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The classical Lagrangian of the Standard Model enjoys the symmetry of the full conformal group if the
mass of the Higgs boson is put to zero. This is a hint that conformal symmetry may play a fundamental role
in the ultimate theory describing nature. The origin of scales, such as the Higgs vacuum expectation value
(VEV), may result from the spontaneous breakdown of the conformal symmetry by the dilaton field. In this
work, we study whether this classical setup can be implemented in quantum theory and be phenomeno-
logically viable by presenting an explicit construction where the exact conformal symmetry can be
preserved and is anomaly-free while being spontaneously broken. Not only the Higgs mass but also the
genuine quantum scales such as the QCD confinement radius are generated by the dilaton VEV. We also
discuss the extension of these ideas to the theories with dynamical gravity and show that the only finite
subgroup of the local Weyl transformations which is anomaly-free corresponds to the global scale
symmetry. This means that the conformal invariance of the flat space theory is explicitly broken down to the
scale symmetry by gravitational effects related to the Weyl anomaly.
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I. INTRODUCTION

Can conformal invariance (CI) be an exact symmetry of
the fundamental theory of nature? Usually, it is thought that
this is not the case for three reasons. The first reason is
connected to the fact that one of the predictions of the
conformal symmetry is the absence of any explicit mass
scale in the Lagrangian which is, clearly, not the case: most
elementary particles we know have nonzero masses.
Second, all realistic renormalizable field theories, even
in the absence of masses, suffer from conformal or scale
anomaly: the divergence of the dilatational current is
nonzero due to quantum effects and is proportional to
the β functions of dimensionless coupling constants,
governing their renormalization group running [1]. And,
finally, the Weyl anomaly [2–4] forbids keeping the
classical Weyl symmetry, considered as a generalization

of CI to curved spacetime, in a quantum theory in a
nontrivial gravitational background metric.1

The first problem can be overcome if one introduces a
concept of spontaneous breaking of conformal symmetry. If
there is a scalar field that can have a nonzero vacuum
expectation value (VEV), all mass scales in the theory can
appear without the explicit breaking of the symmetry. As
for the second problem—conformal anomaly—there are
only a few known renormalizable theories, all supersym-
metric, where the scale anomaly is absent [5,6]. An
example of nonunitary conformal field theory (CFT) with
spontaneous symmetry breaking was constructed in [7].
The known conformal anomaly-free renormalizable theo-
ries (for example, N ¼ 4 super-Yang-Mills theory) are far
from reality, and their relevance for phenomenology is
obscure. So, the current answer to the question: “Do we
have a renormalizable field theory that is conformally
invariant, but CI is spontaneously broken, such that the low
energy limit of this theory is the Standard Model?” is “no.”
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1To evade the confusion: in what follows, “scale” or “dilata-
tional” or “conformal” anomaly will always refer to the anomaly
of the dilatational current in flat-space time, whereas “Weyl”
anomaly will always be associated with noninvariance with
respect to Weyl transformations of the effective action in curved
spacetime.
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What is more important: renormalizability or conformal
symmetry? Though the Standard Model is a renormalizable
theory, the ultimate theory of nature is most probably not.
The reason is that the theory of gravity is not renormaliz-
able. Therefore, it makes sense to reformulate the question
posed above into the following one: “Can we have an
effective field theory, valid up to the energies ECI much
exceeding the Fermi scale, which is conformally invariant,
but CI is spontaneously broken, such that the low energy
limit of this theory is the Standard Model?” The answer to
this question is “yes” [8,9] (for earlier works see [10,11]
and for review [12]).
How can we avoid quantum scale anomaly that causes

difficulty in promoting classically conformal invariant
theories to the quantum ones? The solution to this problem
was suggested almost 50 years ago in [13]. The reason for
the presence of quantum scale anomalies is connected to
the fact that any regularization of divergent Feynman
graphs of renormalizable field theories contains an explicit
mass scale. It can be a UV cutoff Λ or mass MPV in Pauli-
Villars regularization, or the scale μ in dimensional
regularization (DimReg), eliminating a mismatch between
coupling constants in different dimensions. These scales
break the conformal invariance explicitly, thus the con-
formal anomaly. The idea of [13], who used DimReg,
consists in replacing μ by a dynamical field—dilaton χ.
This makes the theory conformally invariant inD ¼ 4 − 2ϵ
dimensions and allows the subtraction of divergencies in a
conformally invariant way. The price to pay is the renor-
malizability of the theory: the Lagrangian in D dimensions
contains fractional powers of the dilaton field, leading to
the proliferation of different evanescent operators needed to
remove the divergencies [8,14]. The spontaneous breaking
of the conformal invariance—the nonzero dilaton VEV—is
automatically embedded in the formalism. Of course, the
use of DimReg for the construction of CFTs with sponta-
neously broken CI is not unique; everything works with any
type of regularization: simply replace the cutoff [10,11],
lattice spacing [15], or the Pauli-Villars mass with the
dynamical dilaton field. As usual, the DimReg is more
suited to practical computations, which in this context can
run up to several loops [16].
Along these lines, the scalar sector of the Standard

