
Q

6
l¼1 j

−1
4

l with a given finite critical volume

FIG. 17. A triangle bounded by edges e1; e2; e3 ( thick) on the
boundary of a tetrahedron. It is dual to a node with three outgoing
links l1; l2; l3 incident to it ( in red). l1 is associatedwith a spinor jz1i,
l2 with jz2i and l3 with jz3i at their source. They form three angle
couplings ½z1jz2i¼jXl1l2 jeiΦl1 l2 ;½z2jz3i¼jXl2l3 jeiΦl2 l3 ;½z3jz1i¼
jXl3l1 jeiΦl3 l1 . Each edge e ∈ fe1; e2; e3g is shared with another
triangle in the tetrahedron, and they form an external dihedral angle
Θl. The relation between the phases of the angle couplings and the
dihedral angles at the saddle point is given in (139).
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V0 > 0. Taking the lowest spin limit jl ¼ 0 for the lower bound of the integration, one can approximate the integration
(141) to be

SðfYlgÞ ∼
X
ϵ¼�

eiϵð
π
4
þ1

2

P
6

l¼1
ΘlÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12πV0

p
Z

∞

min jl→0

�Y6
l¼1

djlj
−1
4

l

�
exp

�
−
X6
l¼1

jl

�
ln
tan

ϕsðlÞ
2
tan

ϕtðlÞ
2

jYlj2
− iðϵΘl þ 2ΨlÞ

��

¼ Γ
�
3

4

�X
ϵ¼�

eiϵð
π
4
þ1

2

P
6

l¼1
ΘlÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12πV0

p
Y6
l¼1

�
ln

�
tan

ϕsðlÞ
2

tan
ϕtðlÞ
2

�
− ln jYlj2 þ iðϵΘl þ 2ΨlÞ

�
−3
4

: ð142Þ

Indeed, the poles are given by the critical link couplings (123) and (124).
Notice that the semiclassical correspondence (40) of the f6jg symbol and the Regge calculus are evaluated without the

volume factor 1

2
ffiffiffiffiffiffiffiffi
12πV

p ; it is more reliable to evaluate the integration of fjlg by taking this volume factor out of the integration

(or approximate it to be 1

2
ffiffiffiffiffiffiffiffiffi
12πV0

p ) to obtain the semiclassical correspondence of SðfYlgÞ. That is

SðfYlgÞ ∼V∼V0
X
ϵ¼�

eiϵð
π
4
þ1

2

P
6

l¼1
ΘlÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12πV0

p
Z

∞

min jl→0

�Y6
l¼1

djl

�
exp

�
−
X6
l¼1

jl

�
ln
tan

ϕsðlÞ
2
tan

ϕtðlÞ
2

jYlj2
− iðϵΘl þ 2ΨlÞ

��

¼
X
ϵ¼�

eiϵð
π
4
þ1

2

P
6

l¼1
ΘlÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12πV0

p
Y6
l¼1

1

ln ðtan ϕsðlÞ
2
tan

ϕtðlÞ
2
Þ − ln jYlj2 þ iðϵΘl þ 2ΨlÞ

: ð143Þ

Therefore, the large j limit, or the semiclassical correspondence, of the SGF can be seen as a Laplace transform of (the
exponential of) the Regge action of a tetrahedron. Again, the critical couplings (123) and (124) still sit on the poles of
the SGF.
The same logic follows in the continuum theory of the boundary—the classical correspondence of the SGF is related to a

Laplace transform of (the exponential of) the GHY boundary action. The GHY boundary term is changed by a scale factor
λ ¼ expðΩ0=2Þ under rescaling. Then one can single out the scaling factor and rewrite the GHY term as

−2
Z
∂M

d2x
ffiffiffi
h

p
K ¼ −2λ

Z
∂M

d2xK̂ ¼ −2λ
Z
∂M

d2xĥμν∇μn̂ν; ð144Þ

where ĥμν is the normalized metric with determinant one. (The differential d2x remains the same since we have been
assigning no dimension on x’s. See Sec. II A.) Formally denote a complex function fðy; c∂Þ of y, symboling the coupling,
and c∂, symboling the conformal geometry of ∂M, which has a positive real part Ref > 0. Then the continuum, or the
classical, correspondence of (143) is formally expressed as

Sslðy; c∂Þ ¼
Z

∞

0

dλ exp

�
−iλ

Z
∂M

d2x2K̂

�
expð−λfðy; c∂ÞÞ ¼

1

Ref þ iðR
∂M d2x2K̂ þ ImfÞ : ð145Þ

We conclude the relation of the usual GHY boundary term with the scale-invariant boundary action and their discrete

version and quantum correspondence as follows (C denotes eið
π
4
þ1
2
ΘlÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
12πVmin

p , and we only consider ϵ ¼ 1 for simplicity).

ð146Þ
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In this subsection, we have analyzed the geometrical
interpretation of the new vertex amplitudes given by the
SGF using the stationary point analysis. Only the angle
information of a tetrahedron is stored in the SGF either
expressed in terms of the link couplings or the angle
couplings.

