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Conformal symmetry can be spontaneously broken due to the presence of a defect or other background,
which gives a symmetry-breaking vacuum expectation value (VEV) to some scalar operators. We study the
effective field theory of fluctuations around these backgrounds, showing that it organizes as an expansion in
powers of the inverse of the VEV, and computing some of the leading corrections. We focus on the case of
spacelike defects in a four-dimensional Lorentzian theory relevant to the pseudoconformal universe
scenario, although the conclusions extend to other kinds of defects and to the breaking of conformal
symmetry to Poincaré symmetry.
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I. INTRODUCTION

In the real world, no system is infinite, and boundary
effects inevitably become important. Therefore, boundaries
and defects in quantum field theory are natural subjects of
interest in studying systems with finite extent or where
multiple regions or phases are joined by junctions or
localized impurities. In particular, recent years have seen
increased activity in the study of such boundaries and
defects in the context of conformal field theory (CFT) (see,
e.g., [1–4] for overviews).
A defect in a CFT can be of any dimension. One of the

simplest cases is when the defect is straight. A straight
d-dimensional defect breaks the D-dimensional conformal
group down to the d-dimensional conformal group, plus the
group of rotations around the defect. In a Lorentzian CFT,
such a defect can be spacelike or timelike, but the more
frequently discussed case is that of a timelike defect, where
the defect represents a spatial boundary or interface in the
system.
In contrast, an example where spacelike defects are

relevant is in some noninflationary early universe scenarios
featuring a pre–big bang phase, in which the universe is
nearly flat rather than accelerating. Some well-known

examples of this type are the ekpyrotic scenario [5,6]
and genesis-type models [7,8]. The general class of such
models that makes use of a spacelike conformal defect is
the pseudoconformal universe scenario [8–16]. In these
scenarios, it is postulated that the universe before reheating
is described by a CFT on a nearly Minkowski spacetime
whose conformal algebra is broken spontaneously by a
time-dependent vacuum expectation value (VEV) of some
dimension Δ scalar primary operator Φ taking the form

hΦi ¼ CΔ

ð−tÞΔ ; ð1:1Þ

where the dimensionless constant C signals the strength of
the symmetry breaking. The VEV (1.1) breaks the four-
dimensional Lorentzian conformal symmetry down to a
three-dimensional Euclidean conformal symmetry

soð4; 2Þ → soð4; 1Þ: ð1:2Þ

As t → 0 from below, the VEV (1.1) diverges and the
universe then reheats and transitions to the standard post–
big bang radiation domination phase. The reheating surface
at t ¼ 0 is the spacelike defect in the CFT. This CFT
scenario can also be given a five-dimensional anti–de Sitter
(AdS) dual description [17–21].
Our primary interest here will be in studying the effective

field theory (EFT) that describes fluctuations around the
symmetry-breaking vacuum described by (1.1). In [12] an
effective field theory for studying such fluctuations was
described. Here we will further explore some of the
systematics of this effective theory. In particular, we will
see how the EFT expansion organizes itself as a power
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series in various powers of 1=C, and we will compute some
of the leading corrections to the two-point function.
Since our original motivation came from studying the

pseudoconformal universe scenario, we will specialize in
this paper to the case of a spacelike codimension 1 defect in
a four-dimensional Lorentzian CFT. However, nothing we
do depends crucially on this, and everything will generalize
straightforwardly to other dimensions and signatures for
both the CFT and the defect.
This EFT can also be used in the simpler case where

conformal symmetry is broken to Poincaré symmetry via a
constant VEV hΦi ∼ f. We will see that the EFT naturally
organizes as an expansion in various powers of 1=f. For
example, the two-point function hϕðxÞϕð0Þi organizes as
an expansion in various powers of 1=ðfxÞ, which is good at
long distances (complementary to the short distance limit
that can be probed by the operator product expansion), and
that the leading one-loop quantum correction is universal,
independent of the higher derivative operators in the EFT.
Conventions: D is the spacetime dimension, and we use

the mostly plus metric signature. The curvature conventions
are those of [22].

II. THE EFT OF CONFORMAL SYMMETRY

The EFT we seek should describe the fluctuations of
fields around the symmetry-breaking VEV (1.1). This is the
EFT that describes the spontaneous breaking of conformal
symmetry, and which was studied many years ago as a
prototype for spontaneously broken spacetime symmetries
[23,24]. It is equivalent [25–27] to the theory of a
codimension 1 brane fluctuating in a fixed background
anti–de Sitter space. The same EFT also plays a key role in
the proof of the a theorem [28,29], and its Smatrix satisfies
nontrivial soft theorems [30–33].
One well-known way to construct this EFT is from the

coset perspective (see, e.g., [12,34]). However, in the
following we describe an alternative and more direct
method of constructing it for arbitrary conformal weights,
which will prove useful in the rest of the paper, and which
starts with fields that linearly realize conformal symmetry.

A. Direct construction

Our goal is to construct the EFT of a weight Δ scalar
conformal primary field Φ. The symmetries that must be
maintained are the usual linearly realized conformal sym-
metries

δΦ ¼ −ðxμ∂μ þ ΔÞΦ; ð2:1Þ

δμΦ ¼ −ð2xμxν∂ν − x2∂μ þ 2xμΔÞΦ; ð2:2Þ

which are the scale transformation and special conformal
transformations, respectively.

We construct the EFT by writing all conformally
invariant terms order by order in powers of derivatives.
We allow for terms that are nonanalytic in the fields
because we will ultimately be expanding around a con-
formally noninvariant VEV.1

Scale invariance is easy to impose; it is equivalent to
demanding that each term in the Lagrangian density has a
total operator dimension equal to the spacetime dimension
D, so that there are no dimensionful couplings. We will
assume throughout that Δ ≠ 0 and D > 2, since other
subtleties arise otherwise.
At zeroth order in derivatives, the only scale invariant

term is

L0 ¼ ΦD
Δ: ð2:3Þ

This term is also invariant under special conformal trans-
formations, so this is our complete zeroth order Lagrangian.
At second order in derivatives, the only possible scale

invariant term, up to total derivatives, is

L2 ¼ ΦD−2
Δ
ð∂ΦÞ2
Φ2

: ð2:4Þ

This is also invariant under the special conformal trans-
formations, so this is our two-derivative Lagrangian.
At fourth order in derivatives, there are three possible

scale invariant terms, up to total derivatives:

ΦD−4
Δ
ð□ΦÞ2
Φ2

; ΦD−4
Δ
ð∂ΦÞ2□Φ

Φ3
; ΦD−4

Δ
ð∂ΦÞ4
Φ4

: ð2:5Þ

However, imposing special conformal invariance, only two
linear combinations of these three terms are invariant. For
later convenience we choose these combinations to be

L4 ¼ ΦD−4
Δ

�ð□ΦÞ2
Φ2

−
ð2Δ −Dþ 2Þð2Δ −Dþ 4Þ

4Δ2

ð∂ΦÞ4
Φ4

�
;

L0
4 ¼ ΦD−4

Δ

�ð∂ΦÞ2□Φ
Φ3

−
2Δ −Dþ 3

2Δ
ð∂ΦÞ4
Φ4

�
: ð2:6Þ

This construction can be continued to all higher orders in
derivatives; at each derivative order there will be some
finite number of independent scale invariant terms up to
total derivatives, some subspace of these will be fully
conformal invariant, and a basis of this subspace forms the
EFT Lagrangian at this derivative order.
The full Lagrangian is then the sum of all these

terms, with arbitrary coefficients, organized as a derivative
expansion,

1This is similar to the philosophy of the “Higgs EFT” as
opposed to the “Standard Model EFT” in the context of
electroweak symmetry breaking [35,36].
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L ¼ c0L0 þ c2L2 þ c4L4 þ c04L
0
4 þ � � � : ð2:7Þ

We will let fcg4 ≡ fc4; c04g, fcg6 ≡ fc6; c06; c006;…g, etc.,
denote the sets of coefficients of terms at each deriva-
tive order.

B. Comparison to the coset construction

The usual approach to constructing this theory is the
coset approach, equivalent to the geometric method as
described in [12,34]. Here we will extend this approach to
arbitrary Δ and see that it is equivalent to the above direct
approach.
We consider the conformally flat metric2

gμν ¼
�
Φ1=Δ

Λ

�
2

ημν; ð2:8Þ

where Λ is some artificially introduced energy scale that
allows us to ensure that the metric has the correct
dimensions. This quantity is purely a calculational con-
venience, and will cancel out at the end of our calculations.
We then write diffeomorphism invariants using this metric,
with an overall scale set by Λ. These diffeomorphism
invariants are equivalent to the basic building blocks of the
coset construction. The set of all diffeomorphism invariants
at a given derivative order will in general be larger than the
number of conformally invariant Lagrangians because
some invariants may be degenerate on the specific con-
formally flat metric (2.8). But no invariant Lagrangians will

be missed in this way, with one exception in even D at Dth
order in derivatives: the Wess-Zumino term (see below).
Starting at zeroth order in derivatives, the only diffeo-

morphism invariant is the cosmological constant. When
evaluated on (2.8) this reproduces the zeroth order
Lagrangian (2.3),

ΛD

Z
dDx

ffiffiffiffiffiffi
−g

p ¼
Z

dDxΦD
Δ: ð2:9Þ

At second order, the only diffeomorphism invariant is the
Einstein-Hilbert term. When evaluated on (2.8) this repro-
duces the second order Lagrangian (2.4) up to total
derivatives,

ΛD−2
Z

dDx
ffiffiffiffiffiffi
−g

p
R ¼ ðD − 2ÞðD − 1Þ

Δ2

Z
dDxΦD−2

Δ
ð∂ΦÞ2
Φ2

:

ð2:10Þ

At fourth order, there are three different curvature
invariants up to total derivatives: R2, R2

μν, and R2
μνρσ.