Model can be extended to a theory with spontaneously
broken scale invariance in D dimensions by the price of
adding an extra scalar field χ [8],

L ¼ 1

2
ð∂χÞ2 þ ∂H†

∂H −
λ

4
χ

4−D
D−2ðH†H − α2χ2Þ2: ð1Þ

Here the field χ has a vacuum expectation value χ0 ¼
hχi ¼ v=α (phenomenology requires α ≪ 1). The rest of
the SM Lagrangian is modified similarly by multiplying
the corresponding degree of the dilaton field. The VEV
of the Higgs field H is v. The presence of the field χ in

power proportional to ϵ generates in the higher loops
the higher-dimensional operators suppressed by the dila-
ton VEV χ0 [8,14], making the effective theory weakly
coupled and thus perturbative only below energies
E≲ χ0 ¼ ECI. In this domain, the predictions of the theory
coincide with that of the SM, up to power corrections
suppressed by the dilaton VEV. The dilaton is an exactly
massless particle, being a Goldstone boson of the sponta-
neously broken conformal symmetry. It only has deriva-
tive interactions with matter, if coupled to gravity in a
scale-invariant way; see [10,17–19] and below.
What happens at energies above ECI? If ECI is the same

as the Planck scaleMP ¼ 2.435 × 1018 GeV, the answer to
this question cannot be given by the theory in flat
spacetime, considered so far. Clearly, gravity must be
accounted for. If ECI ≪ MP, it would be natural to expect
that the amplitudes for energies exceeding ECI should
match those of the corresponding CFTwithout spontaneous
symmetry breaking, filling the gap of energies between ECI
andMP (see related discussion in [20]). In this case, no new
fields or particles would be required above the naive UV
cutoff ECI to make the theory self-consistent.
In addition to the hopes for consistent UV completion,

the theories with exact but spontaneously broken CI are
interesting from other points of view. Having conformal
invariance of the fundamental theory of nature may be
connected to the explanation of the spin quantization of
massless particles. Indeed, according to the group theory
results [21,22], there are no continuous spin representa-
tions of conformal symmetry. Although the possibilities of
the presence of the massless fields with continuous spin
were discussed [23], there are no signs that they exist in
nature, though they are admitted by the Poincaré group (a
textbook discussion can be found in [24]). Besides the
conformal symmetry, there is no strong reason for the
absence of these representations. Two other hints are
provided by the well-known hierarchies of the Standard
Model and gravity: the smallness of the cosmological
constant and the Fermi scales in comparison with the
Planck scale. Putting the Higgs mass to zero in the
classical Lagrangian of the SM leads to enhanced sym-
metry—the conformal one, leading to a possible explan-
ation of the Higgs mass hierarchy [25–29]. Moreover, the
spontaneous breaking of CI leads to the degeneracy of the
vacuum which ensures that the energy of the ground state
is equal to zero [8,30–32]. Both these observations are
also true if the conformal invariance is replaced by a
weaker requirement of the scale invariance.
The discussion above provides us with enough motiva-

tion to study further the conformal theories with sponta-
neous symmetry breaking. To start with, wewill concentrate
on the theories in flat spacetime in various dimensions.
The first question we are going to elucidate is whether

one can indeed remove all divergences in a way consistent
with conformal invariance. This problem has been already
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studied in [9] with an affirmative answer. The proof given
in this paper is based on the assumption that any con-
formally invariant operator constructed from a scalar field χ
in flat spacetime can be derived from operators invariant
under the general transformation of coordinates constructed
from the metric gμν and then reduced to a conformally flat
metric by substituting gμν → χ2ημν. Though this statement
is true for a noninteger or an odd number of dimensions, it
does not hold for even dimensions due to the Weyl
anomaly, as we will see below. We provide a simpler (in
our opinion) proof which does not require any reference to
curved spacetime and is based on the background field
method (see [33] for a review). To clarify even more the
absence of conformal anomaly we compute a finite part of
the effective action in a toy model and demonstrate that it is
indeed conformally invariant within our formalism.
Next, we will construct a most general local effective

action for the dilaton, considering it as an expansion over
the number of spacetime derivatives for a theory defined in
an arbitrary number of dimensions. Again, this action is
found usually with the help of different curvature invariants
in curved spacetime (see, e.g., [34,35]). We show how this
can be done directly in flat spacetime, without any
reference to general relativity.
The spontaneous breakdown of the conformal symmetry

requires the existence of an exactly flat direction in the
effective action for the dilaton, or, what is the same, the
absence of the quartic dilaton self-coupling ∝ χ4 in four-
dimensional spacetime. We show that the dilaton flat direc-
tion is perturbatively stable with respect to quantum correc-
tions associated with the dilaton field itself.We also discuss a
constraint on the dilaton effective action coming from this
requirement from certain nonperturbative contributions.
Given that any realistic theory must contain dynamical

