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The problem of finding a vacuum definition for a single quantum field in curved spacetimes is discussed
under a new geometrical perspective. The phase space dynamics of the quantum field modes are mapped to
curves in a two-dimensional hyperbolic metric space, in which distances between neighbor points are shown
to be proportional to the Bogoliubov coefficients associated with their corresponding mode solutions in
phase space. The vacuum state for each mode is then defined as the unique trajectory from which all mapped
phase space solutions move within thin annular regions around it. This property implies the stability of the
vacuum state: solutions evolved from a point in this trajectory stay close to it as both evolve, and the particle
creation is therefore minimized. The new approach is applied to the well-known cases of the time-
independent dynamics, where the solutions draw circles around this curve, and to the time-dependent
dynamics where adiabatic approximation is valid. Additionally, our analysis is extended to more challenging
cases of time-dependent dynamics, where the adiabatic approximation is not possible, such as in the super-
Hubble or low frequency regimes. It is shown that stability trajectories can also be found in these situations,
and stable quantum vacua can be obtained. This new formalism is applied to two situations: de Sitter space,
where the Bunch-Davies vacuum is obtained in a completely different manner through an analysis in the
super-Hubble regime, and in the context of cosmological bouncing models, in which the contracting phase is
dominated by a cosmological constant in the asymptotic past. A new vacuum state for cosmological
perturbations is proposed in this situation.
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I. INTRODUCTION

The determination of the vacuum state of quantum fields
in curved spacetimes is a quite intricate subject, which has
been studied for a long time [1–6]. Either one has many
nonequivalent possible candidates [7–12], or none at all.
This is a crucial problem for theoretical physics, as long as
spacetime is, indeed, curved because of gravity, which is
universal. Usually, one appeals to the ultraviolet limit,
restricting the analysis to a large enough ensemble of field
modes with mode wavelengths much smaller than the
curvature scale of the spacetime region with physical
interest. In this situation, the curvature of spacetime is
almost irrelevant, one is close to the flat Minkowski case,
where the vacuum state is well defined, and an adiabatic
approximation is available to guarantee the stability of the
chosen vacuum for some finite time interval. In the case of

de Sitter space, i.e., a curved space in which the curvature
scale (given by Λ−1=2, where Λ is the cosmological
constant) is globally constant in space and time, the
adiabatic approximation is one of the methods used to
define the globally stable Bunch-Davies vacuum. Note,
however, that this is one of the possible quantum vacua in de
Sitter space; see Ref. [13] for a classification and properties
of the possibilities. Furthermore, in inflationary models
there is also the scenario where one must impose initial
conditions at a finite time in the past where perturbation
wavelengths are not completely subhorizon. In these sit-
uations the ambiguity in the vacuum choice can lead to
observable imprints in the cosmic microwave background
(CMB) [14–16]. Finally, it is worth emphasizing that while
this problem has been addressed in the Heisenberg picture in
previous works, a Schrödinger picture approach is also
possible, as demonstrated in [17–19], where the same
approach was applied to the Schwinger effect.
This paper aims to investigate whether one can define the

equivalent of an adiabatic vacuum in a regime where the
frequencies of the field modes are irrelevant to their

*pennalima@unb.br
†nelsonpn@cbpf.br
‡Corresponding author.

vitenti@uel.br

PHYSICAL REVIEW D 107, 065019 (2023)

2470-0010=2023=107(6)=065019(33) 065019-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2652-0891
https://orcid.org/0000-0002-4587-7178
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.065019&domain=pdf&date_stamp=2023-03-30
https://doi.org/10.1103/PhysRevD.107.065019
https://doi.org/10.1103/PhysRevD.107.065019
https://doi.org/10.1103/PhysRevD.107.065019
https://doi.org/10.1103/PhysRevD.107.065019


dynamics, or their mode wavelengths are much bigger than
the curvature scale of spacetime, the reverse of the usual
approach. After reviewing the procedure of choosing a
complete set of solutions for the field variables in phase
space to define the creation/annihilation operators set, we
identify the minimum number of degrees of freedom
necessary to define a vacuum, which are then mapped to
a two-dimensional hyperbolic space H2 in which distances
between points can be defined. In this space, canonical
transformations are seen as boosts and rotations. We
then analyze the usual vacuum prescriptions for time-
independent Hamiltonians and time-dependent situations
where the adiabatic approximation is attainable and an
adiabatic vacuum can be defined. In the first case, we show
that the usual vacuum choice corresponds to a single point
in H2 from which all mapped phase space solutions move in
circles around it. In the second case, after making appro-
priate time-dependent boosts and rotations, the adiabatic
vacua correspond to points in a small region of H2 which is
the central neighborhood of a thin annular region to which
all solutions of the mode equations are mapped. Increasing
the order of the adiabatic approximation, the thinner
becomes this annular region. These properties are equivalent
to the stability of the vacuum choice, being exactly it in the
first case, while approximately in the second one.
To extend this analysis to time-dependent cases in which

the adiabatic approximation is not valid, we investigate in
detail physical situations in which the mode frequencies are
irrelevant to the dynamics of the modes. Again, after
performing convenient time-dependent boosts and rotations
in H2, we find in the new frame stability points with similar
properties to the known previous cases. Such points yield
stable quantum states, in the sense that particle production is
null up to some arbitrary order of approximation in the finite
time interval considered, yielding, as before, a sensible
quantum vacuum choice. Note that, in both time-dependent
cases (adiabatic and nonadiabatic), these special points are
transformed into small curves inH2 when we get back to the
original frame in which these problems are usually formu-
lated, by performing the inverse time-dependent boosts and
rotations that have been implemented.
The new formalism is then applied to three important

physical situations. As we know, a positive cosmological
constant is by far the simplest explanation for the present
acceleration of the Universe and many other refined cos-
mological observations (for instance, see [20]). Hence, it is
not by chance that the standard cosmological model is called
the ΛCDM model. In the case of bouncing models in which
the cosmological constant is not considered, the universe
tends to be flat in the far past of the contracting phase,
allowing the prescription of initial conditions in terms of an
adiabatic quantum vacuum, which can easily be defined in
this situation. Calculations assuming this approach conclude
that one can obtain almost scale-invariant cosmological
perturbations if the contracting phase is dominated by an

almost pressureless fluid, perhaps dark matter [21–23]. We
get the same results using the new formalism developed in
the present paper. However, if a positive cosmological
constant is present, the asymptotic past of bouncing models
will approach de Sitter rather than Minkowski spacetime. In
this asymptotic limit, the physical mode frequencies squared
become negligible concerning the cosmological constant Λ,
or equivalently, the mode wavelengths become much bigger
than the Hubble radius given by Λ. Thus, the adiabatic
approximation is not valid in this asymptotic region. Note
that there is a period in the cosmic evolution of such models
when the frequencies associated with large cosmological
wavelengths become relevant and dominate the evolution of
the perturbation field, allowing the usual prescription of an
adiabatic vacuum for them. Unfortunately, this period is
short, and stability is not guaranteed in the far past when the
cosmological constant dominates over the pressureless fluid.
This problem has been studied and discussed in Ref. [24].1

Nevertheless, using our new method, we are able to find
stability curves in H2 with which one can associate a stable
quantum vacuum state in the asymptotic past when the
cosmological constant dominates. This is a new quantum
vacuum state that naturally appears in this class of models,
whose physical consequences can now be explored.
Finally, we use the new formalism to reobtain the Bunch-

Davies vacuum of de Sitter space in a completely different
manner by looking at the super-Hubble regime, the time
period in which the physical wavelengths of the modes are
much bigger than the Hubble radius of de Sitter space, as
well as when the adiabatic approximation is not applicable.
Surprisingly, after implementing some boosts and rotations,
we find one stability point in H2 with exactly the same
properties of the stability point we find in the case of time-
independent Hamiltonians in flat space. This stability point
is shown to be the Bunch-Davies vacuum. In the case of a
massless scalar field, we obtain this result without ever
using the general solution of the mode equations.
The paper is divided as follows: in Sec. II we summarize

the formalism that we will use to construct the quantities
necessary to define a vacuum state and the new represen-
tations involving the H2 space. In Sec. III the new
formalism is applied to the well-known and simple case
of a time-independent Hamiltonian, and in Sec. IV to the
time-dependent case. We organize this last in two sub-
sections. In the first one, Sec. IVA, we recover the usual
adiabatic prescription to obtain a quantum vacuum when
the mode frequencies dominate the dynamics of the field
modes, including the well-known results. The procedure is
equivalent to many other implementations, but is simpler
and more adequate for numerical calculations. In the
second subsection, Sec. IV B, we apply the formalism
to the case where the mode frequencies are irrelevant for

1In the case of quintessence models for dark energy, this
problem can be overcome [25].
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the dynamics, and the adiabatic approximation is not valid,
obtaining stable vacuum states as well. In Sec. V we apply
the new formalism to the three cases mentioned above:
matter bounce without and with a cosmological constant,
and de Sitter space, with the new method to obtain the
Bunch-Davies vacuum. We end up with the conclusions in
Sec. VI. There are three appendixes: Appendix A shows
the details of the constructions, spaces, and representations
described in Sec. II, Appendix B presents the Hamiltonian
tensor in the new language, and Appendix C shows
the construction details of the adiabatic frames used in
Sec. IVA, and their associated propagators.

II. FIELD QUANTIZATION AND BOGOLIUBOV
COEFFICIENTS

In this section we summarize the field quantization
procedure using three different representations: phase space
vectors, 2 × 2 real matrices, and Clifford algebra. The aim
is to pave the way to fix the vacuum state using a minimal
set of variables.
We first focus on the symplectic structure behind the

quantization of a single field degree of freedom and its
momentum described by quadratic Hamiltonians. It contains
the essence of our method, besides complying with many
cases relevant to curved spacetimes and cosmology. We use
a 3þ 1 split ðx; tÞ of spacetime, with globally defined spatial
hypersurfaces, where x represents the three-dimensional
space coordinates and t the time. In Refs. [26,27] this
procedure is generalized to an arbitrary number of degrees of
freedom. We assume that any differential operator appearing
in the Hamiltonian is self-adjoint with respect to the spatial
integration.
We define the phase vector field χa and the symmetric

Hamiltonian tensor Hab, respectively, as

χa ≐ ðϕ;ΠϕÞ; HðχÞ ¼ 1

2
χaHabχb; ð1Þ

where ϕ represents a generic scalar field, Πϕ its canonical
momentum denoted, respectively, by the Latin indices
a ¼ 1, 2. Furthermore, the tensor components Hab corre-
spond to the quantities accompanying the quadratic terms
in the Hamiltonian. Specifically, H11 defines the term
quadratic in the field, that is, ϕH11ϕ=2, and the remaining
terms are similarly defined.2 Then, it is easy to see that the
action can be written as

Sðϕ;ΠϕÞ ¼
1

2

Z
d3xdtðiχaSab _χb − χaHabχbÞ; ð2Þ

where the symplectic matrix and its inverse are defined by

Sab ≐ i
�

0 1

−1 0

�
; Sab ≐ i

�
0 1

−1 0

�
; ð3Þ

in which the imaginary unit i is added for later convenience.
Extremizing the action (2) with respect to ϕ and Πϕ, we

find the equations of motion satisfied by the phase vector
field, namely,

i_χa ¼ SabHbcχc; ð4Þ

where the overdot represents differentiation with respect to
the time t.
Within this mathematical structure, the Poisson bracket

of any two functionals F1ðϕ;ΠϕÞ and F2ðϕ;ΠϕÞ can be
written as

fF1; F2g ¼ −i
Z
Σ
d3x

δF1

δχaðxÞ
Sab

δF2

δχbðxÞ
; ð5Þ

where Σ represents one particular spatial hypersurface of
the 3þ 1 splitting. Using the definitions above, we have

fχaðx1Þ; χbðx2Þg ¼ −iSabδ3ðx1 − x2Þ: ð6Þ

Applying the canonical quantization rules, the classical
fields are promoted to Hermitian operators, ϕ̂ and Π̂ϕ, and
the Poisson brackets Eq. (6) lead to the equal-time
commutation relations

½χ̂aðx1Þ; χ̂bðx2Þ� ¼ Sabδ3ðx1 − x2Þ; ð7Þ

which decompose into the familiar commutators

½ϕ̂ðx1Þ; Π̂ϕðx2Þ� ¼ iδ3ðx1 − x2Þ; ð8Þ

½ϕ̂ðx1Þ; ϕ̂ðx2Þ� ¼ 0 ¼ ½Π̂ϕðx1Þ; Π̂ϕðx2Þ�: ð9Þ

From here on we set ℏ ¼ 1.
Canonical quantization defines the operator algebra, but

does not provide a route to build their representations. In
quantum mechanics, where the number of degrees of
freedom is finite, the lack of a natural procedure for
constructing the representations is irrelevant, because all
representations are unitarily equivalent to each other due to
the Stone–von Neumann theorem [28]. In the case of field
quantization, however, we have an infinite number of
degrees of freedom, and the Stone–von Neumann theorem
does not apply. Consequently, for fields, canonical quan-
tization no longer yields a complete description of the
quantum system, and one must do it by choosing a class of
unitary equivalent representations.
The general procedure to obtain a representation starts by

complexifying the space of field solutions of the second-
order differential equations arising from the action (2),
which we denote by fϕkðt; xÞg, where k represents all the

2In this work we use the symbol ≐ to define components of
vectors and tensors, and ≡ for general definitions.
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necessary indices labeling a complete set of solutions3

allowing complex initial conditions. Each ϕkðt; xÞ with a
particular label k is called a mode.
It is usually hard to obtain a set of analytic solutions of

the second-order equations of motion for fϕkðt; xÞg.
However, there is a one-to-one mapping between the
solutions fϕkðt; xÞg defined on the whole manifold, and
the fields ðϕkðt0; xÞ;Πϕk

ðt0; xÞÞ defined in phase space at a
specific time slice (uniqueness of solutions). Hence, instead
of working with a set of solutions fϕkðt; xÞg, we introduce
the set of functions fχk;aðt0; xÞg, where

χk;aðt0; xÞ ≐ ðϕkðt0; xÞ;Πϕk
ðt0; xÞÞ ð10Þ

describes the initial conditions for each mode, yielding a
unique phase space solution arising from Eq. (4). One can
choose these functions arbitrarily without any knowledge
of the solutions of the equations of motion (we are not
considering here constrained Hamiltonian systems).
The inner product between two different elements of

fχk;aðt0; xÞg, Rk1;aðt0; xÞ and Rk2;aðt0; xÞ, omitting the
ðt0; xÞ dependence, reads

ðRk1 ;Rk2Þ ¼
Z
Σðt0Þ

d3xR�
k1;a

SabRk2;b: ð11Þ

The phase space set of vectors fχk;aðt0; xÞg is said to be
complete if they satisfy

ðRk1 ;Rk2Þ ¼ δ3ðk1; k2Þ; ðR�
k1
;Rk2Þ ¼ 0; ð12Þ

Z
dνk½Rk;aðRk; fÞ − R�

k;aðR�
k; fÞ� ¼ fa; ð13Þ

where f is an arbitrary phase space vector and dνk is the
measure of the solution’s space. Then, one can express the
phase space field operator χ̂a as

χ̂a ¼
Z

dνkðRk;aak þ R�
k;aa

†
kÞ; ð14Þ

where

ak ≡ ðRk; χ̂Þ; a†k ≡ −ðR�
k; χ̂Þ ð15Þ

are the so-called annihilation and creation operators,
respectively. The field commutation relations (7) and (12)
lead to

½ak1 ; a†k2 � ¼ δ3ðk1; k2Þ; ½ak1 ; ak2 � ¼ 0; ð16Þ

which allows one to define the Fock space as the space
composed by the vacuum state, which satisfies akj0i ¼ 0
for all modes k, and all other states obtained through a finite
number of applications of the operator a†k with different
indices k in j0i.
One reason to choose the inner product (12) in order to

define the completeness of solutions is because it satisfies
the property

i£nðRk1ðtÞ;Rk2ðtÞÞ ¼ 0; ð17Þ

where £n denotes the Lie derivative in the direction of the
normal of the hypersurfaces t ¼ const and ðRk1ðtÞ;Rk2ðtÞÞ
are the phase space vectors time evolved, respectively, from
ðRk1ðt0Þ;Rk2ðt0ÞÞ according to the Hamilton equations (4),

i _Rk;aðtÞ ¼ Sab
∂H
∂Rk;b

¼ SabHbcRk;cðtÞ: ð18Þ

Hence, if the set fχkðt0Þg is complete in phase space at t0,
then fχkðtÞg is complete in phase space at any t as long as
all modes satisfy the Hamilton equations (18). These results
are valid for any quadratic Hamiltonian system where
SabHbc is self-adjoint with respect to the product (11).
In summarizing, given a complete set of phase space

functionsRk;a defined on a spatial slice, we can decompose
the quantum field in terms of creation and annihilation
operators and obtain the Fock space representation natu-
rally defined by them.
The problem of finding a complete set of functions

Rk;aðt0; xÞ [and consequently Rk;aðt; xÞ] satisfying Eq. (12)
can be simplified by focusing on functions of the form

Rk;aðt0; xÞ ¼ rk;aðt0ÞYkðxÞ; ð19Þ

where rk;aðt0Þ are arbitrary complex constants and YkðxÞ
are the usual Laplacian eigenfunctions defined as

D̃2YkðxÞ ¼ −λ2kYkðxÞ;Z
Σ
d3xYk1ðxÞYk2ðxÞ ¼ δ3ðk1; k2Þ; ð20Þ

with eigenvalues −λ2k, where D̃2 represents the Laplacian
operator. For flat hypersurfaces, for example, we can
choose Yk as plane waves and, in this case, k is the mode
vector and λ2k ¼ k · k.4 Note that, for example, in a
Friedmann geometry D̃2 is the conformal Laplacian, and
since D̃2 is constant, the eigenvalues λ2k are also constant.
Omitting again the ðx; tÞ dependencies, the product of

two functions is given by
3For example, for flat spatial sections we can decompose the

function in Fourier space and, in this case, k would be the Fourier
mode vector.

