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The problem of finding a vacuum definition for a single quantum field in curved spacetimes is discussed
under a new geometrical perspective. The phase space dynamics of the quantum field modes are mapped to
curves in a two-dimensional hyperbolic metric space, in which distances between neighbor points are shown
to be proportional to the Bogoliubov coefficients associated with their corresponding mode solutions in
phase space. The vacuum state for each mode is then defined as the unique trajectory from which all mapped
phase space solutions move within thin annular regions around it. This property implies the stability of the
vacuum state: solutions evolved from a point in this trajectory stay close to it as both evolve, and the particle
creation is therefore minimized. The new approach is applied to the well-known cases of the time-
independent dynamics, where the solutions draw circles around this curve, and to the time-dependent
dynamics where adiabatic approximation is valid. Additionally, our analysis is extended to more challenging
cases of time-dependent dynamics, where the adiabatic approximation is not possible, such as in the super-
Hubble or low frequency regimes. It is shown that stability trajectories can also be found in these situations,
and stable quantum vacua can be obtained. This new formalism is applied to two situations: de Sitter space,
where the Bunch-Davies vacuum is obtained in a completely different manner through an analysis in the
super-Hubble regime, and in the context of cosmological bouncing models, in which the contracting phase is
dominated by a cosmological constant in the asymptotic past. A new vacuum state for cosmological

perturbations is proposed in this situation.
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I. INTRODUCTION

The determination of the vacuum state of quantum fields
in curved spacetimes is a quite intricate subject, which has
been studied for a long time [1-6]. Either one has many
nonequivalent possible candidates [7-12], or none at all.
This is a crucial problem for theoretical physics, as long as
spacetime is, indeed, curved because of gravity, which is
universal. Usually, one appeals to the ultraviolet limit,
restricting the analysis to a large enough ensemble of field
modes with mode wavelengths much smaller than the
curvature scale of the spacetime region with physical
interest. In this situation, the curvature of spacetime is
almost irrelevant, one is close to the flat Minkowski case,
where the vacuum state is well defined, and an adiabatic
approximation is available to guarantee the stability of the
chosen vacuum for some finite time interval. In the case of
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de Sitter space, i.e., a curved space in which the curvature
scale (given by A~'/2 where A is the cosmological
constant) is globally constant in space and time, the
adiabatic approximation is one of the methods used to
define the globally stable Bunch-Davies vacuum. Note,
however, that this is one of the possible quantum vacua in de
Sitter space; see Ref. [13] for a classification and properties
of the possibilities. Furthermore, in inflationary models
there is also the scenario where one must impose initial
conditions at a finite time in the past where perturbation
wavelengths are not completely subhorizon. In these sit-
uations the ambiguity in the vacuum choice can lead to
observable imprints in the cosmic microwave background
(CMB) [14-16]. Finally, it is worth emphasizing that while
this problem has been addressed in the Heisenberg picture in
previous works, a Schrédinger picture approach is also
possible, as demonstrated in [17-19], where the same
approach was applied to the Schwinger effect.

This paper aims to investigate whether one can define the
equivalent of an adiabatic vacuum in a regime where the
frequencies of the field modes are irrelevant to their

© 2023 American Physical Society
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dynamics, or their mode wavelengths are much bigger than
the curvature scale of spacetime, the reverse of the usual
approach. After reviewing the procedure of choosing a
complete set of solutions for the field variables in phase
space to define the creation/annihilation operators set, we
identify the minimum number of degrees of freedom
necessary to define a vacuum, which are then mapped to
a two-dimensional hyperbolic space H” in which distances
between points can be defined. In this space, canonical
transformations are seen as boosts and rotations. We
then analyze the usual vacuum prescriptions for time-
independent Hamiltonians and time-dependent situations
where the adiabatic approximation is attainable and an
adiabatic vacuum can be defined. In the first case, we show
that the usual vacuum choice corresponds to a single point
in H? from which all mapped phase space solutions move in
circles around it. In the second case, after making appro-
priate time-dependent boosts and rotations, the adiabatic
vacua correspond to points in a small region of H?> which is
the central neighborhood of a thin annular region to which
all solutions of the mode equations are mapped. Increasing
the order of the adiabatic approximation, the thinner
becomes this annular region. These properties are equivalent
to the stability of the vacuum choice, being exactly it in the
first case, while approximately in the second one.

To extend this analysis to time-dependent cases in which
the adiabatic approximation is not valid, we investigate in
detail physical situations in which the mode frequencies are
irrelevant to the dynamics of the modes. Again, after
performing convenient time-dependent boosts and rotations
in H?, we find in the new frame stability points with similar
properties to the known previous cases. Such points yield
stable quantum states, in the sense that particle production is
null up to some arbitrary order of approximation in the finite
time interval considered, yielding, as before, a sensible
quantum vacuum choice. Note that, in both time-dependent
cases (adiabatic and nonadiabatic), these special points are
transformed into small curves in H> when we get back to the
original frame in which these problems are usually formu-
lated, by performing the inverse time-dependent boosts and
rotations that have been implemented.

The new formalism is then applied to three important
physical situations. As we know, a positive cosmological
constant is by far the simplest explanation for the present
acceleration of the Universe and many other refined cos-
mological observations (for instance, see [20]). Hence, it is
not by chance that the standard cosmological model is called
the ACDM model. In the case of bouncing models in which
the cosmological constant is not considered, the universe
tends to be flat in the far past of the contracting phase,
allowing the prescription of initial conditions in terms of an
adiabatic quantum vacuum, which can easily be defined in
this situation. Calculations assuming this approach conclude
that one can obtain almost scale-invariant cosmological
perturbations if the contracting phase is dominated by an

almost pressureless fluid, perhaps dark matter [21-23]. We
get the same results using the new formalism developed in
the present paper. However, if a positive cosmological
constant is present, the asymptotic past of bouncing models
will approach de Sitter rather than Minkowski spacetime. In
this asymptotic limit, the physical mode frequencies squared
become negligible concerning the cosmological constant A,
or equivalently, the mode wavelengths become much bigger
than the Hubble radius given by A. Thus, the adiabatic
approximation is not valid in this asymptotic region. Note
that there is a period in the cosmic evolution of such models
when the frequencies associated with large cosmological
wavelengths become relevant and dominate the evolution of
the perturbation field, allowing the usual prescription of an
adiabatic vacuum for them. Unfortunately, this period is
short, and stability is not guaranteed in the far past when the
cosmological constant dominates over the pressureless fluid.
This problem has been studied and discussed in Ref. [24].1
Nevertheless, using our new method, we are able to find
stability curves in H? with which one can associate a stable
quantum vacuum state in the asymptotic past when the
cosmological constant dominates. This is a new quantum
vacuum state that naturally appears in this class of models,
whose physical consequences can now be explored.

Finally, we use the new formalism to reobtain the Bunch-
Davies vacuum of de Sitter space in a completely different
manner by looking at the super-Hubble regime, the time
period in which the physical wavelengths of the modes are
much bigger than the Hubble radius of de Sitter space, as
well as when the adiabatic approximation is not applicable.
Surprisingly, after implementing some boosts and rotations,
we find one stability point in H?> with exactly the same
properties of the stability point we find in the case of time-
independent Hamiltonians in flat space. This stability point
is shown to be the Bunch-Davies vacuum. In the case of a
massless scalar field, we obtain this result without ever
using the general solution of the mode equations.

The paper is divided as follows: in Sec. I we summarize
the formalism that we will use to construct the quantities
necessary to define a vacuum state and the new represen-
tations involving the H? space. In Sec. Il the new
formalism is applied to the well-known and simple case
of a time-independent Hamiltonian, and in Sec. IV to the
time-dependent case. We organize this last in two sub-
sections. In the first one, Sec. IVA, we recover the usual
adiabatic prescription to obtain a quantum vacuum when
the mode frequencies dominate the dynamics of the field
modes, including the well-known results. The procedure is
equivalent to many other implementations, but is simpler
and more adequate for numerical calculations. In the
second subsection, Sec. IV B, we apply the formalism
to the case where the mode frequencies are irrelevant for

'In the case of quintessence models for dark energy, this
problem can be overcome [25].
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the dynamics, and the adiabatic approximation is not valid,
obtaining stable vacuum states as well. In Sec. V we apply
the new formalism to the three cases mentioned above:
matter bounce without and with a cosmological constant,
and de Sitter space, with the new method to obtain the
Bunch-Davies vacuum. We end up with the conclusions in
Sec. VI. There are three appendixes: Appendix A shows
the details of the constructions, spaces, and representations
described in Sec. II, Appendix B presents the Hamiltonian
tensor in the new language, and Appendix C shows
the construction details of the adiabatic frames used in
Sec. IVA, and their associated propagators.

II. FIELD QUANTIZATION AND BOGOLIUBOV
COEFFICIENTS

In this section we summarize the field quantization
procedure using three different representations: phase space
vectors, 2 x 2 real matrices, and Clifford algebra. The aim
is to pave the way to fix the vacuum state using a minimal
set of variables.

We first focus on the symplectic structure behind the
quantization of a single field degree of freedom and its
momentum described by quadratic Hamiltonians. It contains
the essence of our method, besides complying with many
cases relevant to curved spacetimes and cosmology. We use
a3 + 1 split (x, ¢) of spacetime, with globally defined spatial
hypersurfaces, where x represents the three-dimensional
space coordinates and ¢ the time. In Refs. [26,27] this
procedure is generalized to an arbitrary number of degrees of
freedom. We assume that any differential operator appearing
in the Hamiltonian is self-adjoint with respect to the spatial
integration.

We define the phase vector field y, and the symmetric
Hamiltonian tensor H%, respectively, as

HG) = el (1)

Xa= (¢’H¢)’ 2

where ¢ represents a generic scalar field, I1j its canonical
momentum denoted, respectively, by the Latin indices
a =1, 2. Furthermore, the tensor components H corre-
spond to the quantities accompanying the quadratic terms
in the Hamiltonian. Specifically, H'' defines the term
quadratic in the field, that is, ¢H''¢/2, and the remaining
terms are similarly defined.” Then, it is easy to see that the
action can be written as

1 . .
S@T1y) =5 [ @xdtlisS i~ 1aH ). (2)
where the symplectic matrix and its inverse are defined by

’In this work we use the symbol = to define components of
vectors and tensors, and = for general definitions.

sosi(0 D) (0 )

in which the imaginary unit i is added for later convenience.

Extremizing the action (2) with respect to ¢ and I1y, we
find the equations of motion satisfied by the phase vector
field, namely,

ij(a = Sabec)(cv (4)

where the overdot represents differentiation with respect to
the time .

Within this mathematical structure, the Poisson bracket
of any two functionals F(¢,I1y) and F,(¢,11;) can be
written as

6F, S 6F,
&ra(x) " oyp(x)

where X represents one particular spatial hypersurface of
the 3 + 1 splitting. Using the definitions above, we have

{ﬂfﬁ=4é&x (5)

{ra(x1) p(x2)} = =188 (x1 — x2). (6)

Applying the canonical quantization rules, the classical
fields are promoted to Hermitian operators, g?ﬁ and f[¢, and
the Poisson brackets Eq. (6) lead to the equal-time
commutation relations

Za(x1): 25(x2)] = Sapd (X1 — x3). (7)

which decompose into the familiar commutators
[&(xl)’ﬁqb(xZ)] =18 (%) = xp), (8)

[@(x1). d(x2)] = 0 = [y (xy). Ty (). ©)

From here on we set 7 = 1.

Canonical quantization defines the operator algebra, but
does not provide a route to build their representations. In
quantum mechanics, where the number of degrees of
freedom is finite, the lack of a natural procedure for
constructing the representations is irrelevant, because all
representations are unitarily equivalent to each other due to
the Stone—von Neumann theorem [28]. In the case of field
quantization, however, we have an infinite number of
degrees of freedom, and the Stone—von Neumann theorem
does not apply. Consequently, for fields, canonical quan-
tization no longer yields a complete description of the
quantum system, and one must do it by choosing a class of
unitary equivalent representations.

The general procedure to obtain a representation starts by
complexifying the space of field solutions of the second-
order differential equations arising from the action (2),
which we denote by {¢ (¢, x)}, where k represents all the
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necessary indices labeling a complete set of solutions®
allowing complex initial conditions. Each ¢ (7,x) with a
particular label k is called a mode.

It is usually hard to obtain a set of analytic solutions of
the second-order equations of motion for {¢(z, x)}.
However, there is a one-to-one mapping between the
solutions {¢y(z,x)} defined on the whole manifold, and
the fields (¢ (#y. x). I, (#o. x)) defined in phase space at a
specific time slice (uniqueness of solutions). Hence, instead
of working with a set of solutions {¢y (¢, x) }, we introduce
the set of functions {y; ,(ty.x)}, where

Xka(to:x) = (¢ (2o, x), Ty, (1, x)) (10)

describes the initial conditions for each mode, yielding a
unique phase space solution arising from Eq. (4). One can
choose these functions arbitrarily without any knowledge
of the solutions of the equations of motion (we are not
considering here constrained Hamiltonian systems).

The inner product between two different elements of
{ka(to.x)}, Ry, a(fo.x) and Ry, ,(f.x), omitting the
(9, x) dependence, reads

(Re.Re,) = L . ER; SR, (1)
)

The phase space set of vectors {yx ,(t, x)} is said to be
complete if they satisfy

(Ri,.Ri,) =8 (ki.ky). Ry .Ry,) =0, (12)

uﬂm%ﬁ&ﬁ—%A%ﬁhﬁw (13)

where f is an arbitrary phase space vector and dyy is the
measure of the solution’s space. Then, one can express the
phase space field operator 7, as

m:ﬁwmm+%ﬁx (14)

where

&=MRu2). a=-R.2) (15)
are the so-called annihilation and creation operators,
respectively. The field commutation relations (7) and (12)
lead to

[y, 8y | = & (ki . ky), Ay, a,] =0, (16)

*For example, for flat spatial sections we can decompose the
function in Fourier space and, in this case, k would be the Fourier
mode vector.

which allows one to define the Fock space as the space
composed by the vacuum state, which satisfies a;|0) = 0
for all modes k, and all other states obtained through a finite
number of applications of the operator a,t with different
indices k in |0).