gravity, the question of whether the conformal symmetry in
flat spacetime can be extended and mapped to some global
symmetry that holds in the presence of gravity becomes
important. Since the scale and conformal symmetries do
not lead to the conserved charges which can be evaporated
from black holes (contrary to the compact global symmetry
groups corresponding, e.g., to the baryon number), the
black hole arguments [36,37] against global symmetries are
not applicable to scale or conformal invariance.
A natural extension of the conformal invariance from the

flat spacetime to the curved spacetime is the Weyl sym-
metry—invariance of the theory against replacing the
metric gμν → Ω2ðxÞγμν, where ΩðxÞ is an arbitrary function
of spacetime, matched by the corresponding transformation
of the matter fields (see, e.g., [38,39]). It is well-known that
this symmetry is anomalous [2–4] and thus cannot be kept
at the quantum level. We discuss the reasons why this
happens and address the question of what is the maximal
global subgroup of the local Weyl group that can be
anomaly-free in an arbitrary gravitational background.
We find that among the Weyl transformations, only

dilatations can stay as an exact quantum symmetry. We
derive a general condition for the selection of the metrics
that admit a subgroup of the Weyl symmetry related to the
conformal symmetry of flat spacetime, and the flat space-
time obviously satisfies this condition.
The paper is organized as follows. In Sec. II, we review

the basic notions and the properties of the conformal group
needed for further discussions. Section III is devoted to a
method allowing keeping the conformal symmetry in all
orders of perturbation theory. We also give here an explicit
computation of the effective action in a simple toy model
demonstrating its CI. In Sec. IV we derive the dilaton
effective action in an arbitrary dimension of spacetime. In
Sec. V we discuss the method for the construction of the
dilaton action with the use of the curvature invariants. In
Sec. VI we elucidate the origin of the Weyl anomaly. In
Sec. VII we discuss several subgroups of the local Weyl
group and demonstrate that only scale symmetry can
survive the quantum anomaly. In Sec. VIII we discuss a
generic scale-invariant Lagrangian for the dilaton and
gravity. In Sec. IX we conclude.
A short account of the obtained results is presented

in [40]. Similar questions were also studied in [41].

II. PRELIMINARIES

Here we review the basic grounds of the conformal
transformations. Let Φ be a multicomponent field2 trans-
forming conventionally under Poincaré transformations—
translations δT and rotations δL—which leave the action
invariant,

δσTΦðxÞ ¼ ∂σΦðxÞ; ð2Þ
δστL ΦðxÞ ¼ ðxσ∂τ − xτ∂σ þ ΣστÞΦðxÞ: ð3Þ

Here Σστ is spin matrix [(SOðD − 1; 1Þ] acting on a given
representation of the fieldΦ, andD is the dimensionality of
spacetime.
In addition to these transformations, we consider dila-

tations

δSΦðxÞ ¼ ðxτ∂τ þ ΔÞΦðxÞ; ð4Þ

and special conformal transformations

δσCΦðxÞ ¼ ð2xσxτ − ηστx2Þ∂τΦðxÞ þ 2xτðηστΔ − ΣστÞΦðxÞ:
ð5Þ

HereΔ is a mass dimension of the field. For the canonically
normalized scalar fields Δ ¼ ðD − 2Þ=2 in D-dimensional
spacetime.

2This field can have both Lorentz and internal indices which
correspond to the transformations in the field space. For sim-
plicity, we omit these indices.
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All listed transformations preserve the angles between
any lines in the space. They can also be defined as the
coordinate transformations that lead to the rescaling of the
flat spacetime metric by some function of coordinates,

x0μ ¼ FμðxÞ; η0μν ¼ ηλσ
∂Fλ

∂xμ

∂Fσ

∂xν
¼ Ω2ðxÞημν: ð6Þ

All the solutions to this requirement form a group SOðD; 2Þ
with ðDþ 1ÞðDþ 2Þ=2 generators. Poincaré transforma-
tions are described by the ISOðD − 1; 1Þ subgroup with
DðDþ 1Þ=2 generators leaving the spacetime intervals
invariant. The dilatations rescale the coordinates by a
constant factor, x0μ ¼ λxμ, while the finite special conformal
transformation parametrized by the constant vector cμ
looks like

xμ → x0μ ¼
xμ þ cμx2

Ωðx; cÞ ; ð7Þ

where Ωðxμ; cμÞ ¼ 1þ 2cμxμ þ c2x2. The corresponding
finite transformation of the fieldΦ depends on the spin. For
the simplest case of the scalar, the transformation is

Φ0ðx0Þ ¼ ½Ωðx; cÞ�D−2
2 ΦðxÞ: ð8Þ

These coordinate transformations make the flat space
metric ημν transform to

ημν → Ωðx; cÞ2ημν: ð9Þ

Special conformal transformations can be written as a
combination of inversion,

x0μ ¼ Cxμ=x2; ð10Þ

shift and rotation. This means that, for practical applica-
tions, it is enough to prove the invariance of the Lagrangian
under consideration with respect to the inversion only. This
invariance, together with the scale symmetry, would mean
that the action has the full conformal symmetry SOðD; 2Þ.
The infinitesimal conformal transformations x0μ ¼ xμ þ