B. Propagator and geometric gluing

We have shown that the SGF, as a scale-invariant
counterpart of the f6jg symbol, describes the local con-
formal geometry of each elementary 3D block in the
Ponzano-Regge state integral. Since the scales of the
building blocks are not fixed, the gluing process becomes
nontrivial compared to the original Ponzano-Regge state
sum model, where the gluing is performed by matching the
full boundary geometry—both the shape and size of the
glued triangles—of the blocks. This new way of gluing is
described by this new edge amplitude

Ae� ðfzl; z̃lgÞ ¼ 0F3

�
; 2; 2;

1

2
;
ðPl∈nhzsðe

�Þ
l jztðe�Þl �Þ2
4

�
:

To gain a global picture of the state-integral model, we here
analyze the geometrical meaning of the edge amplitude.
The edge amplitude is also called the propagator, and it

describes how two neighboring tetrahedra are glued. Note
that the measure of the spinors dμðzÞ≡ d4ze−hzjzi includes
a Gaussian weight, and it is necessary to take it into account
so that the norm jPðfzlg; fwlgÞj of the propagator remains
finite [we have assumed that fzlg are from the tetrahedron
dual to sðe�Þ and fwlg are from that dual to tðe�Þ and omit
the superscript for simplicity]. We rewrite the propagator as

Pðfzlg;fwlgÞ ¼ 0F3

�
; 2;2;

1

2
;
z2

4

�
e−r

2

; z¼
X
l∈n

hzljwl�;

r2 ≔
X
l∈n

ðhzljzli þ hwljwliÞ: ð147Þ

Similar to the vertex amplitude, we are interested in the
stationary points of the propagator (147). We consider
wl;l0;l00 with l; l0; l00 ∈ n to be the configurations of the
propagator and obtain the stationary points by the vanishing
derivative of w̄l;l0;l00 . For instance, the derivatives of
w̄0;1
l give

∂Pðfzlg; fwlgÞ
∂w̄0

l

¼ z̄1l
X∞
k¼0

2k
ðkþ 1Þ!2ð2kÞ! z

2k−1e−r
2 − w0

l 0F3

�
; 2; 2;

1

2
;
z2

4

�
e−r

2

¼ z̄1l 0F3

�
; 3; 3;

3

2
;
z2

4

�
ze−r

2 − w0
l 0F3

�
; 2; 2;

1

2
;
z2

4

�
e−r

2 ¼ 0;

∂Pðfzlg; fwlgÞ
∂w̄1

l

¼ −z̄0l
X∞
k¼0

2k
ðkþ 1Þ!2ð2kÞ! z

2k−1e−r
2 − w1

l 0F3

�
; 2; 2;

1

2
;
z2

4

�
e−r

2

¼ −z̄0l 0F3

�
; 3; 3;

3

2
;
z2

4

�
ze−r

2 − w1
l 0F3

�
; 2; 2;

1

2
;
z2

4

�
e−r

2 ¼ 0:

These saddle point formulas are also valid for spinors
wl0 ; wl00 , and thus there are totally six such formulas,
which can be summarized as follows. Denote A ≔

0F3ð; 3; 3; 32 ; z
2

4
Þze−r2 and B ≔ 0F3ð; 2; 2; 12 ; z

2

4
Þe−r2 , and

then

��������
Ajzl� þ Bjwli ¼ 0

Ajzl0 � þ Bjwl0 i ¼ 0

Ajzl00 � þ Bjwl00 i ¼ 0

→

��������
B2½wljwl0 i ¼ A2hzljzl0 �
B2½wl0 jwl00 i ¼ A2hzl0 jzl00 �
B2½wl00 jwli ¼ A2hzl00 jzl�

: ð148Þ

The corresponding angle couplings from different tetrahe-
dra have the same ratio A2=B2. Recall the solution (135) of
the angle couplings in the geometric gauge

jXll0 j ¼
ffiffiffiffiffiffi
kll0

Jn

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan

ϕll00

2
tan

ϕl0l00

2

r
; l; l0; l00 ∈ n:

The norms of the angle couplings encode the internal
angles of the triangle they sit at, and they satisfy the closure
constraint jXll0 j2 þ jXl0l00 j2 þ jXll00 j2 ¼ 1; thus

jBj4 ¼ jBj4ðj½wljwl0 ij2 þ j½wl0 jwl00 ij2 þ j½wl00 jwlij2Þ
¼ jAj4ðjhzljzl0 �j2 þ jhzl0 jzl00 �j2 þ jhzl00 jzl�j2Þ ¼ jAj4:

ð149Þ

Therefore, j0F3ð; 3; 3; 32 ; z
2

4
Þzj and j0F3ð; 2; 2; 12 ; z

2

4
Þjmust be

the same at the stationary points. The solution is not unique,
as can be immediately seen from the plot in Fig. 18, where
the norm square of the two generalized hypergeometric
functions is shown. Plug this condition back into (148), and
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it is easy to conclude that the angle couplings ½wljwl0 i and
½zljzl0 i are different only by a phase, similarly for ½wl0 jwl00 i
and ½zl0 jzl00 i, ½wl00 jwli and ½zl00 jzli, and the phase differences
are the same. More strictly, jzl� and jwli are different by a
phase, the same valid for links l0 and l00; thus

hzljzli ¼ hwljwli; hzl0 jzl0 i ¼ hwl0 jwl0 i;
hzl00 jzl00 i ¼ hwl00 jwl00 i: ð150Þ

Geometrically, the stationary points of the propagator
enforce that the two triangles to be glued have the same
shape, as shown in Fig. 19. Let us emphasize that this
interpretation solely results from our choice of the geo-
metric gauge solution (135) of the angle couplings in terms

of the link couplings. A general solution (132) does not
lead to jAj ¼ jBj; thus, it would not guarantee that the
shape of the triangles to be glued share the same shape.
In summary, the Ponzano-Regge state-integral model as

constructed above encodes only the conformal geometry
of the triangulation blocks either in the vertex amplitudes
or the edge amplitudes. A vertex amplitude Av� describes
the shape of the tetrahedron dual to v�; an edge amplitude
Ae� describes that two adjacent tetrahedra can be glued
together by identifying the shape of two triangles, each
from one of the tetrahedra. It is important to note that the
poles of the vertex amplitudes and the stationary points
of the edge amplitudes can be all achieved at the same
time, that is, geometrically when each vertex amplitude
describes the shape of a tetrahedron, and each edge
amplitude enforces the glued triangle sharing the same
shape. This guarantees that the poles of the vertex
amplitudes and the stationary points of the edge ampli-
tudes are indeed the dominant contributions to the total
amplitude. When there exists a boundary ∂M of the
manifold, the total amplitude built in this way encodes
also the conformal geometry on the triangulation of ∂M
since the boundary structure is described by the scaleless
spin network state ψ sl

Γ .