One reason to choose the inner product (12) in order to
define the completeness of solutions is because it satisfies
the property

i£, (Re, (1). R, (1)) =0, (17)

where £, denotes the Lie derivative in the direction of the
normal of the hypersurfaces = const and (Ry, (7). Ry, (7))
are the phase space vectors time evolved, respectively, from
(R, (o). Ri, (19)) according to the Hamilton equations (4),

oH

— bc
aRk.b SabH Rk.c(t)' (18)

iRk,a(t) = Sab

Hence, if the set {y;(y)} is complete in phase space at f,
then {y(¢)} is complete in phase space at any ¢ as long as
all modes satisfy the Hamilton equations (18). These results
are valid for any quadratic Hamiltonian system where
S .,H"¢ is self-adjoint with respect to the product (11).

In summarizing, given a complete set of phase space
functions Ry, defined on a spatial slice, we can decompose
the quantum field in terms of creation and annihilation
operators and obtain the Fock space representation natu-
rally defined by them.

The problem of finding a complete set of functions
Ry (19, x) [and consequently Ry (7, x)] satisfying Eq. (12)
can be simplified by focusing on functions of the form

Ry (0, %) = N o(10) Vi (x), (19)

where 1 ,(ty) are arbitrary complex constants and Y (x)
are the usual Laplacian eigenfunctions defined as

DV, (x) = -2V ().
L&%M%w=ﬂhw, (20)

with eigenvalues —12, where D? represents the Laplacian
operator. For flat hypersurfaces, for example, we can
choose ), as plane waves and, in this case, k is the mode
vector and /I,Zc =k-k* Note that, for example, in a
Friedmann geometry D? is the conformal Laplacian, and
since D? is constant, the eigenvalues i,zc are also constant.

Omitting again the (x,¢) dependencies, the product of
two functions is given by

“In this work, we assume that ), are real functions; thus,
instead of plane waves we should use the Hartley kernel.
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(Rk] ’ Rk2>|t0 = r]t]arkzbsabé?’(kl?kZ)v (21)

(Ri,»B)l, = MyaliypS08 (ky ky) = 0. (22)

)
The last equality comes from the fact that the §-function
implies k, = k,, and S is antisymmetric. Hence, in order
to have a normalized basis, we only need to impose

rir,Seb =1, (23)

Consequently, using Eq. (19) we turned the problem of
finding a complete set of modes into the problem of finding
a complete set of complex vectors {r}, each one
belonging to a bidimensional complex vector space Vi,
such that, for each mode k, rZrbS“h =1 is satisfied. Using
the (nondegenerated) symplectic matrix $*’, we can map
vectors into linear functionals r¢ = §b rb.5 That is, we can
use $% and its inverse to “raise” and “lower” indices. In
Appendix A we develop all the necessary mathematical
tools used to represent points in phase space.

A. Bogoliubov coefficients and time evolution

As we have seen, expansion of the field operator as in
Eq. (14) depends on the basis choices, leading to poten-
tially different Fock spaces. Hence, the vacuum state may
be inherently ambiguous (which is not the case when
Poincaré invariance is required, and then all choices are
unitarily equivalent), and we need a criterion to choose the
basis. In the following, we quantify this ambiguity.

Let us take Ry =r),. Any product in the form
(rYVk: 7)1, can be expressed as

(Vi 2y = FaS%es(t0) = M Fa(to),  (24)

where the operator j ,(#) reads

Tea(t) = / FVta(t). 7alt) = / W Veal). (25)

Consequently, the annihilation and creation operators,
defined by the vector r,, are

Qr = M Fa(to) a;r = "Fialto), (26)

which can easily be inverted using the projector in Eq. (A3)
providing

Tra(to) = V@ + rZaLr‘ (27)

As before, we will omit the label k in },(7) and @, writing it
only when necessary.

From now on we will omit the label k for simplicity,
introducing the k dependency explicitly only when necessary.

A phase space vector r, at the hypersurface 7, defines a

function in the whole time interval that satisfies
iRa = SathCRc’ Ra(tO) =l (28)

where all Laplacian operators appearing in H*¢ must be
substituted by —12, so that R, is a function of time only.6
This equation is a consequence of the splitting given in
Eq. (19), which was possible because the equations of
motion are separable in the time variable, as are the cases of
interest in this paper. We will denote the phase vector
defined in an initial hypersurface and the time-dependent
phase vector that uses it as the initial condition and satisfies
Eq. (28) with the same lowercase and uppercase letters,
respectively; for instance, r, (q,) is the initial condition for
R, Q).

It is clear that the phase space operator j,,(¢) also satisfies
the same Eq. (28). Therefore, as we already mentioned, &,
is constant and consequently

ar = ru*ﬂ?a<t0) = Ru*(t))?a(t) (29)

for any hypersurface . Moreover, any product in the same
form is constant and consequently

r*q, = R (1)Qu (). (30)

Each normalized phase space vector basis defines a
representation for the quantization procedure. Two different
bases, labeled, respectively, as r, and q,, can lead to different
representations (which can be nonunitarily equivalent).
Assuming that r, and q, are two normalized phase space
vectors and using the projectors in Eq. (A3), we can write

fo = 0 qQq — ﬁr,qqz;7 (31)
where the products

Qrq = r,Q" = QZS“”Fb, ﬁr,q =-r,q"= CIL,S“”F;,, (32)
are constant due to Eq. (30) and satisfy o, = 1 and 3, = 0.
Using the projectors it is also easy to show that

|0‘r,q|2 - |:Br,q|2 =1 (33)

Then, the annihilation and creation operators defined by r,
can be written in terms of the equivalent operators defined by
q,, namely,

SThe uppercase phase vectors R, are always considered
functions of ¢, and we will write the time dependency only to
avoid ambiguities.
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_ T
a, = arqq + frqqs

al = aqad + Prqdq- (34)

We note that, if f,q vanishes (or equivalently
[@rk, - 8qk,] = 0), both sets define the same vacuum. In
this case it is easy to see that r, = ¢?q, for an arbitrary
phase 6.

We express the vacuum defined by a,; as |0,), such that
a,%|0;) = 0. Then, we define the mode number density
operator

Nex=al @ = 7 o (t0) 75 (f0). (35)

and the total number operator

N, = /de Nk (36)

such that its expected value at |0y) reads

(04lV,]0g) = / a0 (k. K) frgl? = / dulfral’. (37)

We are assuming a compact hypersurface X, so conse-
quently the eigenfunctions are countable and &° (k. k) = 1.’
Finally, there is a simple relation between the two point
function and the real part of the projector formed by r,, i.e.,
J, defined in Egs. (A4) and (AS5), namely,

(ab + Sap)

OO0 = [ ViVl 2 (38)

where x,y € Z, .

As time evolves, the chosen basis will necessarily change.
Since the solutions of the equations of motion are unique
given the initial conditions, the basis is determined for the
whole time interval. Moreover, the creation and annihilation
operators are defined through the conserved product
Egs. (15) and (26). Therefore, since the field operators
satisfy the same equations of motion, the following product
is conserved:

arr(t) =R™()ra(t) = &y (39)

The expression above shows that this particular combination
of Heisenberg operators and time-dependent functions is the
same at all time slices. Moreover, we can use this expression
to write the field operator at any time ¢ as

Za(1) = Ry(n)a; + Ry (1)a/. (40)

"For example, for a flat spatial hypersurface we can always
choose a 3-torus, ¥ = T3 with volume L3, and take the L — oo
when necessary.

Naturally, due to Eq. (39), the state annihilated by a; g(7) is
the same at any time 7.

Now, let us assume that we have a well-defined physical
prescription to determine the vacuum state at each time f;
i.e., for each time slice we define a normalized phase vector
V,(t) such that the annihilation operator

ay(1) = V' (1)ka(t) (41)

defines the physical vacuum state a (¢)|0y(z)) = 0. Notice
that V,(¢) is a time-dependent phase vector, but it does not
necessarily satisfy the equations of motion. Consequently
neither ay () nor |0y (7)) will be inevitably constant. We
denote this prescription as a vacuum determination cri-
terion (VDC).

Using a VDC, one can construct the vacuum state (and
consequently the whole Fock space) at each time slice as
|0y (7)). Suppose that at 7, we assert that the quantum field
is found at the vacuum |0y (fy)) = |0,). This is imple-
mented by choosing r, = v, = V,(t,) as the initial con-
ditions for the phase vector. However, since V,(¢) is not a
solution of the field equations, in general V() and R,(¢)
(which is the dynamically time evolved vacuum from
r, = v,) may differ at ¢ # t,. Consequently, if we measure
the number density operator

Npy(t) = a;,k(t)aR,k(t)’ (42)
on the vacuum state at 7, i.e., |0y (7)), we get
(0v (D) INRa(1)[0v (1)) = [Bry (1), (43)

Bry(t) = V,(1)SRy(1). (44)

Hence, the expectation value above is zero at ¢y, while for
t # ty it depends on how much R,(¢) differs from V().
Note that if they differ only by a phase, then g (¢) = 0.

In practice, a vacuum prescription provides a set of four
real numbers for each mode k, i.e., the two complex
components of v, in the complex phase space Vi, .
However, two vacuum prescriptions that differ only by a
phase specify the same vacuum; i.e., they are equivalent.
Physically we are only interested in the class of equivalence
[R,] of phase vectors related by the equivalence relation
R,~V, iff R, =¢e®9V,, for any real function 6().
Moreover, if the normalization condition R“*R, =1 is
satisfied by a phase vector, then it is satisfied by any other
vector in [R,]. Thus, a VDC determines classes of equiv-
alence of normalized phase vectors belonging to the reduced
phase space Vit of phase space vectors modulo a phase.8 In

addition, once a VDC is chosen, we need to compute the

The terminology “reduced phase space” we are using here has
nothing to do with the reduced phase space defined in the context
of constrained Hamiltonian systems.
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time evolution using Eq. (28). These equations preserve the
normalization condition, and it is easy to see that two
different initial conditions taken from the same equivalence
class [R,] at 7y evolve to the same class of equivalence at f;
ie, if r, ~q, at ty, then R,(¢) ~ Q,(¢). In this sense, the
vacuum dynamics also happen in Vj , , whose structure will
be explored in the following subsection.

B. Representations of the reduced phase space

It is useful to construct different representations of the
reduced phase space. In Appendix A 1, we prove that there
is a one-to-one mapping between V; o and the space of
linear complex structures \/k N represented by real matrices
M " Furthermore, in Appendix A 3 we show that \/k’to isa
two-dimensional manifold, and we obtain the (a,y) para-
metrization mapping the whole manifold into R?. The
dynamics induced in \/,f{to by Eq. (28) can readily be
obtained using the mapping (AS5) from the field variables to
M . It is more convenient to write the equations using the
Clifford algebra representation as defined in Appendices A
4 and A 5. Since the components H“ are real, the tensor
N,’> = —iH,’ is also real [see Eq. (B12) for its specific
form]. Then, the equation of motion for M is

M =2N A M. (45)

When expressed in terms of the parametrization given in
Eq. (A23), it reads

a = —2usinh (y = §),
7 = +2vcosh (y — &) tanh (a) — 2h, (46)

where v, &, and h are given functions of time coming from
the Hamiltonian and composing N, while a and y are the
dynamical variables belonging to M. In this representation,
we now have two nonlinear ordinary differential equations
instead of four linear but constrained dynamics

Using the same mapping between Vj. % and \/k 0@ VDC
in this representation will be just a time dependent linear
structure V(1) € \/,’gto (with associated phase vector v,),

which does not necessarily satisfy the equation of motion
(45). Defining the vacuum at 7, using V(z), its evolution
in time will be given by Eq. (45), with the initial condition
M(ty) = V(ty). This procedure specifies a unique M(r)
and, consequently, the associated phase vector R,(z).
Usually, M(z) is different from V(r). In this case, the
number of particles created at ¢ with respect to this VDC is
given by the Bogoliubov coefficients between R, () and
V4(1), which in the Vi, representation [R, () — M(t) and
V,(t) = V()] reads

lag., ()] = V(1) SRy (NRE(1)SV (1)
= +%Tr[l —M(1)V(1)]
1 =M(t)-V(2)
—
o O =
_ —iTr[l + M()V(1)]

_ 1 +M(2t) . V(l)‘ (48)

Va(t)SR, ()R (1) SV (1)

For clarity, we wrote above the expressions for the
Bogoliubov coefficients in all three representations: phase
vector, matrix, and Clifford algebra, respectively. As
already noticed in the preceding subsection, when V(1)
does not satisfy the equations of motion, the Bogoliubov
coefficients are not constant in time. They measure the
particle creation at ¢ given the vacuum set at 7, using the
VDC V(1p).

It is worth noting that an element of \/,@t is just a
“timelike” vector M satisfying M?> = M -M = —1, and
positive “time” component —G, - M > 0. This means that
\/,’:’{,0 has a natural mapping to the hyperbolic space H?
through the hyperboloid model as discussed in
Appendix A 6. Thus, given two timelike unitary vectors
M and V, the f coefficient associated with the trans-
formation between them [Eq. (48)] is just

M) = <@>2 (49)

|ﬂM,V|2 =

where we are using By as a synonym to fg,. The
equation above shows that 3, y is just one-half of the norm
of the vector difference between M and V. Nevertheless,
this is not a metric but a semimetric: it does not satisfy the
triangle inequality (actually, it satisfies the reverse triangle
inequality). The genuine distance in H? is presented in
Eq. (A47): given two timelike points M and Q in H?,
the hyperbolic distance between these two points, which
is a proper metric, reads d(M,V)=cosh™! (-M - V).
Therefore, the Bogoliubov coefficients have a very simple
relation with the distance d(M, Q):

d(M. V)
2

}, Basv| = sinh {d(Mz’ V)}

lapsv| = cosh [

(50)

For convenience, we also define the distance between the
unit “time” vector G, and an arbitrary multivector M as

dy = cosh™ (=M - Gy). (51)

065019-7



PENNA-LIMA, PINTO-NETO, and VITENTI

PHYS. REV. D 107, 065019 (2023)

III. VACUUM DETERMINATION CRITERIA

The sequence of definitions above shows that a choice
of phase vectors specifies a set of creation and annihilation
operators, which in turn defines a vacuum state and all
other particle states using their commutation relations.
Given a VDC, one can compute the particle creation as a
function of this choice. However, it does not seem possible
to provide a VDC in a single time slice, as, in principle,
any phase vector provides a well-defined representation.
Therefore, a physically well-defined vacuum state should
be related to the field evolution. In this section, exploring
the dynamics of the field, we will present the strategy to
select a particular phase space basis and its associated
vacuum state in the simple and well-known case of a
time-independent Hamiltonian. Furthermore, using the
representations of the reduced phase space introduced
in Sec. II B, we present an equivalent new viewpoint on
this strategy, which will be used to extend it to the time-
dependent case in the following section.