ξμ can also be defined through the equation on the Killing
vector ξμ following from the definition (6),

∂μξν þ ∂νξμ ¼
2

D
ημν∂αξ

α: ð11Þ

In this case, the metric gets rescaled by the factor
Ω2 ¼ 1þ ω ¼ 1þ ∂αξ

α. Differentiating (11) twice one
can get a closed form equation for ω,

ð2 −DÞ∂μ∂νω ¼ ημν□ω: ð12Þ
This equation has only a linear in xμ solution, reflecting the
fact that transformations of the conformal group lead to a

change of the metric by a conformal factor ω constrained
by the condition (12). Remarkably, all the solutions to
these equations on ω correspond to the spacetime con-
formal transformations. Thus, the transformations can be
described by one scalar function. This definition allows
extending the conformal group to the case of the curved
space, which will be discussed in detail later in Sec. VII.
Notice that in D ≠ 2 this equation reduces to

∂μ∂νω ¼ 0; ð13Þ

while in D ¼ 2 one can get less constrained σ, satisfying
only the condition

□ω ¼ 0: ð14Þ

This condition has more solutions reflecting the fact that
the conformal group in D ¼ 2 has an infinite number
of generators (see, for example, the review [42] for
more details).
In what follows we will also be working with the

extensions of the given definitions to the case of the
spacetimes with fractional dimensions. All the expressions
with fractional values of D appearing while using dimen-
sional regularization of the Lagrangian formulations should
be understood as an analytic continuation of the D
dependence in the given integer D definitions. Let us
mention here that we will use the fact that in the Lagrangian
formulation of the CFTs there are no operators whose
conformal transformation would be singular around any
integer D. We will use this fact in our arguments justifying
the existence of anomaly-free quantum conformal sym-
metry in flat spacetime.

III. EFFECTIVE CFTS WITH THE SPONTANEOUS
BREAKING OF CONFORMAL SYMMETRY

There was a long discussion in the literature regarding
the question of whether the breaking of conformal sym-
metry by quantum anomaly can be avoided in quantum
theory. Even a less constraining symmetry—dilatations—
cannot be kept at the quantum level in a conventional
approach to defining the QFT. The deep reason behind the
appearance of the scale anomaly is connected to the fact
that the standard multiplicative renormalization procedure
of divergent Feynman diagrams is not compatible with
preserving scale symmetry. For example, the Pauli-Villars
regularization requires introducing a large energy scale
MPV (eventually sent to infinity) serving as a mass of
auxiliary fields that breaks the symmetry. The dimensional
regularization also cannot save the scale symmetry because
it requires the presence of dimensionful parameter μ needed
to match the mass dimensions of couplings in the spaces
with different dimensions. In a classical conformal or scale-
invariant field theory, one can define a dilatational current,
which is conserved on equations of motion. In quantum
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theory, the explicit breaking of the scale symmetry by
regulators leads to scale anomaly [1]—the divergence of
the dilatational current is not zero any longer and is
proportional to β functions describing the renormalization
group running of different coupling constants. In the
words of Coleman [43]: “For scale invariance, though,
the situation is hopeless; any cutoff procedure necessarily
involves a large mass, and a large mass necessarily breaks
scale invariance in a large way.”
However, there is a simple way out of this assertion, going

back to [13] (see also [10]). Make the cutoff (or Pauli-Villars
mass, or parameter μ of DimReg) dynamic and proportional
to one of the fields in the theory, say the “dilaton” χ. Arrange
the theory in such a way that χ has a vacuum expectation
value). Then the theory is automatically scale invariant in all
orders of perturbation theory, there is no anomaly in the
dilatational current, but the scale symmetry is “hidden,” i.e.,
spontaneously broken. This procedure breaks the renorma-
lizability of the theory—it generates an infinite number of
higher-dimensional operators different from those in the
original classical action. These operators are suppressed by
the dilaton VEV, which can be as large as the Planck scale.
The theory resulting from this construction is a well-defined
and predictive effective field theory up to the energy scale
∼hχi. One may expect that at higher energies it maps to an
unbroken conformal theory. A generic feature of a theory
with spontaneously broken scale invariance is the presence
of an exactly massless Goldstone particle—the dilaton. In a
theory without dynamical gravity, this massless particle
generically induces a long-range (fifth) force, which dis-
appears if gravity is added in a scale-invariant way [8,10,19].
The scale-invariant Standard Model defined in this way was
widely discussed in phenomenological and cosmological
contexts [8,18].
The scale invariance of the effective field theory con-

structed along these lines is obvious—there are simply no
dimensionful coupling constants or explicit mass param-
eters in it. It is far from being obvious, though, that the
effective action can be invariant under the full conformal
group, including the special conformal transformations.
This question is important since the number of conformally
invariant operators is smaller than the number of scale-
invariant ones (see Sec. IV).
In a paper [9], it was claimed that this is indeed the case