C. Ponzano-Regge state integral
versus state sum models

Let us recall the original spin foam state sum and the new
spin foam state-integral expression,

FIG. 18. Norm square of the generalized hypergeometric function j0F3ð; 3; 3; 32 ; z
2

4
Þzj2 and j0F3ð; 2; 2; 12 ; z

2

4
Þj2 as the function of

z ¼ xþ iy.

FIG. 19. Stationary point of the propagator geometrical means
the two triangles from adjacent tetrahedra to be glued (in thick)
only need to share the same shape but can have different sizes.
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A½T;ψΓ� ¼
X
fjf� g

Y
f�

djf�
Y
e�
ð−1Þ

P
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i¼1
ji
Y
v�

�
j1 j2 j3
j4 j5 j6

	
v�

¼
Z

½dμðzÞ�
Y
f�
ðhzf� jzf� i − 1Þ

Y
e�

0F3

�
; 2; 2;

1

2
;
ðPl∈nhzsðe

�Þ
l jztðe�Þl �Þ2
4

�Y
v�
Ssl
v�ðfzv

�
l ; z̃

v�
l gÞ: ð151Þ

In the state sum expression, when no boundary is
present, the edge amplitude can be absorbed into the vertex
amplitude, while the edge amplitude is always explicit in
the state-integral expression. This leads to two different
ways to understand spin foam. In the former model,
after choosing a triangulation T of M, we first associate
the representation data (spins) on the one-skeleton of
T and then construct the vertex and face amplitudes with
these representation data. In the latter model, in contrast,
we first isolate all the elementary blocks, i.e., tetrahedra,
after the triangulation and then associate the representation
data (spinors) to the boundary of each isolated block,
followed by constructing vertex amplitude for each isolated
block, edge amplitude through gluing these elementary
blocks, and finally face amplitude for each edge after
gluing.
One may also absorb the edge amplitude into the vertex

amplitude for the state integral by integrating out, with no

loss of generality, the spinors fwtðe�Þ
l g from the target

tetrahedron in each gluing. Unfortunately, we have not
found a close form for this expression. Furthermore, since
the vertex amplitude is no longer trivial, it would be
changed after this absorption, which potentially changes
the geometrical interpretation.
On the other hand, leaving the edge amplitude unab-

sorbed allows us to separate the data from different blocks
so that the saddle point analysis can be done for each vertex
amplitude independently. Moreover, the saddle point analy-
sis on the vertex amplitudes is compatible with that on the
edge amplitudes. The saddle point of each vertex amplitude
(123) relates the spinor configuration to spins within a
single block, while the saddle point of the edge amplitudes
(150) relates the spinors from different blocks. These
saddle points can be obtained simultaneously, and the
result effectively relates the (ratios of) spins from different
blocks (with spinors as the mediums).
Geometrically, the gluing condition in the state-integral

model is looser compared to that in the state sum model,
since the former only requires that the triangles to be glued
have the same shape, while the latter restricts that the
triangles should be of the same shape and size. At first
glance, it seems the state integral allows more configura-
tions and should produce a different total amplitude.
However, the size unmatched configurations cannot survive
under the spinor integration. Thus, the total amplitude
comes only from the sizewise and shapewise matched
configurations, same as the case of the state sum model.

We have used the same property of the spinor integration in
constructing the state integral to move the contour integral
from the vertex amplitude (76) to the edge amplitude (78).
Another difference between the state sum and state-

integral models is the source of the divergence in the
expressions. In the state sum model, the vertex amplitude
damps as j−3=2. The divergence comes from the infinite
sum of the spin labels, and the total amplitude diverges asffiffi
j

p
. In the state-integral model, in contrast, the integration

does not lead to divergence thanks to the Gaussian weight,
while the vertex amplitudes give divergence since there are
poles in the vertex amplitudes. This is because the vertex
amplitude, as a generating function of the f6jg symbols,
contains the summation of spins; thus, the divergence can
be viewed as from the large spin contribution. To see that it
is the case, we Taylor expand the vertex amplitude and look
at the pole,

Av� ¼
1

ð1þ xÞ2 ¼
X
j∈N=2

ð2jþ 1Þð−xÞ2j ⟶x¼−1 X
j∈N=2

ð2jþ 1Þ;

where x denotes the cycle sums as given in (60). This
illustrates that the divergence of the vertex amplitude in the
state-integral model is also given by large spins, which is
consistent with the state sum model.

V. OUTLOOK

We have introduced a new framework of the spin foam
model for 3D quantum gravity based on the spinor
representation of SU(2). The continuum nature of spinor
variables allows us to represent the spin foam as a state-
integral, rather than a state sum in the original Ponzano-
Regge model where the spin representation of SU(2) was
used. The integral expression would probably make the
computation of, e.g., correlations and transition amplitudes,
more controllable. More importantly, the state-integral
framework inherits the scale-invariant nature of pure
gravity in 3D. It describes a quantum gravity model with
scale-invariant boundary quantum geometry, which can be
seen as an integration over the conformal classes of
boundary geometry. We expect that this framework would
serve as a better starting point to study the coarse-graining
or renormalization behavior of 3D quantum gravity and
would be useful to investigate the quasi-local CFT/gravity
duality.
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Apart from these possibly exciting applications, we list
the following directions to better understand this new
formalism and possible generalization:

(i) The geometrical interpretation of spinors. In order
to understand the geometrical interpretation of the
newly constructed spin foam amplitude, it is enough
to unravel the geometrical meaning of the holomor-
phic inner product of spinors, i.e., the angle cou-
plings. It would be interesting to further understand
the geometrical interpretation of the spinor itself.
Bearing in mind the relation of the spinors and flux
vectors, most importantly the equivalence of the
spinor norm and the norm of the flux vector it
describes [see (A5)], we expect that the spinors
encode the length and scale information, which is
washed out by constructing the holomorphic inner
product.