4In this work, we assume that Yk are real functions; thus,
instead of plane waves we should use the Hartley kernel.
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ðRk1 ;Rk2Þjt0 ¼ r�k1ark2bS
abδ3ðk1; k2Þ; ð21Þ

ðR�
k1
;Rk2Þjt0 ¼ rk1ark2bS

abδ3ðk1; k2Þ ¼ 0: ð22Þ

The last equality comes from the fact that the δ-function
implies k2 ¼ k1, and Sab is antisymmetric. Hence, in order
to have a normalized basis, we only need to impose

r�arbSab ¼ 1; ð23Þ

Consequently, using Eq. (19) we turned the problem of
finding a complete set of modes into the problem of finding
a complete set of complex vectors frkag, each one
belonging to a bidimensional complex vector space Vk;t0
such that, for each mode k, r�arbSab ¼ 1 is satisfied. Using
the (nondegenerated) symplectic matrix Sab, we can map
vectors into linear functionals ra ≡ Sabrb.

5 That is, we can
use Sab and its inverse to “raise” and “lower” indices. In
Appendix A we develop all the necessary mathematical
tools used to represent points in phase space.

A. Bogoliubov coefficients and time evolution

As we have seen, expansion of the field operator as in
Eq. (14) depends on the basis choices, leading to poten-
tially different Fock spaces. Hence, the vacuum state may
be inherently ambiguous (which is not the case when
Poincaré invariance is required, and then all choices are
unitarily equivalent), and we need a criterion to choose the
basis. In the following, we quantify this ambiguity.
Let us take Rk ¼ rYk. Any product in the form

ðrYk; χ̂Þjt0 can be expressed as

ðrYk; χ̂Þjt0 ¼ r�aSabχ̃k;bðt0Þ ¼ ra�χ̃k;aðt0Þ; ð24Þ

where the operator χ̃k;aðtÞ reads

χ̃k;aðtÞ≡
Z
Σ
d3xYkχ̂aðtÞ; χ̂aðtÞ ¼

Z
dνkYkχ̃k;aðtÞ: ð25Þ

Consequently, the annihilation and creation operators,
defined by the vector ra, are

ak;r ¼ ra�χ̃k;aðt0Þ; a†k;r ¼ raχ̃k;aðt0Þ; ð26Þ

which can easily be inverted using the projector in Eq. (A3)
providing

χ̃k;aðt0Þ ¼ raak;r þ r�aa
†
k;r: ð27Þ

As before, we will omit the label k in χ̃aðtÞ and a, writing it
only when necessary.

A phase space vector ra at the hypersurface t0 defines a
function in the whole time interval that satisfies

i _Ra ¼ SabHbcRc; Raðt0Þ ¼ ra; ð28Þ

where all Laplacian operators appearing in Hbc must be
substituted by −λ2k, so that Ra is a function of time only.6

This equation is a consequence of the splitting given in
Eq. (19), which was possible because the equations of
motion are separable in the time variable, as are the cases of
interest in this paper. We will denote the phase vector
defined in an initial hypersurface and the time-dependent
phase vector that uses it as the initial condition and satisfies
Eq. (28) with the same lowercase and uppercase letters,
respectively; for instance, ra (qa) is the initial condition for
Ra (Qa).
It is clear that the phase space operator χ̃aðtÞ also satisfies

the same Eq. (28). Therefore, as we already mentioned, ar
is constant and consequently

ar ¼ ra�χ̃aðt0Þ ¼ Ra�ðtÞχ̃aðtÞ ð29Þ

for any hypersurface t. Moreover, any product in the same
form is constant and consequently

ra�qa ¼ Ra�ðtÞQaðtÞ: ð30Þ

Each normalized phase space vector basis defines a
representation for the quantization procedure. Two different
bases, labeled, respectively, as ra and qa, can lead to different
representations (which can be nonunitarily equivalent).
Assuming that ra and qa are two normalized phase space
vectors and using the projectors in Eq. (A3), we can write

ra ¼ αr;qqa − βr;qq�a; ð31Þ

where the products

αr;q≡ raqa� ¼ q�aSabrb; βr;q≡−raqa ¼ qaSabrb; ð32Þ

are constant due to Eq. (30) and satisfy αr;r ¼ 1 and βr;r ¼ 0.
Using the projectors it is also easy to show that

jαr;qj2 − jβr;qj2 ¼ 1: ð33Þ

Then, the annihilation and creation operators defined by ra
can bewritten in terms of the equivalent operators defined by
qa, namely,

5From now on we will omit the label k for simplicity,
introducing the k dependency explicitly only when necessary.

6The uppercase phase vectors Ra are always considered
functions of t, and we will write the time dependency only to
avoid ambiguities.
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ar ¼ α�r;qaq þ β�r;qa
†
q;

a†r ¼ αr;qa
†
q þ βr;qaq: ð34Þ

We note that, if βr;q vanishes (or equivalently
½ar;k1 ; aq;k2 � ¼ 0), both sets define the same vacuum. In
this case it is easy to see that ra ¼ eiθqa for an arbitrary
phase θ.
We express the vacuum defined by ar;k as j0ri, such that

ar;kj0ri ¼ 0. Then, we define the mode number density
operator

Nr;k ≡ a†r;kar;k ¼ rarb�χ̃k;aðt0Þχ̃k;bðt0Þ; ð35Þ

and the total number operator

Nr ≡
Z

dνk Nr;k ð36Þ

such that its expected value at j0qi reads

h0qjNrj0qi ¼
Z

dνkδ3ðk; kÞjβr;qj2 ¼
Z

dνkjβr;qj2: ð37Þ

We are assuming a compact hypersurface Σ, so conse-
quently the eigenfunctions are countable and δ3ðk; kÞ ¼ 1.7

Finally, there is a simple relation between the two point
function and the real part of the projector formed by ra, i.e.,
Jab defined in Eqs. (A4) and (A5), namely,

h0rjχ̂aðxÞχ̂bðyÞj0ri ¼
Z

dνkYkðxÞYkðyÞ
ðJabþSabÞ

2
; ð38Þ

where x; y ∈ Σt0 .
As time evolves, the chosen basis will necessarily change.

Since the solutions of the equations of motion are unique
given the initial conditions, the basis is determined for the
whole time interval. Moreover, the creation and annihilation
operators are defined through the conserved product
Eqs. (15) and (26). Therefore, since the field operators
satisfy the same equations of motion, the following product
is conserved:

ak;RðtÞ≡ Ra�ðtÞχ̃k;aðtÞ ¼ ak;r: ð39Þ

The expression above shows that this particular combination
of Heisenberg operators and time-dependent functions is the
same at all time slices. Moreover, we can use this expression
to write the field operator at any time t as

χ̃aðtÞ ¼ RaðtÞar þ R�
aðtÞa†r : ð40Þ

Naturally, due to Eq. (39), the state annihilated by ak;RðtÞ is
the same at any time t.
Now, let us assume that we have a well-defined physical

prescription to determine the vacuum state at each time t;
i.e., for each time slice we define a normalized phase vector
VaðtÞ such that the annihilation operator

aVðtÞ≡ Va�ðtÞχ̃k;aðtÞ ð41Þ

defines the physical vacuum state aVðtÞj0VðtÞi ¼ 0. Notice
that VaðtÞ is a time-dependent phase vector, but it does not
necessarily satisfy the equations of motion. Consequently
neither aVðtÞ nor j0VðtÞi will be inevitably constant. We
denote this prescription as a vacuum determination cri-
terion (VDC).
Using a VDC, one can construct the vacuum state (and

consequently the whole Fock space) at each time slice as
j0VðtÞi. Suppose that at t0 we assert that the quantum field
is found at the vacuum j0Vðt0Þi ¼ j0vi. This is imple-
mented by choosing ra ¼ va ≡ Vaðt0Þ as the initial con-
ditions for the phase vector. However, since VaðtÞ is not a
solution of the field equations, in general VaðtÞ and RaðtÞ
(which is the dynamically time evolved vacuum from
ra ¼ va) may differ at t ≠ t0. Consequently, if we measure
the number density operator

NR;kðtÞ≡ a†R;kðtÞaR;kðtÞ; ð42Þ

on the vacuum state at t, i.e., j0VðtÞi, we get

h0VðtÞjNR;kðtÞj0VðtÞi ¼ jβR;VðtÞj2; ð43Þ

βR;VðtÞ ¼ VaðtÞSabRbðtÞ: ð44Þ

Hence, the expectation value above is zero at t0, while for
t ≠ t0 it depends on how much RaðtÞ differs from VaðtÞ.
Note that if they differ only by a phase, then βR;VðtÞ ¼ 0.
In practice, a vacuum prescription provides a set of four

real numbers for each mode k, i.e., the two complex
components of va in the complex phase space Vk;t0 .
However, two vacuum prescriptions that differ only by a
phase specify the same vacuum; i.e., they are equivalent.
Physically we are only interested in the class of equivalence
½Ra� of phase vectors related by the equivalence relation
Ra ∼ Va iff Ra ¼ eiθðtÞVa, for any real function θðtÞ.
Moreover, if the normalization condition Ra�Ra ¼ 1 is
satisfied by a phase vector, then it is satisfied by any other
vector in ½Ra�. Thus, a VDC determines classes of equiv-
alence of normalized phase vectors belonging to the reduced
phase space Vr

k;t0
of phase space vectors modulo a phase.8 In

addition, once a VDC is chosen, we need to compute the

7For example, for a flat spatial hypersurface we can always
choose a 3-torus, Σ ¼ T 3 with volume L3, and take the L → ∞
when necessary.

8The terminology “reduced phase space”we are using here has
nothing to do with the reduced phase space defined in the context
of constrained Hamiltonian systems.
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time evolution using Eq. (28). These equations preserve the
normalization condition, and it is easy to see that two
different initial conditions taken from the same equivalence
class ½Ra� at t0 evolve to the same class of equivalence at t;
i.e, if ra ∼ qa at t0, then RaðtÞ ∼QaðtÞ. In this sense, the
vacuum dynamics also happen in Vr

k;t0
, whose structure will

be explored in the following subsection.

B. Representations of the reduced phase space

It is useful to construct different representations of the
reduced phase space. In Appendix A 1, we prove that there
is a one-to-one mapping between Vr

k;t0
and the space of

linear complex structures VM
k;t0

represented by real matrices

Ma
b. Furthermore, in Appendix A 3 we show that VM

k;t0
is a

two-dimensional manifold, and we obtain the ðα; γÞ para-
metrization mapping the whole manifold into R2. The
dynamics induced in VM

k;t0
by Eq. (28) can readily be

obtained using the mapping (A5) from the field variables to
Ma

b. It is more convenient to write the equations using the
Clifford algebra representation as defined in Appendices A
4 and A 5. Since the components Hab are real, the tensor
Na

b ≡ −iHa
b is also real [see Eq. (B12) for its specific

form]. Then, the equation of motion for M is

_M ¼ 2N ∧ M: ð45Þ

When expressed in terms of the parametrization given in
Eq. (A23), it reads

_α ¼ −2ν sinh ðγ − ξÞ;
_γ ¼ þ2ν cosh ðγ − ξÞ tanh ðαÞ − 2h; ð46Þ

where ν, ξ, and h are given functions of time coming from
the Hamiltonian and composing N, while α and γ are the
dynamical variables belonging toM. In this representation,
we now have two nonlinear ordinary differential equations
instead of four linear but constrained dynamics.
Using the same mapping between Vr

k;t0
and VM

k;t0
, a VDC

in this representation will be just a time dependent linear
structure VðtÞ ∈ VM

k;t0
(with associated phase vector va),

which does not necessarily satisfy the equation of motion
(45). Defining the vacuum at t0 using Vðt0Þ, its evolution
in time will be given by Eq. (45), with the initial condition
Mðt0Þ ¼ Vðt0Þ. This procedure specifies a unique MðtÞ
and, consequently, the associated phase vector RaðtÞ.
Usually, MðtÞ is different from VðtÞ. In this case, the
number of particles created at t with respect to this VDC is
given by the Bogoliubov coefficients between RaðtÞ and
VaðtÞ, which in the VM

k;t0
representation [RaðtÞ → MðtÞ and

VaðtÞ → VðtÞ] reads

jαR;vðtÞj2 ¼ V�
aðtÞSabRbðtÞR�

cðtÞScdVdðtÞ

¼ þ 1

4
Tr½I −MðtÞVðtÞ�

¼ 1 −MðtÞ · VðtÞ
2

; ð47Þ

jβR;vðtÞj2 ¼ VaðtÞSabRbðtÞR�
cðtÞScdV�

dðtÞ

¼ −
1

4
Tr½I þMðtÞVðtÞ�

¼ −
1þMðtÞ · VðtÞ

2
: ð48Þ

For clarity, we wrote above the expressions for the
Bogoliubov coefficients in all three representations: phase
vector, matrix, and Clifford algebra, respectively. As
already noticed in the preceding subsection, when VðtÞ
does not satisfy the equations of motion, the Bogoliubov
coefficients are not constant in time. They measure the
particle creation at t given the vacuum set at t0 using the
VDC Vðt0Þ.
It is worth noting that an element of VM

k;t0
is just a

“timelike” vector M satisfying M2 ¼ M ·M ¼ −1, and
positive “time” component −G0 ·M > 0. This means that
VM
k;t0

has a natural mapping to the hyperbolic space H2

through the hyperboloid model as discussed in
Appendix A 6. Thus, given two timelike unitary vectors
M and V, the β coefficient associated with the trans-
formation between them [Eq. (48)] is just

jβM;V j2 ¼ −
1

2
ð1þM · VÞ ¼

�
M − V

2

�
2

; ð49Þ

where we are using βM;V as a synonym to βR;v. The
equation above shows that βM;V is just one-half of the norm
of the vector difference between M and V. Nevertheless,
this is not a metric but a semimetric: it does not satisfy the
triangle inequality (actually, it satisfies the reverse triangle
inequality). The genuine distance in H2 is presented in
Eq. (A47): given two timelike points M and Q in H2,
the hyperbolic distance between these two points, which
is a proper metric, reads dðM;VÞ≡ cosh−1 ð−M · VÞ.
Therefore, the Bogoliubov coefficients have a very simple
relation with the distance dðM;QÞ:

jαM;V j ¼ cosh

�
dðM;VÞ

2

�
; jβM;V j ¼ sinh

�
dðM;VÞ

2

�
:

ð50Þ

For convenience, we also define the distance between the
unit “time” vector G0 and an arbitrary multivector M as

dM ≡ cosh−1 ð−M ·G0Þ: ð51Þ
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III. VACUUM DETERMINATION CRITERIA

The sequence of definitions above shows that a choice
of phase vectors specifies a set of creation and annihilation
operators, which in turn defines a vacuum state and all
other particle states using their commutation relations.
Given a VDC, one can compute the particle creation as a
function of this choice. However, it does not seem possible
to provide a VDC in a single time slice, as, in principle,
any phase vector provides a well-defined representation.
Therefore, a physically well-defined vacuum state should
be related to the field evolution. In this section, exploring
the dynamics of the field, we will present the strategy to
select a particular phase space basis and its associated
vacuum state in the simple and well-known case of a
time-independent Hamiltonian. Furthermore, using the
representations of the reduced phase space introduced
in Sec. II B, we present an equivalent new viewpoint on
this strategy, which will be used to extend it to the time-
dependent case in the following section.