in all orders of perturbation theory for theories without the
gravitational anomaly (i.e., invariant under all diffeomor-
phisms (Diffs) at the quantum level). The first step of the
proof was to couple the original conformally invariant
theory in D dimensions (D is fractional in DimReg,
D ¼ 4 − 2ϵ) to the external background metric in a
Weyl-invariant way. Then the one-loop regularized (but
not renormalized yet) effective action enjoys both Diff and
Weyl invariance. With the use of the Diff invariance, the
authors argued that the pole part of this expression ∝ 1=ϵ
can be made conformally invariant, meaning that the

theory indeed remains conformal at the one-loop level.
Now, one can proceed with an iterative procedure: add this
one-loop counterterm to the classical action, repeat the
computation to build the two-loop conformally invariant
counterterm, etc.
It looks to us, however, that this proof is not fully

satisfactory because it calls for getting out from the flat space
and exploits Weyl symmetry which is anomalous [2–4].
Indeed, it is known [44] that not all conformal operators can
bewritten in a curved space asWeyl invariant operators in a
specific spacetime dimension without poles in ϵ coeffi-
cients (see also Sec. VII A). Potentially, these extra
singularities may jeopardize the flaw of logic separating
the 1=ϵ infinities associated with renormalization from 1=ϵ
terms associated with the Weyl anomaly.
For this reason, we present another argument that the

perturbative effective action has conformal symmetry if
the theory is regularized in a conformally invariant way.
It is a straightforward application of the background field
method [33], and it does not require getting out of flat space.
To clarify the main ideas we start with a one-loop

computation in a toy model which shows how the
conformal symmetry is kept. Then we will turn to a
general case.

A. Effective action and its conformal
invariance in a toy model

In this section, we examine an explicit example of one-
loop effective action for a conformal scalar field.
Consider the action defined in D dimensions,

L ¼ 1

2
ð∂ϕÞ2 − λ

4
ϕq: ð15Þ

Here q ¼ 2D=ðD − 2Þ. Let us compute the simplest one-
loop graph in the background field method [33]. To apply
this method we expand the field as ϕ ¼ ϕ0 þ δϕ. Then, the
perturbed Lagrangian becomes

L ¼ 1

2
ð∂ðδϕÞÞ2 − λ

4

qðq − 1Þ
2

ϕq−2δϕ2: ð16Þ

The propagator for massless field δϕ is

hδϕðxÞδϕðyÞi ¼
�

1

ðx − yÞ2
�D−2

2

: ð17Þ

In the formalism of effective action, the background-
dependent mass term in (16) is treated as an interaction
term since we use the perturbative expansion of the back-
ground itself. For this reason, we can use the massless
propagator in further computation. The effective action at
the order λ2 is described by the diagram shown in Fig. 1,
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Γ ¼ 9λ2

8π2

Z
dDxdDyϕðxÞ 4

D−2ϕðyÞ 4
D−2

�
1

ðx − yÞ2
�

D−2
: ð18Þ

The propagator can be written in Fourier space, making the
divergence of the effective action in four dimensions
explicit,

�
1

ðx− yÞ2
�

D−2

¼ −
1

ð2πÞD
π2

D− 4

Z
ðp2ÞD−4

2 eipðx−yÞdDpþ ðfiniteÞ: ð19Þ

The counterterm that is conformal in D dimensions has
the form

Lct ¼
9

8π2
1

D − 4
λ2

Z
dDxϕ

2D
D−2ðxÞ: ð20Þ

Let us now compute the renormalized effective action,

Γren ¼
9λ2

8π2

Z
dDpeipðx−yÞ

Z
dDxdDy

× ðϕ D
D−2ðxÞϕ D

D−2ðyÞ − ϕ
4

D−2ðxÞϕ 4
D−2ðyÞðp2ÞD−4

2 Þ: ð21Þ

The limit of this expression for D → 4 is finite,

Γren ¼
9λ2

8π2

Z
d4peipðx−yÞ

Z
d4xd4y

× ϕ2ðxÞϕ2ðyÞ logϕðxÞϕðyÞ
p2

: ð22Þ

This nonlocal effective action can be rewritten in the form
of only one x integral with a nonlocal differential operator,

ðlog□ÞϕðxÞ ¼
Z

d4yKðx − yÞϕðyÞ; ð23Þ

defined through its kernel

Kðx − yÞ ¼
Z

d4p log ð−p2Þeipðx−yÞ ð24Þ

as follows:

Γren ¼
9λ2

8π2

�Z
d4xϕ4ðxÞ logϕ

2ðxÞ
μ2

−
Z

d4xd4yd4pϕ2ðyÞϕ2ðxÞ logp
2

μ2

�

¼ 9λ2

8π2

�Z
d4xϕ4ðxÞ logϕ

2ðxÞ
μ2

−
Z

d4xϕ2ðxÞ log−□
μ2

ϕ2ðxÞ
�

¼ −
9λ2

8π2

Z
d4xϕ2ðxÞ log −□

ϕ2ðxÞϕ
2ðxÞ: ð25Þ

The conformal invariance of this operator is not obvious.
To see that, let us extend the validity of the formula (36)
derived in Sec. IV to the values of N which are not integer.3

This can be defined, for example, as an analytic continu-
ation of the result known for integer numbers to the whole
complex plane. Notice that in four dimensions, as follows
from (36), ϕ2−N

□
Nϕ2−N is conformally invariant at any N.