(ii) The Wheeler–DeWitt equations of the SGF. Recall
that in the original Ponzano-Regge state sum model,
the invariance of the amplitude under Pachner moves
is guaranteed by the Biedenharn-Elliott identity of
the f6jg symbols, which is closely related to the

recursion relations of the f6jg symbols. These
recursion relations can be viewed as generated by
the Wheeler–DeWitt equations of the spin network
states. It would be interesting to explore whether the
invariance of the newly constructed amplitude for-
malism under Pachner moves can be directly proven
by (possibly the deformation of) the Wheeler–
DeWitt equations of the SGF. If possible, it would
provide a new way that is similar to the original state
sum model to see the topological invariance of the
new spin foam formalism, directly from the scale-
invariant factorization of the amplitude, i.e., the
second line of (151). As an intermediate step, it
may be useful to rewrite the Wheeler–DeWitt
equation in terms of the link couplings so that
variables are more decoupled. Similar to the differ-
ential equations found in [47], one is able to find
four such equations, each associated to one triangle
on the boundary of the tetrahedron, and only three
are independent. An example is (referring to the
notation in Fig. 2)

3

�
Y1

�
∂S
∂Y2

∂S
∂Y6

−
∂S
∂Y3

∂S
∂Y5

�
þ Y2

�
∂S
∂Y3

∂S
∂Y4

−
∂S
∂Y1

∂S
∂Y6

�
þ Y3

�
∂S
∂Y1

∂S
∂Y5

−
∂S
∂Y2

∂S
∂Y4

��

−2S
�
Y1

�
∂
2S

∂Y2∂Y6

−
∂
2S

∂Y3∂Y5

�
þ Y2

�
∂
2S

∂Y3∂Y4

−
∂
2S

∂Y1∂Y6

�
þ Y3

�
∂
2S

∂Y1∂Y5

−
∂
2S

∂Y2∂Y4

��
¼ 0; ð152Þ

where S is the SGF and Yi the link coupling of link li. On
the other hand, as the SGF not only describes a flat
tetrahedron but a scale-invariant one, it should be possible
to determine a different differential equation that generates
the scale invariance of the SGF. The equation to be found
describes the dilatation behavior of the SGF, thus playing a
dynamic role, and can also be viewed as the Wheeler–
DeWitt equation. The flow of the differential equation
should generate the symmetry of the link couplings (109) in
terms of spinors, namely the SLð2;CÞ symmetry and the
“anti-rescaling” symmetry (68).
(iii) Spin foam model for conformal quantum gravity.

The building blocks of the new spin foam are scale
invariant, thus almost but not yet conformal invari-
ant. It would be interesting to push forward to
construct a spin foam with conformal blocks, whose
boundary states are conformal invariant. Unfortu-
nately, we have no clue whether it can be constructed
with the spinor representation or what structures of
the vertex amplitude we should expect. It may be
more reliable to start the journey from the
discretization of conformal gravity action and con-
struct the partition function applying the action
principle [79]. Such a spin foam model, if exists,

would be a more suitable framework to study the
CFT/gravity duality at the discrete level.

(iv) Group field theory for 3D quantum gravity with
spinors. It has been well-known that the Ponzano-
Regge models can be generated by a group field
theory (GFT) with SU(2) group and the amplitude is
interpreted as some Feynman graph evaluation [32].
GFT reformulation with spinors of the Ponzano-
Regge model can capture the full SU(2) structure
rather than SO(3) when using the flux and holonomy
variables [10,22]. An attempt was made in [80]
where the amplitude is not yet separated into local
blocks. In order to build a similar connection of the
vertex amplitude with the interaction of the GFT and
of the edge amplitude with the propagator of the
GFT, a better starting point is a spin foam formu-
lation with local amplitudes and thus, the result of
Proposition II. 1. We expect that this GFT, if found,
also has a scale-invariant nature, so it may be better
suited to study the renormalization properties in
quantum gravity.

(v) Generalization to a 4D spin foam. The spin foam
model built with spinors has been applied to 4D BF
theory [44,81,82]. However, there remains spin
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dependence or SU(2) holonomy dependence of the
local amplitude in these existing models. It would be
interesting to discover a 4D spin foam with local
amplitudes given only by the spinor variables and
explore what these local amplitudes represent geo-
metrically. A natural guess is that the vertex ampli-
tude could be constructed by the generating function
of the 15j symbols [74], which can also be written
into a closed form with a loop structure as the SGF.

(vi) Including the cosmological constant. The spinor
variables can be deformed to describe the loopgravity
with a negative cosmological constant [83,84],
which recovers the loop gravity framework described
by deformed holonomy and flux variables [11] (see
also [24] for its quantization). It would be interesting
to see if the deformed spinors can be used to construct
the spin foam that recovers the Turaev-Viro
model [25], whose building blocks are the
q-deformed f6jg symbols. One of the first things
to do is to construct the “q-deformed scaleless spin
network statl” on the hyperbolic geometry.We expect
that the spinorial framework of LQG, and the spin
foam model can be generalized to a q-deformed
version with the use of quantum groups and describe
the quantum gravity with a nonvanishing cosmologi-
cal constant.
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APPENDIX A: SPINORIAL PHASE SPACE
FOR LOOP GRAVITY

In this appendix, we give a quick review of the spinorial
phase space of loop gravity and its quantization to construct
the Hilbert space of LQG. Let us introduce the spinor
variables

jzi≔
�
z0

z1

�
; hzj≔ ð z̄0; z̄1 Þ; z0;z1∈C: ðA1Þ

We also introduce the dual spinor by a dual map ς

jz�≡ jςzi ≔
�
0 −1
1 0

�
jz̄i ¼

�
−z̄1

z̄0

�
;