However, we need not consider anything made from the
Riemann tensor, since the Weyl tensor vanishes when
evaluated on the conformally flat metric (2.8). Thus, we
have two possible invariants, and evaluated on (2.8) they
recover, up to total derivatives, linear combinations of the
invariants (2.6),

ΛD−4
Z

dDx
ffiffiffiffiffiffi
−g

p
R2 ¼

Z
dDx

4ðD − 1Þ2
Δ2

L4 þ
4ðD − 1Þ2ðD − 2Δ − 2Þ

Δ3
L0
4;

ΛD−4
Z

dDx
ffiffiffiffiffiffi
−g

p
R2
μν ¼

Z
dDx

ðD − 1ÞD
Δ2

L4 þ
ðD − 2Þð3D2 − 8Dþ 8Þ − 4ðD − 1ÞDΔ

2Δ3
L0
4: ð2:11Þ

The 2 × 2matrix mapping these two curvature invariants
to the two Lagrangians has full rank for D ≠ 4, and so in
this case we can recover bothL4 andL0

4 from the curvatures
by solving (2.11) for L4, L0

4. For D ¼ 4, however, this
matrix has rank 1, and we cannot recover both Lagrangians
from the curvature invariants. In this case both curvature
invariants give the same linear combination:

Z
d4x

ffiffiffiffiffiffi
−g

p
R2 ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
R2
μν

¼ 12

Δ2

Z
d4xL4 −

2ðΔ − 1Þ
Δ

L0
4; D ¼ 4:

ð2:12Þ

The other linear combination is a Wess-Zumino term,
which cannot be constructed from the curvature invariants
(see [34] for details on how to construct it within the coset
formalism3). In any even D, a similar Wess-Zumino term
exists at D-derivative order.

2Notice that if we allow the background metric to be arbitrary,
the curvature terms that we discuss below are Weyl invariant.

3A quick way to do it is to form the Gauss-Bonnet combination
in general D,

ΛD−4
Z

dDx
ffiffiffiffiffiffi
−g

p ðR2
μνρσ − 4R2

μν þ R2Þ

¼ −
2ðD − 4ÞðD − 3ÞðD − 2Þ

Δ3

Z
dDxL0

4: ð2:13Þ

This results in a quantity that is proportional to D − 4 because in
D ¼ 4 the Gauss-Bonnet combination becomes a total derivative.
Stripping off the D − 4 factor yields the Wess-Zumino term [37].
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III. BREAKING TO POINCARÉ

To start with, we demonstrate the power of this EFT
technique by applying it to the simplest case, where
conformal symmetry breaks to Poincaré symmetry. This
will serve as a warm-up for our main case of interest, defect
CFT, and illustrates most of the general features.
To describe the breaking to Poincaré we expand around a

constant VEV,

hΦi ¼ fΔ; Φ ¼ fΔ
�
1þ 1

f
D
2
−1

ϕ

�
; ð3:1Þ

where f is a constant with mass dimension 1, and the
coefficient for the fluctuation field ϕ is chosen so that ϕwill
be canonically normalized.
We now expand the Lagrangian (2.7) in powers of ϕ.

Demanding the absence of the tadpole so that the constant
VEV is a solution to the equations of motion requires

c0 ¼ 0: ð3:2Þ
At second order in ϕ we then have

Lϕ;2¼−
1

2
ð∂ϕÞ2þ c4

f2
ð□ϕÞ2

þO
�
∂
6ϕ2

f4
;fcg6

�
þO

�
∂
8ϕ2

f6
;fcg8

�
þ��� ; ð3:3Þ

where we have used the freedom to scale the field (and to
flip the overall sign of the Lagrangian if necessary) to
choose c1 ¼ − 1

2
so that ϕ has a canonically normalized

two-derivative kinetic term. These quadratic terms organize
as a power series in 1=f2, with coefficients of the higher
order terms coming from the higher derivative terms in
(2.7). At cubic order we have

Lϕ;3 ¼
1

f
D
2
−1

�
2Δ −Dþ 2

2Δ
ϕð∂ϕÞ2

þO
�
∂
4ϕ3

f2
; fcg4

�
þ � � �

�
: ð3:4Þ

The cubic terms organize as a power series in 1=f2, starting
at order 1=f

D
2
−1, with coefficients of the higher order terms

coming from the higher derivative terms in (2.7). At quartic
order we have

Lϕ;4 ¼
1

fD−2

�
−
ð2Δ −Dþ 2Þð3Δ −Dþ 2Þ

4Δ2
ϕ2ð∂ϕÞ2

þO
�
∂
4ϕ4

f2
; fcg4

�
þ � � �

�
: ð3:5Þ

The quartic terms organize as a power series in 1=f2,
starting at order 1=fD−2, with coefficients of the higher

orders coming from the higher derivative terms in (2.7).
This pattern continues: the terms at nth order organize in
powers of 1=f2, starting at order 1=fðn−2ÞðD2−1Þ.

A. Two-point function

We can use this effective theory to compute correlators
systematically as a power series expansion in 1=f. These
will depend on the free coefficients c4; c04;…, parametriz-
ing the higher derivative terms in the action, which also
serve as counterterms to absorb divergences. As we will
see, there are also some universal parts that do not depend
on these coefficients.
To illustrate, consider the two point function

hΦðxÞΦð0Þi. The broken conformal symmetry puts no
constraint on the functional form of this correlator beyond
the usual constraints from Poincaré invariance that tell us it
must be a function of the magnitude of the invariant
distance between the two points. Expanding using (3.1)
and using the assumption hϕi ¼ 0, we have

hΦðxÞΦð0Þi ¼ f2Δ
�
1þ 1

fD−2 hϕðxÞϕð0Þi
�
: ð3:6Þ

Now hϕðxÞϕð0Þi can be computed using Feynman dia-
grams in the effective theory.
From power counting [38,39] we can see that in dimen-

sional regularization the diagrams contributing to the
momentum space two-point function will scale as

hϕðpÞϕð−pÞi ∼ 1

p2

�
p
f

�ðD−2ÞL�
c
p
f

�P
n;k
ðk−2ÞVn;k

; ð3:7Þ

where Vn;k is the number of vertices with n fields and k
derivatives in the diagram, L is the number of loops, and c
stands generically for the coefficients of the higher-
derivative terms.
Suppose that we are only interested in the correlator

away from x2 ¼ 0, so that we can ignore terms analytic in
p2 (which only contribute when x2 ¼ 0).
At tree level, L ¼ 0, the only corrections come from the

higher-order vertices in (3.3), and these contributions are all
analytic in p2. So all that remains at separated points is the
zeroth order propagator of the free kinetic term,

hϕðpÞϕð−pÞi0−loop ¼ −
i
p2

: ð3:8Þ

The leading corrections at separated points come from
L ¼ 1, with no insertions of higher-order vertices. The
diagrams are shown in Fig. 1.
The only diagram that contributes is the first one, since

the rest vanish in dimensional regularization. For D even,
there is a divergence that is proportional to
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∼
1

ϵ

ð2Δ −Dþ 2Þ2
Δ2

1

fD−2 ðp2ÞD2−2; ð3:9Þ

where ϵ is the dimensional regularization parameter. This is
analytic in p2, is absorbed by one of the higher derivative
tree-level counterterms, and does not contribute at sepa-
rated points. The finite part is logarithmic in p2,

hϕðpÞϕð−pÞi1−loop¼
iDþ1

22D−1π
D−1
2 ΓðD

2
−1Þ

×
ð2Δ−Dþ2Þ2

Δ2

×
1

fD−2 ðp2ÞD2−2 logðp2=μ2Þ; D even;

ð3:10Þ

where μ is the dimensional regularization scale whose value
is adjusted through the same counterterm that absorbs the
divergence and does not affect separated points.