In the limit N → 0 we can write formally

ϕ2−N
□

Nϕ2−N ¼ ϕ4 þ Nϕ2

�
log

□

ϕ2

�
ϕ2 þ � � � : ð26Þ

Then, the operator in (25) can be obtained as

ϕ2

�
log

□

ϕ2

�
ϕ2 ¼ lim

N→0

�
ϕ2−N

□
Nϕ2−N − ϕ4

N

�
: ð27Þ

In Sec. IV we will construct the conformal operators out of
the fields and □ operators. As a specific consequence of
this result, the operator □Nϕ2−N is conformally covariant
for all N in four dimensions (see also [45,46]). In the spirit
of analytic continuation from all integers N to all real
powers, the limit N → 0 of (27) appears to be conformal;
hence the effective action Γren remains conformal.
Our result on conformal invariance of the one-loop

effective action for the theories defined as conformal in
D dimensions can be generalized to the next orders in
perturbation theory. Since both effective action and coun-
terterm have this symmetry in D dimensions, the renor-
malized effective action will be invariant in four
dimensions, too. This conclusion would be obvious if
the transformations do not depend on the number of
dimensions. However, the same result holds also for our
case of conformal symmetry for the following reason.
Conformal transformations depend on D in such a way that
they do not bring any pole parts proportional to 1=ðD − 4Þ;
see Sec. II for the definitions. The result of the conformal
transformation of the regular in D ¼ 4 terms in the action

FIG. 1. The leading contribution to the effective action in a
background field formalism for the model (15).

3See also [45,46] for the discussion of the fractional powers of
the box operator.
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remains regular. For this reason, there are no extra non-
invariant terms left after renormalization.

B. General consideration

For concreteness, let us consider a theory invariant under
the conformal transformations in D ¼ 4, though the results
are valid for any integer dimension. With the help of the
dilaton field raised into the fractional power, every CI term
in the Lagrangian can be extended in a CI way to the
fractional number of dimensions. Hereafter we will use
dimensional regularization allowing us to define the theory
as conformal in 4 − ϵ dimensions. Our observation can be
formulated as follows:
If the theory is defined in such a way that
(i) the action is invariant under the conformal trans-

formations in an arbitrary (also fractional) spacetime
dimension,4

(ii) the dimensional regularization is used for compu-
tations of divergent terms in the effective action in an
integer number D of dimensions,

(iii) and the perturbative expansion can be applied,
then the finite renormalized effective action Γren is invariant
under the conformal transformations in four dimensions.
Let us start the argumentation from the one-loop level.

The computation of the effective action would lead to the
appearance of the divergences that need to be regularized.
Since the procedure of the computations explicitly keeps
the conformal invariance in any dimension, the result
would be invariant under the conformal transformations
in 4 − ϵ dimensions. However, the result will be divergent
in four dimensions. The divergent part of the total effective
action Γdiv þ Γfin is

Γdiv ¼
Γ1

ϵ
þ � � � : ð28Þ

Thus, we have

δD−ϵðΓdiv þ ΓfinÞ ¼ 0: ð29Þ

To cancel these divergences one has to introduce
counterterms Lc. They can be written in a form of the
local operators invariant under the conformal transforma-
tions in 4 − ϵ dimensions. This can be done because the
number of conformal operators in 4 − ϵ dimensions is equal
to or larger than in exactly four dimensions, given that in
integer dimensions some operators can reduce to total
derivatives. Let us stress here that the counterterms should
be extended to the conformal operators in 4 − ϵ by adding
only finite at ϵ → 0 pieces.5 This can be done for the
conformal transformations, so Lc can be chosen such that

δD−ϵLc ¼ 0: ð30Þ

Let us compute the transformation of the finite part left after
the renormalization,

δD−ϵΓren ¼ δD−ϵΓdiv þ δD−ϵΓfin þ δD−ϵLc ¼ 0: ð31Þ

Using essential facts about the conformal transformations,
namely,

(i) δD−ϵO − δDO ¼ OðϵÞB, where operators O and B
are finite at ϵ → 0,

(ii) δD−ϵO is finite at ϵ → 0,
we can conclude that the renormalized effective action at
the one-loop level stays invariant under the conformal
transformations in D dimensions. Notice also that from
these properties it follows that Γdiv and Γ1 are invariant
under the D-dimensional conformal transformations
separately.
Going to the two-loop level, we have to add the one-loop