½zj≡ hςzj ≔ hz̄j
�

0 1

−1 0

�
¼

�
−z1; z0

�
: ðA2Þ

A spinor transforms covariantly under the SU(2) action
jzi → gjzi in the fundamental representation of SU(2).
Thus the SU(2), hence SLð2;CÞ by complexification,
invariant objects can be naturally formed by the inner
product of two spinors

hwjzi ¼ ½zjw� ¼
X
A

w̄AzA; ½wjzi ¼ −w1z0 þ w0z1;

hwjz� ¼ −w̄0z̄1 þ w̄1z̄0: ðA3Þ

jz� is dual to jzi in the sense that they are orthogonal via the
inner product; i.e., ½zjzi ¼ 0.
Consider a pair of spinors fjzi; jz̃ig, whose components

are provided with the Poisson brackets,

fzA; z̄Bg ¼ iδAB; fz̃A; ¯̃zBg ¼ −iδAB; fzA; z̃Bg ¼ fzA; ¯̃zBg ¼ fz̄A; z̃Bg ¼ fz̄A; ¯̃zBg ¼ 0; ; A; B ¼ 0; 1: ðA4Þ

We introduce the Hermitian matrices X ≔ jzihzj and X̃ ≔ jz̃ihz̃j and then project them onto the identity and the Pauli
matrices

jzihzj ¼ jX⃗jI − X⃗ · σ⃗ with jX⃗j≡ 1

2
hzjzi; X⃗ ≡ −

1

2
hzjσ⃗jzi ∈ R3;

jz̃ihz̃j ¼ j ⃗X̃jI − ⃗X̃ · σ⃗ with j ⃗X̃j≡ 1

2
hz̃jz̃i; ⃗X̃ ≡ −

1

2
hz̃jσ⃗jz̃i ∈ R3; ðA5Þ

where jX⃗j (resp. j ⃗X̃j) is the norm of the vector X⃗ (resp. ⃗X̃). We relate the nontilde spinor variables and the tilde spinor
variables by an SU(2) action

gjzi ¼ jz̃i; gjz� ¼ jz̃�; g ∈ SUð2Þ: ðA6Þ

Thus, X and X̃ are related by an SU(2) adjoint action: X̃ ¼ gXg−1. Equation (A6) determines the SU(2) group element g
uniquely to be
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g ¼ jz̃ihzj þ jz̃�½zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihzjzihz̃jz̃ip : ðA7Þ

It also implies that the spinors jzi and jz̃i satisfy a norm-
matching constraint

N ≔ hzjzi − hz̃jz̃i; ðA8Þ

which generates a U(1) transformation on spinors
fN ; jz >g ¼ −ijz >, fN ; jz̃ig ¼ −ijz̃i. The finite gauge
transformation reads

jzi⟶Uð1Þ eiθjzi; jz̃i⟶Uð1Þ eiθjz̃i;

hzj⟶Uð1Þ e−iθhzj; hz̃j⟶Uð1Þ e−iθhz̃j: ðA9Þ

The Poisson brackets (A4) can thus be rewritten with the

new variables ðX⃗; gÞ [or equivalently ð ⃗X̃; gÞ] as

fXi; gg ¼ i
2
gσi; fXi;Xjg ¼ ϵijkXk; fg; gg ∼N¼0

0;

fX̃i; gg ¼ i
2
σig; fX̃i; X̃jg ¼ −ϵijkX̃k; fXi; X̃jg ¼ 0;

ðA10Þ

which are the Poisson structure of the loop gravity phase
space with vanishing cosmological constant, i.e., the

T�SUð2Þ phase space. X⃗ (or ⃗X̃) is called the flux and g
the holonomy. Note that ðX; gÞ are invariant under the U(1)
transformation (A9), and thus, the loop gravity phase space
can be reconstructed completely as a symplectic reduction
of the spinor space C2 × C2:

T�SUð2ÞnfjX⃗j ¼ 0g ¼ C2 × C2nfhzjzi ¼ 0;

hz̃jz̃i ¼ 0g==Uð1Þ: ðA11Þ

Consider an oriented graph Γ with jLj links and jNj
nodes. For each link l, we assign a nontilde spinor jzli to its
source node sðlÞ and a tilde spinor jz̃li to its target node
tðlÞ. They are related by an SU(2) action, thus satisfying the
norm matching constraint

gljzli ¼ jz̃li; hzljzli ¼ hz̃ljz̃li: ðA12Þ

gl’s can be viewed as an assignment to the links. The
kinematical phase space of Γ is defined as the collection of
ðzl; z̃lÞ ∈ C2 × C2 for each link imposing the closure

constraints C⃗v for each node:

C⃗n ¼
X

ljn¼sðlÞ
hzljσ⃗jzli −

X
ljn¼tðlÞ

hz̃ljσ⃗jz̃li: ðA13Þ

The phase space defined with spinors allow us to have a
UðNÞ reformulation of LQG after quantization [42,68,85].
The essential idea is to change the building blocks from
degrees of freedom on links (which are holonomies or
fluxes) to those on nodes (which are spinors). For each
(N-valent) node n, we define an N × N asymmetric matrix
F and an N × N symmetric matrix E with complex entries
representing the correlation of spinors associated to the
different half-links incident to the same node (we will use
the Latin indices a, b, c, d in the subscript to denote the legs
of the node):

Eab ¼ hzajzbi; Eba ¼ Ēab;

Fab ¼ ½zajzbi; Fba ¼ −Fab;