A. Time-translation symmetry in the dynamics
and stability in the phase vector representation

We previously showed that two phase vectors differing
by a phase define the same vacuum state. Thus, if the time
evolution of a particular phase vector is such that only its
phase changes with time, then this choice of vector would
define the same vacuum, independently of the chosen time
slice. That should be the case when the physical laws
governing the dynamics of the quantum field are invariant
under time translations, as it would impose that its natural
quantum vacuum state should be time independent. Hence,
a natural VDC emerges in this situation: the phase vector
determining the vacuum state is the same at all times, apart
from a phase

VaðtÞ ¼ exp½−iφ1ðtÞ�va; ð52Þ

where va ≡ Vaðt0Þ and φ1ðtÞ is an arbitrary function of
time, with φ1ðt0Þ ¼ 0 for convenience.
However, the vector va is still completely arbitrary, and

we have to fix it, modulo a phase. One second criterion
could be to demand stability of the vacuum state, i.e., that
the dynamically time evolved va, RaðtÞ, coming from
Eq. (18) with Raðt0Þ ¼ va,

_RaðtÞ ¼ −iSacHcbðtÞRb ¼ σðtÞUa
bðtÞRb; ð53Þ

should also differ from VaðtÞ at most by a phase,

RaðtÞ ¼ exp½−iφ2ðtÞ�VaðtÞ; ð54Þ

with φ2ðtÞ also being an arbitrary function of time.9

In Eq. (53) we define the real Hamiltonian tensor as in
Eq. (B12), i.e.,

Na
bðtÞ≡ −iSacHcbðtÞ; Ua

b ≡ Na
b

σðtÞ : ð55Þ

Equations (52) and (54) imply that

i _Ra ¼ ωðtÞRa; ð56Þ

for an arbitrary real function ωðtÞ ¼ _φ1ðtÞ þ _φ2ðtÞ.
Equating Eqs. (53) and (56), we get that Ra must be an
eigenvector of Na

bðtÞ, i.e.,

Ua
bðtÞRb ¼ −iRa; ð57Þ

where we have set ωðtÞ ¼ σðtÞ.
In Appendix B we show that Na

bðtÞ have two normal-
izable eigenvectors with purely imaginary eigenvalues iff
HabðtÞ is positive definite, which we will assume to be true
here. However, since Eq. (57) defines RaðtÞ within a phase,
RaðtÞ will satisfy both Eqs. (53) and (57) iff _Ua

b ¼ 0, as
expected.10 Hence, we obtain the well-known result that a
globally stable vacuum state can be reached only when the
background geometry, where the field evolves, has a
timelike Killing vector field, and no time-dependent inter-
actions are present. That is the case of free fields in flat and
de Sitter spacetimes, yielding the so-called Minkowski and
Bunch-Davies vacua [4,13,29], respectively. Therefore, in
this particular situation, one can establish as a VDC the
(constant, globally defined) eigenvector of Na

bðtÞ at any
time t, Qa, which selects va in Eq. (52) as

va ¼ Qa; Ua
bQb ¼ −iQa: ð58Þ

Applying this VDC at t0 and evolving to t using the
dynamical equations (53) yields

RaðτÞ ¼ e−iðτ−τ0Þva ¼ e−iðτ−τ0ÞQa; ð59Þ

where we define a new time variable τ ¼ R σðtÞdt. From the
VDC Eq. (52), one gets

VaðτÞ ¼ e−iφ1ðτÞvaðτÞ ¼ e−iφ1ðτÞQa: ð60Þ

Accordingly, the particle creation number density is
βR;VðtÞ ¼ 0, since RaðτÞ and VaðτÞ differ by a phase,

9Note that the stability criterion is connected with the require-
ment that a vacuum state should be the minimum energy state.
Because, contrary to the excited states, a minimum energy state is
stable when interactions with external fields are negligible.

10That can easily be checked by differentiating Eq. (57) with
respect to time.
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and the vacuum states defined by both vectors are
equivalent.
We can trivially go back to the original time t, obtaining

RaðtÞ ¼ exp

�
−i
Z

t

t0

σðt0Þdt0
�
Qa: ð61Þ

For a Hamiltonian tensor parametrized by

Hab ≐
�
mν2 h

h 1
m

�
; ð62Þ

where m, ν, and h are scalar functions, the eigenvector
(defined within an arbitrary phase) Qa of Ua

b reads [see
Eq. (B13)]

Qa ≐

 
−

e−iφhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mνð1 − h2=ν2Þ

p ; eiφh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mν

2ð1 − h2=ν2Þ
r !

;

with φh ≡ tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðν − hÞ=ðνþ hÞp

, and σ ¼ ðν2 − h2Þ1=2.
For Hamiltonians with h ¼ 0 ⇒ σ ¼ ν, the phase vector
reduces to a more familiar form, namely,

Qa ≐ −e−iπ=4
�

1ffiffiffiffiffiffiffiffiffi
2mν

p ;−i
ffiffiffiffiffiffi
mν

2

r �
: ð63Þ

For example, in the case of a free massless scalar field in a
Minkowski spacetime, m ¼ 1 and ν ¼ λk ¼ jkj, yielding

RaðtÞ ¼ e−ijkjðt−t0ÞQa:

Note that the VDC oscillates in time in Vk;t0 , but it is a fixed
point in Vr

k;t0
.

It is important to emphasize here that the time-translation
symmetry implying that the quantum vacuum state should
be time independent (modulo a phase) was not only
insufficient to fix the vacuum, but it also does not lead
to a stable vacuum state in general. Indeed, any other choice
of a constant VaðτÞ satisfying the time-symmetry criterion
not proportional to Qa is not stable. For instance, take
another constant VaðτÞ written in terms of the basis formed
by Qa and Q�

a as

VaðτÞ ¼ c1Qa − c2Q�
a; ð64Þ

where c1 and c2 are arbitrary complex constants that must
be compatible with the normalization of VaðτÞ, i.e.,

jc1j2 − jc2j2 ¼ 1:

Applying the time evolution we get

RaðτÞ ¼ c1e−iΔτQa − c2eþiΔτQ�
a; ð65Þ

where Δτ≡ τ − τ0. Expressing this solution in terms of the
VDC at τ we get

RaðτÞ ¼ ½cosΔτ − iðjc1j2 þ jc2j2Þ sinΔτ�va
− 2ic1c2 sinΔτv�a; ð66Þ

and jβR;VðtÞj ¼ j2c1c2 sinΔτj. Hence, there is a time
oscillating particle production, and a static VDC does
not generically lead to a stable vacuum, unless c2 ¼ 0.
That brings us back to the well-known vacuum state of the
time-independent dynamical system presented above.

B. The matrix and Clifford algebra representations:
A new viewpoint

It is useful to reexamine the example discussed above in
the matrix and Clifford algebra representations. In this case
the Hamiltonian tensor is such that U [see Eq. (55)] is
constant. Thus, the respective equation of motion reads

_M ¼ 2σU ∧ M: ð67Þ

The solution can readily be obtained using the exponential
map (A41), that is,

M ¼ eΔτUM0e−ΔτU; ð68Þ

where M0 is the initial condition. If the Hamiltonian is
positive definite, then U2 ¼ −1; hence positive definite
Hamiltonians lead to a timelike multivector U. Rewriting
M0 in terms of U as described in Eq. (A59) leads to

M ¼ cosh dðM0; UÞU þ cosð2ΔτÞM0 ⊥ U

− sinð2ΔτÞM0 ∧ U: ð69Þ

This last expression shows that all solutions in the reduced
phase space stay at fixed distances from U, i.e., M · U ¼
M0 ·U is constant, and rotate around U with period π,
which is twice as fast as the oscillations in phase space. The
point U is stable concerning the solutions given that their
distances to this point do not change in time. In particular,
the choice M0 ¼ U implies M ¼ U, and this solution does
not oscillate at all. In other words, when U is constant,
M ¼ U is a solution of Eq. (67), being a fixed point of the
reduced phase space and the dynamics.
It is also informative to examine this problem from the

point of view of Eq. (46). For constant ξ and h=ν the point

γ ¼ ξ; α ¼ tanh−1
�
h
ν

�

is a fixed point of this autonomous system. These are the
same values we get by settingM0 ¼ U. Hence, establishing
the VDC as VðtÞ ¼ U, which is tantamount to making the
choice of VaðtÞ ¼ Qa (modulo a phase) as an eigenvector
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of Ua
b [see Eq. (58)], yields a globally stable vacuum

because it is a fixed point of Eq. (46) or a solution of
Eq. (67), M ¼ U ¼ VðtÞ. Therefore, using a different
representation, we arrive at the same final result as before
in the case U is constant. However, this new form of
presenting the vacuum state sheds light into a new
important property of this prescription: the vacuum choice
is the unique point in the reduced phase space where all
solutions stay at a constant distance from it.
In summarizing, in the case of a time-independent

Hamiltonian, we could obtain a vacuum state that is a
fixed point in the reduced phase space and the dynamics.
This single fixed point leads to the vacuum prescription
VðtÞ ¼ U, which results in no particle creation. Any other
constant VDC would result in particle creation with a βM;V

given by sinh ½dðM;VÞ�. Of course, the choice that min-
imizes the particle creation is exactly V ¼ U. A remarkable
property of this choice is that all solutions are stable orbits
around U, with a fixed distance from them. In the general
case, however, the Hamiltonian is time-dependent.
Therefore, the system no longer has a fixed point.
Nonetheless, we can still define a notion of stability
motivated by the time-independent case and the new
property of its vacuum described above: given a set of
solutions of the dynamical system, one should seek for a
stability curve VðtÞwhose distance to any arbitrary solution
in the reduced phase space varies very slowly. Moreover,
solutions draw curves with smaller lengths as they get
closer to the trajectory. Consequently, if we choose such
VðtÞ as our VDC, then the solution MðtÞ with initial
condition Vðt0Þ remains close to VðtÞ, as the distance
dðMðtÞ; VðtÞÞ varies slowly and dðMðt0Þ; Vðt0ÞÞ ¼ 0,
implying that dðMðtÞ; VðtÞÞ ≪ 1. Therefore such a stability
curve defines a physical vacuum, with negligible particle

production, jβM;V j ¼ sinh½dðMðtÞ;VðtÞÞ
2

� ≪ 1. We present con-
crete examples of these stability curves in the next sections.
In the adiabatic case, the stability curve reduces to the well-
known adiabatic vacuum, but we also show that in the
nonadiabatic regime this stability curve can still be found
and provide a physically motivated VDC.

IV. THE CASE OF A GENERAL TIME-
DEPENDENT HAMILTONIAN

For a generic Hamiltonian dependent on time, the vector
U moves in the reduced phase space, and it is not a solution
of Eq. (45). Thus, even settingMðt0Þ ¼ Uðt0Þ, UðtÞ moves
differently on Vr

k;t0
than MðtÞ [MðtÞ is a solution of

Eq. (45), while UðtÞ is not]. Their distances changes in
time, and particle creation generally takes place. However,
as described at the end of the previous section, even in the
time-dependent case there are situations where stability
curves can be found and used as a VDC. In this section, we
present two very important physically motivated examples
where this procedure can be successfully implemented.

A. The adiabatic case

One first possibility is that U moves slowly compared to
the frequency of the circles around U drawn by M. These
circles are dragged by the movement ofU, thus keeping the
solution around U for a long period. Exploring this feature
of such type of dynamics is the essential tool to find
stability curves in the reduced phase space and construct
the so-called adiabatic vacuum.
To find stability curves, one first has to study the solution

space of the dynamical system. In the previous sections, it
was possible to find them because the analytical solution is
attainable when the multivector U is constant. In this case
we can write the propagator explicitly as in Eq. (68),

Pðt; t0Þ ¼ eΔτU; P†ðt; t0Þ ¼ e−ΔτU: ð70Þ

When U depends on time,
R
dtN and N do not commute in

general. For this reason, there is no such simple solution for
the propagator equation,

_PðtÞ ¼ NðtÞPðtÞ: ð71Þ

This problem can be circumvented by making successive
canonical transformations on the system such that U is
transformed as close as possible to an almost constant
multivector. Then, in the frame where U is well approxi-
mated by a constant multivector, we can compute the
solutions similar to Eq. (68).
As described in Appendix A 5, after a canonical trans-

formation C, the transformed dynamical vectorMC and the
new Hamiltonian NC read

MC ≡ CMC†;

NC ≡ σCUC† þ σδUC; δUC ≡ _CC†

σ
; ð72Þ

while Eq. (45) retains its form,

_MC ¼ 2NC ∧ MC; ð73Þ

where we used that CC† ¼ 1 and _CC† þ C _C† ¼ 0. Note
that NC is not normalized, not only because of σ but also
due to the presence of δUC, which is the well-known
additional term that a time-dependent canonical trans-
formation introduces in the transformed Hamiltonian.
Assuming that the Hamiltonian is positive definite,

implying that the vector U is timelike, the natural choice
to transform U is to take it as close as possible to G0

11; that
is, we go to a frame where U has negligible “spatial”
components. Equivalently, we are transformingH2 such that
U points as near as possible to the origin of the coordinate

11In principle, we could transform U into any unity timelike
multivector. We choose G0 for simplicity.
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system (the point G0). It is easy to check that the following
canonical transformation takes UC ≡ C0UC†

0 ¼ G0:

C0 ¼ exp

�
dU
2
Us

�
; Us ≡U ∧ G0;

C0 ¼ cosh

�
dU
2

�
þ sinh

�
dU
2

�
Us: ð74Þ

Note, however, that the additional term δUC is necessarily
present in the new Hamiltonian when _U ≠ 0. This term can
be computed explicitly as

δUC ¼
_dU
2σ

Us þ sinh dU
_Us

2σ
− sinh2

�
dU
2

�
_UsUs

σ
: ð75Þ

In the case where U changes adiabatically (e.g., the time
derivative of U is smaller than σ, or the timescale in which
U changes is much larger than the timescale arising from
σ), all components of U satisfy

1

σ

d
dt
UA ≪ 1;

�
1

σ

d
dt

�
Nþ1

UA ≪
�
1

σ

d
dt

�
N
UA; ð76Þ

for all positive integers N up to Nmax. Then δUC can be
seen as a first-order adiabatic correction to UC. We will
denote it as δUð1Þ, as well as any other object resulting from
this first canonical transformation. In this way, the new
Hamiltonian vector reads

Nð1Þ ≡ σðG0 þ δUð1ÞÞ; ð77Þ

while the new equation of motion is

_Mð1Þ ¼ 2Nð1Þ ∧ Mð1Þ: ð78Þ

In terms of the normalized Hamiltonian

Uð1Þ ≡ Nð1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Nð1Þ2p ≈ G0 þ δUð1Þ ⊥ G0;

and the new frequency

σ1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Nð1Þ2

p
≈ σð1 − δUð1Þ · G0Þ;

the equations of motion (78) are now

_Mð1Þ ¼ 2σ1Uð1Þ ∧ Mð1Þ: ð79Þ

It is worth pointing out here that this normalization is
possible if the adiabatic conditions (76) are satisfied. In
other words, since δUð1Þ has modulus much smaller than
one, the timelike property of U is unchanged. We refer to
this frame as the first-order adiabatic frame.

The second-order adiabatic frame can be obtained in a
similar way: we find the canonical transformation that takes
Uð1Þ → G0 and apply it to the equations of motion above. In
this case, δUð2Þ is composed by time derivatives of Uð1Þ,
which are necessarily second order. The new Nð2Þ is then
normalized, yielding the new equation

_Mð2Þ ¼ 2σ2Uð2Þ ∧ Mð2Þ: ð80Þ

One can then proceed in the same way up to Nmax. To get
back to the original frame one only needs to perform the
respective inverse canonical transformations. In Appendix C
we develop a recursive method to compute all canonical
transformations up to Nmax.
Up to this point we introduced the adiabatic frames

without any approximation. To study the space of solution
in a frame ðnÞ we can compute the approximate propagator,
that is,

_PðnÞðtÞ ¼ NðnÞðtÞPðnÞðtÞ: ð81Þ

In this frame the Hamiltonian multivector reads

NðnÞðtÞ ¼ σn−1ðtÞðG0 − FnðtÞGnÞ; ð82Þ

where Gn is either G1 or G2 defined in Eq. (A34),
depending on the order n. The functions FnðtÞ and
σn−1ðtÞ are given in Eq. (C17) of Appendix C,

Fn ¼ ð−1Þn
_ξn−1
2σn−1

; ξn ¼ tanh−1 ðFnÞ;

σn ¼ σn−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2

n

q
; ð83Þ

where the initial functions of these recurrence relations are

σ0 ≡ σ; ξ0 ≡ ξ ¼ lnðmσÞ: ð84Þ

Note that, because of the adiabatic evolution, jFnj ≪ 1

and UðnÞ ≈ G0.
In Appendix C, we show how to obtain a simple

approximate propagator up to order n coming from
Eqs. (81) and (82). It reads

PðnÞðτ; τ0Þ ≈ e−p
ðnÞ
r ðτÞeΔτG0 ; ð85Þ

where the time-dependent “space-vector” pðnÞ
r ðτÞ reads

pðnÞ
r ðτÞ ≈ FnðτÞ

2
G0 ∧ Gn: ð86Þ

The expression above shows that the time evolution (up to
order n) is a rotation about the origin G0 followed by a
boost in the G0 ∧ Gn direction.
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We can now apply the propagator (85) to an arbitrary

initial condition MðnÞ
0 . First, we rewrite the multivector

MðnÞ
0 as

MðnÞ
0 ¼ cosh rG0 þ sinh rm̄; ð87Þ

where m̄ is a purely “spatial” unitary vector, i.e.,G0 · m̄ ¼ 0

and m̄2 ¼ 1 and r in an arbitrary initial distance from G0.
The first factor of the propagator is simply the rotation about
the origin,

eΔτG0MðnÞ
0 e−ΔτG0 ¼ cosh rG0 þ sinh rm̄r; ð88Þ

where m̄r is a rotating unitary “spatial” vector,

m̄r ¼ eΔτG0m̄e−ΔτG0

¼ cosð2ΔτÞm̄þ sinð2ΔτÞG0 ∧ m̄: ð89Þ

Before applying the second factor of the propagator, it is
convenient to decompose the vector mr in normalized
components parallel and perpendicular to the normalized

p̄ðnÞ
r instead of m̄ [as in (A58)], that is,

m̄r ¼ c1ðτÞp̄ðnÞ
r þ c2ðτÞG0 ∧ p̄ðnÞ

r : ð90Þ

As m̄r is normalized, c21ðτÞ þ c22ðτÞ ¼ 1. Note that

c1ðτÞ ¼ m̄r · p̄
ðnÞ
r ≡ cosðθðτÞÞ; hence c2ðτÞ ¼ sinðθðτÞÞ.