A. Time-translation symmetry in the dynamics
and stability in the phase vector representation

We previously showed that two phase vectors differing
by a phase define the same vacuum state. Thus, if the time
evolution of a particular phase vector is such that only its
phase changes with time, then this choice of vector would
define the same vacuum, independently of the chosen time
slice. That should be the case when the physical laws
governing the dynamics of the quantum field are invariant
under time translations, as it would impose that its natural
quantum vacuum state should be time independent. Hence,
a natural VDC emerges in this situation: the phase vector
determining the vacuum state is the same at all times, apart
from a phase

Va(t) = expl=ig; (1)]va, (52)

where v, = V,(ty) and ¢,(¢) is an arbitrary function of
time, with ¢, (#y) = 0 for convenience.

However, the vector v, is still completely arbitrary, and
we have to fix it, modulo a phase. One second criterion
could be to demand stability of the vacuum state, i.e., that
the dynamically time evolved v,, R,(7), coming from
Eq. (18) with R, () = v,

R.(1) = =iS. H ()R, = 6() U, (DR, (53)
should also differ from V,(#) at most by a phase,

Ra(1) = exp[=ipy (1) V4 (1), (54)

with ¢,(7) also being an arbitrary function of time.’

In Eq. (53) we define the real Hamiltonian tensor as in
Eq. (B12), i.e.,

, , , NS
— _. ¢ — a .
N, (1) iS,.H (1), U, (0 (55)
Equations (52) and (54) imply that
iR, = w(1)R,. (56)

for an arbitrary real function w(t) = ¢@,(1) + @,(1).
Equating Egs. (53) and (56), we get that R, must be an
eigenvector of N, (1), i.e.,

UL (H)R, = —iR,, (57)

where we have set w(t) = o(1).

In Appendix B we show that N,”(¢) have two normal-
izable eigenvectors with purely imaginary eigenvalues iff
H (1) is positive definite, which we will assume to be true
here. However, since Eq. (57) defines R, (#) within a phase,
R,(r) will satisfy both Eqs. (53) and (57) iff U,” = 0, as
expected.lO Hence, we obtain the well-known result that a
globally stable vacuum state can be reached only when the
background geometry, where the field evolves, has a
timelike Killing vector field, and no time-dependent inter-
actions are present. That is the case of free fields in flat and
de Sitter spacetimes, yielding the so-called Minkowski and
Bunch-Davies vacua [4,13,29], respectively. Therefore, in
this particular situation, one can establish as a VDC the
(constant, globally defined) eigenvector of N,”(¢) at any
time 7, Q,, which selects v, in Eq. (52) as

v, = Q. U,,Q, = -iQ,. (58)
Applying this VDC at f, and evolving to ¢ using the
dynamical equations (53) yields

R,(7) = e7 )y, = ¢7iF-0)Q,, (59)

where we define a new time variable 7 = [ ¢(7)d¢. From the
VDC Egq. (52), one gets

Vo) = e 00,(0) = 90, (60)

Accordingly, the particle creation number density is
Pryv(t) =0, since R,(z) and V,(r) differ by a phase,

’Note that the stability criterion is connected with the require-
ment that a vacuum state should be the minimum energy state.
Because, contrary to the excited states, a minimum energy state is
stable when interactions with external fields are negligible.

""That can easily be checked by differentiating Eq. (57) with
respect to time.
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and the vacuum states defined by both vectors are
equivalent.
We can trivially go back to the original time ¢, obtaining

R, (1) = exp (—i [ ’ a(t’)dt’) Q.. (61)

For a Hamiltonian tensor parametrized by

mv? h
H = ( n L) S (62)

m

where m, v, and h are scalar functions, the eigenvector
(defined within an arbitrary phase) Q, of U,” reads [see
Eq. (B13)]

. P L
Qa=<_ ’e(ﬂ 2(1—]/[2/112)),

with @, =tan™! \/(v—h)/(v + h), and 6 = (1> — h?)'/2.
For Hamiltonians with 4 = 0 = ¢ = v, the phase vector
reduces to a more familiar form, namely,

%my, —i\/;;;). (63)

For example, in the case of a free massless scalar field in a
Minkowski spacetime, m = 1 and v = 4, = |k|, yielding

e_i(ﬂh

2mu(1 — h?/1?)

Qu = _e—in'/4<

R, ([) = e—i\k|(f—fo)Qa .

Note that the VDC oscillates in time in V; , , but it is a fixed
point in Vi o

It is important to emphasize here that the time-translation
symmetry implying that the quantum vacuum state should
be time independent (modulo a phase) was not only
insufficient to fix the vacuum, but it also does not lead
to a stable vacuum state in general. Indeed, any other choice
of a constant V() satisfying the time-symmetry criterion
not proportional to Q, is not stable. For instance, take

another constant V ,(7) written in terms of the basis formed
by Q, and Q} as

Va(T) = ClQa - CZQrzv (64)

where ¢; and ¢, are arbitrary complex constants that must
be compatible with the normalization of V,(z), i.e.,

le1]? = e = 1.
Applying the time evolution we get

R.(7) = c1e72'Q, — c,et2Q;, (65)

where At = 7 — ;. Expressing this solution in terms of the
VDC at  we get

R.(7) = [cos Az —i(|c|> + |c,|?) sin At]v,
— 2ic; ¢, sin Ao, (66)

and |pry(f)] = |2cic,sinAz|. Hence, there is a time
oscillating particle production, and a static VDC does
not generically lead to a stable vacuum, unless ¢, = 0.
That brings us back to the well-known vacuum state of the
time-independent dynamical system presented above.

B. The matrix and Clifford algebra representations:
A new viewpoint

It is useful to reexamine the example discussed above in
the matrix and Clifford algebra representations. In this case
the Hamiltonian tensor is such that U [see Eq. (55)] is
constant. Thus, the respective equation of motion reads

M =26U A M. (67)

The solution can readily be obtained using the exponential
map (A41), that is,

M = A" UMye 2, (68)

where M|, is the initial condition. If the Hamiltonian is
positive definite, then U? = —1; hence positive definite
Hamiltonians lead to a timelike multivector U. Rewriting
M, in terms of U as described in Eq. (A59) leads to

M = cosh d(My, U)U + cos(2A7)My L U
—sin(2A7)My A U. (69)

This last expression shows that all solutions in the reduced
phase space stay at fixed distances from U, i.e., M - U =
M, - U is constant, and rotate around U with period =,
which is twice as fast as the oscillations in phase space. The
point U is stable concerning the solutions given that their
distances to this point do not change in time. In particular,
the choice My = U implies M = U, and this solution does
not oscillate at all. In other words, when U is constant,
M = U is a solution of Eq. (67), being a fixed point of the
reduced phase space and the dynamics.

It is also informative to examine this problem from the
point of view of Eq. (46). For constant £ and /v the point

h
y =&, a = tanh™! (—)
v

is a fixed point of this autonomous system. These are the
same values we get by setting M, = U. Hence, establishing
the VDC as V(r) = U, which is tantamount to making the
choice of V,(f) = Q, (modulo a phase) as an eigenvector
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of U, [see Eq. (58)], yields a globally stable vacuum
because it is a fixed point of Eq. (46) or a solution of
Eq. (67), M = U = V(t). Therefore, using a different
representation, we arrive at the same final result as before
in the case U is constant. However, this new form of
presenting the vacuum state sheds light into a new
important property of this prescription: the vacuum choice
is the unique point in the reduced phase space where all
solutions stay at a constant distance from it.

In summarizing, in the case of a time-independent
Hamiltonian, we could obtain a vacuum state that is a
fixed point in the reduced phase space and the dynamics.
This single fixed point leads to the vacuum prescription
V(t) = U, which results in no particle creation. Any other
constant VDC would result in particle creation with a ),
given by sinh [d(M, V)]. Of course, the choice that min-
imizes the particle creation is exactly V = U. A remarkable
property of this choice is that all solutions are stable orbits
around U, with a fixed distance from them. In the general
case, however, the Hamiltonian is time-dependent.
Therefore, the system no longer has a fixed point.
Nonetheless, we can still define a notion of stability
motivated by the time-independent case and the new
property of its vacuum described above: given a set of
solutions of the dynamical system, one should seek for a
stability curve V(#) whose distance to any arbitrary solution
in the reduced phase space varies very slowly. Moreover,
solutions draw curves with smaller lengths as they get
closer to the trajectory. Consequently, if we choose such
V() as our VDC, then the solution M(z) with initial
condition V() remains close to V(t), as the distance
d(M(t),V(t)) varies slowly and d(M(zy),V(ty)) =0,
implying that d(M(t), V(t)) < 1. Therefore such a stability
curve defines a physical vacuum, with negligible particle
[d(M(tz).V(t))]

production, |f), y| = sinh < 1. We present con-
crete examples of these stability curves in the next sections.
In the adiabatic case, the stability curve reduces to the well-
known adiabatic vacuum, but we also show that in the
nonadiabatic regime this stability curve can still be found
and provide a physically motivated VDC.

IV. THE CASE OF A GENERAL TIME-
DEPENDENT HAMILTONIAN

For a generic Hamiltonian dependent on time, the vector
U moves in the reduced phase space, and it is not a solution
of Eq. (45). Thus, even setting M(ty) = U(ty), U(t) moves
differently on Vi, than M(z) [M(r) is a solution of
Eq. (45), while U(¢) is not]. Their distances changes in
time, and particle creation generally takes place. However,
as described at the end of the previous section, even in the
time-dependent case there are situations where stability
curves can be found and used as a VDC. In this section, we
present two very important physically motivated examples
where this procedure can be successfully implemented.

A. The adiabatic case

One first possibility is that U moves slowly compared to
the frequency of the circles around U drawn by M. These
circles are dragged by the movement of U, thus keeping the
solution around U for a long period. Exploring this feature
of such type of dynamics is the essential tool to find
stability curves in the reduced phase space and construct
the so-called adiabatic vacuum.

To find stability curves, one first has to study the solution
space of the dynamical system. In the previous sections, it
was possible to find them because the analytical solution is
attainable when the multivector U is constant. In this case
we can write the propagator explicitly as in Eq. (68),

P(t,15) = 27, Pi(t,15) = e727. (70)
When U depends on time, f dzN and N do not commute in
general. For this reason, there is no such simple solution for
the propagator equation,

P(t) = N(1)P(1). (71)

This problem can be circumvented by making successive
canonical transformations on the system such that U is
transformed as close as possible to an almost constant
multivector. Then, in the frame where U is well approxi-
mated by a constant multivector, we can compute the
solutions similar to Eq. (68).

As described in Appendix A 5, after a canonical trans-
formation C, the transformed dynamical vector M€ and the
new Hamiltonian N¢ read

MC=CMCT,

c ¥ c c cc
N =06CUC" + 66U°, SUC=——, (72)
o

while Eq. (45) retains its form,
M€ =2N€ A M€, (73)

where we used that CC' = 1 and CCT + CCT = 0. Note
that N€ is not normalized, not only because of & but also
due to the presence of SUC, which is the well-known
additional term that a time-dependent canonical trans-
formation introduces in the transformed Hamiltonian.
Assuming that the Hamiltonian is positive definite,
implying that the vector U is timelike, the natural choice
to transform U is to take it as close as possible to GO1 ': that
is, we go to a frame where U has negligible “spatial”
components. Equivalently, we are transforming H? such that
U points as near as possible to the origin of the coordinate

"In principle, we could transform U into any unity timelike
multivector. We choose G for simplicity.
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system (the point Gy). It is easy to check that the following
canonical transformation takes U¢ = C,U Cz) = Gy:

d -
Co = exp <7UU> U,=U A G,

d d
Cy = cosh <7U> + sinh <7U> Us. (74)

Note, however, that the additional term SU€ is necessarily

present in the new Hamiltonian when U # 0. This term can
be computed explicitly as

(75)

d U, dy\ U,U,
sUC =Y U, +sinh dyy == —sinh? (=2 ) =225,
20 20 2 o

In the case where U changes adiabatically (e.g., the time
derivative of U is smaller than o, or the timescale in which
U changes is much larger than the timescale arising from
o), all components of U satisfy

1d 1 d\ N+l 1 d\¥V
——UA 1, - UA <« [—— ) UA, 76
odt <0dt> <0'dt> (76)

for all positive integers N up to Ny,x. Then SUC can be
seen as a first-order adiabatic correction to U¢. We will
denote it as U, as well as any other object resulting from
this first canonical transformation. In this way, the new
Hamiltonian vector reads

N =6(Gy + UMW), (77)
while the new equation of motion is

MY =28 A MO, (78)
In terms of the normalized Hamiltonian

N
V=N12

and the new frequency

61=V-ND2xs(1-6UD-G,y),

the equations of motion (78) are now

~ Gy +6U"Y L Gy,

MY =26,U0 A MO, (79)

It is worth pointing out here that this normalization is
possible if the adiabatic conditions (76) are satisfied. In
other words, since sU") has modulus much smaller than
one, the timelike property of U is unchanged. We refer to
this frame as the first-order adiabatic frame.

The second-order adiabatic frame can be obtained in a
similar way: we find the canonical transformation that takes
U — G, and apply it to the equations of motion above. In
this case, sU? is composed by time derivatives of U(!),
which are necessarily second order. The new N is then
normalized, yielding the new equation

M? =26,UD A M®, (80)

One can then proceed in the same way up to N,,,. To get
back to the original frame one only needs to perform the
respective inverse canonical transformations. In Appendix C
we develop a recursive method to compute all canonical
transformations up to N ..