F̄ab ¼ hzbjza�; F̄ba ¼ −F̄ab; ðA14Þ

where the bar denotes the complex conjugate. These SU(2)
observables form a closed algebra. With no loss of general-
ity, consider that all the links incident to the node n are
outgoing (hence, only nontilde spinors are attached to v),
and then the Poisson brackets of the components read

fEab; Ecdg ¼ iðδadEcb − δbcEadÞ;
fEab; Fcdg ¼ iðδadFbc − δacFbdÞ;
fEab; F̄ cdg ¼ iðδbdF̄ ac − δbcF̄ adÞ;
fFab; Fcdg ¼ 0; fF̄ ab; F̄cdg ¼ 0;

fFab; F̄cdg ¼ iðδacEdb − δadEcb þ δbdEca − δbcEdaÞ:
ðA15Þ

It can be seen from the first Poisson bracket that the
components of the matrix E form a uðNÞ algebra. The full
algebra (A15) is called the so�ð2NÞ [86].
Upon quantization, the spinors become the annihilation

operators zA → aA and the creation operator z̄A → aA† such
that they satisfy the commutator

½aA; aB†� ¼ δABI; ½aA; aB� ¼ ½aA†; aB†� ¼ 0: ðA16Þ

This being said, the phase space for an N-valent node is
quantized to be a set of 2N harmonic oscillators. We also
quantize the observable matrix E, F, and F̄ in the following
way.

Ebc ¼ hzbjzci → Êbc ¼ aA†b aAc ;

Fbc ¼ ½zbjzci → F̂bc ¼ ϵABaAba
B
c ;

F̄bc ¼ hzcjzb� → F̂†
bc ¼ ϵABaA†b aB†c : ðA17Þ
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We have used the normal ordering when necessary. The
commutators naturally inherit from the Poisson brackets
(A15). It is natural to obtain the Fock states jn0; n1iHO that
diagonalize the occupation number operator NA ≔ aA†aA

NAjn0; n1iHO ¼ nAjn0; n1iHO: ðA18Þ

This basis is equivalent to the magnetic number basis
jj; mi ∈ Vj with the relation between the eigenvalue as

j ¼ 1

2
ðn0 þ n1Þ; m ¼ 1

2
ðn0 − n1Þ: ðA19Þ

The action of ðaA; aB†Þ on the magnetic number basis
allows the jumping between different spin representations.
Explicitly,

aAjj;mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ ð−1ÞAm

q ����j− 1

2
;m−

1

2
þA

�
;

aA†jj;mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ ð−1ÞAmþ 1

q ����jþ 1

2
;mþ 1

2
−A

�
: ðA20Þ

By the definition of the coherent state basis through the
magnetic number basis (42), it is easy to find that aA acts on
jj; zi as a multiplication operator, while aA† acts as a
derivative operator on jj; zi as given in (43).
The LQG Hilbert space L2ðSUð2Þ; dgÞjLj==SUð2ÞjNj is

standardly understood as spanned by the spin network
states labeled by spins. The quantization of the spinorial
phase space allows us to span the same Hilbert space by the
coherent or scaleless spin network states labeled by spinors.
To this end, we also need to introduce a Haar measure. It is
given by the Haar measure dμðzÞ of the Bargmann space
F 2 ¼ Lhol

2 ðC2; dμÞ, the space of holomorphic squared
integrable functions, over the spinor [67]:

dμðzÞ ≔ 1

π2
e−hzjzidz0dz1: ðA21Þ

It is a measure invariant under the SU(2) transformation
dμðgzÞ ¼ dμðzÞ; ∀ g ∈ SUð2Þ. The space F 2 can be
decomposed into the direct sum of (2jþ 1)-dimensional
subspace: F 2 ¼⊕j∈N=2 Vj, with the orthonormal basis of
each spin j subspace given by

ejmðzÞ ≔ ðz0Þjþmðz1Þj−mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþmÞ!ðj −mÞ!p : ðA22Þ

The Hilbert space of one link is thus equivalently given by
Hl ¼ F 2 × F 2==Uð1Þ. Readers can find more details for
the Bargmann space reconstruction of the Hilbert space
in [67]. By taking the closure constraint for nodes into
consideration, we conclude that the Hilbert space spanned
by the coherent or scaleless spin network states can be
represented as Lhol

2 ðC2; dμÞ2jLj==ðSUð2ÞjNj × Uð1ÞjLjÞ.

APPENDIX B: WHEELER–DEWITT EQUATION
OF THE SGF

In this appendix, we review the Wheeler–DeWitt equa-
tions of the physical state of the tetrahedron graph, which is
the f6jg symbol in the spin network basis and the SGF in
the scaleless spin network basis. Detailed analysis can be
found in [47,76].
Throughout this appendix, we refer to the tetrahedron

graph in Fig. 2. Consider the Hamiltonian

Ĥ126ψphysðglÞ ¼ 0; Ĥ126 ≔ g1g6g−12 − I: ðB1Þ

By the discrete nature of the spin labels defining a spin
network basis, the Wheeler–DeWitt equation can be
represented by a recursion relation of the f6jg symbols.
It was proposed in [76] a spin 1 Hamiltonian [denoted with
a superscript (1)] by projecting the rotation matrix
Rðg6g1g−12 Þ onto the fluxes X⃗2 and X⃗6 associated to the
node where links l2 and l6 meet,

Hð1Þ
126 ¼ X⃗6 · ðI−Adðg6g1g−12 ÞÞX⃗2 ¼ X⃗6 · X⃗2 − X⃗6 · Adðg1ÞX⃗:

ðB2Þ

It corresponds to the recursion relation of the f6jg symbol
involving a shift of a spin label by one [76]:

Aþ1ðj1Þ
�
j1 þ 1 j2 j3
j4 j5 j6

	
þ Að1Þ

0 ðj1Þ
�
j1 j2 j3
j4 j5 j6

	