For odd D, the L ¼ 1 contribution (3.7) involves an odd
power of p2, so it is not analytic. This means that there
cannot be any UV divergence, because the counterterms
can only absorb analytic terms. Indeed, the loop is finite in
dimensional regularization and gives

hϕðpÞϕð−pÞi1−loop ¼
iD

22D−1π
D−3
2 ΓðD

2
− 1Þ

×
ð2Δ −Dþ 2Þ2

Δ2

1

fD−2 ðp2ÞD2−2;

D odd: ð3:11Þ

Going back to position space, the one-loop contri-
bution gives a contribution to the correlator at separated
points that is proportional to ∼1=x2ðD−2Þ. Including the
position space version of the tree-level part (3.8), which is
proportional to ∼1=xD−2, and substituting back into (3.6),
we see that the full two-point function takes the sche-
matic form

hΦðxÞΦð0Þi ¼ f2Δ
�
1þ 1

fD−2 ðhϕðxÞϕð0Þi0−loop þ hϕðxÞϕð0Þi1−loop þ � � �Þ
�

∼ f2Δ
�
1þ 1

fD−2
1

xD−2 þ
1

f2ðD−2Þ
1

x2ðD−2Þ þ � � �
�
; ð3:12Þ

where we have ignored a possible dimensionless constant
in each term.
The loop expansion is an expansion in powers of

1=ðfxÞD−2, and the one-loop contribution is independent
of the higher-derivative coefficients and is a universal
prediction of the EFT. At higher orders in the expansion,
insertions of the higher derivative terms into loops will
bring in further factors of 1=ðfxÞ2. The EFT expansion is
thus valid for large x ≫ 1=f, which is good at long
distances/low energies, as expected. Note that this is
opposite to the regime x ≪ 1=f for which the operator
product expansion of the underlying CFT can be used to
expand the correlator in powers of xf [40].

IV. DEFECT CFT BREAKING

We now turn to the main case of interest, the breaking of
conformal symmetry to a lower dimensional conformal

symmetry in the presence of a maximally symmetric defect.
We expand the EFT around the desired time-dependent
symmetry-breaking VEV (1.1),

hΦi ¼ CΔ

ð−tÞΔ ; ð4:1Þ

where the dimensionless constant C parametrizes the
strength of the symmetry breaking, and we take C > 0
without loss of generality.
A general way to parametrize the fluctuations around this

VEV is to write

Φ ¼ hΦiFðϕÞ; ð4:2Þ

with ϕ the field parametrizing the fluctuations, and F some
arbitrary function that is analytic at the origin and satisfies
Fð0Þ ¼ 1. The metric (2.8) in terms of ϕ is then

FIG. 1. Contributions to the two-point function at one-loop.
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gμν¼
�
Φ1=Δ

Λ

�
2

ημν¼
1

Λ2

C2

t2
FðϕÞ2Δημν¼FðϕÞ2Δḡμν; ð4:3Þ

where ḡμν is a fake (meaning we introduce it as an
unphysical mathematically useful artifact) de Sitter metric
with a Hubble scale,

ḡμν ≡ 1

H2t2
ημν; H ≡ Λ

C
: ð4:4Þ

Thus, the effective theory of fluctuations is obtained by
expanding curvature invariants around de Sitter space, and
the unbroken soðD; 1Þ symmetry of the full conformal
symmetry soðD; 2Þ is manifest.
In [12], an exponential parametrization FðπÞ ¼ eπ was

used. For our purposes, it will be more straightforward to

instead use the linear parametrization FðϕÞ ¼ 1þ ð−tÞD2−1
C
D
2
−1 ϕ,

so that we have

Φ ¼ CΔ

ð−tÞΔ
�
1þ ð−tÞD2−1

C
D
2
−1

ϕ

�
; ð4:5Þ

where we have chosen the factor in front of the fluctuation
ϕ to ensure that this field will be canonically normalized
when we expand the action.

We now expand the Lagrangian (2.7) in powers of ϕ
using (4.5). At linear order there is a tadpole term.
Demanding that this vanishes up to total derivatives, so
that the background (4.1) is a solution to the equations of
motion, gives the condition4

c0 þ
1

C2
c2Δ2 þ 1

C4

�
c4

Δ2

4
ð3D2 − 10Dþ 4 − 4ΔðD − 1ÞÞ

− c04
Δ3ðD − 1Þ

2

�
þO

�
1

C6
; fcg6

�
þ � � � ¼ 0: ð4:6Þ

This condition is an expansion in powers of 1=C2, with
coefficients arising from the Lagrangian terms with higher
derivatives. We use this condition to solve for c0, keeping
only up to the order in 1=C2 that we are ultimately
interested in. In addition, we will use the freedom to
rescale the field Φ ( and to flip the overall sign of the
Lagrangian if necessary) to choose

c2 ¼ −
1

2
; ð4:7Þ

which will ensure that the kinetic term for the fluctuation ϕ,
as defined in (4.5), is canonically normalized.
At higher orders we get the following terms up to total

derivatives: at second order in ϕ we have

Lϕ;2 ¼
1

2
_ϕ2 −

1

2
ð∇⃗ϕÞ2 þDðDþ 2Þ

8t2
ϕ2 þ 1

C2

�
c4

�
t2ϕ̈2 − 2t2ð∇⃗ _ϕÞ2 þ ð2ΔðD − 1Þ −D2 þ 5D − 2Þ _ϕ2 þ t2ð∇⃗2

ϕÞ2

− ð2ðD − 1ÞΔ − ðD − 1ÞðD − 4ÞÞð∇⃗ϕÞ2 þ 8DðD − 1ÞðDþ 2ÞΔ −DðDþ 2Þð5D2 − 18Dþ 8Þ
16t2

ϕ2

�

þ c04ΔðD − 1Þ
�
_ϕ2 − ð∇⃗ϕÞ2 þDðDþ 2Þ

4t2
ϕ2

��
þO

�
1

C4
; fcg6

�
þ � � � : ð4:8Þ

These quadratic terms organize as a power series in 1=C2, with coefficients coming from the higher order terms in (2.7).
At cubic order in ϕ we have

Lϕ;3 ¼
1

C
D
2
−1

ð−tÞD2−1
2Δ

�
ð2Δ −Dþ 2Þðϕ _ϕ2 − ϕð∇⃗ϕÞ2Þ þ 2ðD2 þ 6D − 4ÞΔ −D3 − 6D2 þ 12D − 8

12t2
ϕ3

þO
�

1

C2
; fcg4

�
þ � � �

�
: ð4:9Þ

These terms also organize as a power series in 1=C2, starting at order 1=C
D
2
−1.

At quartic order in ϕ we have

Lϕ;4 ¼
1

CD−2
ð−tÞD−2

4Δ2

�
ð6Δ2 − 5ΔðD − 2Þ þ ðD − 2Þ2Þðϕ2 _ϕ2 − ϕ2ð∇⃗ϕÞ2Þ

þ 4ð10D − 9ÞΔ2 − 3ð13D2 − 28Dþ 20ÞΔþ 9D3 − 30D2 þ 44D − 24

12t2
ϕ4 þO

�
1

C2
; fcg4

�
þ � � �

�
: ð4:10Þ

4We will show later that the one-loop correction does not contribute to the tadpole term.
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These terms again organize as a power series in 1=C2,
starting at order 1=CD−2. This pattern continues: the terms
at nth order in the fluctuation organize in powers of 1=C2,
starting at order 1=Cðn−2ÞðD

2
−1Þ.

V. DEFECT CFT TWO-POINT FUNCTION

We can now use the EFT to compute correlators of Φ in
the broken vacuum (4.1) as an expansion in powers
of 1=C. Consider, for example, the two-point function
hΦðt;xÞΦðt0;x0Þi. The broken conformal symmetry dic-
tates that the general form of this correlator is an arbitrary
function F of the cross ratio ξ [2,21,41–47],

hΦðt;xÞΦðt0;x0Þi ¼ FðξÞ
ð−tÞΔð−t0ÞΔ ;

ξ≡ −ðt − t0Þ2 þ ðx − x0Þ2
4ð−tÞð−t0Þ : ð5:1Þ

Substituting in the expansion (4.5) and using that hϕi ¼ 0,
we have

hΦðt;xÞΦðt0;x0Þi ¼ C2Δ

ð−tÞΔð−t0ÞΔ
�
1þ 1

CD−2 ð−tÞ
D
2
−1ð−t0ÞD2−1

× hϕðt;xÞϕðt0;x0Þi
�
: ð5:2Þ

We can then compute the fluctuation correlator
hϕðt;xÞϕðt0;x0Þi from the expanded Lagrangian, which
will take the form of a loop expansion in powers of 1=CD−2

and higher derivative corrections of order 1=C2.
We now turn to computing some of the leading correc-

tions. The tree-level correlator is easily evaluated. The next-
to-leading order correction is more difficult, and we will
restrict ourselves to computing the equal time, late time
limit, t ¼ t0 → 0.