Finally, we have

MðnÞ ¼ e−p
ðnÞ
r ðτÞeΔτG0MðnÞ

0 e−ΔτG0ep
ðnÞ
r ðτÞ ð91Þ

¼ ðcosh r cosh dp þ sinh r sinh dp sin θÞG0

þ ðcosh r sinh dp þ sinh r cosh dp sin θÞG0 ∧ p̄ðnÞ
r

þ sinh r cos θ p̄ðnÞ
r ; ð92Þ

where

dpðτÞ≡ 2jpðnÞ
r ðτÞj ¼ jFnðτÞj: ð93Þ

As the solutions evolve, the distance between M and the
origin, dM ¼ cosh−1 ð−M ·G0Þ, varies within

jr − dpj ≤ dM ≤ jrþ dpj; ð94Þ

as θ varies from −π=2 to π=2.
First note that when dpðτÞ ¼ jFnðτÞj ¼ 0, and using

Eqs. (89) and (90), we recover the time-independent case
Eq. (69) from Eq. (91) ifU is boosted toG0 (which is trivial
when U is constant). In this case, we notice all solutions
rotate at a constant distance r from U ¼ G0. Therefore the
curve VðnÞðtÞ ¼ G0 is a perfect static curve, yielding a

globally stable vacuum with no particle creation as long as
r ¼ dVðnÞðt0Þ ¼ 0. That is our VDC in that situation.
In the adiabatic case, when dpðτÞ ¼ jFnðτÞj ≠ 0, the

solutions rotate around G0 inside an annular disk with
maximum width 2dpðτÞ and maximum radius rþ dpðτÞ. In
this case, the curve Vð2ÞðtÞ ¼ G0 is not a perfectly static
curve because even with r ¼ 0 solutions still rotate around
G0 at a distance dpðτÞ ≠ 0 from it. However, in the
adiabatic approximation dpðτÞ ≪ 1, hence we can consider
the curve VðnÞðtÞ ¼ G0 as a quasistatic curve: during the
time interval in which the adiabatic approximation is valid,
the solutions remain close to it. Therefore, we chooseG0 as
our VDC; note, however, that this is a frame-dependent
choice: if the VDC is set at frame (n), then VðnÞ ¼ G0, but if
computed at a different frame, it will differ from G0. For
example, for 0 < n0 < n we have

Vðn0Þ ¼ G0 þ
Xn

j¼n0þ1

OðjÞ:

Going to the original frame the last canonical transforma-
tion is not necessarily small since it is generated by ξ; thus,
the VDC at the original frame has a potentially large boost

in the G2 direction. When necessary, we write Vðn0Þ
n to

denote the VDC set at frame n but computed at frame n0,

naturally VðnÞ
n ¼ G0. These points are illustrated at Sec. V B

where we present an example of the VDC in a cosmological
setting.
Now, let MðnÞðtÞ be the time evolved solution from VðnÞ

n ,
and the Bogoliubov coefficient for particle production
reads

jβMðnÞ;VðnÞ ðtÞj ¼ jβM;VðtÞj

¼ sinh

�
dMðnÞðtÞ

2

�

¼ sinh
�
dpðtÞ
2

�
≈
dpðtÞ
2

; ð95Þ

which is as small as the adiabatic factors.
Note that, contrary to the time-independent case, the

VDC VðnÞ
n ðtÞ ¼ G0 is not unique. In fact, any choice

VðnÞ
n ðtÞ ¼ Q in the region inside the disk with radius dQ

less than the minimum value of dpðtÞ=2 during the time
interval in which the adiabatic approximation is valid
(d�p=2) yields approximately the same Bogoliubov coef-
ficient given in (95). As a concrete example, take as VDC

an arbitrary point VðnÞ
n ðtÞ ¼ MðnÞ

0 [as defined in Eq. (87)].

For a solution MðnÞ emanating from VðnÞ
n ðtÞ, we obtain at

first order in dp
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jβ
VðnÞ
n ;MðnÞ ðtÞj≲ sinh ðrÞ þ cosh ðrÞ dpðtÞ

2
: ð96Þ

The expression above shows that if the VDC is close
enough to the origin, i.e., r ≪ dp, then we have approx-
imately the same distance from the VDC as in the case
where r ¼ 0. In other words, any r much smaller than dp
give a VDC with approximately the same particle creation.
Notwithstanding the result above, for simplicity, we will

always choose the VDC as VðnÞ
n ¼ G0.

Concluding, in the adiabatic case, we no longer have a
simple stability curve (the curve which all solutions keep a
constant distance from it), but we now have a stability
region, that is, the small circle around the origin with a
radius smaller than dp. Naturally, if n < Nmax, we can
move to another adiabatic frame and reduce the size of the
stability region. However, if the adiabatic series is asymp-
totic, then we have a finite Nmax frame where the stability
region attains its smallest size. Every curve VðtÞ inside this
region can be chosen, yielding a satisfactory vacuum state
with negligible particle production during the time the
adiabatic approximation is valid.

B. The nonadiabatic case

In the adiabatic case, the timescale in which the timelike
vectorU evolves is larger than the characteristic time of the
frequency σ. In the previous subsection, we took advantage
of this fact to make canonical transformations to a frame
where U gets closer and closer to G0. The crucial require-
ment for this is the fact that, after each transformation, the
new vector UðnÞ is timelike, and therefore it can be
normalized. That is possible as long as the additional
terms to the Hamiltonian vector [as δUð1Þ in Eq. (C9)] have
a norm smaller than one.
In the nonadiabatic cases, when we perform a canonical

transformation to adiabatic frames, the transformed
Hamiltonian is no longer timelike. Moreover, in the liter-
ature, it is common to find physical situations described in a
frame where the original Hamiltonian is already spacelike
before any canonical transformation. For example, in the
context of cosmological perturbations, the Mukhanov-
Sasaki variable describes a harmonic oscillator with mass
equal to one and frequency ν2 ¼ k2 − V (where k is the
mode from the harmonic decomposition and V the potential
related to background quantities) in the conformal time
gauge. When the potential V gets larger than k, the
frequency square is negative, the Hamiltonian is not positive
definite anymore, and the vectorU is spacelike. Hence, asM
is necessarily timelike [see Eq. (A42)], we cannot use the
Hamiltonian vector U or its corrections after performing
canonical transformations to settle the initial conditions.
Therefore, we have to find within this type of dynamics other
ways to calculate an approximate propagator from which
we can calculate the solutions and seek stability curves.

Fortunately, this is possible in many physically relevant
situations, as we will now see.
After performing the canonical transformation (C1) to

remove h, the Hamiltonian vector N is given by Eq. (C2):

N ¼
�
1

m
þmσ2

�
G0

2
þ
�
1

m
−mσ2

�
G2

2
: ð97Þ

In different physical scenarios, the nonadiabatic behavior
takes place when 1=m or mσ2; i.e., it diverges as t → t0. A
common example is when m is a positive power law in
t − t0 and σ is real and regular at t0, i.e.,

m ¼ m0ðt − t0Þλð1þOðt − t0ÞÞ;
σ ¼ σ0ð1þOðt − t0ÞÞ; ð98Þ

where m0, σ0, t0 are arbitrary real constants and 0 < λ < 2
(the two special cases λ ¼ �2 will be treated separately).
This is an example where N is timelike, but the adiabatic
approximation is not valid because _ξ=ð2σÞ ∝ λ=ðt − t0Þ
becomes arbitrarily large as t → t0. Consequently, one must
use another strategy. If it is possible to remove the 1=m term
from the Hamiltonian (97) without adding more large
terms, then the Hamiltonian vector becomes negligible in
the limit t → t0. That would allow the usage of iterative
approximations to calculate the associated dynamical
propagator. Then, one can seek stability curves to which
all the equations of motion solutions keep their distances
almost constant.
To find such canonical transformations, it is convenient

to write the Hamiltonian vector given in Eq. (C2) as a linear
combination of two null vectors defined in Eq. (A44) with
time-dependent coefficients, i.e.,

N ¼ 1

m
Lþ
2 −mσ2L−

2 ; ð99Þ

where the large 1=m term is isolated in front of Lþ
2 . Using

the properties of L�
2 , it is easy to see that the canonical

transformation

CþðqÞ≡ e−qL
þ
2 ; ð100Þ

where q is an arbitrary function of t, leads to the
Hamiltonian vector,12

Nð1Þ ¼CþðqÞNC†
þðqÞþ _CþðqÞC†

þðqÞ;

¼ Lþ
2

�
1

m
þq2mσ2 − _q

�
−L−

2mσ2þG1qmσ2: ð101Þ

12Such transformations (generated by L�
2 ) when applied to the

fields result in a redefinition of the field or momentum variable.
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We can remove the term 1=m using the term _q. Otherwise,
we would have to make q2 ¼ −1=ðmσÞ2 which introduces
a new large term through _q. In practice, we can solve
the equation

_q ¼ 1

m
þ q2mσ2; ð102Þ

perturbatively. Consider the case where m goes to zero
as ðt − t0Þλ; i.e., the mass term is given exactly by
m ¼ m0ðt − t0Þλ for a constant m0. The function

q0 ≡
Z

1

m
dt ð103Þ

is clearly a leading solution as long as

jq20m2σ2j ≪ 1: ð104Þ

Around t0 the condition above translates to���� ðt − t0Þ2
ðλ − 1Þ2 σ

2
0

����≪ 1: ð105Þ

There is always a t close enough to t0 such that this
condition is satisfied. For a small correction q ¼ q0 þ q1
and considering q1 at the same order as q20mσ2, we obtain

_q1 ¼ q20mσ2; q1 ¼
Z

q20mσ2dt: ð106Þ

Again, this is a valid approximation as long as

2q1 ≪ q0: ð107Þ

Then, around t0 the condition is���� 2ðt − t0Þ2σ20
ðλ − 1Þðλ − 3Þ

����≪ 1: ð108Þ

We can continue in this way and at each order we have a
similar condition as (108). In practice, this is the same
result one would get solving this equation in powers of m
and considering q0 a zero-order term. Notwithstanding, that
does not imply that qn are small, it is easy to show that
around t0,

qn ∝ ðt − t0Þ2nþ1−λ: ð109Þ

Note that our previous imposition λ < 2makes qn for n > 0
converges to zero at t → t0. This choice simplifies the
analysis below, although it is not required. We could move
on with λ > 2, but the canonical transformations would be
more complicated.
Substituting back this expression for q up to first order in

Eq. (102), we get

Nð1Þ ¼ Lþ
2 ð2q0q1 þ q21Þmσ2 − L−

2mσ2 þG1qmσ2; ð110Þ

where the first terms are at least second order inmwhile the
latter two are first order. Computing these quantities around
t0 results in the Lþ

2 terms being the smallest [and the
leading one proportional to ðt − t0Þ4−λ], while the L−

2 and
G1 are ðt − t0Þλ and ðt − t0Þ, respectively.
Now, considering only first-order terms the Hamiltonian

vector still has spacelike components, G1 and G2. To get a
Hamiltonian close toG0, as we did in the adiabatic case, we
need to eliminate such terms. For that, we make a first-order
canonical transformation generated by G1 and G2, i.e.,

C12ðp1; r1Þ ¼ er1G2e−p1G1 ; ð111Þ

where p1 and r1 are arbitrary functions of time that are
assumed to be first order inm. With this last transformation
we get

Nð2Þ ¼ mσ2

2
G0 þ ðq0mσ2 − _p1ÞG1

þ
�
_r1 −

mσ2

2

�
G2 þOð2Þ: ð112Þ

Therefore, we can easily eliminate the terms proportional to
G1 and G2 choosing

p1 ¼
Z

q0mσ2dt; r1 ¼
1

2

Z
mσ2dt; ð113Þ

which are, indeed, first-order terms. Here we stress that we
are considering p1 and r1 small compared to one since we
are computing the canonical transformation in powers of
these two functions, this is why choosing λ < 2 simplifies
the analysis. Studying the behavior around t0, one can
verify that there is always a value of t close enough to t0
such that these quantities are much smaller than one.
However, note that these transformations add second-order
corrections to the G0 term,13 which we denote by s2.
Naturally, we can make a third canonical transformation of
the kind C12ðp2; r2Þ with second-order functions p2 and r2
eliminating the same order terms in G1 and G2, again
adding a correction term s3 toG0. Repeating this process up
to order n we get

NðnÞ ¼ sG0 þOðnÞ; ð114Þ

where s contains all correction terms up to order n − 1, i.e.,

s ¼ mσ2

2
þ
Xn−1
i¼2

si: ð115Þ

13In addition to those already present in Eq. (110).
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In this frame, it is easy to compute the propagator up to
n − 1 order terms as

PðnÞ ¼ eΔφG0 ; Δφ≡
Z

t

t0

sdt: ð116Þ

The solutions up to OðnÞ can be read from (69) by making
the substitutions σ → s, Δτ → Δφ, U → G0 and writing

MðnÞ
0 as in Eq. (87), and we obtain

MðnÞ ¼ cosh rG0 þ sinh rðcosð2ΔφÞm̄− sinð2ΔφÞm̄ ∧ G0Þ
þOðnÞ: ð117Þ

Similar to the time-independent case, a general solution
also evolves on circles in the “spatial” plane G1, G2. The
crucial difference is that jΔφj ≪ 1, as it is a first-order term.
In this context, the solutions describe small arcs on the
circles, while in the static and adiabatic cases they may spin
around many times. Note that the Bogoliubov coefficient

between MðnÞ
0 and MðnÞ is

jβ
MðnÞ;MðnÞ

0

j ¼ sin jΔφj sinh rþOðnÞ: ð118Þ

Consequently, the closer the initial conditions are to the
origin, the smaller the arc segment length wanders by the
solution. Therefore, the natural VDC choice in this frame is,
again, VðnÞðtÞ ¼ G0. This is a stability curve in the same
sense as before, the solutions do not change their distances
from it as they evolve (up to the chosen order of approxi-
mation), yielding jβMðnÞ;G0

ðtÞj ≈OðnÞ. Of course, as in the

adiabatic case, any other Vð2ÞðtÞ with r ≤ OðnÞ yields
Bogoliubov coefficients of the same order. On the other
hand, solutions with a very large rwill also have a very large
β coefficient, even with a first-order Δφ. Concluding, at first
order in s, the stability region is a small disk around the
origin with a OðnÞ radius. Thus, the VDC for the non-

adiabatic case is also defined by VðnÞ
n ¼ G0, but now set in

the nonadiabatic frames defined above.

1. Special cases: λ = 2

In the nonadiabatic regime there are also two special
cases that can be solved in another manner. Starting from
the Hamiltonian (99), we can make the following canonical
transformation:

C�ðq0Þ ¼ e
π
2
G0e

1
q0
L−
2 e−q0L

þ
2 ; ð119Þ

where q0 is the same function defined in Eq. (103). The
resulting Hamiltonian is

Nð1Þ ¼ 1

q20m
Lþ
2 − q20mσ2L−

2 : ð120Þ

This transformation in the field perspective is just the
rescaling of ϕ by 1=q0. Considering the power-law behav-
ior, when approaching the nonadiabatic regime given in
Eq. (98), we have a new effective mass

q20m ¼ 1

m0

ðt − t0Þ2−λ
ðλ − 1Þ2 : ð121Þ

Thus, if λ ¼ 2, the new mass no longer goes to zero when
t → t0; i.e., t0 is now a regular point in this frame.
Moreover, as m > 0 and assuming σ > 0, then we can
rewrite the Hamiltonian as

Nð1Þ ¼ σe−
ξq
2
G0G2G0e

ξq
2
G0G2 ; ξq ≡ ln ðq20mσÞ: ð122Þ

Making the inverse canonical transformation leads to
another Hamiltonian as in Eq. (C8), that is,

Nð2Þ ¼ σðG0 − FqG1Þ; Fq ≡ −
_ξq
2σ

: ð123Þ

As ξq is constant for λ ¼ 2, we get just Nð2Þ ¼ σG0, as in
the case examined in Sec. III B, with an actual fixed point
and the vacuum exactly determined by Vð2ÞðtÞ ¼ G0 in
this frame.
Going back to the original frame we obtain

VðtÞ ¼ Lþ
2

q20
cq

− L−
2

�
1

cq
þ cq
q20

�
−G1

q0
cq

; ð124Þ

where we defined the constant cq ¼ q20mσ. Comparing the
VDC above with the field variables as described by
Eq. (A45), we obtain using ra ≐ ðϕ;ΠϕÞ, satisfying
r�aSabrb ¼ 1 and a particular choice of time-dependent
phase such that ϕ is real at the initial time,

ϕ¼ q0ffiffiffiffiffiffiffi
2cq

p e−iθ; Πϕ ¼
�

1ffiffiffiffiffiffiffi
2cq

p − i

ffiffiffiffiffi
cq
2

r
1

q0

�
e−iθ; ð125Þ

where

θ ¼ θ0 þ
Z

σdt: ð126Þ

In this case not only do we have an exact VDC, but it is also
an exact solution.