þ A−1ðj1Þ
�
j1 þ 1 j2 j3
j4 j5 j6

	
¼ 0; ðB3Þ

with coefficients

Að1Þ
0 ðj1Þ ¼ ð−1Þj2þj4þj6

�
j2 j2 1

j6 j6 j4

	
þ ð−1Þ2j1þj2þj3þj5þj6ð2j1 þ 1Þ

×

�
j1 j1 1

j2 j2 j3

	�
j1 j1 1

j6 j6 j5

	
; ðB4Þ

A�1ðj1Þ ¼ ð−1Þ2j1þj2þj3þj5þj6þ1ð2ðj1 � 1Þ þ 1Þ

×

�
j1 � 1 j1 1

j2 j2 j3

	�
j1 � 1 j1 1

j6 j6 j5

	
:

ðB5Þ

The reason for obtaining a recursion relation as such with
an argument changed by 1 is that the fluxes transform in
the adjoin representation of SU(2) and thus, the spin 1
representation. Fluxes can be reproduced with spinor
variables (A5). The inner product of fluxes X⃗2 and X⃗6

can be written as the inner product of spinors z̃2 and z̃6
associated to the same node,
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X⃗6 · X⃗2 ≡ hz̃2jz̃6ihz̃6jz̃2i − hz̃2jz̃6�½z̃6jz̃2i: ðB6Þ

The use of spinors makes it possible to formulate a spin 1=2
Hamiltonian since spinors transform in the fundamental
representation of SU(2). Such a Hamiltonian is expected
(and was shown in [47]) to generate a recursion relation of
the f6jg symbols with arguments changed by 1=2. As
proposed in [47], the spin 1=2 Hamiltonian [denoted with a
superscript (1=2)] represents the unchanged inner product
of the spinors z̃2 and z̃6 after transported around the
plaquette surrounded by links e1, e2, e6,

Hð1=2Þ
126 ≔ hz̃6jz̃2�½z̃6jg6g1g−12 − Ijz̃2i: ðB7Þ

The quantization of spinors leads to creation and annihi-
lation operators. Since there are two separate scalar terms in
the formula, two Hamiltonian operators are available upon
quantization. The left ordering Hamiltonian is [47]

Ĥð1=2Þ
126 jL ¼ hã6jã2�ð½a6jg1ja2i − ½ã6jã2iÞ

¼ F̂†
26

�
1

dj1

�
F̂61Ê12 þ Ê16F̂12

�
− F̂62

�
; ðB8Þ

and the right ordering Hamiltonian is

Ĥð1=2Þ
126 jR ¼ ð½a6jg1ja2i − ½ã6jã2iÞhã6jã2�

¼
�

1

dj1

�
F̂61Ê12 þ Ê16F̂12

�
− F̂62

�
F̂†
26: ðB9Þ

It turns out that only the right ordering Hamiltonian can

generate the desired recursion relation. Ĥð1=2Þ
126 jR annihilates

the tetrahedral spin network state evaluated on the identity

Ĥð1=2Þ
126 jRsfjlgtet ðIÞ ¼ 0: ðB10Þ

By expanding the terms and applying the annihilation and
creation operators on the magnetic number basis (A20),
(B10) reproduces a spin 1=2 recursion relation on the f6jg
symbols [47]

Aþ1
2
ðj1Þ

�
j1þ 1

2
j2− 1

2
j3

j4 j5 j6 − 1
2

	
þAð1=2Þ

0 ðj1Þ
�
j1 j2 j3
j4 j5 j6

	

þA−1
2
ðj1Þ

�
j1− 1

2
j2− 1

2
j3

j4 j5 j6− 1
2

	
¼ 0; ðB11Þ

with coefficients

Að1=2Þ
0 ðj1Þ ¼ ð−1Þj2þj4þj6þ1

�
j1 j2 − 1

2
1
2

j6 − 1
2

j6 j4

	
ðB12Þ

A�1
2
ðj1Þ ¼ ð−1Þ2j1þj2þj3þj5þj6−1

2
�1

2

�
2

�
j1�

1

2

�
þ 1

�

×

�
j1� 1

2
j1 1

2

j2 j2− 1
2

j3

	�
j1� 1

2
j1 1

2

j6 j6− 1
2

j5

	
:

ðB13Þ

The same Hamiltonian can, at the same time, annihilate the
tetrahedral scaleless spin network evaluated on the identity
and thus the SGF,

Ĥð1=2Þ
126 jRssltetðIÞ ¼ 0: ðB14Þ

Similarly, expanding terms and applying the annihilation
and creation operators on the coherent state basis (43)
and (44), this reproduces a differential equation of the
SGF [47],

� X
A;B¼0;1

�
∂

∂z̃A1
⊗ zA6

��
∂

∂zB1
⊗ zB2

���
2þ 1

2

X
l∈n246

X
A

zA
∂

∂zA

�
−
�
∂

∂z̃6

���� ∂

∂z̃2

��
1þ

X
A

zA1
∂

∂zA1

�

þ ½z̃1jz6i½z1jz2i
�
2þ 1

2

X
l∈n246

X
A

zA
∂

∂zA

��
2þ 1

2

X
l∈n123

X
A

zA
∂

∂zA

��
2þ 1

2

X
l∈n156

X
A

zA
∂

∂zA

�
Sslðfzl; z̃lgÞ ¼ 0; ðB15Þ

which is noted as the Wheeler–DeWitt equation of the SGF. There are totally four such equations, each associated to one
plaquette of the tetrahedral graph, while only three are independent. As expected, these expressions look more cumbersome
than (152) since the SGF is in a more coupled fashion when written in terms of the angle coupling rather than the link
couplings.
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APPENDIX C: THE PONZANO-REGGE MODEL
IN TERMS OF COHERENT BLOCKS