A. Leading part

We compute the leading C-independent part of the
fluctuation correlator hϕðt;xÞϕðt0;x0Þi from the C inde-
pendent part of the quadratic action: the first line of (4.8).
This has the same form as that of a massive scalar on de
Sitter space with mass to Hubble ratio m2=H2 ¼ −D.5

Expanding the field in mode functions

ϕðt;xÞ ¼ 1

ð2πÞðD−1Þ=2

Z
dD−1k½akfkðtÞeik·x

þ a†kf
�
kðtÞe−ik·x�; ð5:3Þ

where the mode functions should satisfy the equation

fkðtÞ00 þ
�
k2 −

DðDþ 2Þ
4t2

�
fkðtÞ ¼ 0; ð5:4Þ

which depends only on the magnitude k≡ jkj of the spatial
momentum. We will assume the standard Bunch-Davies
boundary conditions

fkðtÞ !
t→−∞

1ffiffiffiffiffi
2k

p e−ikt; ð5:5Þ

which gives the solution

fkðtÞ ¼
ffiffiffi
π

p
2

ffiffiffiffiffi
−t

p
eiπð

Dþ2
4
ÞHð1Þ

Dþ1
2

ð−ktÞ: ð5:6Þ

Using the usual creation/annihilation operator relations,
½ak;a†k0 �¼δD−1ðk−k0Þ, ½ak;ak0 �¼ ½a†k;a†k0 �¼0, akj0i ¼
h0ja†k ¼ 0, we can now compute the spatial Fourier trans-
form of the two-point function,

hϕðt;kÞϕðt0;k0Þi ¼
Z

dD−1xdD−1x0eik·xeik0·x0

× hϕðt;xÞϕðt0;x0Þi
¼ ð2πÞD−1δD−1ðkþ k0ÞfkðtÞf�k0 ðt0Þ:

ð5:7Þ

B. Next-to-leading order corrections

We now compute the two-point correlation function
beyond leading order. We will specialize to the case
D ¼ 4, but will keep D explicit in the following expres-
sions in order to make dimensional regularization easier to
implement. The contributions to this part are the tree-level
diagrams with higher derivative terms from the quadratic
action in (4.8) and the loop corrections from the cubic
interaction and quartic interaction as shown in Fig. 1.
We will make use of the Mellin-Barnes representation

[53] to compute the corrections via the in-in formalism and
to regulate the loop [54]. The mode function (5.6)
expressed in the Mellin-Barnes representation has the
following form:

fkðtÞ ¼
eiπν−

iπ
4ffiffiffiffiffiffi

4π
p

Z
cþi∞

c−i∞

ds
2πi

Γ
�
sþ ν

2

�
Γ
�
s −

ν

2

�

×

�
−
i
2
k

�
−2s

ð−tÞ−2sþ1
2; ð5:8Þ

where ν≡ Dþ1
2
, and the contour is chosen to be a straight

line parallel to the imaginary axis, intersecting the real axis
at c, and is closed to the left. We require c > jRe ν

2
j to

include all the poles within the contour. In flat spacetime,

5Note that this is the mass value for a k ¼ 1 Galileon/Dirac–
Born–Infeld (DBI) shift-symmetric scalar in de Sitter [48–52].
The shift symmetry is the broken conformal symmetry.
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the Fourier transform provides a convenient representation
for mode functions since its variable k0 is the energy, and
the resulting δ functions that arise during calculations
enforce the conservation of energy because of time-
translations symmetry. Similarly, in de Sitter space,
the Mellin-Barnes representation is convenient because
the variable s can be thought of as the eigenvalue of the
dilatation symmetry, with the corresponding δ functions
enforcing its conservation.
The equal time in-in two-point function evaluated at time

t0 is given by

B2 ≡ lim
t→−∞

h0jU†ðt0; tÞϕðt0;kÞϕðt0;k0ÞUðt0; tÞj0i; ð5:9Þ

where U is the full time evolution operator, given in terms
of the interaction picture Hamiltonian HintðtÞ via

U ¼ 1 − i
Z

t0

−∞
dtHintðtÞ −

1

2

Z
t0

−∞
dt1

Z
t0

−∞
dt2T

× fHintðt1ÞHintðt2Þg þ � � � ; ð5:10Þ

where T f� � �g represents time ordering.
Define the bulk-to-boundary propagator for a time-

ordered vertex as

GBþðk; tÞ ¼ fkðtÞf�kðt0Þ; ð5:11Þ

and the bulk-to-bulk propagator between two time-ordered
vertices as

Gþþðk; t1; t2Þ ¼ θðt1 − t2Þf�kðt1Þfkðt2Þ
þ θðt2 − t1Þf�kðt2Þfkðt1Þ: ð5:12Þ

The propagators for anti-time ordered vertices can then be
obtained through conjugation,

GB−ðk; tÞ ¼ GBþðk; tÞ� ¼ f�kðtÞfkðt0Þ; ð5:13Þ

G−−ðk; t1; t2Þ ¼ Gþþðk; t1; t2Þ�
¼ θðt1 − t2Þf�kðt2Þfkðt1Þ
þ θðt2 − t1Þf�kðt1Þfkðt2Þ: ð5:14Þ

The bulk-to-bulk propagators connecting a time-ordered
vertex at time t1 and an anti-time ordered vertex at time t2
are given by

Gþ−ðk; t1; t2Þ ¼ f�kðt2Þfkðt1Þ;
G−þðk; t1; t2Þ ¼ Gþ−ðk; t2; t1Þ ¼ fkðt2Þf�kðt1Þ: ð5:15Þ

With these ingredients at hand, we can start compu-
ting the 1=C2 corrections from the various diagrams.
We will see that, analogous to the Poincaré case in
Sec. III, only the diagram on the left in Fig. 1 contributes
nontrivially.

1. Higher derivative term

We start with the tree-level correction with a single
vertex drawn from the terms with power 1=C2 in (4.8).
Once the equations of motion for the external lines are
taken into account, the term proportional to c40 reduces to a
boundary term,

−i
c40ΔðD − 1Þ

C2
fkðt0Þ _fkðt0Þf�kðt0Þf�kðt0Þ: ð5:16Þ

After taking the late time limit and summing with the anti-
time ordered vertex, this boundary term contributes as

−
3c40Δ
2C2

1

ðk5t40Þ
ð9þ 3ð−kt0Þ2 þ ð−kt0Þ4Þ

¼ −
3c40Δ
C2

fkðt0Þf�kðt0Þ; ð5:17Þ

where we have explicitly setD ¼ 4. In fact, it is true for any
even dimension D that Reð−ifkðt0Þ _fkðt0Þf�kðt0Þ2Þ ¼
− 1

2
fkðt0Þf�kðt0Þ in the late time limit. In the same spirit,

we can integrate by parts in the c4 term, organizing the
action as

S2 ¼
Z

dtdD−1k
ð2πÞD−1

�
ð2ΔðD − 1Þ −D2 þ 5D − 2Þ

�
_ϕ2 − k2ϕ2 þDðDþ 2Þ

4t2
ϕ2

�

þ 2k2ϕ2 −
D2ðDþ 2Þ2

16t2
ϕ2 þ t2ϕ̈2 − 2t2k2 _ϕ2 þ t2k4ϕ2

�
: ð5:18Þ

Since the mode functions satisfy the Hankel equation f̈kðtÞ ¼ − 4k2t2−DðDþ2Þ
4t2 fkðtÞ, we can simplify the second line to yield

−2t2k2 _ϕ2 þ 2t2k4ϕ2 −
1

2
k2DðDþ 2Þϕ2 þ 2k2ϕ2; ð5:19Þ
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which is also a pure boundary term ∂tð−2t2k2 _ϕϕþ 2k2tϕ2Þ. The extra factor of k2t2 makes the boundary terms higher order
in the momentum k, in comparison with (5.17),

− i
c4
C2

ð½ð2ΔðD − 1Þ −D2 þ 5D − 2Þ − 2t20k
2�fkðt0Þ _fkðt0Þf�kðt0Þf�kðt0Þ þ 2t0k2fkðt0Þfkðt0Þf�kðt0Þf�kðt0ÞÞ

⟶
limt0→0

− i
c4
C2

ð2ΔðD − 1Þ −D2 þ 5D − 2Þfkðt0Þ _fkðt0Þf�kðt0Þ2: ð5:20Þ

2. Quartic loop

We next turn to computing the correction at Oð1=C2Þ
from the loop with a single quartic vertex, as shown in
Fig. 1(b).
After integrations by parts and use of the lowest order

equations of motion on the external lines, the quartic
Lagrangian (4.10) takes the form

S4 ∝
Z

dt
dD−1k
ð2πÞD−1 ð−tÞD−4ϕ4; ð5:21Þ

and the contribution of this to the two-point correlation
function takes the corresponding form

B1þ
2q ¼ −

i
2
e
πið2Dþ1Þ

2 f�kðt0Þ2
Z

t0

−∞
fkðtÞ2

Z
dD−1p
ð2πÞD−1 fpðtÞf�pðtÞ:

ð5:22Þ

Inserting the Mellin-Barnes representation of the mode
function (5.6), we have

−
ie

πið2Dþ1Þ
2

2
f�kðt0Þ2

Z
t0

−∞
dt
Z

dD−1p
ð2πÞD−1

Z
½dsi�

×Γ
�
si�

ν

2

��
k
2

�
−2s1−2s2

�
p
2

�
−2s3−2s4

×eπiðs1þs2þs3−s4Þð−tÞD−2−2
P

si ; ð5:23Þ

where i ¼ 1; 2; 3; 4. The loop momentum integration is

Z
dD−1p
ð2πÞD−1

1

p2s3þ2s4
¼ 2πðD−1Þ=2

ð2πÞD−1ΓðD−1
2
Þ
Z

∞

0

dp
p2s3þ2s4−Dþ2

¼ 2πðD−1Þ=2

ð2πÞD−1ΓðD−1
2
Þ

× 2πiδð2s3 þ 2s4 −Dþ 1Þ; ð5:24Þ

where, to ensure that the integral is convergent, we
require Reð−2s3 − 2s4 þD − 1Þ < 0.
In this diagram, the integration over time and the loop

integration are completely separated, and each one con-
tributes a δ function. The time integration is

Z
t0

−∞
ð−tÞD−2−

P
si ⟶
limt0→0

2πiδ

�
D − 1 − 2

X
si

�
: ð5:25Þ

If we were to directly substitute this into the correlation
function, and integrate s1 and s3 using the two delta
functions, we would find that the left poles and right poles
overlap in the s2 integration. We therefore need to introduce
a regulating parameter for the time integration as follows:

ð−t0Þ−2ϵ
Z

t0

−∞
ð−tÞD−2−

P
siþ2ϵ

⟶
limt0→0

2πiδ

�
D − 1þ 2ϵ − 2

X
si

�
; ð5:26Þ

where ð−t0Þ−2ϵ is introduced to keep the dimension correct.
The resulting quartic loop contribution to the two-point
correlation function is then

−
i
2
e
πið2Dþ1Þ

2 f�kðt0Þ2ð−t0Þ−2ϵ
Z

½dsi�Γ
�
si �

ν

2

��
k
2

�
−2s1−2s2

eπiðs1þs2þs3−s4Þ

×
2πðD−1Þ=2

ð2πÞD−1ΓðD−1
2
Þ
2πiδð2s3 þ 2s4 −Dþ 1Þ

2−2s3−2s4
2πiδ

�
D − 1þ 2ϵ − 2

X
si

�
: ð5:27Þ

Since we have two delta functions here, we can choose to carry out the s1 and s3 integrations. We also deform the spacetime
dimension D ¼ 4þ 2ϵ to avoid the overlap of poles in the s4 integration and obtain

B1þ
2q ¼ e2πiϵ

8
f�kðt0Þ2

�
−
kt0
2

�
−2ϵ 2πðD−1Þ=2

ð2πÞD−1ΓðD−1
2
Þ

×
Z

½dsi�Γ
�
s2;4 �

ν

2

�
Γ
�
ϵ − s2 �

ν

2

�
Γ
�
3

2
þ ϵ − s4 �

ν

2

�
eπiðϵþ3

2
−2s4Þ: ð5:28Þ

EFT OF CONFORMAL SYMMETRY BREAKING PHYS. REV. D 107, 065018 (2023)

065018-9



Notice that, using Barnes’ lemma, the s2 integration yields a 1=ϵ-like divergence,

Z
ds2
2πi

Γ
�
s2 þ

ν

2

�
Γ
�
s2 −

ν

2

�
Γ
�
ϵ − s2 þ

ν

2

�
Γ
�
ϵ − s2 −

ν

2

�
¼ Γðϵþ νÞΓðϵ − νÞΓðϵÞ2

Γð2ϵÞ : ð5:29Þ

The s4 integration has an extra phase factor, which cannot be computed using Barnes’ lemma directly. Instead, we close the
contour to the left, and enclose two series of poles at s2 ¼ −n� ν

2
. Summing over the residues at these two series of poles,

we obtain two Gaussian hypergeometric functions,Z
ds4
2πi

Γ
�
s4 þ

ν

2

�
Γ
�
s4 −

ν

2

�
Γ
�
3

2
þ ϵ − s4 þ

ν

2

�
Γ
�
3

2
þ ϵ − s4 −

ν

2

�
eπið32þϵ−2s4Þ

¼ −eπið32þϵÞΓ
�
3

2
þ ϵ

��
ΓðνÞΓð1 − νÞ
Γð1þ νÞ Γ

�
3

2
þ νþ ϵ

�
2F1

�
3

2
þ ϵ;

3

2
þ ϵþ ν; 1þ ν; 1

�
eπiν þ ðν → −νÞ

�
: ð5:30Þ

Now, by Gauss’ theorem, when Reðc − a − bÞ > 0, the
hypergeometric function becomes

2F1ða; b; c; 1Þ ¼
ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ : ð5:31Þ

We use this to analytically evaluate the integration in the
region where ϵ goes to zero, the integration (5.30) then
becomes

iπ
Γð−2 − 2ϵÞ
Γð− 1

2
− ϵÞ

�
Γð−1þ ϵÞ
Γð−3 − ϵÞ þ

Γð4þ ϵÞ
Γð2 − 2ϵÞ

�
¼ 0; ð5:32Þ

and the quartic loop does not contribute to the two-point
correlator.

C. Two-point reducible diagram

We next compute the reducible diagram in Fig. 1(c). This
diagram contains the same massless loop as in the quartic
loop case. Without computation, we know that this loop
integration gives a delta function as in (5.24), which
separates out from the other parts of the computation,
and will end up as in (5.30). We therefore conclude that this

massless tadpole loop diagram does not contribute to the
UV divergence when computed in dimensional regulari-
zation, in the same way as it does not contribute to flat
space amplitudes. This also explains why the there is no
quantum correction to the one-point function tadpole.

D. Cubic loop

Finally we turn to the contribution from Fig. 1(a), the
irreducible diagram with 2 cubic vertices. After integrations
by parts and using the external lowest order equations of
motion, the 1=C2 cubic vertex (4.9) reduces to the follow-
ing form:

S3 ∼
Z

dt
dD−1k
ð2πÞD−1 ð−tÞ

D
2
−3ϕ3: ð5:33Þ

The terms contributing to the correlator coming from the
expansion of (5.10), which we call Bð1Þþþ

2c ; Bð1Þ−−
2c ; Bð1Þ−þ

2c ,
in which the subscript c indicates that the correction is from
the cubic loop term, are defined as follows (notice an extra

factor of 1=2 from the Taylor expansions of Bð1Þþþ
2c

and Bð1Þ−−
2c ):

Bð1Þþþ
2c ≡ h0jϕ̂ðk; t0Þϕ̂ðk; t0Þ

�
−
1

2

Z
t0

−∞
dt1

Z
t0

−∞
dt2Hintðt1ÞHintðt2Þ

�
j0i

¼ −
1

2
f�kðt0Þ2

Z
t0

−∞
dt1;2ð−t1ÞD2−3ð−t2ÞD2−3fkðt1Þfkðt2Þ

Z
p1;2

Gþþðp1; t1; t2ÞGþþðp2; t1; t2Þ;

where
R
p1;2

is short for
R dD−1p1;2

ð2πÞ2D−2 δðp1 þ p2 þ kÞ. The corresponding term B−−
2c is then given by the complex conjugation of

Bð1Þþþ
2c . We also have

Bð1Þ−þ
2c ≡ h0j

�
ðþiÞ

Z
t0

−∞
dt2Hintðt2Þ

�
ϕ̂ðk; t0Þϕ̂ðk; t0Þ

�
ð−iÞ

Z
t0

−∞
dt1Hintðt1Þ

�
j0i

¼ fkðt0Þf�kðt0Þ
Z

t0

−∞
dt1;2ð−t1ÞD2−3ð−t2ÞD2−3fkðt1Þf�kðt2Þ

Z
p1;2

Gþ−ðp1; t1; t2ÞGþ−ðp2; t1; t2Þ:
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We start with Bð1Þþþ
2c . Expanding the bulk-to-bulk propagator, we have

Gþþðp1; t1; t2ÞGþþðp2; t1; t2Þ ¼ θðt1 − t2Þf�p1
ðt1Þf�p2

ðt1Þfp1
ðt2Þfp2

ðt2Þ þ ðt1 ↔ t2Þ: ð5:34Þ

For the two different time orderings, we denote the one containing θðt1 − t2Þ by Bð1Þ��;>
2c and the one containing θðt2 − t1Þ

by Bð1Þ��;<
2c .