Up to this point we introduced the adiabatic frames
without any approximation. To study the space of solution
in a frame (") we can compute the approximate propagator,
that is,

P(">(t) = N () PM(1). (81)

In this frame the Hamiltonian multivector reads
NO(1) = 0,1 (1)(Go = F,(1)G,), (82)
where G, is either G; or G, defined in Eq. (A34),

depending on the order n. The functions F,(t) and
6,-1(t) are given in Eq. (C17) of Appendix C,

én—l

9
2611—1

Op = Op—1 \ 1- F%w (83)

where the initial functions of these recurrence relations are

F,=(-1) &, =tanh™! (F)),

&y = & = In(mo). (84)

oy = 0,

Note that, because of the adiabatic evolution, |F,| <1
and U™ = G,,.

In Appendix C, we show how to obtain a simple
approximate propagator up to order n coming from
Egs. (81) and (82). It reads

PU(2,70) m =P (7) AT, (85)

where the time-dependent “space-vector” p&")(r) reads

F,(7)
2

P (@) ~

Go A G, (86)

The expression above shows that the time evolution (up to
order n) is a rotation about the origin G, followed by a
boost in the Gy A G,, direction.
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We can now apply the propagator (85) to an arbitrary

initial condition M(()"). First, we rewrite the multivector

MY as
M = cosh rGy + sinh rin, (87)

where /1 is a purely “spatial” unitary vector, i.e., Gy - m = 0
and m? = 1 and r in an arbitrary initial distance from G,.
The first factor of the propagator is simply the rotation about
the origin,

A oM e=2%C0 = cosh rG + sinh rin,,  (88)

where m, is a rotating unitary “spatial” vector,
ﬁ/lr — eATGOﬁ,le—ATGO
= cos(2A7)m + sin(2A7)Gy A . (89)
Before applying the second factor of the propagator, it is

convenient to decompose the vector m, in normalized

components parallel and perpendicular to the normalized

1‘)5") instead of /m [as in (A58)], that is,

i, = 1 (D)p") + ea(2)Go A pi. (90)

As 7, is normalized, c?(z) + c3(r) =1. Note that
e1(t) = m, - p") = cos(6(7)); hence c,(7) = sin(6(z)).
Finally, we have

M) = ¢=r"(0) g8 pgl1) p=83Go o)) (91

= (cosh rcosh d,, + sinh rsinh d, sin )G
+ (cosh rsinh d,, + sinh rcosh d,, sin9)Gy A p
+ sinh rcos 6 p\", (92)

where
d,(7) =2|p\"(2)] = |F,(2)|. (93)

As the solutions evolve, the distance between M and the
origin, dy; = cosh™ (=M - G,), varies within

|r_dp|SdMS|r+dp

, (94)

as 0 varies from —z/2 to z/2.

First note that when d,(z) = |F,(z)| =0, and using
Egs. (89) and (90), we recover the time-independent case
Eq. (69) from Eq. (91) if U is boosted to G, (which is trivial
when U is constant). In this case, we notice all solutions
rotate at a constant distance r from U = G,. Therefore the
curve V"(r) = G, is a perfect static curve, yielding a

globally stable vacuum with no particle creation as long as
r = dyw,) = 0. That is our VDC in that situation.

In the adiabatic case, when d,(7) = |F,(7)| # 0, the
solutions rotate around G, inside an annular disk with

maximum width 2d,,(z) and maximum radius r +- d, (7). In

this case, the curve V(1) = G, is not a perfectly static
curve because even with » = 0 solutions still rotate around
G, at a distance d,(r) #0 from it. However, in the
adiabatic approximation d,(7) < 1, hence we can consider

the curve V" (t) = G, as a quasistatic curve: during the
time interval in which the adiabatic approximation is valid,
the solutions remain close to it. Therefore, we choose G, as
our VDC; note, however, that this is a frame-dependent
choice: if the VDC is set at frame (1), then V() = Gy, but if
computed at a different frame, it will differ from G,. For
example, for 0 < ny < n we have

vim =Gy + Y 0)).

Jj=np+1

Going to the original frame the last canonical transforma-
tion is not necessarily small since it is generated by &; thus,
the VDC at the original frame has a potentially large boost

in the G, direction. When necessary, we write VS,"°> to

denote the VDC set at frame n but computed at frame n,,
naturally VS,"> = G,. These points are illustrated at Sec. V B
where we present an example of the VDC in a cosmological
setting.

Now, let M) (1) be the time evolved solution from vy,
and the Bogoliubov coefficient for particle production
reads

1By v (8)] = [Bar,v (1)

d n
— sinh M”“)}
2
o [d, ()] _d,(1)
=ginh |-Z ~2 95
sin > } > (95)

which is as small as the adiabatic factors.

Note that, contrary to the time-independent case, the
vDC V,(fl)(t) = G, is not unique. In fact, any choice
V,(fl)(t) = Q in the region inside the disk with radius d,
less than the minimum value of d,(¢)/2 during the time
interval in which the adiabatic approximation is valid
(d,/2) yields approximately the same Bogoliubov coef-
ficient given in (95). As a concrete example, take as VDC
Mf)") [as defined in Eq. (87)].
For a solution M(") emanating from V{" (), we obtain at
first order in d,,

an arbitrary point V" (1) =
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dp(1)
=L (9)

|ﬁV£,">,M<">(Z)‘ < sinh (r) + cosh (r)

The expression above shows that if the VDC is close
enough to the origin, i.e., r < d,, then we have approx-
imately the same distance from the VDC as in the case
where r = 0. In other words, any r much smaller than d »
give a VDC with approximately the same particle creation.
Notwithstanding the result above, for simplicity, we will

always choose the VDC as Vi = Go.

Concluding, in the adiabatic case, we no longer have a
simple stability curve (the curve which all solutions keep a
constant distance from it), but we now have a stability
region, that is, the small circle around the origin with a
radius smaller than d,. Naturally, if n < N, we can
move to another adiabatic frame and reduce the size of the
stability region. However, if the adiabatic series is asymp-
totic, then we have a finite N, frame where the stability
region attains its smallest size. Every curve V() inside this
region can be chosen, yielding a satisfactory vacuum state
with negligible particle production during the time the
adiabatic approximation is valid.

B. The nonadiabatic case

In the adiabatic case, the timescale in which the timelike
vector U evolves is larger than the characteristic time of the
frequency o. In the previous subsection, we took advantage
of this fact to make canonical transformations to a frame
where U gets closer and closer to Gy. The crucial require-
ment for this is the fact that, after each transformation, the
new vector U™ is timelike, and therefore it can be
normalized. That is possible as long as the additional
terms to the Hamiltonian vector [as SU) in Eq. (C9)] have
a norm smaller than one.

In the nonadiabatic cases, when we perform a canonical
transformation to adiabatic frames, the transformed
Hamiltonian is no longer timelike. Moreover, in the liter-
ature, it is common to find physical situations described in a
frame where the original Hamiltonian is already spacelike
before any canonical transformation. For example, in the
context of cosmological perturbations, the Mukhanov-
Sasaki variable describes a harmonic oscillator with mass
equal to one and frequency > = k> — V (where k is the
mode from the harmonic decomposition and V' the potential
related to background quantities) in the conformal time
gauge. When the potential V gets larger than k, the
frequency square is negative, the Hamiltonian is not positive
definite anymore, and the vector U is spacelike. Hence, as M
is necessarily timelike [see Eq. (A42)], we cannot use the
Hamiltonian vector U or its corrections after performing
canonical transformations to settle the initial conditions.
Therefore, we have to find within this type of dynamics other
ways to calculate an approximate propagator from which
we can calculate the solutions and seek stability curves.

Fortunately, this is possible in many physically relevant
situations, as we will now see.

After performing the canonical transformation (C1) to
remove £, the Hamiltonian vector N is given by Eq. (C2):

(1 »\ Go 1 5\ G2
N—<m—|—mo—)2+< ma)z. (97)

m

In different physical scenarios, the nonadiabatic behavior
takes place when 1/m or mo?; i.e., it diverges as t — #,. A
common example is when m is a positive power law in
t —ty and o is real and regular at ¢y, i.e.,

m = my(t = 1,)*(1 + O(t - 1)),
o =o0o(l +0(t-1)), (98)

where my, o, tq are arbitrary real constants and 0 < 1 < 2
(the two special cases A = 2 will be treated separately).
This is an example where N is timelike, but the adiabatic
approximation is not valid because &/(20) « A/(1 — ;)
becomes arbitrarily large as ¢ — #,. Consequently, one must
use another strategy. If it is possible to remove the 1/m term
from the Hamiltonian (97) without adding more large
terms, then the Hamiltonian vector becomes negligible in
the limit # — t;,. That would allow the usage of iterative
approximations to calculate the associated dynamical
propagator. Then, one can seek stability curves to which
all the equations of motion solutions keep their distances
almost constant.

To find such canonical transformations, it is convenient
to write the Hamiltonian vector given in Eq. (C2) as a linear
combination of two null vectors defined in Eq. (A44) with
time-dependent coefficients, i.e.,

1
N ==L} —ms’L3, (99)
m

where the large 1/m term is isolated in front of L. Using
the properties of L3, it is easy to see that the canonical
transformation

C.(q)= e, (100)

where ¢ is an arbitrary function of 7, leads to the
Hamiltonian vector, 12

N = (q)NCL(q) +C,(g)C' (q).

1
=Lj (;+ q’mo’ — i]) —Lyme® +Ggme®. (101)

"2Such transformations (generated by L3) when applied to the
fields result in a redefinition of the field or momentum variable.
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We can remove the term 1/m using the term §. Otherwise,
we would have to make ¢> = —1/(mc)? which introduces
a new large term through ¢. In practice, we can solve
the equation

1
q=—+q’mo’,

. (102)

perturbatively. Consider the case where m goes to zero
as (t—1ty)% ie., the mass term is given exactly by
m = m(t — t,)* for a constant m. The function

qo = / %dt (103)
is clearly a leading solution as long as
|ggm*c?| < 1. (104)
Around ¢, the condition above translates to
E;__tfsj o2 < 1. (105)

There is always a t close enough to 7, such that this
condition is satisfied. For a small correction ¢ = gy + ¢
and considering g, at the same order as g3ma?, we obtain

q1 = qome*,  q =/Q%m62dt- (106)

Again, this is a valid approximation as long as

Then, around t, the condition is
2(1 — 19)*ap

— I 1. 108

e oy

We can continue in this way and at each order we have a
similar condition as (108). In practice, this is the same
result one would get solving this equation in powers of m
and considering ¢, a zero-order term. Notwithstanding, that
does not imply that g, are small, it is easy to show that
around 1,

2n+1—/1. (109)

qn X (t - tO)

Note that our previous imposition 4 < 2 makes g, forn > 0

converges to zero at t — fo. This choice simplifies the

analysis below, although it is not required. We could move

on with A > 2, but the canonical transformations would be
more complicated.

Substituting back this expression for g up to first order in
Eq. (102), we get

NW = L} (2909, + ¢7)mo* = Lymo* + Ggma*,  (110)
where the first terms are at least second order in m while the
latter two are first order. Computing these quantities around
fp results in the Lj terms being the smallest [and the
leading one proportional to (7 — 5)*~*], while the L5 and
G, are (t—t,)* and (¢ — t,), respectively.

Now, considering only first-order terms the Hamiltonian
vector still has spacelike components, G and G,. To get a
Hamiltonian close to G, as we did in the adiabatic case, we
need to eliminate such terms. For that, we make a first-order
canonical transformation generated by G; and G,, i.e.,

Cia(pr,ry) = e e, (111)
where p; and r; are arbitrary functions of time that are
assumed to be first order in m. With this last transformation
we get

2

mo )
N® = TGO + (gomo* — p1)G,
2
n (i’l —%)G2 +0(). (112)

Therefore, we can easily eliminate the terms proportional to
G, and G, choosing

P = /qomozdt, i :E/mazdt, (113)

which are, indeed, first-order terms. Here we stress that we
are considering p; and r; small compared to one since we
are computing the canonical transformation in powers of
these two functions, this is why choosing 4 < 2 simplifies
the analysis. Studying the behavior around ¢, one can
verify that there is always a value of 7 close enough to ¢,
such that these quantities are much smaller than one.
However, note that these transformations add second-order
corrections to the G term,"” which we denote by s,.
Naturally, we can make a third canonical transformation of
the kind C|,(p», r,) with second-order functions p, and r,
eliminating the same order terms in G; and G,, again
adding a correction term s3 to Gy. Repeating this process up
to order n we get

N = sGy + O(n), (114)

where s contains all correction terms up to order n — 1, i.e.,

(S}
S
|
—_

nmo

- (115)

In addition to those already present in Eq. (110).
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In this frame, it is easy to compute the propagator up to
n — 1 order terms as

t
P = ¢80Go A E/ sdt. (116)
fo

The solutions up to O(n) can be read from (69) by making
the substitutions ¢ — s, A7 — Agp, U — G, and writing

ME)”) as in Eq. (87), and we obtain

M = cosh rG, + sinh r(cos(2A¢)in — sin(2A¢)in A Gy)
+O(n). (117)

Similar to the time-independent case, a general solution
also evolves on circles in the “spatial” plane Gy, G,. The
crucial difference is that |Ag| < 1, as it is a first-order term.
In this context, the solutions describe small arcs on the
circles, while in the static and adiabatic cases they may spin
around many times. Note that the Bogoliubov coefficient

between M\)" and M is

= sin |Ag| sinh r + O(n). (118)

|ﬂM<”),M(()")

Consequently, the closer the initial conditions are to the
origin, the smaller the arc segment length wanders by the
solution. Therefore, the natural VDC choice in this frame is,
again, V(") (¢) = G,. This is a stability curve in the same
sense as before, the solutions do not change their distances
from it as they evolve (up to the chosen order of approxi-
mation), yielding |y, ¢, (t)| & O(n). Of course, as in the
adiabatic case, any other V() with r < O(n) yields
Bogoliubov coefficients of the same order. On the other
hand, solutions with a very large r will also have a very large
p coefficient, even with a first-order Ag. Concluding, at first
order in s, the stability region is a small disk around the
origin with a O(n) radius. Thus, the VDC for the non-

adiabatic case is also defined by VE,") = G, but now set in
the nonadiabatic frames defined above.