In the section, we prove that the Ponzano-Regge ampli-
tude (28) can be written in a way that the vertex amplitudes
are given by the coherent states (48) evaluated on identity
and edge amplitudes in a simple Gaussian form. This is the
starting point of the Proposition II. 1 and 3D version
of [44].
Let us recall the notations we will use to write the

amplitudes, which are the same as those in Proposition II. 1.
Proposition C.1. The spin foam model can be

expressed as an integral in terms of coherent blocks

AT½M;ψ cohe
Γ �¼

Z
½dμðzÞ�

Y
f�
Af� ½zf� �

×
Y
e�
Ae� ½ze� �

Y
v�
Av� ½zv� �;

with the vertex, edge, and face amplitude written as

Av� ¼ scohetet ðIÞ ¼
Z
SUð2Þ4

Y4
n¼1

dhne
P

6

e¼1
½z̃ljh−1tðlÞhsðlÞjzli; ðC1Þ

Ae� ¼ e
P

l∈n
hzsðe�Þl jztðe�Þl �; ðC2Þ

Af� ¼ hzf�;T1 jzf�;T1i − 1: ðC3Þ

Proof.—Recall that the coherent spin network state for a
tetrahedron graph is

X
fjlg

scohetet ¼
Z
SUð2Þ4

Y4
n¼1

dhne
P

6

l¼1
½z̃ljh−1tðlÞglhsðlÞjzli: ðC4Þ

The evaluation on identity gives the vertex amplitude (C1).
To glue the vertex amplitudes associated to adjacent

tetrahedra, we make use of the identity in the representation
space Vj ⊗ V�j spanned by the coherent states [67]

IVj⊗V�j ¼ 1

ð2jÞ!
Z

dμðzÞjj; zihj; zj

¼ 1

ð2jÞ!
Z

dμðzÞjj; z�½j; zj: ðC5Þ

To do the gluing, we also use the following identity,Z
dμðw1Þ

Z
dμðw2Þe½zjgjw1iþhw1jw2�þ½w2jhjz0i

¼
X

j;k;q∈N=2

1

ð2jÞ!ð2kÞ!ð2qÞ!
Z

dμðw1Þ

×
Z

dμðw2Þ½j; zjgjj; w1ihk; w1jk; w2�½q; w2jhjq; z0i

¼
X
j∈N=2

1

ð2jÞ! ½j; zjghjj; z
0i ¼ e½zjghjz0i:

We have used (C5) to obtain the third line. This product rule
can be applied to contract terms between adjacent tetra-
hedra, say, T1 and T2, connected with the triangle whose
2D dual is a node n and 3D dual is an oriented dual edge e�.
Say the source dual vertex sðe�Þ is dual to T1 and the target
tðe�Þ is dual to T2. Consider the graphs ð∂T1Þ�1 and ð∂T2Þ�1,
both including the node n. To identify the triangles from T1

and T2 is to identify the three links l; l0; l00 ∈ n from the two
graphs. However, the spinors associated to links from
different graphs are different. For instance, consider a link

l ∈ n: The spinor zT1

l (or zsðe
�Þ

l with the dual language) on

ð∂T1Þ�1 is not the same as the spinor zT2

l (or ztðe
�Þ

l ) on ð∂T2Þ�1.
Integrating over the relevant terms from vertex amplitudes
of sðe�Þ and tðe�Þ and the edge amplitude of e�, one gets
(we write only integration for one link l for short)

Z
dμðzsðe�Þl Þ

Z
dμðztðe�Þl Þe½zn1 jðhT1n1 Þ−1hT1n jzsðe�Þl iehz

sðe�Þ
l jztðe�Þl �e½z

tðe�ÞjðhT2n Þ−1hT2n2 jzn2 i ¼ e½z
n1 jðhT1n1 Þ

−1h
T1
n ðhT2n Þ−1hT2n2 jzn2 i ¼ e½z

n1 jðhT1n1 Þ
−1hnh

T2
n2
jzn2 i;

ðC6Þ

with hn ≡ hT1
n ðhT2

n Þ−1.
The contraction (C6) can be repeatedly performed along a closed chain ðe�1e�2…e�Me

�
1Þ ∈ T* (or equivalently,

ðt1t2 � � � tMt1 ∈ T) surrounding an edge e shared by M tetrahedra, as illustrated in Fig. 8. The edge amplitude can be

absorbed into the vertex amplitudes. As a result, one simply flips of the spinors ½ztðe�Þl j associated to the target tðe�Þ of e� to
their dual hztðe�Þl j and identify the spinors for the same link from different tetrahedra. In this way, then the gluing of a close
chain of tetrahedra reads

Z YM
i¼1

dμðzviÞehzn1 jðhT1n1 Þ−1hT1n2 jzn2 iþhzn2 jðhT2n2 Þ
−1h

T2
v3
jzv3 iþ���þhznM jðhTnnM Þ−1hTnn1 jzn1 i ¼

Z
dμðzn1Þehzn1 jGejzn1 i; ðC7Þ
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with Ge ≡ ðhT1
n1 Þ−1hn2hv3 � � �hnMhTn

n1 . Different from the magnetic number basis, each dual face is weighted by a factor
hzn1 jGejzn1i depending on the spinor attached to the (randomly chosen) base node n1 and the Wilson loop around the dual
face, or a factor ðhzn1 jzn1i − 1Þ (or (hzf�;T1 jzf�;T1i − 1), depending only on the spinor attached to the n1 [77]. At the end of
the day, one gets the partition function expressed as

ZT½M; ∂M� ¼
Z
SUð2Þ

�Y
n∈Γ

dhn

� Y
f�∈T�

Z
dμðzn1Þð1þ hzn1 jGejzn1iÞehzn1 jGejzn1 i

¼
Z
SUð2Þ

�Y
n∈Γ

dhn

� Y
f�∈T�

Z
dμðzn1Þðhzn1 jzn1i − 1iÞehzn1 jGejzn1 i

¼
�Z

SUð2Þ

Y
t∈T

dht

�Y
e∈T

δðGeÞ ¼
�Z

SUð2Þ

Y
e�
dge�

�Y
f�
δ

�Y
!
e�∈∂f�ge�

�
; ðC8Þ

where an integration by part is used to get the second line. This matches the results by using the spin network basis as shown
in Sec. II D. ▪
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