2. Special cases: λ = − 2

The second special case occurs when we have the same
behavior for the mass (98) but with λ < 0. In these
situations, the term m must be removed from the
Hamiltonian instead of 1=m. To accomplish this, we need
to perform a different canonical transformation generated by
L−
2 instead of Lþ

2 . Using L�
2 , the canonical transformation
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C−ðpÞ≡ epL
−
2 ; ð127Þ

where p is an arbitrary function of t, leads to the
Hamiltonian

Nð1Þ ¼ Lþ
2

1

m
þ L−

2

�
_p −mσ2 −

p2

m

�
−G1

p
m
: ð128Þ

Similar to the 1=m case we choose

p ¼ p0; p0 ≡
Z

mσ2dt: ð129Þ

We could follow the same steps as in the beginning of this
section to find the nonadiabatic vacuum. However, in this
particular case, it is simpler to implement a second canonical
transformation generated by Lþ

2 ,

C∓ðp0Þ ¼ e
π
2
G0e−

1
p0
Lþ
2 ep0L−

2 ; ð130Þ

to find the Hamiltonian

Nð1Þ ¼ p2
0

m
Lþ
2 −

mσ2

p2
0

L−
2 : ð131Þ

Note that, in this case the effective mass is given by

m
p2
0

≈
ðλþ 1Þ2
m0σ

4
0

ðt − t0Þ−ð2þλÞ: ð132Þ

Thus, now the effective mass is constant when λ ¼ −2. As in
the previous case this Hamiltonian is a single boost in theG2

direction, i.e.,

Nð1Þ ¼ σe−
ξp
2
G0G2G0e

ξp
2
G0G2 ; ξp ≡ ln

�
mσ

p2
0

�
: ð133Þ

Again, the second frame defined by the canonical trans-
formation above leads to the VDC Vð2ÞðtÞ ¼ G0, which is a
fixed point of the system when m ∝ t−2. In the original
frame the VDC reads

VðtÞ ¼ Lþ
2

�
1

p2
0cp

þ cp

�
− L−

2p
2
0cp þG1p0cp; ð134Þ

where cp ≡mσ=p2
0. Writing this VDC in the field variables

using Eq. (A45) and using a particular choice of time-
dependent phase θ such that initially we have Πϕ purely
imaginary, we get the normalized phase vector ra ≐ ðϕ;ΠϕÞ,

ϕ ¼
�

1

p0

ffiffiffiffiffiffiffiffi
2cp

p þ i

ffiffiffiffiffi
cp
2

r �
e−iθ; Πϕ ¼ −i

ffiffiffiffiffi
cp
2

r
p0e−iθ:

ð135Þ

Here, θ is also given by Eq. (126).

V. APPLICATIONS

In this section we will apply the formalism developed in
Sec. IV to some representative cases in cosmology. For the
adiabatic case, we will obtain the well-known adiabatic
vacuum used to calculate the perturbation spectra in the
matter bounce scenario. In the next subsections, we will
apply the method constructed in Sec. IV B to two examples.
We first consider the nonadiabatic case in which the
contracting phase of a bouncing model is asymptotically
dominated in the past by a cosmological constant. We
obtain a new vacuum state for the cosmological perturba-
tions which is not known in the literature. In the second
case, in order to illustrate the power of the new method, we
obtain the Bunch-Davies vacuum for a massless scalar field
in de Sitter space in a completely different manner from
those found in the literature. We use the VDC established in
its appropriate frame as described in Sec. IV, and then we
get back to the original frame in which the equations are
usually formulated.

A. Nonadiabatic vacuum in bouncing models
with a cosmological constant

One important application of the procedure described in
Sec. IVB to provide a VDC is the problem of a stable
quantum vacuum state definition in a bouncing model
containing dark energy which is asymptotically dominated
by it in the far past. In this limit of the contracting branch,
the scalar and/or tensor perturbations field-mode frequencies
are negligible with respect to the background expansion rate
scale; that is, the mode-wavelengths are much larger than
the Hubble radius at that time. Some attempts have been
made [24] to define a sound quantum vacuum state in this
situation. However, as discussed in Ref. [24], their proposal
had limitations, since it depends on a particular point during
the contraction phase, where the potential is exactly zero and
does not necessarily lead to a stable vacuum in the past. Note
that if the standard ΛCDM cosmological model is correct
and dark energy is a small cosmological constant, then any
bouncing model containing a large scale contracting phase
will have to face this problem, as the cosmological constant
dominates at these scales.
Consider a contracting Friedmann-Lemaître model

dominated by a cosmological constant, and a perfect fluid
with equation of state p ¼ wρ, for a constant w, where p is
the fluid pressure and ρ its energy density. In bouncing
models one usually takes jwj ≪ 1, the so-called matter
bounce, as it naturally leads to an almost scale invariant
spectrum of scalar perturbations when the matter fluid
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dominates the contracting phase. Let us define the redshift
time function x ¼ a0=a, where a is the scale factor and a0
is its value today. In this situation, the Hamiltonian of scalar
linear perturbations has mass and frequency terms given
by [30]

σ ¼ N xcsk; m ¼ 4πGðρþ pÞ
N c2sx3H2

; ð136Þ

whereN is the lapse function,G is the Newton constant, cs
is the sound velocity of the scalar perturbations, H is the
Hubble function, and k is the wave number. Dynamics in
the far past of the contracting phase is ruled by classical
general relativity, yielding the Friedmann equation

H2

H2
0

¼ Ωwx3ð1þwÞ þ ΩΛ; ð137Þ

where H0 is the Hubble constant today, Ωw ≡ ρ0=ρc0,
ΩΛ ≡ Λ=ð8πGρcÞ, ρ0 is the fluid’s energy density today,
and ρc0 ≡ 3H2

0=ð8πGÞ is the critical density today.
Using the dimensionless time parameter,14 0 < T < ∞

defined by T ≡ x (this time variable is convenient since it
tends to the conformal time in the asymptotic past) yields

N ¼ 1

T
ffiffiffiffiffiffiffi
ΩΛ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αT2þλ

p ; ð138Þ

where α≡Ωw=ΩΛ and λ≡ 1þ 3w. Substituting this time
variable back in (136), results in

σ ¼ σ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αT2þλ

p ; m ¼ m0Tλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αT2þλ

p ; ð139Þ

where

σ0 ≡ cskffiffiffiffiffiffiffi
ΩΛ

p ; m0 ≡ ð2þ λÞα ffiffiffiffiffiffiffi
ΩΛ

p
2c2s

:

We are interested in the asymptotic past of the con-
tracting phase, when T → 0. In this case one gets

σ ≈ σ0; m ≈m0Tλ: ð140Þ

Using Eq. (140) in Eqs. (103), (106), and (113) we get

q0 ¼
T1−λ

m0ð1 − λÞ ; q1 ¼
T3−λσ20

m0ð3 − λÞð1 − λÞ2 ; ð141Þ

p1 ¼
T2σ20

2ð1 − λÞ ; r1 ¼
T1þλm0σ

2
0

2ð1þ λÞ : ð142Þ

Then, the VDC discussed in Sec. IV B is just the choice

Vð2Þ
2 ðtÞ ¼ G0 in the transformed frame ð2Þ.
Performing the inverse transformations we obtain the

VDC in the original frame. In the case of a matter bounce
scenario where 0 < w ≪ 1 one gets that λ is slightly larger
than one. For this reason, we see that q0 is actually
divergent when T → 0, while all other transformation
parameters are small in the limit. For this reason, we first
write the full transformation as

V2ðtÞ¼C†
þðqÞC†

12ðp1;r1ÞG0C12ðp1;r1ÞCþðqÞ

¼cosh ð2r1Þ
�
cosh ð2p1Þþ

q2

2
e−2p1−qtanh ð2r1Þ

�
G0

þcosh ð2r1Þ½−qe−2p1þ tanh ð2r1Þ�G1

þcosh ð2r1Þ
�
sinh ð2p1Þþ

q2

2
e−2p1−qtanh ð2r1Þ

�
G2:

ð143Þ

Expanding V2ðtÞ at first order in p1 and r1, we get

V2ðtÞ ¼
�
1þ q2

2
− 2qr1 − q2p1

�
G0 þ ð2r1 − qþ 2qp1ÞG1

þ
�
q2

2
− 2qr1 þ

�
1−

q2

2

�
2p1

�
G2: ð144Þ

We can relate the full VDC (143) with the field variables
using Eq. (A45), yielding

ϕ ¼ qe−p1
1 − i sinh ð2r1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosh ð2r1Þ
p þ iep1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ð2r1Þ

2

r
; ð145Þ

Πϕ ¼ e−p1
1 − i sinh ð2r1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosh ð2r1Þ
p : ð146Þ

At first order, the same VDC reads

ϕ ¼ qð1 − p1Þ þ ið1þ p1 − 2qr1Þffiffiffi
2

p ; ð147Þ

Πϕ ¼ 1 − p1 þ 2ir1ffiffiffi
2

p : ð148Þ

For our present problem, we can express this VDC explicitly
in terms of the cosmological parameters, which reads

14From now on, in this subsection and in the following one, all
variables are made dimensionless as they express physical
quantities in Hubble radius unities, that is, tS ≡ tH0,
kS ¼ ð1=H0Þk, etc.
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ϕ≈
iffiffiffi
2

p
�
1−

c2sk2T2

2ΩΛð2þ 3wÞ
�

þ 1ffiffiffi
2

p
�
−
2c2s

ffiffiffiffiffiffiffi
ΩΛ

p
T−3w

9wð1þwÞΩw

�
1−

c2sk2T2

2ΩΛð2− 3wÞ
��

; ð149Þ

Πϕ ≈
iffiffiffi
2

p
�
−
3ð1þ wÞΩwk2T2þ3w

2ðΩΛÞ3=2ð2þ 3wÞ
�

þ 1ffiffiffi
2

p
�
1þ c2sk2T2

6wΩΛ

�
: ð150Þ

The limit T → 0 corresponds to the super-Hubble regime;
hence the field variables ϕ can be obtained using the super-
Hubble approximation at the same order, that is,

ϕ ≈ A1ðkÞ
�
1 −

Z
dT
m

Z
m0σ02dT 0

�

þ A2ðkÞ
�Z

dT
m

−
Z

dT
m

Z
m0σ02dT 0

Z
dT 00

m00

�
; ð151Þ

where the primed functions indicate the argument, e.g.,
m0 ≡mðT 0Þ. One can verify that the time dependence
calculated in this way fits with Eq. (149), leading to the
particular choice A1ðkÞ ¼ iA2ðkÞ ¼ i=

ffiffiffi
2

p
(apart from a k-

independent constant phase). Therefore, these two constants,
which yield the spectrum of ϕ, are determined using
our VDC.
Equations (149) and (150) are the main result of this

subsection. It yields a new stable vacuum state, which can
be defined in the asymptotic contracting phase of a
bouncing model with a cosmological constant and a matter
fluid, yielding the initial conditions of quantum cosmo-
logical perturbations on it. It is worth emphasizing that this
result is valid for any physical case where only q0 diverges
in the limit T → 0.
The behaviors described in this section can be seen by

examining Figs. 1–3. In these figures we use the
Minkowski representation where the coordinates x1 and
x2 are “spatial” projections and x0 is the “time” compo-
nent, i.e.,

xB ≡M · GAη
AB: ð152Þ

The original frame shown in Fig. 1 is dominated by the q
term, and this is easily seen inspecting an arbitrary solution

M ¼ C†
þðqÞPð1ÞM0Pð1Þ†CþðqÞ

¼ C†
þðqÞM0CþðqÞ þOð1Þ: ð153Þ

In terms of the components we have at leading order,
ignoring first-order corrections,

x1 ¼ x10 þ qðx10 þ x00Þ; ð154Þ

x2 ¼ x20 − qx10 −
q2

2
ðx20 þ x00Þ; ð155Þ

x0 ¼ x00 þ qx10 þ
q2

2
ðx20 þ x00Þ: ð156Þ

For given initial condition components xB0 ¼ M0 · GAη
AB.

Thus, we have approximate parabolas in the x1-x2 plane.
The first-order frame is depicted in Fig. 2, where the

divergent term is removed. Finally, in the second-order
frame (Fig. 3), we see the rotating behavior dominating far
from the VDC. As we get closer to the origin, the solutions
follow the behavior of the VDC.

1. Special case: Radiation

For a radiation fluid we havew ¼ 1=3; hence λ ¼ 2. This
is the case described in Sec. IV B 1. At leading order in T
[see Eq. (140)] we have

cq ¼
c3sk
2αΩΛ

; q0 ¼ −
c2s

2Tα
ffiffiffiffiffiffiffi
ΩΛ

p : ð157Þ

Using these quantities we obtain the VDC in terms of the
fields as

ϕ ¼ −
ffiffiffiffiffi
cs
kα

r
1

2T
e−iθ; Πϕ ¼

ffiffiffiffiffiffiffi
α

csk

r � ffiffiffiffiffiffiffi
ΩΛ

p
cs

þ ikT
�
e−iθ:

ð158Þ

Note that in this case the field diverges as T → 0 in the
original frame. However, even in this case we have a well-
defined vacuum.

B. Adiabatic vacuum in the matter bounce scenario

In this section we make a brief review of the adiabatic
vacuum in the matter bounce model in order to illustrate our
method in a well-known scenario. Here we use the same
model as in Sec. VA, but setting ΩΛ ¼ 0. We then get the
following mass and frequency results:

σ ¼ σ0
T1þλ=2 ; m ¼ m0

T1−λ=2 ; ð159Þ

where here we have

σ0 ≡ cskffiffiffiffiffiffiffi
Ωw

p ; m0 ≡ ð2þ λÞ ffiffiffiffiffiffiffi
Ωw

p
2c2s

:

Substituting these quantities in Eq. (C8) results in
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F1 ¼
ffiffiffiffiffiffiffiffiffiffi
ΩwT

p
csk

; ð160Þ

which tends to zero as T → 0. One can compute higher-
order terms to check that all converge to zero as T → 0.
To illustrate our method, in Fig. 4 we plot the solutions

calculated numerically using a fourth-order adiabatic
vacuum as the VDC in the original frame. We computed
both F1 and F2 analytically and F3 and F4 numerically.
However, the numerical results provide no further insights
on the problem, and therefore we are not including them
here.15 We also included solutions starting around the

VDC with a distance r and angle θ with the x1 axis.
Although the frame is dominated by the boost generated
by ξ, we can see that the solutions oscillate around the
VDC. In Fig. 5 we show the same solutions in the first
adiabatic frame. In this frame, the ξ boost is removed, and
the solutions are closer to circles around the origin.
Finally, in Fig. 6 we plot again the same solutions but
now in the second adiabatic frame. Here we notice a
further slowdown of the VDC, as it stays even closer to the
origin than in the first frame. Solutions starting around the
VDC have the predicted behavior, where they revolve and
move keeping its center on the VDC. Finally, in all plots
we also included a solution starting exactly at the VDC at
the initial time T0 ¼ 10−10; note that it stays initially close
to the VDC, and starts to deviate from it by the end of the
adiabatic regime.

FIG. 1. Numerical solutions for Eq. (45) for the contracting model described in Sec. VA. All solutions were computed in the frame ð1Þ

and transformed to the original frame. The used parameters are Ωw ¼ 0.3, ΩΛ ¼ 0.7, w ¼ 0.1, and k ¼ 103. Since the solutions are
timelike vectors with positive time components [as discussed below Eq. (A42)], the plotted spatial components x1 and x2 [see Eq. (152)]
represent the solution uniquely. In this figure, we show solutions in the original frame. As discussed in Sec. IV B, this frame is
dominated by the 1=m term, which can be removed using a canonical transformation generated by q0L

þ
2 , leaving a first-order

Hamiltonian vector. For this reason, the solutions in this frame for a given initial condition M0 are given by Eq. (153), which draw
approximate parabolas in the x1-x2 plane. We plot here 8 × 6þ 1 different solutions. The initial conditions (all set at frame ð1Þ) are given
by points in circles around the origin G0, with six equally log-spaced radius (hyperbolic distance from G0) in the interval
ð10−5; 4 × 10−1Þ, and eight equally spaced angles in ð0; 2πÞ. We also plot the VDC given by V2ðtÞ and the solutionM starting at G0 and
T ¼ 0, i.e., Mð1Þð0Þ ¼ G0. In this frame, one cannot notice any discrepancy between them. Furthermore, the divergent term dominates
the evolution, and all solutions diverge to infinity at T ¼ 0. Thus we only plot the interval T ∈ ð10−8; 10−5Þ. Solutions with the same
distance to the VDC are plotted with the same color. We included a zoom at the end of evolution (near T ¼ 0) to present more clearly the
different solutions in this frame.