counterterm and repeat the procedure. The new issue
arising at the two-loop level is the presence of different
types of divergences in the regularized effective action:
besides 1=ϵ there will be 1=ϵ2 terms. In a full analogy with
the one-loop case, we can build a conformal in 4 − ϵ
dimension counterterm that cancels 1=ϵ2 divergence.
However, in general, this counterterm will have a 1=ϵ part
itself. The key observation here is the fact that the 1=ϵ term
will be invariant with respect to four-dimensional con-
formal transformations, in the same way as Γfin was
invariant at a one-loop level. As the operator is conformal
in four dimensions, it can be extended to 4 − ϵ dimensions
in a conformally invariant way [see the explicit construc-
tion (38)]. Thus, one can build proper counterterms
canceling 1=ϵ divergences arising from two loops. The
finite part of the effective action will be kept conformal.
Iteratively, the described procedure can be repeated for an
arbitrary number of loops. This way, the conformal
invariance of the renormalized effective action can be
justified step by step in a perturbative expansion.
In the same way, one can investigate whether any other

symmetry of the classical action will be preserved at the
quantum level in perturbation theory. The key point here is
that at each step of the consideration no extra divergences
are appearing during our attempt to make the counterterm
invariant. For example, there are no 1=ϵ2 terms required to
make the one-loop counterterm conformal in D dimen-
sions. As we will see later in Sec. VII A, it is precisely this
condition that is not satisfied for Weyl symmetry that
causes Weyl anomaly.

IV. DILATON EFFECTIVE ACTION

The low energy limit on any spontaneously broken con-
formal field theory contains a massless scalar—dilaton—
the Goldstone boson. The realistic theory would also
contain a massless photon. The addition of the massless

4We define the theory in a fractional dimension as an analytic
continuation of its results in an integer dimension.

5This would not be possible for the Weyl transformations,
since some operators get accompanied by extra 1=ϵ contributions.
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vector field can be made without difficulties and thus is not
considered in what follows. This section aims to construct
all possible local conformally invariant operators contrib-
uting to the dilaton effective action. We classify them by the
number of derivatives. The generic effective Lagrangian
would contain all the operators respecting the conformal
symmetry and can be used for perturbative computations at
low momentum transfers.
Let us take the flat spacetime of dimensionality D, where

D can be fractional. It is easy to construct scale-invariant
operators. Simply write all Poincaré invariant operators
containing different powers of the scalar field and its
derivatives, and make sure that the operator has a mass
dimension D. Not all scale-invariant operators are confor-
mally invariant. For instance, the operator ϕ2D=ð2−DÞð∂ϕÞ4 is
scale invariant but not conformally invariant.
To find a subclass of conformal operators, one can

proceed as follows. Any scale-invariant operator, after
several integrations by parts in the action, can be written
as a product of a scalar field in some (possibly fractional)
power and boxes □ (D’Alambertians) in integer powers
(remember, we only consider local operators; differential
operators in fractional powers would introduce nonlocality)
acting on some power of the scalar field. As the scalar field
transforms uniformly under the conformal transformation
(8), to find the conformal operators it is sufficient to
determine the power α in the expression □Nϕα, where
N is an integer number, making it to transform homo-
geneously under conformal transformations (CT).
We can use the fact that each transformation from the

conformal group can be presented as a combination of
translations, rotations, dilatation, and inversion; see
Sec. II. Note that the rotations, translations, and dilatations
can lead only to the rescaling of□Nϕα by a constant factor.
So, the only nontrivial part here is the inversion which in
Euclidean spherical coordinates means a change of the radial
coordinate r → 1=r, while the angles remain unchanged.
The respective transformation of the canonically normalized
field ϕ is

ϕðrÞ → ϕ̃ðrÞ≡ rð2−DÞϕ
�
1

r

�
: ð32Þ

Thus, the question boils down to the following. Suppose that
ϕαðrÞ is a solution to equation

□
N
r ϕ

αðrÞ ¼ 0; ð33Þ

where □r is the radial part of the Laplace operator in D
dimensions,

□r ¼
∂
2

∂r2
þD − 1

r
∂

∂r
: ð34Þ

Can we find the power α in such a way that the field ϕ̃α also
satisfies the equation □

N
r ϕ̃

αðrÞ ¼ 0?

The answer to this question can be found easily with the
use of Wolfram’s Mathematica and reads

α ¼ D − 2N
D − 2

: ð35Þ

Therefore, the operators that transform uniformly under
conformal transformations and have the same scaling
dimension as ϕ can be written as

ON ¼ ϕ
2ðNþ1Þ
2−D □

NðϕD−2N
D−2 Þ: ð36Þ

With this basic block, the most general action can be
constructed from these operators using multiplications and
compositions. If we define

ÔN ¼ ϕ
2ðNþ1Þ
2−D □

N; ð37Þ

then all possible combinations of the form

ÔN1
ðOm1

� � �Omk
ÞÔN2

ðOn1 � � �OniÞ � � � ÔNp
ðOs1 � � �OslÞ

ð38Þ

multiplied by a proper power of ϕ (which leads to the scale
invariance) would be conformally invariant operators. To
the best of our knowledge expression (38) is new and has
not appeared in the literature.
Let us notice here the following important observations.