1. Special cases: A=2
In the nonadiabatic regime there are also two special
cases that can be solved in another manner. Starting from
the Hamiltonian (99), we can make the following canonical
transformation:
Ci(go) = eXnein'= e=inks (119)
where ¢ is the same function defined in Eq. (103). The
resulting Hamiltonian is

1
N = 2—ng - q3ma’L5. (120)

90

This transformation in the field perspective is just the
rescaling of ¢ by 1/¢,. Considering the power-law behav-
ior, when approaching the nonadiabatic regime given in
Eq. (98), we have a new effective mass

1 (t—ty)*™
2 _ L
W =y G—17

(121)
Thus, if 2 = 2, the new mass no longer goes to zero when
t — ty; i.e., ty is now a regular point in this frame.
Moreover, as m > 0 and assuming ¢ > 0, then we can
rewrite the Hamiltonian as
N = ge=26iGa G, ¢ 4GoGo = In (a2 122

= e 2002 G202, ¢, =In(gqgmo). (122)
Making the inverse canonical transformation leads to
another Hamiltonian as in Eq. (C8), that is,

&

N® =6(Gy-F,Gy). F, S
o

(123)

As &, is constant for 4 = 2, we get just N® = 6G,, as in
the case examined in Sec. III B, with an actual fixed point

and the vacuum exactly determined by V) (¢) = G, in
this frame.
Going back to the original frame we obtain

2 1 ¢
V(t) :L;‘IO—L;(+§> —6 L,
C

(124)
q ¢ 49 Cq

where we defined the constant ¢, = ggmo. Comparing the
VDC above with the field variables as described by
Eq. (A45), we obtain using r, = (¢,11,), satisfying
r:85%r, =1 and a particular choice of time-dependent
phase such that ¢ is real at the initial time,

S (RPN | i (i —i\/:i -0 (125
¢ ,/2cqe ’ 4 <\/26q 2 q e (123)

where
9 = 90 + /Gd[.

In this case not only do we have an exact VDC, but it is also
an exact solution.

(126)

2. Special cases: A= -2

The second special case occurs when we have the same
behavior for the mass (98) but with 4 < 0. In these
situations, the term m must be removed from the
Hamiltonian instead of 1/m. To accomplish this, we need
to perform a different canonical transformation generated by
L5 instead of L. Using L3, the canonical transformation
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C_(p) = e, (127)

where p is an arbitrary function of ¢, leads to the
Hamiltonian

1 2
N = L2+—+Lg<j7 — mo? —p—> -6, 2. (128
m m m
Similar to the 1/m case we choose
P = Do Do = /mazdt. (129)

We could follow the same steps as in the beginning of this
section to find the nonadiabatic vacuum. However, in this
particular case, it is simpler to implement a second canonical
transformation generated by L,

C(po) = el el (130)
to find the Hamiltonian
2 2
N =Lope 7y (131)
m Po

Note that, in this case the effective mass is given by

A+ 1)?
ﬁzz( i 4> (= 1g) =2+, (132)
Po myo
Thus, now the effective mass is constant when 4 = —2. Asin

the previous case this Hamiltonian is a single boost in the G,
direction, i.e.,

N = ge=$606:Gye¥6G: ¢ =1In (g) (133)
0

Again, the second frame defined by the canonical trans-
formation above leads to the VDC V?)(¢) = G, which is a
fixed point of the system when m o ¢t~2. In the original
frame the VDC reads

1
V(t)=Ly (2— + cp> - Lgp(z)cp +Gipoc,, (134)
PoCp

where ¢, = mo/ p3. Writing this VDC in the field variables
using Eq. (A45) and using a particular choice of time-
dependent phase 6 such that initially we have TI; purely
imaginary, we get the normalized phase vector r, = (¢, 11,),

1 c ) c )
=—————tiy/ L), I, = —iy/Lpoe™.
¢ (po 2¢, 2) / 2 Po

(135)
Here, 6 is also given by Eq. (126).

V. APPLICATIONS

In this section we will apply the formalism developed in
Sec. IV to some representative cases in cosmology. For the
adiabatic case, we will obtain the well-known adiabatic
vacuum used to calculate the perturbation spectra in the
matter bounce scenario. In the next subsections, we will
apply the method constructed in Sec. IV B to two examples.
We first consider the nonadiabatic case in which the
contracting phase of a bouncing model is asymptotically
dominated in the past by a cosmological constant. We
obtain a new vacuum state for the cosmological perturba-
tions which is not known in the literature. In the second
case, in order to illustrate the power of the new method, we
obtain the Bunch-Davies vacuum for a massless scalar field
in de Sitter space in a completely different manner from
those found in the literature. We use the VDC established in
its appropriate frame as described in Sec. IV, and then we
get back to the original frame in which the equations are
usually formulated.

A. Nonadiabatic vacuum in bouncing models
with a cosmological constant

One important application of the procedure described in
Sec. IVB to provide a VDC is the problem of a stable
quantum vacuum state definition in a bouncing model
containing dark energy which is asymptotically dominated
by it in the far past. In this limit of the contracting branch,
the scalar and/or tensor perturbations field-mode frequencies
are negligible with respect to the background expansion rate
scale; that is, the mode-wavelengths are much larger than
the Hubble radius at that time. Some attempts have been
made [24] to define a sound quantum vacuum state in this
situation. However, as discussed in Ref. [24], their proposal
had limitations, since it depends on a particular point during
the contraction phase, where the potential is exactly zero and
does not necessarily lead to a stable vacuum in the past. Note
that if the standard ACDM cosmological model is correct
and dark energy is a small cosmological constant, then any
bouncing model containing a large scale contracting phase
will have to face this problem, as the cosmological constant
dominates at these scales.

Consider a contracting Friedmann-Lemaitre model
dominated by a cosmological constant, and a perfect fluid
with equation of state p = wp, for a constant w, where p is
the fluid pressure and p its energy density. In bouncing
models one usually takes |w| << 1, the so-called matter
bounce, as it naturally leads to an almost scale invariant
spectrum of scalar perturbations when the matter fluid
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dominates the contracting phase. Let us define the redshift
time function x = a(/a, where a is the scale factor and a
is its value today. In this situation, the Hamiltonian of scalar
linear perturbations has mass and frequency terms given
by [30]

_ 42G(p+p)

o = Nxck, m=—————"’,
* Nc2x*H?

(136)

where N is the lapse function, G is the Newton constant, ¢,
is the sound velocity of the scalar perturbations, H is the
Hubble function, and & is the wave number. Dynamics in
the far past of the contracting phase is ruled by classical
general relativity, yielding the Friedmann equation

H2

— 3(14w
H—%—wa<+ )+QA»

(137)

where H( is the Hubble constant today, Q,, = pg/pco
Q= A/(87Gp,.), po is the fluid’s energy density today,
and p.o =3H3/(87G) is the critical density today.

Using the dimensionless time parameter,14 0<T <o
defined by 7' = x (this time variable is convenient since it
tends to the conformal time in the asymptotic past) yields

1 1
TNV + aT?

where a = Q,,/Q, and 1 = | + 3w. Substituting this time
variable back in (136), results in

N

(138)

o0 moT* (139)
6=— m=——
V1 + aT*H V1 + al?
where
cik (2 4+ D)a/Qp

UOE

SR =
NN 0 2¢2

We are interested in the asymptotic past of the con-
tracting phase, when 7' — 0. In this case one gets

6~ 0y, m =~ myT". (140)

Using Eq. (140) in Egs. (103), (106), and (113) we get

Tl—/l TS—AO.%
(1= T G- — %

q0 (141)

Y“From now on, in this subsection and in the following one, all
variables are made dimensionless as they express physical
quantities in Hubble radius unities, that is, tg¢=tH,,
ks = (l/Ho)k, etc.

Tzo%
2(1-2)°

T im0}
r=——0.
P21+ 2)

p1= (142)

Then, the VDC discussed in Sec. IV B is just the choice
ng)(t) = G, in the transformed frame (.

Performing the inverse transformations we obtain the
VDC in the original frame. In the case of a matter bounce
scenario where 0 < w < 1 one gets that A is slightly larger
than one. For this reason, we see that ¢, is actually
divergent when 7 — 0, while all other transformation
parameters are small in the limit. For this reason, we first
write the full transformation as

Va(1)=C(q)Cl,(p1,r1)GoCra(p1,71)C(q)
=cosh (2r}) {cosh (2py) —l—q;e_zl’l —gtanh (2r1)} Gy
+cosh (2r})[—ge™?P1 +tanh (2r))]|G,
+cosh (2r;) [Sinh (2p1) —l—q;e‘zl’l —gtanh (2r1)] G,.

(143)

Expanding V,(7) at first order in p; and r|, we get

2
q
Va(t) = (1 +7—2qr1 —‘12P1>G0 +(2r1 —q+29p,)G,

2 2
q q
+ |:7—2qu + (1 —7>2p1:| Gz.

We can relate the full VDC (143) with the field variables
using Eq. (A45), yielding

(144)

,, L —isinh (2r,) | fcosh (2ry)

=qge " ———— - fjel1/——, (145
$=q \/2cosh (2ry) 2 (145)
1 —isinh (2
I, — e~ L1500 1), (146)
2cosh (2r))
At first order, the same VDC reads
1-— i(1 -2
p—dU=p) Fill+pi=2qr1) (147)
V2
1= p +2ir
M, =—-"="". (148)

V2

For our present problem, we can express this VDC explicitly
in terms of the cosmological parameters, which reads
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¢~L<1_ c2k*T? )
V2 20, (2 + 3w)

2 —3w 21272
+L _2CS\/QAT |- c;k°T (149)
V21 Iw(l+w)Q, 2Q,(2-3w)
I ~ i 3(1 + w)Q, k2T
PE A\ 2@ P2 1 3w)

1 c2k*T?
— (1 s . 150
" V2 ( " 6WQA) (150)
The limit 7 — O corresponds to the super-Hubble regime;

hence the field variables ¢ can be obtained using the super-
Hubble approximation at the same order, that is,

gbzAl(k)(l —/‘Z/W&MT/)
+ Ay (k) (/d%—/d%/m’a’sz’/(;T,:/) (151)

where the primed functions indicate the argument, e.g.,
m' = m(T'). One can verify that the time dependence
calculated in this way fits with Eq. (149), leading to the
particular choice A, (k) = iA,(k) =i/+/2 (apart from a k-
independent constant phase). Therefore, these two constants,
which yield the spectrum of ¢, are determined using
our VDC.

Equations (149) and (150) are the main result of this
subsection. It yields a new stable vacuum state, which can
be defined in the asymptotic contracting phase of a
bouncing model with a cosmological constant and a matter
fluid, yielding the initial conditions of quantum cosmo-
logical perturbations on it. It is worth emphasizing that this
result is valid for any physical case where only ¢, diverges
in the limit 7 — O.

The behaviors described in this section can be seen by
examining Figs. 1-3. In these figures we use the
Minkowski representation where the coordinates x! and
x* are “spatial” projections and x° is the “time” compo-
nent, i.e.,

xB=M-GunB. (152)

The original frame shown in Fig. 1 is dominated by the ¢
term, and this is easily seen inspecting an arbitrary solution
M = Cl(q)PVMPVC,(q)

= CL(q)MoC.(q) + O(1). (153)

In terms of the components we have at leading order,
ignoring first-order corrections,

xt=xd+ g(xd + 29, (154)

2

2 = af - g} = T (0 + 2f). (155)
q2
xozxg—l—qx(l)—l-?( 3+ x0). (156)

For given initial condition components x5 = M, - G 5.
Thus, we have approximate parabolas in the x'-x? plane.

The first-order frame is depicted in Fig. 2, where the
divergent term is removed. Finally, in the second-order
frame (Fig. 3), we see the rotating behavior dominating far
from the VDC. As we get closer to the origin, the solutions
follow the behavior of the VDC.

1. Special case: Radiation

For a radiation fluid we have w = 1/3; hence A = 2. This
is the case described in Sec. IV B 1. At leading order in T
[see Eq. (140)] we have

ck c?
c, = , =
17 200, = "o ra o

(157)

Using these quantities we obtain the VDC in terms of the
fields as

(158)

Note that in this case the field diverges as T — 0 in the
original frame. However, even in this case we have a well-
defined vacuum.

B. Adiabatic vacuum in the matter bounce scenario

In this section we make a brief review of the adiabatic
vacuum in the matter bounce model in order to illustrate our
method in a well-known scenario. Here we use the same
model as in Sec. VA, but setting 2, = 0. We then get the
following mass and frequency results:

) myy

0= M= i

=t (159)

where here we have

csk 2+H)ve,

ok o
VoW 0 22

Substituting these quantities in Eq. (C8) results in

oy =
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— r=69x10"% === 1
0 - - — r=58x10"3 M
T T T T T T T T
25 50 75 100 125 150 175 200

2!