15The numerical code and Python notebooks where these
solutions were computed can be found here: VacuumStudy [31]
and VacuumStudyAdiabatic [32].
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C. Bunch-Davies vacuum in the nonadiabatic
formalism

The Hamiltonian vector (99),

N ¼ 1

m
Lþ
2 −mσ2L−

2 ; ð161Þ

which sets the dynamics in conformal time η for the modes
ϕkðηÞ of a free scalar field with mass M in de Sitter space,
has the functions mðηÞ and σðηÞ given by

mðηÞ ¼ a2ðηÞ ¼ 1

H2
Λη

2
; σ2ðηÞ ¼ k2 þM2mðηÞ; ð162Þ

where H2
Λ ≡ Λ=3, aðηÞ is the scale factor of de Sitter space

in flat coordinate system, and Λ is the cosmological
constant.

From the Hamiltonian vector defined by Eqs. (120)
and (162), we can obtain the following second-order
equation for the mode vkðηÞ≡

ffiffiffiffiffiffiffiffiffiffi
mðηÞp

ϕkðηÞ, namely,

d2vk
dη2

þ
�
k2 −

�
2 −

M2

H2
Λ

�
1

η2

�
vk ¼ 0; ð163Þ

whose general solution reads

vkðηÞ ¼
ffiffiffiffiffiffiffiffi
kjηj

p
½A1ðkÞJγðkjηjÞ þ A2ðkÞYγðkjηjÞ�; ð164Þ

where

γ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
M2

H2
Λ

s
;

and Jγ and Yγ are the Bessel functions of the first and
second kinds, respectively.

FIG. 2. The same solutions discussed in Fig. 1 in the original frame are now plotted in frame ð1Þ. The parabolic behavior seen in Fig. 1
has been removed by the canonical transformation. Consequently, we can see the first-order Hamiltonian effect on the solutions. The
solutions at radii larger than the solutions’ length are dragged toward the origin by applying a constant rigid motion using a rescale
function of the radius fðrÞ as ðx1ðTÞ; x2ðTÞÞ → ðx1ðTÞ; x2ðTÞÞ − fðrÞðx1ð0Þ; x2ð0ÞÞ to improve the readability of the plot. At the frame
ð1Þ, the Hamiltonian vector (110) has first-order terms in all components. For this reason, the solutions do not show any clear pattern as
the evolution consists of a sequence of small boosts in different directions. Nevertheless, since all solutions keep an almost constant

distance from the VDC, we notice that they follow similar trajectories as Vð1Þ
2 . In this frame, the evolution of the VDC can be read

directly from Eq. (144) setting q ¼ 0, yielding x1 ≈ 2r1 and x2 ≈ 2p1. We also included a zoom of the VDC, Mð1Þ, and all nearby
solutions. Here we can notice a small discrepancy between the VDC and Mð1Þ at the end of the evolution.
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One common way to fix A1ðkÞ and A2ðkÞ and get the
Bunch-Davies vacuum is to impose the adiabatic vacuum
prescription in the period where the adiabatic approxima-
tion is valid. Take the first adiabatic function (see
Appendix C) of this model,

F1 ¼
1

2σ

dξ
dη

¼ −
HΛ

2k
2k2H2

Λη
2 þ 3M2

ðk2H2
Λη

2 þM2Þ3=2 ; ð165Þ

where ξ ¼ lnðmσÞ. When jkηj → ∞, which is also the
ultraviolet limit, jF1j → 0, as well as all others jFnj, and
the adiabatic approximation is applicable in this regime.
Expanding the Bessel functions in the limit jkηj → ∞,
solution (164) reduces to the adiabatic vacuum iff
A1ðkÞ ¼ iA2ðkÞ ¼ ðπ=ð4kÞÞ1=2, yielding the Bunch-
Davies vacuum mode,

vkðηÞ ¼
ffiffiffiffiffiffiffiffi
πjηjp
2

½JγðkjηjÞ − iYγðkjηjÞ�: ð166Þ

For a fixed time η one needs to take the limit k → ∞ to
define the vacuum state. That is, the behavior of A1ðkÞ and
A2ðkÞ is only defined in this limit. Therefore, one must
study the behavior of the solutions at different time frames
to get this behavior for all values of k.
In this subsection we will obtain the Bunch-Davies

vacuum exploring the features of the Hamiltonian vector
(120) outside the adiabatic region, where jηj → 0, which is
the super-Hubble regime, using the method constructed in
Sec. IV B. We will focus on the massless case.
In the massless case M ¼ 0 we have γ ¼ 3=2, σ ¼ k, m

is the same, and the F1 function reads

F1 ¼
1

2k
dξ
dη

¼ −
1

kη
: ð167Þ

The expression above shows that in the limit η → 0 the
adiabatic prescription cannot be used. However, this is
exactly the special case discussed in Sec. IV B 2, to

FIG. 3. The same solutions presented in Figs. 1 and 2 are now plotted in frame ð2Þ. Since this frame removes the first-order terms from
the Hamiltonian, the solutions (also moved by a rigid translation) present only second-order variations compared to Fig. 2. We obtain the
behavior predicted analytically in Eq. (117): solutions with large radii r have their evolution dominated by the first-order rotation
describing arcs about G0, which gets affected by second-order terms when the radius becomes sufficiently small. Since we are in a

second-order frame, the VDC Vð2Þ
2 is given by the black dot at the origin, and the solution Mð2Þ only deviates from it by second-order

terms. This plot summarizes most of our results about the nonadiabatic VDC: it shows that all points close to the origin provide a

reasonable VDC because they stay as close to their starting point asMð2Þ from Vð2Þ
2 . That is the stability region discussed in Sec. IV B. As

we move away from the origin, solutions start to rotate about G0, and the second-order effects are less and less visible.
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FIG. 4. Numerical solutions for Eq. (45) for the contracting model described in Sec. V B. All solutions were computed at the first
adiabatic frame ð1Þ. The used parameters are Ωw ¼ 1, w ¼ 10−6, and k ¼ 102. As in Fig. 1, we plotted the components x1 and x2
representing a solution uniquely. In this figure, we show the solutions in the original frame. As discussed in Sec. V B, this frame is
boosted by ξ. Consequently, the VDC and solutions in this frame move quickly in the G2 direction. We plot here four different solutions
in addition to the VDC, and the solutionM satisfyingMðT0Þ ¼ V4ðT0Þwhere T0 ¼ 10−10. Initial conditions are given by circles around
the VDC with distances from V4 for r ¼ 0.01, 0.03, 0.04, and 0.05, and the two angles 0 and π. Solutions with the same distance to G0

are plotted with the same color.

FIG. 5. The solutions presented in Fig. 4 are plotted here in the first adiabatic frame. This frame removes the boost generated by ξ.
Consequently, the motion in the G2 direction is reduced. We predicted this behavior analytically. As we increase the index (n) of the
adiabatic frame, the VDC stays closer to the origin, and solutions keep rotating around it.
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compare the mass term given in Eq. (162) with Eq. (98).
Therefore, substituting m and σ in Eq. (135) we obtain the
following VDC applied to the fields:

ϕ ¼ −
1

a
1ffiffiffiffiffi
2k

p
�
1 −

i
kη

�
e−iθ; Πϕ ¼ ia

ffiffiffi
k
2

r
e−iθ: ð168Þ

This is the well-known Bunch-Davies vacuum for a
massless scalar field with minimal coupling.
Some remarks are important here. Note that we have

obtained the Bunch-Davies vacuum Eq. (168) in the mass-
less case from the Hamiltonian equation (161) directly. All
canonical transformations were used without any approxi-
mation in all steps; hence the final Hamiltonian vector (131)
is constant. We are not aware of any attainment of the
Bunch-Davies vacuum where the general solution (164) is
not used, as well as through an inspection of its large scale
modes behavior alone.
The route we have used to arrive at Eq. (131) is not useful

in the other cases, since it does not lead to the intermediate
Hamiltonian with constant coefficients for other time
dependencies. Thus, the last canonical transformation that
takes the Hamiltonian to G0 will insert back in the
Hamiltonian vector an extra term with G1 multiplied by

the time derivative of ξp. As the reader may verify, this is
also the case of the massive scalar field in de Sitter space,
where time-dependent terms appear in the intermedi-
ate steps.

VI. CONCLUSION

In this paper, we built a framework to find stable vacuum
solutions in terms of stability points in the hyperbolic space
H2 defined as the points to which all solutions of the mode
equations mapped to this space keep approximately the
same distance from them. When the mode frequencies
dominate the field mode evolution, we recover the usual
adiabatic vacua in simple terms. The method is then applied
to the reverse physical situation, namely, when the mode
frequencies become irrelevant for the field mode evolution
or, in the case of curved spaces when the mode wavelengths
are larger than the curvature scale of the background
spacetime. We show that these stability points can also
be found, yielding reasonable stable vacuum states.
As an illustrative example of the second method, we

obtained the Bunch-Davies vacuum of de Sitter space in a
completely different manner. We carried out the analysis in
the super-Hubble regime, where the adiabatic approximation

FIG. 6. The same solutions presented in Figs. 4 and 5 are plotted in the second adiabatic frame. The boosts generated by
ξ and ξ1 are removed. Therefore both movements in theG2 and G1 directions are reduced. Note that the VDC andMð2Þ begin to separate
only when the adiabatic condition is no longer fulfilled. We can visualize this as the region where the solutions cease to revolve around
the stability curve.
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is not applicable. In this regime, we showed that the time-
dependent Hamiltonian vector in the hyperbolic space H2

describing the dynamics of a massless scalar field in the de
Sitter space can be exactly transformed to a trivial time-
independent Hamiltonian using boosts and rotations in this
space. This simple Hamiltonian vector yields its obvious
vacuum state that, when transformed back to the original
frame, is exactly the Bunch-Davies vacuum of the massless
scalar field in de Sitter space. In all this analysis, we never
used the general solution of the field mode equations. There
are two common approaches to tackling this problem. The
first is to choose a time limit when all relevant modes are
sub-Hubble and then use the adiabatic vacuum. The second
approach involves using a general solution for the mode
equations and determining the vacuum as the solution that
matches the adiabatic vacuum in the ultraviolet limit. To the
best of our knowledge, this is the first time one obtained the
Bunch-Davies vacuum without recurring to ultraviolet limit
or the general solution (164).
We then applied the new method to the cosmologi-

cal problem of finding the vacuum state of cosmological
perturbations in bouncing models with a cosmological
constant and a fluid satisfying p=ρ ¼ w ¼ const in the
asymptotic past of such models. In this regime, the mode
frequencies are irrelevant for the mode dynamics, and all
relevant cosmological scales are much bigger than the
Hubble radius. Nevertheless, we found a new vacuum state,
given in Eq. (144), which is stable up to the infinity past of
these models.
For the nonadiabatic vacuum computed in Sec. IV B,

looking at Eq. (109), we can see that its series expansion
only produces small qn>0 for λ < 2 ⇒ w < 1=3, explain-
ing the upper limit we imposed to λ. Moreover, for λ ¼
1þ 3w with 0 < jwj ≪ 1, the q0 term (141) and, con-
sequently, the VDC given in Eqs. (149) and (150) diverge
very slowly for positive w or converge to zero for negative
w. In a geometric point of view, the VDC in the original
frame, given by Eq. (143), tends asymptotically to the
“null” vector Lþ

2 if w > 0, and to the origin G0 if w < 0.
For positive w, this does not mean that the vacuum is not
stable. All solutions starting close to the nonadiabatic VDC
become closer and closer as we move back in time. That is,
the VDC itself is valid everywhere but in the infinite past.
We can evaluate the power spectra to understand the
differences between these two scenarios. Inspecting
Eqs. (149) and (150) we note that for 0 < w ≪ 1 the
power spectrum for ϕ (∝ jϕj2 ∝ T−6w) diverges slowly
while for Πϕ it tends to a constant. Now, if ϕ diverges, one
should account for its backreaction in the background
model. In addition, when ϕ is a first-order perturbation, the
perturbative approach is unstable in this limit since ϕ grows
unbounded. Nevertheless, both power spectra tend to be
constants for −2=3 < w < 0. Thus the model in this
scenario is completely stable, at least modewise.

Furthermore, it also takes longer for the power spectrum
to diverge in the positive case as w → 0 (the case w ¼ 0
excluded, one cannot have σ0 ¼ 0). Therefore, the opti-
mum situation for maximum stability of the power spectra
is j3wj ≪ 1. As it is well known, observations indicate that
dark matter should satisfy c2s ≪ 1 and jwj ≪ 1 (but they
cannot be null as well). That may indicate a deep
connection between the cosmological constant and dark
matter: one can obtain an arbitrary long-lived vacuum state
with nondivergent power spectra in the far past of such
models only when we consider both components at once.
There is also the interesting possibility of considering self-
interacting dark-matter components. These have their
equation of state modified by bulk viscosity that can lead
to a slightly negative w and consequently to stable models.
The consequences of this finding may be far-reaching.

To the best of our knowledge, it is the first time one gets a
connection between the cosmological constant and a fluid
with the properties of dark matter, two independent and
unrelated components of the standard cosmological model.
They cooperate to allow the construction of an asymptotic
stable quantum vacuum in a sense discussed above. This
fact may shed some light on the search of physically
meaningful stable vacua in string theory. One usually
searches in the direction of a pure cosmological constant,
or inflaton fields with slow-roll potentials, without success
(see, for example, [33]). Perhaps one should change to
search in the direction of a positive cosmological constant
together with a fundamental field suitable to describe dark
matter, as K-essence scalar fields, which, as far as we know,
were never investigated in this framework. Maybe a
positive cosmological constant and dark matter are two
fundamental ingredients of gravitation that cannot be
studied separately, they seems to be consistent only when
combined. It is maybe an interesting avenue to follow.
It is important to note that once a vacuum prescription is

established for a particular time interval, it can be used to
evolve the field to any other time. Therefore, even if there is
no vacuum prescription for later times, one can have well-
defined initial conditions that can be evolved to any
arbitrary time. In the case of inflationary models, the
Bunch-Davies vacuum is commonly used as a well-defined
initial condition since all modes can be made adiabatic in
the far past. Although observables such as the two-point
function or power spectrum can still be computed as the
modes evolve to super-Hubble regimes, particle production
during nonadiabatic phases cannot be computed without a
vacuum definition. Thus, a vacuum definition serves two
purposes: to impose well-defined initial conditions for
quantum fields and to compute particle production. Since
the number of particles is defined in terms of the vacuum
state at a given time, it is necessary to define the vacuum
state at all times where particle production will be
computed. Finally, for models where all modes are
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super-Hubble in the past limit, a vacuum prescription at this
regime is required to impose sensible initial conditions.
In upcoming work, we will use the stable quantum

vacuum obtained above as the initial quantum state of
quantum cosmological perturbations evolving in bouncing
models with a positive cosmological constant and dark
matter to evaluate their amplitude and spectra.
We will also enlarge the above framework to multiple

fields and place it into an extended and more fundamental
mathematical framework.
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APPENDIX A: PHASE SPACE
REPRESENTATION

We can write the product between two vectors ra and qa
in Vk;t0 as r

�
aSabqb. We will raise and lower indices using

the matrix Sab and its inverse through ra ≡ Sabrb. From this
definition, we have the following properties:

ra ¼ Sabrb; r�a ¼ rb�Sba;

ra ¼ Sabrb; ra� ¼ r�bS
ba;

r�aqa ¼ ra�qa: ðA1Þ

If a given vector has a positive norm, i.e., r�aSabrb > 0, its
complex conjugate has a negative norm ðr�aÞ�Sabr�b ¼
−r�bSbara < 0. Therefore, it is convenient to choose the
basis such that the vector ra always has a positive norm, and
its complex conjugate has a negative one. Using a nor-
malized vector, ra�ra ¼ 1, we define the projectors

Pa
b ≡ rarb�; Pa

b� ≡ r�arb ¼ SbcPc
dSda: ðA2Þ

It is easy to show that

δa
b ¼ Pa

b þ Pa
b�; Sab ¼ Pab − P�

ab; ðA3Þ

where

Pab ¼ Pa
cScb ¼ rar�b: ðA4Þ

The expressions above are valid for any unitary vector. This
implies that, for any basis, the imaginary part of the
projector Pab is the symplectic matrix Sab, and the real
part of Pa

b is the identity.
We can now define the operator Jab as

Jab ≡ ðPa
b − Pa

b�Þ; Jab ¼ ðPab þ P�
abÞ; ðA5Þ

and, conversely,

Pa
b ¼ Jab þ δa

b

2
: ðA6Þ

Here we should note that Jab is a real matrix while Jab is
purely imaginary. Hence, the real operator Ma

b defined
below satisfies

Ma
b ≡ −iJab; Ma

cMc
b ¼ −δab; ðA7Þ

and it defines a complex structure in the phase space. Here
we call attention to the fact that any normalized phase
vector ra leads to a linear structureMa

c. However, any other
phase vector that differs by a simple phase leads to the same
complex structure; i.e., given a phase vector qa ¼ eiθra, the
projectors are the same

Pa
b½q� ¼ qaqa� ¼ rara� ¼ Pa

b½r�;

and consequently the complex structures are also equal. We
discuss this property further in the section below.