Using the Mellin-Barnes representation for the mode functions (5.8), we have

Bð1Þþþ;>
2c ¼ −

e
πið2Dþ1Þ

2 f�kðt0Þ2
ð4πÞ3

Z
t0

−∞
dt1

Z
t1

−∞
dt2

Z
½dsi�Γ

�
si þ

νi
2

�
Γ
�
si −

νi
2

�
eπiðs1þs2þs5þs6−s3−s4Þ

×

�
k
2

�
−2ðs1þs2Þ Z dD−1p1

ð2πÞD−1 ð−t1Þ−2ðs1þs3þs4ÞþD−3
2 ð−t2Þ−2ðs2þs5þs6ÞþD−3

2

�
p1

2

�
−2ðs3þs5Þ�jp1 þ kj

2

�
−2ðs4þs6Þ ð5:35Þ

and

Bð1Þþþ;<
2c ¼ −

e
πið2Dþ1Þ

2 f�kðt0Þ2
ð4πÞ3

Z
t0

−∞
dt1

Z
t0

t1

dt2

Z
½dsi�Γ

�
si þ

νi
2

�
Γ
�
si −

νi
2

�
e
πiðs1þs2þs3þs4−s5−s6

�

×

�
k
2

�
−2ðs1þs2Þ Z dD−1p1

ð2πÞD−1 ð−t1Þ−2ðs1þs3þs4ÞþD−3
2 ð−t2Þ−2ðs2þs5þs6ÞþD−3

2

�
p1

2

�
−2ðs3þs5Þ�jp1 þ kj

2

�
−2ðs4þs6Þ

; ð5:36Þ

where
R ½dsi�≡ Π6

i¼1

R
cþi∞
c−i∞ dsi=2πi, and we have used momentum conservation to write p2 ¼ p1 þ k.

Note that both of the above two expressions have the same momentum integrals. We now use the Schwinger
parametrization

Z
dD−1p
ð2πÞD−1

1

jpj2s3þ2s5 jpþ kj2s4þ2s6
¼ kD−1−2ðs3−s4−s5−s6ÞΓðs3 þ s4 þ s5 þ s6 − D−1

2
ÞΓðD−1

2
− s3 − s5ÞΓðD−1

2
− s4 − s6Þ

ð4πÞD−1
2 Γðs3 þ s5ÞΓðs4 þ s6ÞΓðD − 1 − ðs3 þ s4 þ s5 þ s6ÞÞ

ð5:37Þ

to perform these integrals. This standard result introduces a degeneracy in the poles of the integrand; when evaluating the
residue at the pole at s3 þ s5 ¼ D−1

2
, due to the term ΓðD−1

2
− s3 − s5Þ, we find a cancellation between the term

Γðs3 þ � � � s6 − D−1
2
Þ in the numerator, and the term Γðs4 þ s6Þ in the denominator. Therefore, when shifting the contour, it

is possible that we might miss some of the necessary poles because the order in which we choose to shift the contour
depends on the arbitrary ordering of the variables. To take account of this possibility, following [54], we introduce a new
parameter that allows us to ensure that the pole structure is manifest at all times.
Treating the momentum integral as a convolution of two copies of f̃sðpÞ≡ 1=ps, for different values of s, we have

Z
dD−1p
ð2πÞD−1

1

jpj2s3þ2s5 jpþ kj2s4þ2s6
¼

Z
dD−1p
ð2πÞD−1 f̃2s3þ2s5ðpÞf̃2s4þ2s6ðpþ kÞ

¼
Z

dD−1y e−ik·yf2s3þ2s5ðyÞf2s4þ2s6ðyÞ; ð5:38Þ

where fsðyÞ ¼
R dD−1p

ð2πÞD−1 eip·yf̃sðpÞ ¼ 1
2sπðD−1Þ=2

ΓðD−s
2
Þ

Γðs
2
Þ ys−D. We then regularize the dimension of y from D to D̄ and include an

extra factor of ð−t0ÞD−D̄ in order to ensure that the overall dimension remains correct:

Z
dD−1p
ð2πÞD−1

1

jpj2s3þ2s5 jpþ kj2s4þ2s6
¼ ð−t0ÞD−D̄

Z
dD̄−1ye−ik·yf2s3þ2s5ðyÞf2s4þ2s6ðyÞ

¼ kD−1−2ðs3−s4−s5−s6ÞΓðs3 þ s4 þ s5 þ s6 − 2D−D̄−1
2

ÞΓðD−1
2

− s3 − s5ÞΓðD−1
2

− s4 − s6Þ
ð4πÞ2D−D̄−1

2 ð−kt0ÞD̄−DΓðs3 þ s5ÞΓðs4 þ s6ÞΓðD − 1 − ðs3 þ s4 þ s5 þ s6ÞÞ
:

ð5:39Þ
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The parameter D − D̄ now allows us more freedom when
choosing the contour, and we are thus able to avoid the
ambiguities discussed above. In contrast with the case of the
quartic loop, in which integration over the loop momentum
yields a delta function, directly enforcing a conservation law,
in the cubic case the loop integration leads to more
complicated pole structures. The difference can be under-
stood similarly to what happens in flat space, where the
massless quartic loop is a vacuummassless bubble and does
not contribute to the self-energy when computed using
dimensional regularization. In our de Sitter case, for the
specific example above, we can regulate the cubic loop
appropriately by choosing D ¼ 4þ 2κ and D̄ ¼ 4.
We now turn to the time integrations in our expressions

(5.35) and (5.36). Focusing first on the time integration in
(5.35), we obtain

Z
t0

−∞
dt1

Z
t1

−∞
dt2ð−t1Þαð−t2Þβ ¼

Z
t0

−∞
dt1

ð−t1Þαþβþ1

β þ 1
:

ð5:40Þ

We then take the late time limit t0 → 0, so that the
integration over t1 becomes a δ function, giving

lim
t0→0

Z
t0

−∞
dt1

ð−t1Þαþβþ1

β þ 1
¼ 2iπδðαþ β þ 2Þ

β þ 1
; ð5:41Þ

where α ¼ −2s1 − 2s3 − 2s4 þ D−3
2
, β ¼ −2s2 − 2s5−

2s6 þ D−3
2
, and we require ReðβÞ < −1 to ensure that

the t2 integration converges. If we were to directly integrate
out s1 using the δ function, we would encounter the same
ambiguity that we found when evaluating the quartic loop
case. We therefore once again regulate by introducing a
parameter ϵ,

ð−t0Þ−4ϵ
Z

t0

−∞
dt1

Z
t1

−∞
dt2ð−t1Þαþ2ϵð−t2Þβþ2ϵ

⟶
limt0→0 2iπδðαþ β þ 4ϵþ 2Þ

β þ 2ϵþ 1
: ð5:42Þ

This converges if we require the real part of the denom-
inator to be negative, Reðβ þ 2ϵþ 1Þ < 0. Since
β ¼ −2s2 − 2s5 − 2s6, this requires us to choose the
contour to the right of the pole in the denominator.
In a similar way, if we now focus instead on the time

integration in (5.36), we obtain

ð−t0Þ−4ϵ
Z

t0

−∞
dt2

Z
t2

−∞
dt1ð−t1Þαþ2ϵð−t2Þβþ2ϵ

⟶
limt0→0 2iπδðαþ β þ 4ϵþ 2Þ

αþ 2ϵþ 1
; ð5:43Þ

and to ensure that the t1 integration is convergent
as t1 → −∞, we require that the denominator
Reðαþ 2ϵþ 1Þ < 0.
Using these results, we then have

Bð1Þþþ;>
2c ¼ −

e
πið2Dþ1Þ

2 f�kðt0Þ2kD−1ð−kt0Þ2κ
ð4πÞ3þðD−1Þ=2þκ

Z
½dsi�Γ

�
si �

νi
2

�
eπiðs1þs2þs5þs6−s3−s4Þ

�
k
2

�
−2ðs1þ���þs6Þ

×
2iπδðαþ β þ 2þ 4ϵÞð−t0Þ−4ϵ

β þ 2ϵþ 1

Γðs3 þ s4 þ s5 þ s6 − D−1
2
ÞΓðD−1

2
− s3 − s5ÞΓðD−1

2
− s4 − s6Þ

Γðs3 þ s5ÞΓðs4 þ s6ÞΓðD − 1 − ðs3 þ s4 þ s5 þ s6ÞÞ
; ð5:44Þ

where i ¼ 1;…; 6. Integrating s1 with respect to the δ function then yields

Bð1Þþþ;>
2c ¼ −

e
πið2Dþ1Þ

2 f�kðt0Þ2
ð4πÞ3þD−1

2 πκ

�
−
kt0
2

�
2κ−4ϵ Z

½dsi�Γ
�
si �

νi
2

�
Γ
�
3

2
þ κ þ 2ϵ −

X6
i¼2

si �
ν

2

�

×
eπið32þκþ2ϵ−2s3−2s4Þ

2ðβ þ 2ϵþ 1Þ
Γðs3 þ s4 þ s5 þ s6 − 3þ4κ

2
ÞΓð3þ2κ

2
− s3 − s5ÞΓð3þ2κ

2
− s4 − s6Þ

Γðs3 þ s5ÞΓðs4 þ s6ÞΓð3þ 2κ − ðs3 þ s4 þ s5 þ s6ÞÞ
: ð5:45Þ

In the same way, we obtain

Bð1Þþþ;<
2c ¼ −

e
πið2Dþ1Þ

2 f�kðt0Þ2
ð4πÞ3þD−1

2 πκ

�
−
kt0
2

�
2κ−4ϵ Z

½dsi�Γ
�
si �

νi
2

�
Γ
�
3

2
þ κ þ 2ϵ −

X6
i¼2

si �
ν

2

�

×
eπið32þκþ2ϵ−2s5−2s6Þ

−2ðβ þ 2ϵþ 1Þ
Γðs3 þ s4 þ s5 þ s6 − 3þ4κ

2
ÞΓð3þ2κ

2
− s3 − s5ÞΓð3þ2κ

2
− s4 − s6Þ

Γðs3 þ s5ÞΓðs4 þ s6ÞΓð3þ 2κ − ðs3 þ s4 þ s5 þ s6ÞÞ
; ð5:46Þ

HINTERBICHLER, LIANG, and TRODDEN PHYS. REV. D 107, 065018 (2023)