FIG. 1. Numerical solutions for Eq. (45) for the contracting model described in Sec. V A. All solutions were computed in the frame (V)
and transformed to the original frame. The used parameters are Q,, = 0.3, Q, = 0.7, w = 0.1, and k = 10°. Since the solutions are
timelike vectors with positive time components [as discussed below Eq. (A42)], the plotted spatial components x' and x> [see Eq. (152)]
represent the solution uniquely. In this figure, we show solutions in the original frame. As discussed in Sec. IV B, this frame is
dominated by the 1/m term, which can be removed using a canonical transformation generated by goL3, leaving a first-order
Hamiltonian vector. For this reason, the solutions in this frame for a given initial condition M, are given by Eq. (153), which draw
approximate parabolas in the x, -x, plane. We plot here 8 x 6 + 1 different solutions. The initial conditions (all set at frame () are given
by points in circles around the origin Gj, with six equally log-spaced radius (hyperbolic distance from G) in the interval
(1072,4 x 107"), and eight equally spaced angles in (0, 27). We also plot the VDC given by V() and the solution M starting at G, and
T =0,ie., M1 (0) = G,. In this frame, one cannot notice any discrepancy between them. Furthermore, the divergent term dominates
the evolution, and all solutions diverge to infinity at 7 = 0. Thus we only plot the interval 7 € (1078, 1075). Solutions with the same
distance to the VDC are plotted with the same color. We included a zoom at the end of evolution (near 7 = 0) to present more clearly the
different solutions in this frame.

wl 160 VDC with a distance r and angle € with the x!' axis.
’ (160) Although the frame is dominated by the boost generated
by & we can see that the solutions oscillate around the

Wthh tends to zero as T — O One can Compute higher_ VDC In Flg 5 we ShOW the same SOlutiOnS in the firSt
order terms to check that all converge to zero as T — 0. adiabatic frame. In this frame, the £ boost is removed, and
To illustrate our method, in Fig. 4 we plot the solutions the solu.tions: are closer to c.ircles around the- origin.
calculated numerically using a fourth-order adiabatic ~ Finally, in Fig. 6 we plot again the same solutions but
vacuum as the VDC in the original frame. We computed =~ NOW in the second adiabatic frame. Here we notice a
both F, and F, analytically and F5 and F, numerically. further slowdown of the VDC, as it stays even closer to the
However, the numerical results provide no further insights ~ origin than in the fifSt frame. SQIUtiOHS starting around the
on the problem, and therefore we are not including them  VDC have the predicted behavior, where they revolve and

here.'> We also included solutions starting around the =~ move keeping its center on the VDC. Finally, in all plots
we also included a solution starting exactly at the VDC at

- e . o —~10. . e

"The numerical code and python notebooks where these the initial time T = 107°; n(?te that it _Stays initially close
solutions were computed can be found here: VacuumStudy [31] to 'the YDC’ ?-nd starts to deviate from it by the end of the
and VacuumStudyAdiabatic [32]. adiabatic regime.
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0-0006 90,0000 -
0.0004 400001 1
~0.0002 1
0.0002 -
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1
X

FIG.2. The same solutions discussed in Fig. 1 in the original frame are now plotted in frame (!). The parabolic behavior seen in Fig. 1
has been removed by the canonical transformation. Consequently, we can see the first-order Hamiltonian effect on the solutions. The
solutions at radii larger than the solutions’ length are dragged toward the origin by applying a constant rigid motion using a rescale
function of the radius f(r) as (x!'(T), x*(T)) — (x'(T),x*(T)) — f(r)(x'(0),x%(0)) to improve the readability of the plot. At the frame
(1), the Hamiltonian vector (110) has first-order terms in all components. For this reason, the solutions do not show any clear pattern as
the evolution consists of a sequence of small boosts in different directions. Nevertheless, since all solutions keep an almost constant
distance from the VDC, we notice that they follow similar trajectories as V(Ql). In this frame, the evolution of the VDC can be read
directly from Eq. (144) setting g = 0, yielding x' ~2r; and x2 ~ 2p,. We also included a zoom of the VDC, M), and all nearby

solutions. Here we can notice a small discrepancy between the VDC and M(!) at the end of the evolution.

C. Bunch-Davies vacuum in the nonadiabatic
formalism

From the Hamiltonian vector defined by Egs. (120)
and (162), we can obtain the following second-order

equation for the mode v, (1) = \/m(n)pi (1), namely,
o [, M*\ 1
(161) dn2+{k g

whose general solution reads

The Hamiltonian vector (99),

1
N=—L} —mo’L3, (163)
m

which sets the dynamics in conformal time # for the modes
¢ (n) of a free scalar field with mass M in de Sitter space,

has the functions m(n) and o(5) given by ven) = \/M{Al(kwr(kw) + A (K)Y, (klnl)), - (164)

9 M2
\/ 4 HY

where
1

- Hin

m(n) = a*(n) o*(n) = k> +M>m(y), (162)

4

where H} = A/3, a(n) is the scale factor of de Sitter space

in flat coordinate system, and A is the cosmological
constant.

and J, and Y, are the Bessel functions of the first and
second kinds, respectively.
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FIG.3. The same solutions presented in Figs. | and 2 are now plotted in frame (?). Since this frame removes the first-order terms from
the Hamiltonian, the solutions (also moved by a rigid translation) present only second-order variations compared to Fig. 2. We obtain the
behavior predicted analytically in Eq. (117): solutions with large radii r have their evolution dominated by the first-order rotation
describing arcs about G, which gets affected by second-order terms when the radius becomes sufficiently small. Since we are in a

second-order frame, the VDC Vg2> is given by the black dot at the origin, and the solution M) only deviates from it by second-order
terms. This plot summarizes most of our results about the nonadiabatic VDC: it shows that all points close to the origin provide a

reasonable VDC because they stay as close to their starting point as M? from V(z2

). That s the stability region discussed in Sec. [V B. As

we move away from the origin, solutions start to rotate about G, and the second-order effects are less and less visible.

One common way to fix A;(k) and A,(k) and get the
Bunch-Davies vacuum is to impose the adiabatic vacuum
prescription in the period where the adiabatic approxima-
tion is valid. Take the first adiabatic function (see
Appendix C) of this model,

_1d¢ Hy 2K*Hin* +3M?
' 26dp 2k (KPHZpR + M2)2

(165)

where & = In(mo). When |kn| — oo, which is also the
ultraviolet limit, |F;| — 0, as well as all others |F,|, and
the adiabatic approximation is applicable in this regime.
Expanding the Bessel functions in the limit |kn| — oo,
solution (164) reduces to the adiabatic vacuum iff

A, (k) = iA,(k) = (n/(4k))'/?, yielding the Bunch-
Davies vacuum mode,
V7|l ,
v(n) = ——J,(kln|) = 1Y, (k[n])]. ~ (166)

2

For a fixed time 7 one needs to take the limit k — oo to
define the vacuum state. That is, the behavior of A, (k) and
A, (k) is only defined in this limit. Therefore, one must
study the behavior of the solutions at different time frames
to get this behavior for all values of k.

In this subsection we will obtain the Bunch-Davies
vacuum exploring the features of the Hamiltonian vector
(120) outside the adiabatic region, where || — 0, which is
the super-Hubble regime, using the method constructed in
Sec. IV B. We will focus on the massless case.

In the massless case M = 0 we have y =3/2, 06 =k, m
is the same, and the F; function reads

1de 1

=== 167
" okdp T Ky (167)

The expression above shows that in the limit # — O the
adiabatic prescription cannot be used. However, this is
exactly the special case discussed in Sec. IVB?2, to
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FIG. 4. Numerical solutions for Eq. (45) for the contracting model described in Sec. V B. All solutions were computed at the first
adiabatic frame ("), The used parameters are Q,, = 1, w = 107, and k = 10. As in Fig. 1, we plotted the components x; and x,
representing a solution uniquely. In this figure, we show the solutions in the original frame. As discussed in Sec. V B, this frame is
boosted by & Consequently, the VDC and solutions in this frame move quickly in the G, direction. We plot here four different solutions
in addition to the VDC, and the solution M satisfying M(T) = V,(T,) where T, = 10~'°. Initial conditions are given by circles around
the VDC with distances from V, for r = 0.01, 0.03, 0.04, and 0.05, and the two angles 0 and z. Solutions with the same distance to G,
are plotted with the same color.
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FIG. 5. The solutions presented in Fig. 4 are plotted here in the first adiabatic frame. This frame removes the boost generated by &.

Consequently, the motion in the G, direction is reduced. We predicted this behavior analytically. As we increase the index (n) of the
adiabatic frame, the VDC stays closer to the origin, and solutions keep rotating around it.

065019-22



NEW FORMALISM TO DEFINE VACUUM STATES FOR SCALAR ...

PHYS. REV. D 107, 065019 (2023)

0.05 4

0.00 A

—0.05 A

~
8 —0.10

—0.15 4

—0.20 A

—0.25 4

M(2)
_— V4(2)
r=0.01

r=0.03
r=0.04
r=0.05

—0.05 0.00

0.05 0.10 0.15

.Z‘l

FIG. 6. The same solutions presented in Figs. 4 and 5 are plotted in the second adiabatic frame. The boosts generated by
& and &, are removed. Therefore both movements in the G, and G, directions are reduced. Note that the VDC and M® begin to separate
only when the adiabatic condition is no longer fulfilled. We can visualize this as the region where the solutions cease to revolve around

the stability curve.

compare the mass term given in Eq. (162) with Eq. (98).
Therefore, substituting m and ¢ in Eq. (135) we obtain the
following VDC applied to the fields:

11 i - .k

This is the well-known Bunch-Davies vacuum for a
massless scalar field with minimal coupling.

Some remarks are important here. Note that we have
obtained the Bunch-Davies vacuum Eq. (168) in the mass-
less case from the Hamiltonian equation (161) directly. All
canonical transformations were used without any approxi-
mation in all steps; hence the final Hamiltonian vector (131)
is constant. We are not aware of any attainment of the
Bunch-Davies vacuum where the general solution (164) is
not used, as well as through an inspection of its large scale
modes behavior alone.

The route we have used to arrive at Eq. (131) is not useful
in the other cases, since it does not lead to the intermediate
Hamiltonian with constant coefficients for other time
dependencies. Thus, the last canonical transformation that
takes the Hamiltonian to G, will insert back in the
Hamiltonian vector an extra term with G; multiplied by

the time derivative of £,. As the reader may verify, this is
also the case of the massive scalar field in de Sitter space,
where time-dependent terms appear in the intermedi-
ate steps.

VI. CONCLUSION

In this paper, we built a framework to find stable vacuum
solutions in terms of stability points in the hyperbolic space
H? defined as the points to which all solutions of the mode
equations mapped to this space keep approximately the
same distance from them. When the mode frequencies
dominate the field mode evolution, we recover the usual
adiabatic vacua in simple terms. The method is then applied
to the reverse physical situation, namely, when the mode
frequencies become irrelevant for the field mode evolution
or, in the case of curved spaces when the mode wavelengths
are larger than the curvature scale of the background
spacetime. We show that these stability points can also
be found, yielding reasonable stable vacuum states.

As an illustrative example of the second method, we
obtained the Bunch-Davies vacuum of de Sitter space in a
completely different manner. We carried out the analysis in
the super-Hubble regime, where the adiabatic approximation
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is not applicable. In this regime, we showed that the time-
dependent Hamiltonian vector in the hyperbolic space H?
describing the dynamics of a massless scalar field in the de
Sitter space can be exactly transformed to a trivial time-
independent Hamiltonian using boosts and rotations in this
space. This simple Hamiltonian vector yields its obvious
vacuum state that, when transformed back to the original
frame, is exactly the Bunch-Davies vacuum of the massless
scalar field in de Sitter space. In all this analysis, we never
used the general solution of the field mode equations. There
are two common approaches to tackling this problem. The
first is to choose a time limit when all relevant modes are
sub-Hubble and then use the adiabatic vacuum. The second
approach involves using a general solution for the mode
equations and determining the vacuum as the solution that
matches the adiabatic vacuum in the ultraviolet limit. To the
best of our knowledge, this is the first time one obtained the
Bunch-Davies vacuum without recurring to ultraviolet limit
or the general solution (164).

We then applied the new method to the cosmologi-
cal problem of finding the vacuum state of cosmological
perturbations in bouncing models with a cosmological
constant and a fluid satisfying p/p = w = const in the
asymptotic past of such models. In this regime, the mode
frequencies are irrelevant for the mode dynamics, and all
relevant cosmological scales are much bigger than the
Hubble radius. Nevertheless, we found a new vacuum state,
given in Eq. (144), which is stable up to the infinity past of
these models.

For the nonadiabatic vacuum computed in Sec. IV B,
looking at Eq. (109), we can see that its series expansion
only produces small ¢, for 1 <2 = w < 1/3, explain-
ing the upper limit we imposed to 4. Moreover, for 4 =
1+ 3w with 0 < |w| < 1, the ¢, term (141) and, con-
sequently, the VDC given in Egs. (149) and (150) diverge
very slowly for positive w or converge to zero for negative
w. In a geometric point of view, the VDC in the original
frame, given by Eq. (143), tends asymptotically to the
“null” vector L if w > 0, and to the origin G if w < 0.
For positive w, this does not mean that the vacuum is not
stable. All solutions starting close to the nonadiabatic VDC
become closer and closer as we move back in time. That is,
the VDC itself is valid everywhere but in the infinite past.
We can evaluate the power spectra to understand the
differences between these two scenarios. Inspecting
Eqgs. (149) and (150) we note that for 0 <w < 1 the
power spectrum for ¢ (o |@|*> &< T7%) diverges slowly
while for I, it tends to a constant. Now, if ¢ diverges, one
should account for its backreaction in the background
model. In addition, when ¢ is a first-order perturbation, the
perturbative approach is unstable in this limit since ¢ grows
unbounded. Nevertheless, both power spectra tend to be
constants for —2/3 <w < 0. Thus the model in this
scenario is completely stable, at least modewise.

Furthermore, it also takes longer for the power spectrum
to diverge in the positive case as w — 0 (the case w =0
excluded, one cannot have oy = 0). Therefore, the opti-
mum situation for maximum stability of the power spectra
is |3w| < 1. As it is well known, observations indicate that
dark matter should satisfy ¢ < 1 and |w| < 1 (but they
cannot be null as well). That may indicate a deep
connection between the cosmological constant and dark
matter: one can obtain an arbitrary long-lived vacuum state
with nondivergent power spectra in the far past of such
models only when we consider both components at once.
There is also the interesting possibility of considering self-
interacting dark-matter components. These have their
equation of state modified by bulk viscosity that can lead
to a slightly negative w and consequently to stable models.

The consequences of this finding may be far-reaching.
To the best of our knowledge, it is the first time one gets a
connection between the cosmological constant and a fluid
with the properties of dark matter, two independent and
unrelated components of the standard cosmological model.
They cooperate to allow the construction of an asymptotic
stable quantum vacuum in a sense discussed above. This
fact may shed some light on the search of physically
meaningful stable vacua in string theory. One usually
searches in the direction of a pure cosmological constant,
or inflaton fields with slow-roll potentials, without success
(see, for example, [33]). Perhaps one should change to
search in the direction of a positive cosmological constant
together with a fundamental field suitable to describe dark
matter, as K-essence scalar fields, which, as far as we know,
were never investigated in this framework. Maybe a
positive cosmological constant and dark matter are two
fundamental ingredients of gravitation that cannot be
studied separately, they seems to be consistent only when
combined. It is maybe an interesting avenue to follow.