1. Reduced phase space equivalence

The reduced phase space V r
k;t0

consists of equivalence
classes of normalized complex phase vectors ½ra�. There is a
one-to-one correspondence between the points in V r

k;t0
and

the space of linear complex structure VM
k;t0

[the space of

2 × 2 real matrices Ma
b satisfying Eq. (A7)]. First, we

show that Eq. (A5) provides a map μ∶ Vr
k;t0

→ VM
k;t0

,

μð½r�Þab ¼ −iðrarb� − r�arbÞ:

It is evident that the map is independent of the represen-
tative of ½ra�; i.e., any phase vector qa ∈ ½ra� is taken to the
same matrix,

rarb� − r�arb ¼ qaqb� − q�aqb: ðA8Þ

Given any two points in Vr
k;t0

, ½r� and ½q� that are taken to the
same matrix μð½r�Þab ¼ μð½q�Þab, we can contract Eq. (A8)
with ra�rb and rarb to obtain

jraq�aj2 þ jraqaj2 ¼ 1; ðA9Þ

raqarbq�b ¼ 0: ðA10Þ

There are two possibilities to solve the second equation
above, raqa ¼ 0 or raq�a ¼ 0. However, if raq�a ¼ 0, then
Eq. (A8) shows that qa ¼ −qbrbr�a which is inconsistent
with the normalization condition

q�aSabqb ¼ raSabr�b ¼ −1 ≠ 1:
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Hence, the only possibility is raqa ¼ 0 and consequently
qa ¼ qbrb�ra where jqbrb�j ¼ 1, implying that qa ∼ ra. This
amounts to show that the map μ is injective.
Second, we show that the map is surjective. Given any

matrix Ma
b in VM

k;t0
, its eigenvalues must be �i, i.e.,

Ma
brb ¼ λra ⇒ −ra ¼ λ2ra:

As a consequence, since Ma
b is real, its non-null eigen-

vectors must be complex. Hence, given any real phase
vector va, the vectorMa

bvb must be linearly independent of
it, and it is always possible to build a complex eigenvector
with eigenvalue −i of Ma

b as

ra ∝ va þ iMa
bvb; ðA11Þ

which can then be normalized. It is clear that r�a is also an
eigenvector, but with eigenvalue þi. This shows explicitly
that given any real matrix Ma

b ∈ VM
k;t0

we can define an
eigenvector as above. Furthermore, clearly ra and r�a are
linearly independent and form a basis in our two-
dimensional complex phase space. For these reasons we
can write

Ma
b ¼ −iðrarb� − r�arbÞ; ðA12Þ

showing that μ is surjective.

2. The ðX;UÞ parametrization

In the following, we build an explicit representation for
the matrices in VM

k;t0
, given the real basis rðiÞa ≡ δia, i ¼ 1,

2. The action of Ma
b on this basis is

rð1ÞaMa
b ¼ Xrð1Þb þ Urð2Þb; ðA13Þ

rð2ÞaMa
b ¼ l1rð1Þb þ l2rð2Þb; ðA14Þ

where U and l1 must be different from zero (otherwise rðiÞb
would be eigenvectors). Applying the same matrix on the
expressions above results in

−rð1Þa ¼ ðUl1 þ X2Þrð1Þa þUðX þ l2Þrð2Þa; ðA15Þ

−rð2Þa ¼ l1ðX þ l2Þrð1Þa þ ðl1U þ l22Þrð2Þa; ðA16Þ

and therefore, l1 ¼ −ð1þ X2Þ=U and l2 ¼ −X. This
means that we can parametrize the linear complex structure
matrix as

Ma
b ≐

�
X U

−ð1þ X2Þ=U −X

�
: ðA17Þ

This parametrization also has a direct interpretation in
terms of Jab [see Eq. (A5)],

Jab ¼ iMa
cScb ≐

�
U −X
−X ð1þ X2Þ=U

�
; ðA18Þ

and thus,

J11 ¼ U ¼ 2jr1j2; ðA19Þ

J12 ¼ −X ¼ r1r�2 þ r�1r2; ðA20Þ

J22 ¼
1þ X2

U
¼ 2jr2j2: ðA21Þ

Equation (38) then shows that U=2 is just the power
spectrum of χ̂1 ¼ ϕ̂, ð1þ χ2Þ=ð2UÞ the power spectrum
of χ̂2 ¼ Π̂ϕ. In addition, the product of the variances is just

h0rjϕ̂2j0rih0rjΠ̂2
ϕj0ri ¼

1þ χ2

4
: ðA22Þ

Hence, χ measures how far the vacuum j0ri is from
saturating the uncertainty principle. Since U ≠ 0,
Eq. (A19) shows that U ∈ R>0 while χ ∈ R. Of course,
we could add a disconnected branch to VM

k;t0
with negative

U. However, this is not necessary in this setting, and we
will consider VM

k;t0
always restricted to U > 0.

3. The ðα;γÞ parametrization

Another useful parametrization for the matrix Ma
b is

χ ¼ sinh α and U ¼ cosh ðαÞe−γ, i.e.,

Ma
b ≐

�
sinh α cosh αe−γ

−cosh αeþγ − sinh α

�
: ðA23Þ

Using this parametrization we have ðα; γÞ ∈ R2, providing
a one-to-one mapping between R2 and VM

k;t0
. Next, the

eigenvectors have a simple form in this parametrization,
namely,16

Qa ≐
�
e−

γ
2

2

�
ie−

α
2 − e

α
2

�
;
e

γ
2

2

�
ie−

α
2 þ e

α
2

��
: ðA24Þ

Given two points in VM
k;t0

, ðα1; γ1Þ and ðα2; γ2Þ, the
Bogoliubov coefficients can be readily computed in this
parametrization through Eq. (32),

α2;1 ¼ cosh Δα cosh Δγ þ i sinh ᾱ sinh Δγ; ðA25Þ

β2;1 ¼ sinh Δα cosh Δγ þ i cosh ᾱ sinh Δγ; ðA26Þ

16Naturally, there is a particular choice of phase made in this
expression.
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where Δγ ≡ ðγ1 − γ2Þ=2, Δα≡ ðα1 − α2Þ=2, and ᾱ≡
ðα1 þ α2Þ=2.

4. Matrix notation

The matrix notation is useful for the calculation related to
the time evolution of the linear complex structures. In this
appendix we summarize the rules to go from index notation
to matrix notation. First, the vector indices are lowered and
raised following the rules (A1); that is, they are lowered and
raised by the left, and complex conjugated vectors by the
right. Second-order tensors will follow the pattern in
Eq. (A2); i.e., the left/right index is raised/lowered by
the left/right.
The product r�aSabqa can be written as

hr; qi≡ r�aSabqa: ðA27Þ

Given a linear operator La
b, its action on a vector is simply

ðLrÞa ¼ La
brb; hence, the adjoint can be defined as

hq; Lri ¼ q�aSabLb
crc ¼ ðL†

a
bqbÞ�Sacrc

¼ hL†q; ri; ðA28Þ

where we have, as usual,

LTab ≡ Lba; L†ab ≡ LTab� ¼ Lba�: ðA29Þ

From the definitions above, we obtain

L†
a
b ¼ ðSacLd

cSdbÞ�; ðA30Þ

LT
a
b ¼ −SacLd

cSdb: ðA31Þ

Note that L†
a
b ¼ La

b iff L†ab ¼ Lab, and analogously for
LT
a
b. The 2 × 2 identity matrix is denoted by I. Generally

wewill denote by L the matrix whose elements are given by
La

b, the components of the tensor with the left index down
and right index up. Therefore, ðLJÞab ≡ La

cJcb. It is worth
noting that the definition of † above in matrix notation is

L† ≡ STðL�ÞS; ðA32Þ

where T is the matrix transpose. Using these definitions the
usual property ðLJÞ† ¼ J†L† still holds.

5. Canonical transformations

The action (2) can be transformed by any canonical
transformation. However, to keep the equations of motion
linear in the fields it is necessary to restrict to a smaller
group that acts linearly on the phase space and leaves the
symplectic form invariant. This group is the symplectic
group Spð2;RÞ. The group is defined over the field of reals

so the transformations keep the fields Hermitian. Given a
canonical transformation Ca

b it is clear that

ðCa
brbÞ�SacCc

dqd ¼ raSabqb:

In matrix notation this is the same as

hCr; Cqi ¼ hC†Cr; qi ¼ hr; qi:

It is easy to check that C†C ¼ I ¼ CC† using the definition
of † in Eq. (A30). Moreover, under linear canonical
transformation a linear transformation L transforms as

L → CLC†: ðA33Þ

The algebra of Spð2;RÞ can be written in terms of three
generators, namely,

G1 ≐
�
1 0

0 −1

�
; G2 ≐

�
0 1

1 0

�
;

G0 ≐
�

0 1

−1 0

�
: ðA34Þ

Applying the definition of † one can check that G†
A ¼ −GA

and the traces TrðGAÞ ¼ 0, with the capital Latin indices
A ∈ f0; 1; 2g. Furthermore, one can check that these
elements with the addition of the identity matrix I form
a bidimensional Clifford algebra with

Gi ·Gj ¼ δijI; G1 ∧ G2 ¼ G0; ðA35Þ

where i ¼ 1, 2, and we defined the operations

A · B≡ ABþ BA
2

; A ∧ B ¼ AB − BA
2

; ðA36Þ

where A and B are any linear combination of GA. The
Clifford product is just the matrix multiplication, i.e.,

AB ¼ A · Bþ A ∧ B: ðA37Þ

A useful property is

Ga ∧ Gb ¼ −ϵABDηDCGC; ðA38Þ

where ϵABD is the totally antisymmetric symbol with
ϵ012 ¼ 1. It is clear that we can use both the matrix
representation forming linear combinations of I; G0; G1;
G2 or the Clifford algebra considering linear combinations
of 1; G1; G2; G1 ∧ G2, which we call multivectors. For
simplicity we are going to use the Clifford representation.
General multivectors can be written as V ¼ VAGA. They

have an induced internal product given by GA ·GB ¼ ηAB,
where ηAB ≐ diagð−1; 1; 1Þ. In other words, the multi-
vectors V form a three-dimensional vector space with a
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1þ 2 Lorentzian metric. In the Clifford algebra represen-
tation it is clear that the dot product of two vectors
V ¼ VAGA and P ¼ PAGA is a scalar, that is,

V · P ¼ VAPBGA · GB ¼ VAPBηAB: ðA39Þ

The same computation using the matrix representation
would have an identity matrix I multiplying the right-hand
side. To obtain a scalar, since the traces of GA are all zero
and TrðIÞ ¼ 2, one defines the dot product in the matrix
representation as

V · P ¼ TrðVPÞ
2

: ðA40Þ

The square of a multivector is scalar in the Clifford
algebra, and thus,

V2 ¼ V · V ¼ VAVBηAB:

For this reason, the exponential map of an element of the
symplectic group algebra can be written as

eV ¼

8>>>>><
>>>>>:

cosh

� ffiffiffiffiffiffi
V2

p �
þ Vffiffiffiffi

V2
p sinh

� ffiffiffiffiffiffi
V2

p �
V2 > 0;

cos

� ffiffiffiffiffiffiffiffiffi
−V2

p �
þ Vffiffiffiffiffiffiffi

−V2
p sin

� ffiffiffiffiffiffiffiffiffi
−V2

p �
V2 < 0;

1þ V V2 ¼ 0.

ðA41Þ

Applying the † operator to the exponential map results
in ðeVÞ† ¼ e−V ; therefore, as expected ðeVÞ†eV ¼ 1 ¼
eVðeVÞ†. Notice that a linear complex structure M is also
an element of this algebra, that is,

M¼G0ðG2 sinh αþeG1γ cosh αÞ
¼ cosh α cosh γG0þ sinh αG1− cosh α sinh γG2; ðA42Þ

where the parametrization (A23) was used. From the
Lorentzian space point of view, M is a timelike vector
(M2 ¼ −1) with a positive time component, −M ·G0 ¼
cosh γ cosh α > 0. Hence, the reduced phase space VM

k;t0
is

also a subspace of the algebra. Note also that there are simple
relations between M and the fields, i.e.,

M ¼ ðjr1j2 þ jr2j2ÞG0 þ ðjr1j2 − jr2j2ÞG2

− ðr1r�2 þ r�1r2ÞG1; ðA43Þ

for M defined by Eq. (A12). Moreover, it is easier to relate
the fields with the two null vectors

L�
2 ≡G2 � G0

2
; ðL�

2 Þ2 ¼ 0; ðA44Þ

that is,

jr1j2 ¼ M · L−
2 ; jr2j2 ¼ −M · Lþ

2 ;

r1r�2 þ r�1r2 ¼ −M ·G1: ðA45Þ

Finally, a general Hamiltonian tensor (B12) has its
associated matrix N represented by

N ¼
�
1

m
þmν2

�
G0

2
þ hG1 þ

�
1

m
−mν2

�
G2

2

¼ ν cosh ξG0 þ hG1 − ν sinh ξG2: ðA46Þ

This vector has the norm N2 ¼ −ðν2 − h2Þ. If the
Hamiltonian is positive definite, then N is timelike.

6. Clifford algebra and H2

In this subsection we summarize some relations between
the Clifford algebra products and the hyperbolic distances
in H2. For more details and proofs see [34]. Let V and P
designate two normalized timelike Clifford vectors. The
hyperbolic distance between the two points in H2 pointed
by them is

dðV;PÞ≡ cosh−1 ð−V · PÞ;
V · P ¼ − cosh dðV; PÞ: ðA47Þ

The second equality above is just the expression of the
product in the Clifford algebra in terms of the distance
dðV; PÞ. One can also compute the modulus of the vector
V ∧ P. First note that this product has a simple relation
with the Lorentzian cross product ⊗ (as defined in [34]),

V ∧ P ¼ −V ⊗ P: ðA48Þ

Thus, the square of this product is simply

ðV ∧ PÞ2 ¼ ðV ⊗ PÞ2 ¼ sinh2 dðV; PÞ: ðA49Þ

This shows that the product of two normalized timelike
vectors is a spacelike vector with norm sinh dðV;PÞ.
Furthermore, we define the modulus of a spacelike vector L,

jLj≡
ffiffiffiffiffiffi
L2

p
: ðA50Þ

Consequently, jV ∧ Pj ¼ sinh dðV; PÞ.
It is easy to show that for any two non-null vectors L

and M, we have

ðL ∧ MÞ ·M ¼ 0 ¼ ðL ∧ MÞ · L: ðA51Þ

This shows that V ∧ P is always orthogonal to both V and
P. Now, given V and P as above, we can compute the
perpendicular part of V with respect to P,
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V ⊥P≡VþðV ·PÞP¼ ðP∧ VÞP¼ ðP∧ VÞ∧P: ðA52Þ

The norm of this vector is simply

ðV⊥PÞ2 ¼ ðP ∧ VÞ2 ¼ sinh2 dðV; PÞ; ðA53Þ

showing also that V ⊥ P is spacelike and has the same
length as P ∧ V. One can also check that

ðV ⊥ PÞ ∧ P ¼ ðV ⊥ PÞP ¼ V ∧ P; ðA54Þ

ðV ⊥ PÞ · P ¼ 0; ðA55Þ

ðV ⊥ PÞ · ðV ∧ PÞ ¼ 0; ðA56Þ

ðV⊥PÞ ∧ ðV ∧ PÞ ¼ P sinh2 dðV; PÞ: ðA57Þ

The results above show that given V and P we can build an
orthogonal frame P, V ⊥ P and V ∧ P. We denote with an
overbar a spacelike normalized vector, i.e.,

L̄ ¼ L
jLj : ðA58Þ

Finally, in general we can write

V ¼ cosh dðV; PÞPþ sinh dðV; PÞV⊥P: ðA59Þ

APPENDIX B: THE HAMILTONIAN TENSOR

In general, the Hamiltonian tensor introduced in Eq. (1)
can be written as

Hab ≐
�
mν2 h

h 1
m

�
: ðB1Þ

Even though Ha
b is self-adjoint, the phase space is not a

proper Hilbert space (note that any real phase vector has
zero norm). For this reason, we write the Hamiltonian
tensor in the form (B1). Using the fact that Hab is a
symmetric matrix, it is clear that it has a well-defined
eigenvalue problem,

δabHbcrðiÞc ¼ λir
ðiÞ
a ; ðB2Þ

where i ¼ 1, 2, λi are the real eigenvalues and rðiÞa the
associated real eigenvectors. There are three possibilities
depending on the signs of λi

17:
(1) λ1 > 0 and λ2 > 0, positive definite Hamiltonian,
(2) λ1 > 0 and λ2 < 0, and
(3) λ1 > 0 and λ2 ¼ 0.