065018-12



where i ¼ 2;…; 6. The denominator in Bð1Þþþ;<
2c arises

from integrating over the δ function δðαþ β þ 4ϵþ 2Þ, and
the convergence of the t1 integral now requires that
−Reðβ þ 2ϵþ 1Þ ¼ Reðαþ 2ϵþ 1Þ < 0. We therefore
choose the contour to run to the left of the pole.
Notice that the contour integration itself does not involve

any momentum dependence. As a result, the momentum
structure of the cubic loop correction has the late time
limit Reðf�kðt0Þ2Þ, which is of the same form as the
higher derivative term that is proportional to c04. One can
also check that in the late time limit, we have fkðt0Þ2 ¼
f�kðt0Þ2 ¼ fkðt0Þf�kðt0Þ. We can therefore directly sum the

divergent terms, since each of Bð1Þþþ
2c ; Bð1Þ−−

2c , and Bð1Þ−þ
2c

have the same momentum dependence. What remains is to
compute the divergences in the contour integration that is
independent of the momentum.
As discussed in [54], the divergences arise when the left

poles overlap with the right poles. To evaluate these
divergences, we introduce regulating parameters ϵi that
allow us to choose fixed contour lines that are parallel to the

imaginary axis and that separate the left poles from the right
poles, and then analytically continue the result to the
region ϵi ≈ 0. This procedure has been carefully discussed
in [54–56]. We use the above regularization and choose
κ ¼ ϵ, and we employ theMathematica package MB.m [56]
to yield the following divergence structure, where

we have summed over Bð1Þþþ
2c ¼ Bð1Þþþ;>

2c þ Bð1Þþþ;<
2c and

B−−
2c ¼ Bð1Þ−−;>

2c þ Bð1Þ−−;<
2c :

�
−

1

360
ffiffiffi
π

p
ϵ2

þ α1
ϵ

��
−
kt0
2

�
−2ϵ

fkðt0Þf�kðt0Þ; ð5:47Þ

with α1 a constant. We provide more details of the contour
choices in the Appendix.

1. Bð1Þ− +
2c

For the Bð1Þ−þ
2 correlator, both time integrations start

from −∞ and end at t0, and the loop divergence is the same
as in Eq. (5.39):

Bð1Þ−þ
2c ¼ fkðt0Þf�kðt0Þ

Z
t0

−∞
dt1;2Π6

i¼1

Z
½dsi�Γ

�
si �

νi
2

�
eπiðs1þs3þs4−s2−s5−s6Þ

�
k
2

�
−2ðs1þs2Þ

×
Z

dD−1p1

ð2πÞD−1 ð−t1Þ−2ðs1þs3þs4ÞþD−3
2 ð−t2Þ−2ðs2þs5þs6ÞþD−3

2

�
p1

2

�
−2ðs3þs5Þ�jp1 þ kj

2

�
−2ðs4þs6Þ

: ð5:48Þ

Performing the time integrations, and taking the late time limit t0 → 0, we introduce the same regulating parameters
as in (5.43) to obtain

ð−t0Þ−4ϵ
Z

t0

−∞
dt1

Z
t0

−∞
dt2ð−t1Þαþ2ϵð−t2Þβþ2ϵ ⟶

limt0→0

2iπδðαþ 2ϵþ 1Þ2iπδðβ þ 2ϵþ 1Þ; ð5:49Þ

where again (as in theþþ case) α ¼ −2s1 − 2s3 − 2s4 þ D−3
2
, β ¼ −2s2 − 2s5 − 2s6 þ D−3

2
, and we require the real parts of

αþ 2ϵþ 1 and β þ 2ϵþ 1 to be negative to converge.
Using the δ functions to perform the integrals over s1 and s2, the þ− correlator is then

Bð1Þ−þ
2c ¼ fkðt0Þf�kðt0Þ

4ð4πÞD−1
2 πκ

�
−
kt0
2

�
2κ−4ϵ

Π6
i¼3

Z
½dsi�Γ

�
si �

νi
2

�
Γ
�
3þ 2κ

4
þ ϵ − s3 − s4 �

ν

2

�

× Γ
�
3þ 2κ

4
þ ϵ − s5 − s6 �

ν

2

�
Γðs3 þ s4 þ s5 þ s6 − 3þ4κ

2
ÞΓð3þ2κ

2
− s3 − s5ÞΓð3þ2κ

2
− s4 − s6Þ

Γðs3 þ s5ÞΓðs4 þ s6ÞΓð3þ 2κ − ðs3 þ s4 þ s5 þ s6ÞÞ
: ð5:50Þ

Finally, choosing κ ¼ ϵ and applying the technique de-
scribed earlier, we can see that the divergent part of this
expression takes the form�

1

360
ffiffiffi
π

p
ϵ2

þ α2
ϵ

��
−
kt0
2

�
−2ϵ

fkðt0Þf�kðt0Þ: ð5:51Þ

With the divergent parts of the Bð1Þþþ
2c , Bð1Þ−−

2c , and Bð1Þ−þ
2c

correlators in hand, we can now sum them and observe
that the 1

ϵ2
ð− kt0

2
Þ−2ϵ divergences cancel, leaving only

1
ϵ ð− kt0

2
Þ−2ϵ-type divergences. As in flat spacetime, we

can absorb the 1=ϵ divergence into the coefficient c04 and
treat the higher derivative term as a counterterm. Thus, the
one-loop correction to the two-point equal time correlation
function in the late time limit is

hϕðt0;kÞϕðt0;k0Þi1−loop ¼ fkðt0Þf�kðt0Þ log
�
−
kt0
2

�
:

ð5:52Þ
Using this, the full equal time correlator

hΦðt0;xÞ;Φðt0;x0Þi is therefore given by
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hΦðt0;kÞΦðt0;k0Þi ¼ C2Δ

ð−t0Þ2Δ
�
1þ 1

CD−2 ð−t0ÞD−2ðhϕðt0;kÞϕðt0;k0Þi0−loop þ hϕðt0;kÞϕðt0;k0Þi1−loop þ � � �Þ
�

¼ C2Δ

ð−t0Þ2Δ
�
1þ fkðt0Þf�kðt0Þ

CD−2 ð−t0ÞD−2
�
1þ const

C2
log

�
−
kt0
2

�
þ � � �

��
: ð5:53Þ

Now, taking the late time limit of the mode functions yields

fkðt0Þf�kðt0Þ ¼
ð−t0Þð− 1

2
kt0Þ−D−1

4π sin ðDþ1
2

πÞ2Γð1−D
2
Þ2
X
m¼0

cmð−k2t20Þm;

cm ¼ ð− D
2
Þm

m!ð1−D
2
Þmð−DÞm

; ð5:54Þ

where ðaÞm ¼ aðaþ 1Þðaþ 2Þ � � � ðaþm − 1Þ is the
Pochhammer symbol. Furthermore, using the Fourier
identity

Z
ddk
ð2πÞd

eik·ðx−x0Þ

k2α ¼ Bdð2αÞ
�jx − x0j

2

�
2α−d

;

Bdð2αÞ ¼
πd=2

ð2πÞd
Γðd−2α

2
Þ

ΓðαÞ ; ð5:55Þ

we obtain

hϕðt0;xÞϕðt0;x0Þi0−loop
¼ ð−t0Þjx − x0j2

4π sin ðDþ1
2

πÞ2Γð1−D
2
Þ2
�
−
1

2
t0

�
−D−1

×
X
m¼0

cmBdð2αÞ
�

4t20
jx − x0j2

�
m

; ð5:56Þ

with 2α ¼ Dþ 1 − 2m and d ¼ D − 1. From this, one can
see that in coordinate space the correlator is a function of
the cross ratio ξ as defined in (5.1).
Therefore, we finally obtain

hΦðt0;xÞΦðt0;x0Þi0−loop
¼ C2Δ

ð−t0Þ2Δ
�
1þ 2Dþ3

CD−2 ξ
X
m¼0

cmBdð2αÞ
�
1

ξ

�
m
�
; ð5:57Þ

which is consistent with the form of the correlator for a
defect CFT as in (5.1). The effective field theory approach
thus allows us to read off the arbitrary function FðξÞ to any
given order.
For the one-loop correlator, the logarithmic contribution

can be viewed as the next-to-leading order expansion of
ð− kt0

2
Þϵ. Thus, the loop contribution after performing a

Fourier transform would take a similar form as the tree-
level expansion, with a 1=C2 suppression and some
changes to the coefficients.