It is important to note that once a vacuum prescription is
established for a particular time interval, it can be used to
evolve the field to any other time. Therefore, even if there is
no vacuum prescription for later times, one can have well-
defined initial conditions that can be evolved to any
arbitrary time. In the case of inflationary models, the
Bunch-Davies vacuum is commonly used as a well-defined
initial condition since all modes can be made adiabatic in
the far past. Although observables such as the two-point
function or power spectrum can still be computed as the
modes evolve to super-Hubble regimes, particle production
during nonadiabatic phases cannot be computed without a
vacuum definition. Thus, a vacuum definition serves two
purposes: to impose well-defined initial conditions for
quantum fields and to compute particle production. Since
the number of particles is defined in terms of the vacuum
state at a given time, it is necessary to define the vacuum
state at all times where particle production will be
computed. Finally, for models where all modes are
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super-Hubble in the past limit, a vacuum prescription at this
regime is required to impose sensible initial conditions.

In upcoming work, we will use the stable quantum
vacuum obtained above as the initial quantum state of
quantum cosmological perturbations evolving in bouncing
models with a positive cosmological constant and dark
matter to evaluate their amplitude and spectra.

We will also enlarge the above framework to multiple
fields and place it into an extended and more fundamental
mathematical framework.
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APPENDIX A: PHASE SPACE
REPRESENTATION

We can write the product between two vectors r, and q,
in Vp, as r:Se°q,,. We will raise and lower indices using

the matrix S, and its inverse through r* = S%r,. From this
definition, we have the following properties:

r, =S,
_ b
r¢ = Sar,,

r.q* = r'qq.

b
r=r"S,.,
ax __ px Qba
r —I'bS ,

(A1)

If a given vector has a positive norm, i.e., r:Sebr, > 0, its
complex conjugate has a negative norm (r)*Sr; =
—r;8%r, < 0. Therefore, it is convenient to choose the
basis such that the vector r, always has a positive norm, and
its complex conjugate has a negative one. Using a nor-
malized vector, r**r, = 1, we define the projectors

Pt =r,rb*, Pt =rir? = SP4S,,. (A2)
It is easy to show that
8.” =P+ P, Sab = Pap =Py (A3)
where
Pu =P Sy = 1,13 (Ad)

The expressions above are valid for any unitary vector. This
implies that, for any basis, the imaginary part of the
projector P, is the symplectic matrix S,,, and the real
part of P,” is the identity.
We can now define the operator J,” as
Jab = (Pab _ Pab*)’

Jab = (Pab + szb)’ (AS)

and, conversely,

B Jub + 5ab

Pb
“ 2

(A6)
Here we should note that J,, is a real matrix while J,,” is
purely imaginary. Hence, the real operator M,” defined
below satisfies

M, =-id,’, M, ML =-5,", (A7)
and it defines a complex structure in the phase space. Here
we call attention to the fact that any normalized phase
vector I, leads to a linear structure M ,“. However, any other
phase vector that differs by a simple phase leads to the same
complex structure; i.e., given a phase vector q, = €"r,, the
projectors are the same

Pab[q] =q,9” =1, = Pab[r]’

and consequently the complex structures are also equal. We
discuss this property further in the section below.

1. Reduced phase space equivalence

The reduced phase space Vi o consists of equivalence
classes of normalized complex phase vectors [r,]. There is a
one-to-one correspondence between the points in Vj, t and
the space of linear complex structure \/%0 [the space of

2 x 2 real matrices M," satisfying Eq. (A7)]. First, we
show that Eq. (A5) provides a map u: Vi ,~— VM

k.t

p(r])," = =i(rgr = ror’).

It is evident that the map is independent of the represen-
tative of [r,]; i.e., any phase vector q, € [r,] is taken to the
same matrix,

(A8)

o —rar’ = Q9" — 99"

Given any two points in Vi, , [r] and [q] that are taken to the
same matrix u([r]),” = u([q]),”, we can contract Eq. (A8)

with r**r, and rr, to obtain

gl + r'q, | = 1, (A9)

r1q,r’q; = 0. (A10)
There are two possibilities to solve the second equation
above, r‘q, = 0 or r‘q; = 0. However, if r‘’q}, = 0, then
Eq. (A8) shows that q, = —q,r’r; which is inconsistent
with the normalization condition

q;8%q, =r,5%r; = -1 # 1.
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Hence, the only possibility is r“q, = 0 and consequently
9. = Q,r’*r, where |q,r*| = 1, implying that q, ~ r,. This
amounts to show that the map y is injective.

Second, we show that the map is surjective. Given any
matrix M," in \/,ﬁ’fto, its eigenvalues must be i, i.e.,

Mbr, = ar, = —r, = A*r,.

As a consequence, since M,” is real, its non-null eigen-
vectors must be complex. Hence, given any real phase
vector V,, the vector M ,”v,, must be linearly independent of
it, and it is always possible to build a complex eigenvector
with eigenvalue —i of M,” as

r, <V, +iMv,, (A11)
which can then be normalized. It is clear that r}, is also an
eigenvector, but with eigenvalue +i. This shows explicitly
that given any real matrix M,” € \/%to we can define an
eigenvector as above. Furthermore, clearly r, and r; are
linearly independent and form a basis in our two-
dimensional complex phase space. For these reasons we
can write

M = —i(rrb* —rir?), (A12)

showing that y is surjective.

2. The (X,U) parametrization
In the following, we build an explicit representation for
the matrices in \/,’gto, given the real basis r()? = 5, j =1,
2. The action of M,” on this basis is

r(l)aMah — Xr(l)b + Ur(z)b’ (AlS)

r@apg b = 1,rDb 4 1, p2)b, (A14)

where U and /; must be different from zero (otherwise r§j>
would be eigenvectors). Applying the same matrix on the
expressions above results in

—ra = (U1, + X2 + U(X + 1)rPe, (Al15)

—re = [, (X + L)rVe + (1,U + B)r®a, (A16)
and therefore, [, = —(1+X?)/U and [, = —X. This
means that we can parametrize the linear complex structure
matrix as

M= (—(1 +XX2)/U —Z() (A17)

This parametrization also has a direct interpretation in
terms of J,;, [see Eq. (A5)],

Jyy = IM,CS ( v X ) (A18)
ab =1 aC ¢ = s
b "T\=x (1+x2)/U
and thus,
Jll == U == 2\r1 2, (A19)
J12 == —X == I’ll‘z + I’TI’Q, (AZO)
1+ X2 5
Jyp = =2|nJ". (A21)

Equation (38) then shows that U/2 is just the power
spectrum of 7, = ¢, (1 + x2)/(2U) the power spectrum
of j, = fl¢. In addition, the product of the variances is just

1—1—)(2

<Or|$2|0r><0r|ﬁ5)’0r> - 4

(A22)

Hence, y measures how far the vacuum |0;) is from
saturating the uncertainty principle. Since U #0,
Eq. (A19) shows that U € R, while y € R. Of course,
we could add a disconnected branch to \/,]gto with negative

U. However, this is not necessary in this setting, and we
will consider \/,’fto always restricted to U > 0.

3. The (a.,y) parametrization

Another useful parametrization for the matrix M,” is
x = sinh @ and U = cosh (a)e”?, i.e.,

b sinh a
a =
—cosh ae™”

cosh ae™

). (A23)

—sinh a

Using this parametrization we have (a,y) € R?, providing
a one-to-one mapping between R? and \/,ﬁf’to. Next, the

eigenvectors have a simple form in this parametrization,
16
namely,

. e_% . o_a a e% . _a a
Q, = [7 <Ie 2 — e-),z (Ie 2 4 62)} (A24)

Given two points in Vi, , (a1,7) and (a,7,), the
Bogoliubov coefficients can be readily computed in this
parametrization through Eq. (32),

@, = cosh Aa cosh Ay +i sinh @ sinh Ay,  (A25)

51 = sinh Aa cosh Ay +i cosh @& sinh Ay,  (A26)

16Naturally, there is a particular choice of phase made in this
expression.
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where Ay = (y;—72)/2, Aa=(a;—a)/2, and a=
(a1 +a)/2.

4. Matrix notation

The matrix notation is useful for the calculation related to
the time evolution of the linear complex structures. In this
appendix we summarize the rules to go from index notation
to matrix notation. First, the vector indices are lowered and
raised following the rules (A1); that is, they are lowered and
raised by the left, and complex conjugated vectors by the
right. Second-order tensors will follow the pattern in
Eq. (A2); i.e., the left/right index is raised/lowered by
the left/right.

The product r:S%’q, can be written as

(r.q) =r;s*q,. (A27)

Given a linear operator L ", its action on a vector is simply
(Lr), = L,r,; hence, the adjoint can be defined as

(9.Lr) = qsS*L, . = (Litq,)* ST,

=(L'q.r), (A28)
where we have, as usual,
LTab = [ ba Liab = [Tabe = pbax  (A29)
From the definitions above, we obtain
Ly = (SacLa"S™)", (A30)
LTV = -8, L,cS%. (A31)

Note that L}, ? = L? iff LT% = L% and analogously for
LT?. The 2 x 2 identity matrix is denoted by I. Generally
we will denote by L the matrix whose elements are given by
L,”, the components of the tensor with the left index down
and right index up. Therefore, (LJ),” = L,J .. Itis worth
noting that the definition of T above in matrix notation is

LT = ST(L")S, (A32)
where T is the matrix transpose. Using these definitions the
usual property (LJ)" = J'L" still holds.

5. Canonical transformations

The action (2) can be transformed by any canonical
transformation. However, to keep the equations of motion
linear in the fields it is necessary to restrict to a smaller
group that acts linearly on the phase space and leaves the
symplectic form invariant. This group is the symplectic
group Sp(2; R). The group is defined over the field of reals

so the transformations keep the fields Hermitian. Given a
canonical transformation C,” it is clear that

(C,lry)8%eC.lq, = 1,8q,.
In matrix notation this is the same as
(Cr,Cq) = (CCr,q) = (r.q).

It is easy to check that C*C = I = CC" using the definition
of T in Eq. (A30). Moreover, under linear canonical
transformation a linear transformation L transforms as

L — CLC". (A33)

The algebra of Sp(2;R) can be written in terms of three

generators, namely,
oo (01
27\ o)

1 0
!
0 -1
o001
°=\ -1 o)

Applying the definition of T one can check that G, = -G,
and the traces Tr(G,) = 0, with the capital Latin indices
A €{0,1,2}. Furthermore, one can check that these
elements with the addition of the identity matrix / form
a bidimensional Clifford algebra with

(A34)

Gi . G) — 5ij17 Gl A\ G2 — G(), (A35)
where i = 1, 2, and we defined the operations
AB + BA AB — BA
A-BE%, A/\B:T, (A36)

where A and B are any linear combination of G4. The
Clifford product is just the matrix multiplication, i.e.,

AB=A-B+A AB. (A37)
A useful property is
Gy A G, = —eappn”“Ge, (A38)

where e,pp is the totally antisymmetric symbol with
€912 = 1. It is clear that we can use both the matrix
representation forming linear combinations of I, G, Gy,
G, or the Clifford algebra considering linear combinations
of 1,G,G,, Gy N G,, which we call multivectors. For
simplicity we are going to use the Clifford representation.

General multivectors can be written as V = VAG,. They
have an induced internal product given by G4 - Gg = 1,
where 1,5 = diag(—1,1,1). In other words, the multi-
vectors V form a three-dimensional vector space with a
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1 4+ 2 Lorentzian metric. In the Clifford algebra represen-
tation it is clear that the dot product of two vectors
V = VAG, and P = PAG, is a scalar, that is,

V-P= VAPBGA . GB = VAPBY]AB. (A39)
The same computation using the matrix representation
would have an identity matrix / multiplying the right-hand
side. To obtain a scalar, since the traces of G4 are all zero

and Tr(I) = 2, one defines the dot product in the matrix
representation as

(A40)

The square of a multivector is scalar in the Clifford
algebra, and thus,

VZ=V.V=VAVEy,p.

For this reason, the exponential map of an element of the
symplectic group algebra can be written as

cosh <\/ V2> +\/%sinh <\/V2> VZ >0,

v _
€ 7 cos (V—V2> + sz sin (\/—Vz) VZ <0,
1+V V2 =0.
(A41)

Applying the T operator to the exponential map results
in ()" =e7"; therefore, as expected (e")7e’ =1=
e (e")". Notice that a linear complex structure M is also
an element of this algebra, that is,

M = Gy(G, sinh a+ €% cosh @)
= cosh a cosh yG,, + sinh aG; —cosh a sinh yG,, (A42)

where the parametrization (A23) was used. From the
Lorentzian space point of view, M is a timelike vector
(M? = —1) with a positive time component, —M - G, =
cosh y cosh a > 0. Hence, the reduced phase space \/,’gzo is
also a subspace of the algebra. Note also that there are simple
relations between M and the fields, i.e.,

M = (|r [+ [r2)Go + (Ir1 > = [ra*) G

= (rr3 + 1rir)Gy, (A43)

for M defined by Eq. (A12). Moreover, it is easier to relate
the fields with the two null vectors

G, + G,

15=2220

(LEP =0 (A44)

that is,

2 —
|r[*=M-L5,
rry+rirp=-M-G.

> =-M-Lj,
(A45)

Finally, a general Hamiltonian tensor (B12) has its
associated matrix N represented by

1 G 1 G
N=(=+m?|+hG + —-m?) 2>
m 2 m 2

= v cosh Gy + hG| — v sinh &G,. (A46)
This vector has the norm N2 = —(v?—h?). If the
Hamiltonian is positive definite, then N is timelike.