In all cases above we have two real eigenvectors rðiÞa that are

orthonormal, i.e., r̄ðiÞarðjÞa ¼ δij, where we introduced the

overbar r̄ðiÞa ≡ δabrðiÞb to differentiate from the index raised
with Sab. An eigenvector qa of Ha

b with eigenvalue σ, if it

exists, can be written as a linear combination of rðiÞa ,

qa ¼
X2
i¼1

cir
ðiÞ
a ; ðB3Þ

where ci are arbitrary constants. Applying the Hamiltonian
tensor Ha

b on this vector results in

Ha
bqb ¼ σqa;

Sabðc1λ1 r̄ð1Þb þ c2λ2r̄ð2ÞbÞ ¼ σðc1rð1Þa þ c2r
ð2Þ
a Þ:

Contracting the second equation above with r̄ð1Þa and r̄ð2Þa
results, respectively, in

c2λ2r̄ð1ÞaSabr̄ð2Þb ¼ σc1; ðB4Þ

c1λ1r̄ð2ÞaSabr̄ð1Þb ¼ σc2; ðB5Þ

which can be combined as

σðc21λ1 þ c22λ2Þ ¼ 0:

The solutions for σ ≠ 0 are c1 ¼ �ic2
ffiffiffiffiffiffiffiffiffiffiffi
λ2=λ1

p
. The

tensor Sab is an antisymmetric tensor in a bidimensional
space and form and therefore is a one-dimensional space.

Thus, it must be proportional to rð1Þa rð2Þb − rð2Þa rð1Þb .
The proportionality constant can be obtained using
that SabSbc ¼ δa

c. Performing this calculation we obtain
that r̄ð1ÞaSabr̄ð2Þb ¼ �i, using the freedom to multiply the

eigenvectors rðiÞa by −1, we choose r̄ð1ÞaSabr̄ð2Þb ¼ i.
Substituting these results back into Eq. (B4) results in

qa ¼ c2

0
@�i

ffiffiffiffiffi
λ2
λ1

s
rð1Þa þ rð2Þa

1
A: ðB6Þ

That is, both qa and q�a are eigenvectors with eigenvalues
� ffiffiffiffiffiffiffiffiffi

λ1λ2
p

, respectively. For this reason, we choose σ as the
positive eigenvalue,

σ ¼
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
:

In case 1, we can normalize qa as

q�aSabqb ¼ 2jc2j2
ffiffiffiffiffi
λ2
λ1

s
¼ 1; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

ffiffiffiffiffi
λ1
λ2

svuut ; ðB7Þ
17Naturally, we have all the other cases that can be obtained by

multiplying the whole tensor Hab by −1; however, they are
equivalent to their counterparts.
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where we had to choose the plus sign in Eq. (B6);
otherwise the norm would be negative. In cases 2 and
3, the eigenvector qa is real (apart from an overall phase)
and cannot be normalized. This means that Ha

b specify
normalizable eigenvectors iff Hab is positive definite.
Sylvester’s criterion for positive definite operators pro-

vides the conditions under which an operator is positive
definite. In the case of the real matrix Hab, we obtain

m > 0; ν2 − h2 > 0; and ν2 > 0: ðB8Þ

If these conditions are satisfied, we can reparametrize
hν ≡ tanh−1 ðh=νÞ and ξ≡ lnðmνÞ. Under these conditions
it is straightforward to show that the real eigenvalues are

λ1 ¼ ν

�
cosh ξþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 ξþ tanh2 hν

q �
; ðB9Þ

λ2 ¼ ν

�
cosh ξ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 ξþ tanh2 hν

q �
; ðB10Þ

σ ¼ ν

cosh hν
: ðB11Þ

Since the tensorHa
b is purely imaginary, we define another

real tensor

Na
b ≡ −iHa

b

≐ σ

�
sinh hν cosh hνe−ξ

− cosh hνeξ − sinh hν

�
: ðB12Þ

Comparing to Eq. (A23) it is easy to see that Na
b=σ is

actually a linear complex structure. That means that, if Hab

is a positive definite matrix, it induces the linear complex
structure Na

b=σ above. As it happens withMa
b, Na

b=σ has
eigenvectors equivalent to Eq. (A24), namely,

Qa ≐
�
e−

ξ
2

2

�
ie−

hν
2 − e

hν
2

�
;
e
ξ
2

2

�
ie−

hν
2 þ e

hν
2

��
: ðB13Þ

APPENDIX C: ADIABATIC FRAMES
AND ADIABATIC PROPAGATOR

The computation of the adiabatic frames can be greatly
simplified by making a first canonical transformation in
order to eliminate h from the Hamiltonian (B1). Note that if
the off-diagonal term h is present, the Hamiltonian vector
has non-null components on both directionsG1 andG2 [see
Eq. (A46)]. It is easy to see that the canonical trans-
formation

Ch ¼ e
hm
2
ðG2−G0Þ ðC1Þ

takes N as in Eq. (A46) to

N0 ¼ ChNC†
h þ _ChC

†
h

¼
�
1

m
þmσ02

�
G0

2
þ
�
1

m
−mσ02

�
G2

2
; ðC2Þ

where

σ02 ≡ ν2 − h2 − _h − h
_m
m
;

leading to the new equations of motion

_M0 ¼ 2N0 ∧ M0 ¼ 2σ0U0 ∧ M0; ðC3Þ

where

U0 ≡N0

σ0
¼ cosh ξ0G0 − sinh ξ0G2; ξ0 ≡ lnðmσ0Þ: ðC4Þ

Hence, this canonical transformation removes the G1 term
from N, or equivalently, it removes the off-diagonal term h
in the Hamiltonian (B1) and redefines the frequency
σ2 ¼ ν2 − h2. The new frequency σ̄ is still positive definite,
since σ2 ¼ ν2 − h2 > 0 [see (B8)], while the derivatives are
first order in the adiabatic approximation, and they must be
small when compared with the other terms, by assumption.
From now on, we will work in this frame, and, for notation
simplicity, we will omit the primes.
This parametrization makes it clear that

U ¼ cosh ξG0 − sinh ξG2 ðC5Þ

is a boost applied to G0, i.e.,

U ¼ e
−ξ
2
G0∧G2G0eþ

ξ
2
G0∧G2 ¼ e−

ξ
2
G1G0e

ξ
2
G1 : ðC6Þ

Hence, the parameters of the canonical transformation
given by Eq. (74) transforming U to G0 can easily be

read from Eq. (C6), e
ξ
2
G1Ue

ξ
2
G1 ¼ G0, leading to dU ¼ jξj

and U ∧ G0 ¼ signðξÞG0G2 ¼ signðξÞG1. As a conse-
quence, our first canonical transformation reads

Mð1Þ ≡ C0MC†
0 ¼ e

ξ
2
G0G2Me−

ξ
2
G0G2 : ðC7Þ

Using Eq. (75) to calculate the Hamiltonian correction,
one gets

Nð1Þ ¼ σðG0 − F1G1Þ; F1 ≡ −
_ξ

2σ
: ðC8Þ

The normalized Hamiltonian now reads

Uð1Þ ¼ cosh ξ1G0 − sinh ξ1G1; ðC9Þ

while the new frame ð1Þ parameters are
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σ1 ≡ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2

1

q
; ξ1 ≡ tanh−1 ðF1Þ: ðC10Þ

The equations of motion are given by

_Mð1Þ ¼ 2σ1Uð1Þ ∧ Mð1Þ: ðC11Þ

Comparing Eqs. (C5) and (C9), one can see that the
normalized Hamiltonian vector at first order Uð1Þ has the
same form as the zero-order U, with the spacelike direction
rotated to G1. It is therefore clear that the Hamiltonian in
this frame is also a boost from G0, parametrized by ξ1,

Uð1Þ ¼ e−
ξ1
2
G0G1G0eþ

ξ1
2
G0G1 ¼ e

ξ1
2
G2G0e−

ξ1
2
G2 : ðC12Þ

Hence, again, the above inverse canonical transformation
takes Uð1Þ to G0. This induces the second-order frame,
where

Nð2Þ ¼ σ1ðG0 − F2G2Þ; F2 ≡þ
_ξ1
2σ1

; ðC13Þ

whereas the normalized Hamiltonian, frequency, and boost
parameters are

Uð2Þ ¼ cosh ξ2G0 − sinh ξ2G2; ðC14Þ

σ2 ¼ σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2

2

q
; ξ2 ≡ tanh−1 ðF2Þ; ðC15Þ

while the equations of motion read

_Mð2Þ ¼ 2σ2Uð2Þ ∧ Mð2Þ: ðC16Þ

Repeating the process in order to go to the frame ðnÞ from
the frame ðn−1Þ leads to the boost parameters

Fn ¼ ð−1Þn
_ξn−1
2σn−1

; ξn ¼ tanh−1 ðFnÞ;

σn ¼ σn−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2

n

q
; ðC17Þ

where the initial functions of this recurrence relations are

σ0 ≡ σ; ξ0 ≡ ξ: ðC18Þ

The first boost parametrized by ξ is not necessarily small; ξ
can have any value. Nonetheless, all the subsequent boosts
have small parameters ξn ≪ 1 for n > 0. Note that these
transformations are finite and exact. Moreover, in each
frame the term Fn yields corrections of adiabatic order
OðnÞ to the Hamiltonian multivector.
We can now compute the approximate propagator in a

frame ðnÞ, which satisfies

_PðnÞðtÞ ¼ NðnÞðtÞPðnÞðtÞ; ðC19Þ

and the Hamiltonian multivector reads

NðnÞðtÞ ¼ σn−1ðtÞðG0 − FnðtÞGnÞ: ðC20Þ

Equation (C19) for PðnÞ can be rewritten as

d
dt
ðe−G0ΔτPðnÞÞ ¼ −σn−1Fne−G0ΔτGnPðnÞðtÞ; ðC21Þ

where

ΔτðtÞ≡ exp

�Z
t

t0

σn−1ðt0Þdt0
�
: ðC22Þ

Introducing the rotating propagator PðnÞ
r and the spatial

vector AðnÞ as

PðnÞ
r ≡ e−G0ΔτPðnÞ; AðnÞ ≡ e−G0ΔτGneG0Δτ; ðC23Þ

the equation of motion for PðnÞ
r reads

_PðnÞ
r ¼ −σn−1FnAðnÞPðnÞ

r : ðC24Þ

The integral version of this equation can be readily
obtained as

PðnÞ
r ðτ; τ0Þ ¼ 1 −

Z
τ

τ0

Fnðτ0ÞAðnÞðτ0ÞPðnÞ
r ðτ0; τ0Þdτ0: ðC25Þ

Note that, although the vector AðnÞ depends on time, it
always has modulus one, ðAðnÞÞ2 ¼ 1. Therefore, the
integrand in the right-hand side of Eq. (C25) is of adiabatic
order OðnÞ. Substituting the expression for the propagator
back into its own expression leads to

PðnÞ
r ðτ; τ0Þ ¼ 1 − pðnÞðτ; τ0Þ þOð2nÞ; ðC26Þ

where

pðnÞðτ; τ0Þ≡
Z

τ

τ0

Fnðτ0ÞAðnÞðτ0Þdτ0: ðC27Þ

Naturally, up to this same order we can use the following
propagator:

PðnÞ
r ðτ; τ0Þ ¼ e−p

ðnÞðτ;τ0Þ: ðC28Þ

Going back to the nonrotating frame the propagator is

PðnÞðτ; τ0Þ ¼ eG0Δτe−p
ðnÞðτ;τ0Þ: ðC29Þ
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It is more convenient to rewrite the propagator changing the
order of the two terms, that is,

PðnÞðτ; τ0Þ ¼ e−p
ðnÞ
r ðτ;τ0ÞeG0Δτ; ðC30Þ

where we defined a new multivector

pðnÞ
r ðτ; τ0Þ ¼ eG0ΔτpðnÞðτ; τ0Þe−G0Δτ: ðC31Þ

Before applying this propagator to an initial condition, it is

worth studying the behavior of the spatial vector pðnÞ
r ðτ; τ0Þ.

First we rewrite it as

pðnÞ
r ðτ; τ0Þ ¼ Gn

Z
τ

τ0

Fnðτ0Þe−2ðτ−τ0ÞG0dτ0: ðC32Þ

If n < Nmax, we can integrate by parts to obtain

pðnÞ
r ðτ; τ0Þ ¼ G0 ∧ Gn

��
FnðτÞ
2

−
Fnðτ0Þ

2
e−2ΔτG0

�

−
Z

τ

τ0

_Fnðτ0Þ
2σn−1

e−2ðτ−τ0ÞG0dτ0
�
: ðC33Þ

The second term is of adiabatic order nþ 1, and we can
neglect it. Moreover, the functions FnðτÞ usually have a
well-defined limit where the adiabatic corrections are
asymptotically zero. Choosing the time τ0 to match this
limit we get

pðnÞ
r ðτÞ ≈ FnðτÞ

2
G0 ∧ Gn: ðC34Þ

Inserting Eq. (C34) back into Eq. (C30), we finally get the
propagator

PðnÞðτ; τ0Þ ≈ e−G0∧Gn
FnðτÞ

2 eΔτG0 : ðC35Þ

The expression above shows that the time evolution (up to
order n) is the rotation about the origin G0 followed by a
boost in the G0 ∧ Gn direction. This is just the indication
that there is another adiabatic frame of order ðnþ1Þ [see
Eqs. (C17) and (C38)].
Now, if n ¼ Nmax, then the integration by parts is not

justified and we need another way to estimate Eq. (C32).
Nevertheless, using that

jFnðτ0Þ cos ½2ðτ − τ0Þ�j ≤ jFnðτ0Þj;
jFnðτ0Þ sin ½2ðτ − τ0Þ�j ≤ jFnðτ0Þj;

and Eq. (C17), we notice that the components of the
multivector pr are always smaller than

Z
τ

τ0

jFnðτ0Þjdτ0 ¼
Z

τ

τ0

���� 12 dξn−1dτ0

����dτ0 ≤ jξn−1j
2

; ðC36Þ

assuming that ξn−1 is largest at τ. This shows that the final
boost does not have a well-defined direction, but it is still
generated by a parameter smaller than the adiabatic order
n − 1. In this way, we complete the proof that propagator
(C35) is the one to be used up to order n.
Finally, the points on frame ðnÞ can be mapped back to

the original frame by applying the inverse canonical
transformations, that is,

VðtÞ ¼ C†
0 � � �C†

n−1V
ðnÞðtÞCn−1 � � �C0; ðC37Þ

where a general canonical transformation Cj reads

Cj ¼ e
ξj
2
G0Gj; Gj ≡

�
G1 j odd

G2 j even.
ðC38Þ

Two multivectors in two adjacent adiabatic orders are
related by

Vðn−1Þ ¼ C†
n−1V

ðnÞðtÞCn−1: ðC39Þ

Writing the multivector in terms of its components, i.e.,
VðnÞ ¼ VðnÞAGA, results in the following relation between
the components:

Vðn−1Þ0 ¼ VðnÞ0 cosh ξðn−1Þ − VðnÞ2 sinh ξðn−1Þ;

Vðn−1Þ1 ¼ VðnÞ1;

Vðn−1Þ2 ¼ VðnÞ2 cosh ξðn−1Þ − VðnÞ0 sinh ξðn−1Þ; ðC40Þ

where we assume n − 1 even (there is a similar relation for
n − 1 odd). The expression above is simply the result of a
boost applied to a timelike vector VðnÞ. The final relation
between the frame (n) and the original frame depends on n
noncollinear boosts. It is straightforward to compose a
sequence of boosts in a single boost and rotation where the
last is known as Wigner rotation (see, for example, [35]).
Here, we are interested in the relation between frames up to
a given adiabatic order. For example, using the paramet-
rization described in A 3, we can write ðα; βÞ in terms of
ðα2; β2Þ defined in frame ð2Þ as

α ¼ α2 − ξ1 cosh γ2 −
ξ21 sinh γ2 tanh α2

2
þOð3Þ;

γ ¼ γ2 þ ξþ ξ1 sinh γ2 tanh α2; ðC41Þ

ξ2 þ
ξ21
4

�
sinh ð2γ2Þ

�
1 −

2

cosh2 α2

��
þOð3Þ: ðC42Þ

These expressions are valid transformations from any point
in the frame ð2Þ to the original frame. In particular, the
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origin at ð2Þ, that is, Vð2Þ ¼ G0, is mapped to

α ¼ −ξ1 þOð3Þ; ðC43Þ
γ ¼ ξþ ξ2 þOð3Þ; ðC44Þ

which are the usual well-known adiabatic parameters.
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