VI. CONCLUSIONS

We have explored some systematics of the effective field
theory of conformal symmetry breaking, which describes
fluctuations around symmetry-breaking VEVs. With this
effective theory, correlators can be computed systemati-
cally as an expansion in inverse powers of the symmetry-
breaking parameter.
As an example, we began with the computation of the

leading terms in the EFT expansion of the two-point
function in a theory in which conformal symmetry is
broken to Poincaré symmetry. The EFT gives an expansion
that is valid at long distances, complementary to the short
distance operator product expansion.
We then studied the breaking that occurs due to a

spacelike defect in a Lorentzian CFT; a setup that is
relevant for early universe scenarios in which the reheating
surface can be thought of as a conformal defect. We
expanded the EFT around the time-dependent symmetry-
breaking VEV and computed the correlation functions of
the fluctuations. Because the background is time depen-
dent, we computed the in-in correlators, which involve time
integrations from the infinite past to the spacelike defect
surface. To compute the next-to-leading order corrections
to the correlators, one must evaluate the loop diagrams from
cubic and quartic interactions. The time integrations in
these loop diagrams are in principle extremely complicated,
and so we found it convenient to make use of Mellin-
Barnes representations for the mode functions. On the CFT
side, this symmetry-breaking pattern demands that the
general form of the two-point correlator takes the form
of an arbitrary function F of the cross ratio ξ. By Fourier
transforming, we were able to use our EFT expansion to
provide a series of terms for this arbitrary function.
While we have demonstrated the usefulness of this

technique in specific examples, the idea should be general-
izable in a number of ways. For example, although we
limited our calculations to two-point functions, the EFT can
in principle be used to compute any correlator in a long
distance expansion. In particular, it would be interesting to
compute the three-point correlator in this example, which
would provide information about non-Gaussianity in the
pseudoconformal universe model. Similarly, while we
chose to apply our methods to the example of a spacelike
defect in a Lorentzian CFT, other maximally symmetric
defects in various signatures should work similarly. It
would be interesting to extend our calculations to the case
of higher codimension defects, and perhaps even to the case
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in which there is mixing between spacelike and timelike
defects. Another interesting extension would be to the case
with multiple fields Φi acquiring VEVs Φi ¼ CΔ

i =ð−tÞΔ,
where spectator fields would live in different backgrounds
and yield different power spectrums. Finally, it may also be
worth exploring the subtleties in the special cases Δ ¼ 0
and D ≤ 2 that we have bypassed in this work.
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APPENDIX: DETAILS OF THE
CONTOUR CHOICE

Here we provide more details for how to obtain
Eq. (5.47). For a given contour integral over N variables si,

Z
ds1
2πi

� � �
Z

dsN
2πi

Y
i

Γðai þ
P

kbikskÞ
Γðci þ

P
kdikskÞ

; ðA1Þ

where the signs of bik determine whether the Gamma
functions result in left poles or right poles. We choose the
contours for the above integrals as fixed straight lines that
are parallel to the imaginary axis and that intersect with the
real axis at Ci. These well-defined contours should separate
the left poles and the right poles, which is equivalent to
requiring

ai þ
X
k

bikCk > 0; ∀ i: ðA2Þ

However, this may not be the case, and we may be
faced with a situation in which the left poles overlap
with the right poles, and we can no longer define the
contour in this simple way. In this case, we can introduce a

set of regulating parameters ϵl into the Gamma
functions,

Z
ds1
2πi

� � �
Z

dsN
2πi

Y
i

Γðai þ
P

kbiksk þ
P

leilϵlÞ
Γðci þ

P
kdiksk þ

P
lfilϵlÞ

; ðA3Þ

so that the conditions (A2) are now satisfied, and then
perform an analytic continuation back to ϵl → 0 afterwards.
This analytic continuation procedure is implemented in

the Mathematica package MB.m available from [56].
Unfortunately, we cannot apply the Mathematica package
directly to our contour integrals [e.g., (5.45)] because in our
case we have an extra single pole in the denominator arising
from the time integration. The convergence of the time
integration requires that s2 þ s5 þ s6 − 3

4
− 3ϵ

2
> 0 in (5.45),

and s2 þ s5 þ s6 − 3
4
− 3ϵ

2
< 0 in (5.46). This changes the

locations of the contour lines Ci. Since there is no
momentum dependence in the contour integral, we are
free to close the contour to either the right side or the left
side. However, as shown in Figs. 2(a) and 2(b), taking
(5.45) as an example, closing the contour to the left does
not encircle the single denominator pole, while closing the
contour to the right does include it. In principle, one can
choose to close the contour on either side, but the
convention of the Mathematica package is to always
choose to close the contour to the right. Therefore, the

expression for Bð1Þþþ;>
2c should not involve the residue at

this single pole, while the expression for Bð1Þþþ;<
2c should

contain it. In other words, the actual contour choices are
those shown in Figs. 2(a) and 2(c).
Moreover, since the algorithm is not written to recognize

this single pole, it is necessary to first rewrite it as

1

−2s2 − 2s5 − 2s6 þ 3
2
þ 3ϵ

¼ Γð−2ð3
4
þ 3ϵ

2
− s2 − s5 − s6ÞÞ

Γð−2ð3
4
þ 3ϵ

2
− s2 − s5 − s6Þ þ 1Þ ; ðA4Þ

which generates extra fictitious poles at −2ð3
4
þ 3ϵ

2
−s2 − s5 − s6Þ ¼ −n for non-negative integers n from
the numerator in (A4). One must then remove these
fictitious terms by subtracting the residue
at 1=ð−2s2 − 2s5 − 2s6 þ 3

2
þ 3ϵÞ,

Bð1Þþþ;>⊙
2c ¼ −

e
πið2Dþ1Þ

2 f�kðt0Þ2
ð4πÞ3þD−1

2 πκ

�
−
kt0
2

�
2κ−4ϵ Z

½dsi�Γ
�
si �

νi
2

�
Γ
�
3þ 2κ

4
þ ϵ − s3 − s4 �

ν

2

�

× Γ
�
3þ 2κ

4
þ ϵ − s5 − s6 �

ν

2

�
Γðs3 þ s4 þ s5 þ s6 − 3þ4κ

2
ÞΓð3þ2κ

2
− s3 − s5ÞΓð3þ2κ

2
− s4 − s6Þ

Γðs3 þ s5ÞΓðs4 þ s6ÞΓð3þ 2κ − ðs3 þ s4 þ s5 þ s6ÞÞ
× eπið32þκþ2ϵ−2s3−2s4Þ; ðA5Þ
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where i ¼ 3; 4; 5; 6. However, the Bð1Þþþ;<
2c contour integral does not face this issue, since the pole should be included when

we close the contour to the right, as shown in Fig. 2(d).
For Bð1Þþþ;>

2c , the contour choices can be made as follows:

ϵ ¼ 163

44
; C2 ¼

61

48
; C3 ¼

553

384
; C4 ¼

131

96
; C5 ¼

695

384
; C6 ¼

191

96
: ðA6Þ

The sum of the residues then gives us that the leading order divergence is − 1
1152

ffiffi
π

p
ϵ2
. Notice that the fictitious pole Eq. (A5)

gives a divergence − 1
2880

ffiffi
π

p
ϵ2
, which we subtract so that the divergence from Bð1Þþþ;>

2c is given by

−
1

1152
ffiffiffi
π

p
ϵ2

−
�
−

1

2880
ffiffiffi
π

p
ϵ2

�
¼ −

1

1920

1ffiffiffi
π

p
ϵ2
: ðA7Þ

The contour choice for Bð1Þþþ;<
2c , which satisfies the condition s2 þ s5 þ s6 − 3

4
− 3ϵ

2
< 0, can be made as

ϵ ¼ 327

128
; C2 ¼

643

512
; C3 ¼

253

128
; C4 ¼

741

512
; C5 ¼

163

128
; C6 ¼

987

512
: ðA8Þ

Evaluating the sum of the residues gives us − 1
1152

ffiffi
π

p
ϵ2
, and summing both Bþþ;<

2c and Bþþ;>
2c then yields

−
1

1920

1ffiffiffi
π

p
ϵ2

−
1

1152

1ffiffiffi
π

p
ϵ2

¼ −
1

720

1ffiffiffi
π

p
ϵ2
: ðA9Þ

Since Bð1Þ−−
2c is just the complex conjugation of Bð1Þþþ

2c , we can safely double the above divergence and obtain that the

leading order divergence for Bð1Þþþ
2c þ Bð1Þ−−

2c is − 1
360

ffiffi
π

p
ϵ2
.
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