6. Clifford algebra and H?

In this subsection we summarize some relations between
the Clifford algebra products and the hyperbolic distances
in H?. For more details and proofs see [34]. Let V and P
designate two normalized timelike Clifford vectors. The
hyperbolic distance between the two points in H? pointed
by them is

d(V,P) =cosh™ (=V - P),

V.P = —cosh d(V,P). (A47)
The second equality above is just the expression of the
product in the Clifford algebra in terms of the distance
d(V, P). One can also compute the modulus of the vector
V A P. First note that this product has a simple relation
with the Lorentzian cross product @ (as defined in [34]),

VAP=-VQ®P. (A48)
Thus, the square of this product is simply
(VAP)?=(V®P)? =sinh?d(V,P). (A49)

This shows that the product of two normalized timelike
vectors is a spacelike vector with norm sinh d(V, P).
Furthermore, we define the modulus of a spacelike vector L,

L] = VI,

Consequently, |V A P| = sinh d(V, P).
It is easy to show that for any two non-null vectors L
and M, we have

(A50)

(LAM)-M=0=(LAM)-L. (AS1)
This shows that V A P is always orthogonal to both V and
P. Now, given V and P as above, we can compute the
perpendicular part of V with respect to P,
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VLIP=V+(V-P)P=(PAV)P=(PAV)AP. (A52)
The norm of this vector is simply
(VLP)? = (P AV)? =sinh?d(V,P), (A53)

showing also that V L P is spacelike and has the same
length as P A V. One can also check that

(VLPYAP=(VLPP=VAP, (A54)
(VLP)-P=0, (A55)
(VLP)-(VAP) =0, (A56)
(VLP) A (V A P) = Psinh®d(V., P). (A57)

The results above show that given V and P we can build an
orthogonal frame P, V L P and V A P. We denote with an
overbar a spacelike normalized vector, i.e.,

= L
L=—. (AS8)

IL|

Finally, in general we can write
V = cosh d(V, P)P + sinh d(V,P)V_LP. (A59)

APPENDIX B: THE HAMILTONIAN TENSOR

In general, the Hamiltonian tensor introduced in Eq. (1)
can be written as

" mv* h
HY = L)

Even though H,” is self-adjoint, the phase space is not a
proper Hilbert space (note that any real phase vector has
zero norm). For this reason, we write the Hamiltonian
tensor in the form (B1). Using the fact that H* is a
symmetric matrix, it is clear that it has a well-defined
eigenvalue problem,

(B1)

SapHr = i), (B2)
where i =1, 2, A; are the real eigenvalues and rg') the
associated real eigenvectors. There are three possibilities
depending on the signs of /1,-17:

(1) 4; > 0 and 4, > 0, positive definite Hamiltonian,

2) 4y >0and 4, <0, and

(3) 4, >0and 1, =0.

'7Naturally, we have all the other cases that can be obtained by
multiplying the whole tensor H® by —1; however, they are
equivalent to their counterparts.

In all cases above we have two real eigenvectors r,(li) that are
orthonormal, i.e., F)9rY) = §ii where we introduced the
overbar F)¢ = §b r§f> to differentiate from the index raised
with $%°. An eigenvector q, of H,” with eigenvalue o, if it

exists, can be written as a linear combination of rff),

2
A=y cir,
i=1

where c; are arbitrary constants. Applying the Hamiltonian
tensor H,” on this vector results in

(B3)

Habqb = 0q,,
Sab(leﬁf(l)b + Cz/lzf(z)b) = U(Cﬂz(zl) + Czrgzz))

Contracting the second equation above with F(1)¢ and ()
results, respectively, in

Czﬂzf(l)asabf(z)b = 0Cq, (B4)

Clﬂlf(z)asabf(l)b = 0Cy, (BS)

which can be combined as
O'(C%/,Ll + C%ﬂz) = 0

The solutions for o #0 are ¢, = %icy\/4,/4;. The
tensor S,;, is an antisymmetric tensor in a bidimensional
space and form and therefore is a one-dimensional space.
Thus, it must be proportional to rgl)r,(f) - r,(lz) r,(ql).
The proportionality constant can be obtained using
that S,,S”¢ = §,¢. Performing this calculation we obtain
that F()eS,, F?» = +i, using the freedom to multiply the
eigenvectors 1Y) by —I, we choose FeS,,F2 =i
Substituting these results back into Eq. (B4) results in

v
O N
1

That is, both q, and q, are eigenvectors with eigenvalues
++/414,, respectively. For this reason, we choose ¢ as the
positive eigenvalue,

(B6)

[ \//1112.

In case 1, we can normalize q, as

A
q;5°°q, = 2|e,? ﬁ: L Cr=A|l51/7
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where we had to choose the plus sign in Eq. (B6);
otherwise the norm would be negative. In cases 2 and
3, the eigenvector q, is real (apart from an overall phase)
and cannot be normalized. This means that H,” specify
normalizable eigenvectors iff H is positive definite.
Sylvester’s criterion for positive definite operators pro-
vides the conditions under which an operator is positive
definite. In the case of the real matrix H%?, we obtain
m > 0, v»—h*>0, and 1*>0. (BS8)
If these conditions are satisfied, we can reparametrize
h, = tanh™" (h/v) and & = In(mv). Under these conditions
it is straightforward to show that the real eigenvalues are

A = y(cosh £+ \/ sinh? & + tanh? hy>, (B9)
b = y(cosh E— \/ sinh? & + tanh? hy>, (B10)
14
= . B11
’ cosh h, (B11)

Since the tensor H ,” is purely imaginary, we define another
real tensor

N, =—-iH,
) ( sinh h,  cosh h,e~¢ > (B12)
=0 :
—cosh hye¢ —sinh h,

Comparing to Eq. (A23) it is easy to see that N,/c is
actually a linear complex structure. That means that, if F?
is a positive definite matrix, it induces the linear complex
structure N ,” /o above. As it happens with M,”, N, /¢ has
eigenvectors equivalent to Eq. (A24), namely,

£ <
Q, = {% <ie_h7” - eh7b> ,% (ie‘% + B%D)] . (B13)

APPENDIX C: ADIABATIC FRAMES
AND ADIABATIC PROPAGATOR

The computation of the adiabatic frames can be greatly
simplified by making a first canonical transformation in
order to eliminate / from the Hamiltonian (B1). Note that if
the off-diagonal term /£ is present, the Hamiltonian vector
has non-null components on both directions G; and G, [see
Eq. (A46)]. It is easy to see that the canonical trans-
formation

C), = ¢%(G2=Go) (C1)

takes N as in Eq. (A46) to

N/ == ChNCZ + ChCZ

1 ” Go 1 ” G,
== - — = — 2
<m+m6>2+mma 2,(C)
where
a’zzyz—hz—h—h@,
m
leading to the new equations of motion
M =2N'AM' =25U AM, (C3)
where
N/
U =— =cosh &Gy —sinh £G,, & =In(mo’). (C4)
c

Hence, this canonical transformation removes the G| term
from N, or equivalently, it removes the off-diagonal term A
in the Hamiltonian (B1) and redefines the frequency
6% = 1> — h?. The new frequency & is still positive definite,
since 6> = v*> — h? > 0 [see (B8)], while the derivatives are
first order in the adiabatic approximation, and they must be
small when compared with the other terms, by assumption.
From now on, we will work in this frame, and, for notation
simplicity, we will omit the primes.
This parametrization makes it clear that

U = cosh Gy — sinh £G, (C5)
is a boost applied to Gy, i.e.,
U = 200" G2Ge 500002 = ¢=301GeiCr.  (C6)

Hence, the parameters of the canonical transformation
given by Eq. (74) transforming U to G, can easily be
read from Eq. (C6), €501 UesC1 = Gy, leading to dyy = ||
and U A G, = sign(&)GyG, = sign(£)G,. As a conse-
quence, our first canonical transformation reads

M) = CuMC) = 36002 Y e=360C: (C7)

Using Eq. (75) to calculate the Hamiltonian correction,
one gets

£

NY =6(Gy - F,G)), Fi=—-=. (C8)
20
The normalized Hamiltonian now reads
UM = cosh &,G, — sinh &,G,, (C9)

while the new frame (V) parameters are
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(] EG\/I—F%, 5] Etanh_l (F]) (CIO)
The equations of motion are given by
MY = 26,0 A MO, (C11)

Comparing Egs. (C5) and (C9), one can see that the
normalized Hamiltonian vector at first order U(") has the
same form as the zero-order U, with the spacelike direction
rotated to Gy. It is therefore clear that the Hamiltonian in
this frame is also a boost from G, parametrized by &,

U = ¢7360G1 Get3G61 = ¢36:Gpe3%.  (C12)
Hence, again, the above inverse canonical transformation
takes U") to G,. This induces the second-order frame,
where

él
Fo=+2L
2 2 5

N® = 01<G0 - F2G2)7
0]

(C13)

whereas the normalized Hamiltonian, frequency, and boost
parameters are

U® = cosh &G, — sinh &,G,, (C14)

0y = 014/ 1 —F%, 52 Etanh_l (Fz), (C15)
while the equations of motion read

M? =26,UD A MO, (C16)

Repeating the process in order to go to the frame *) from
the frame (=) leads to the boost parameters

én—l

2Gn—l

_ / 2
0y = Op— l_an

where the initial functions of this recurrence relations are

Fn = (_l)n ’ é:n = tanh‘l (Fn)’

(C17)

6y = 0, & =E (C18)
The first boost parametrized by ¢ is not necessarily small; &
can have any value. Nonetheless, all the subsequent boosts
have small parameters £, < 1 for n > 0. Note that these
transformations are finite and exact. Moreover, in each
frame the term F, yields corrections of adiabatic order
O(n) to the Hamiltonian multivector.

We can now compute the approximate propagator in a
frame (), which satisfies

P<")(t) = N(")(I)P(”)(t), (C19)
and the Hamiltonian multivector reads
N(n)(t) = 6n—1<t)(G0 - Fn(t)Gn)' (CZO)
Equation (C19) for P can be rewritten as
d -GoA -GoA
S (e P) = —g, P, OGP (1), (C21)
where
t
Az(t) = exp </ an_l(t’)dt’>. (C22)
Ty

Introducing the rotating propagator P£")

vector A as

and the spatial

P<r”> = e—GOA‘L'P(n)7 Aln) = e—GOArGlleGOA‘r’ (C23)
the equation of motion for P<r”) reads
P =6, \F,AMWPM. (C24)

The integral version of this equation can be readily
obtained as

P (r.79) =1 - / CF(2)AM ()PP (2, zp)de. (C25)
)

Note that, although the vector A" depends on time, it
always has modulus one, (A(”))2 = 1. Therefore, the
integrand in the right-hand side of Eq. (C25) is of adiabatic
order O(n). Substituting the expression for the propagator
back into its own expression leads to

P (2.79) = 1 = p™(z,7) + O(2n),  (C26)

where

P (2, 79) = / "F(AD(@)d.  (C27)

Naturally, up to this same order we can use the following
propagator:

P (z,79) = 7" (=), (C28)

Going back to the nonrotating frame the propagator is

P (7, 7p) = eGobre=r" (z10) (C29)
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It is more convenient to rewrite the propagator changing the
order of the two terms, that is,

PU(z,75) = e—pf”)(r,ro)eGoAf’ (C30)
where we defined a new multivector
P (7. 70) = e9¥Tp (7, 75)e=G0d7. (C31)

Before applying this propagator to an initial condition, it is

worth studying the behavior of the spatial vector p\"’ (, 7).

First we rewrite it as

pg") (’Z‘, To) g Gn /T Fn(T/)e_2(7_1/>GOdT/- (C32)
7o
If n < Ny We can integrate by parts to obtain
n Fn Fn
P (1.7) = Gy A G, (z) _ ﬂe—zmco
2 2
T F 4 ,
_/ ﬂ 6—2(1—1 )GodT/:| . (C33)
To 2Gn—l

The second term is of adiabatic order n + 1, and we can
neglect it. Moreover, the functions F,(z) usually have a
well-defined limit where the adiabatic corrections are
asymptotically zero. Choosing the time 7z, to match this
limit we get

),y Fal?)
pr (T)N 2

Go A G,. (C34)

Inserting Eq. (C34) back into Eq. (C30), we finally get the
propagator

P (z,74) & ¢=GonGi " pATGy, (C35)
The expression above shows that the time evolution (up to
order n) is the rotation about the origin G, followed by a

boost in the Gy A G,, direction. This is just the indication

that there is another adiabatic frame of order (™1 [see
Egs. (C17) and (C38)].

Now, if n = N, then the integration by parts is not
justified and we need another way to estimate Eq. (C32).
Nevertheless, using that

[Fa(7) cos [2(z = 7)]| < |Fu(7)
[Fa(7) sin [2(z = 7)]| < [Fu ()

El

and Eq. (C17), we notice that the components of the
multivector p, are always smaller than

ldén—l

5 d/ d’L'/< |§n—1|
T

= )

(C36)

/ﬂnwmfz/’
70 7

assuming that &,_; is largest at 7. This shows that the final
boost does not have a well-defined direction, but it is still
generated by a parameter smaller than the adiabatic order
n — 1. In this way, we complete the proof that propagator
(C35) is the one to be used up to order n.

Finally, the points on frame ¥ can be mapped back to
the original frame by applying the inverse canonical
transformations, that is,

V()= Gy Ch VO ()Cmy -+ Gy (C3T)
where a general canonical transformation C; reads
5 G, j odd
Cj=e#0,  G,= { v (C38)
' G, j even.

Two multivectors in two adjacent adiabatic orders are
related by

ve-h = ¢t vi(ne,,. (C39)
Writing the multivector in terms of its components, i.e.,

V(") = yWAG,, results in the following relation between
the components:

V(n—l)O _ V(n)() cosh f(n—l) _ v(n)Z sinh é:(n—l)’
yo-Dl — y

’

V=12 — y(m2 cogh glr=1) — y()0giph gh=1), (C40)
where we assume n — 1 even (there is a similar relation for
n — 1 odd). The expression above is simply the result of a
boost applied to a timelike vector V"), The final relation
between the frame (n) and the original frame depends on n
noncollinear boosts. It is straightforward to compose a
sequence of boosts in a single boost and rotation where the
last is known as Wigner rotation (see, for example, [35]).
Here, we are interested in the relation between frames up to
a given adiabatic order. For example, using the paramet-
rization described in A 3, we can write (a, ) in terms of

(a3, 3,) defined in frame ?) as

& sinh y, tanh a,
2
Y =y, + &+ & sinh y, tanh o,

+0(3),

a=a, —& cosh y, —

(C41)

é:Z
&+ 2L [sinh (27,) (1 -

. )} +0(3).  (C42)

cosh? a,

These expressions are valid transformations from any point
in the frame ) to the original frame. In particular, the
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origin at (?), that is, V(®) = G, is mapped to

a=—¢& +0(3), (C43)

r=£+6+003). (C44)

which are the usual well-known adiabatic parameters.
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