In D ≠ 2 the construction of conformal operators (38) is
done in such a way that

(i) they can be written for an arbitrary number of
dimensions, including fractional D which is needed
in DimReg;

(ii) there are no singularities in these expressions in an
integer number of dimensions. However, some
operators or their combinations may become a total
derivative in a certain number of dimensions.

A. Derivative expansion

Let us illustrate the obtained result for a few operators
with an increasing number of derivatives.
(1) No derivatives:

O0 ¼ ϕ; L0 ∝ ϕ2D=ðD−2Þ: ð39Þ

(2) Two derivatives:

O1 ¼ ϕ
4

2−D□ϕ; L2 ¼ ϕ□ϕ: ð40Þ

(3) Four derivatives:
There are three operators, namely O2

1, Ô1O1, and

O2 ¼ ϕ
6

2−D□
2ϕ

D−4
D−2: ð41Þ

MIKHAIL SHAPOSHNIKOV and ANNA TOKAREVA PHYS. REV. D 107, 065015 (2023)

065015-8



Thus, the conformal Lagrangian containing four
derivatives can be written in the form

L4 ¼ a1ϕ
Dþ2
D−2O2 þ a2ϕ

2
D−2O2

1 þ a3ϕ
Dþ2
D−2Ô1O1

¼ ā1ϕ
D−4
D−2□2ϕ

D−4
D−2 þ ā2ϕ

4
2−Dð□ϕÞ2: ð42Þ

Notice that the last term in the first line is equivalent
to O2

1 after omitting the total derivative.
(4) Six derivatives:

The conformal operators are constructed as com-
binations of O1, O2, and O3 ¼ ϕ

8
2−D□3ðϕD−6

D−2Þ.
Although there are many combinations, (O3

1; O1O2;
O3; Ô1ðO2Þ; Ô1ðO2

1Þ;…), only four of them are
independent and not connected by adding a total
derivative. One can choose, for example,

L6 ¼ b1ϕ
Dþ2
D−2O3 þ b2ϕ

4
D−2O1O2

þ b3ϕ
6−D
D−2O3

1 þ b4ϕ
4

D−2O1Ô1ðO1Þ: ð43Þ

The Lagrangian then takes the form

L6 ¼ b1ϕ
D−6
D−2□

3ðϕD−6
D−2Þ

þ b2ϕ− 6
D−2□

2ðϕD−4
D−2Þ□ϕ

þ b3ϕ−Dþ6
D−2ð□ϕÞ3 þ b4ϕ− 4

D−2□ϕ□ðϕ 4
2−D□ϕÞ:

ð44Þ

One can see that all the expressions (39)–(44) contain
singularities at D ¼ 2, whereas formulas (42) and (44) are
singular at D ¼ 4 and D ¼ 6, respectively. This happens to
be related to the Weyl anomaly, which will be discussed in
detail in Sec. VII A. In the next subsections, we present the
explicit formulas for conformally invariant operators in
four, six, and two dimensions removing these singularities.

B. Operators in D= 4

Let us work now in the space with an integer number of
dimensionsD ¼ 4. The construction of conformally invari-
ant operators can be done straightforwardly—first, consider
the scale-invariant operators and then select only those that
are invariant under infinitesimal special conformal trans-
formations. The operators with zero or two derivatives are
simply the self-interaction λϕ4 and the kinetic term ϕ□ϕ.
All scale-invariant operators containing four derivatives can
be written through the following set of three operators:

1

ϕ2
ð□ϕÞ2; 1

ϕ3
ð∂μϕÞ2□ϕ;

1

ϕ4
ð∂μϕÞ4: ð45Þ

All other operators can be recast in terms of these up to the
total derivatives. The requirement of invariance of the
action against infinitesimal special transformations shows
that only the following two operators are admitted:

1

ϕ4
ð∂μϕÞ4 −

2

ϕ3
ð∂μϕÞ2□ϕ;

1

ϕ2
ð□ϕÞ2: ð46Þ

The same result can be derived with the use of formula (42)
of the previous subsection. The first operator at the second
line in (42) looks like the trivial zero contribution inD ¼ 4.
However, we can perform the expansion around D ¼ 4
with the leading term

�
ðD − 4Þ□ log

ϕ

μ

�
2

: ð47Þ

Because of the derivative acting on the log, the dependence
on μ is spurious. Up to coefficient ðD − 4Þ2, this operator
coincides with the first one in (46). The second operator at
the second line in (42) at D ¼ 4 maps to the second
operator in (46), as expected.
Let us look now at operators with six derivatives in the

same manner as we just did with operators with four
derivatives. The full set of scale-invariant operators con-
tains seven independent ones, which are not connected to
each by integrating by parts,

O1 ¼
1

ϕ4
□ϕ□2ϕ; O2 ¼

1

ϕ5
ð□ϕÞ3;

O3 ¼
1

ϕ5
□

2ϕð∂μϕÞ2;

O4 ¼
1

ϕ6
ð∂νϕÞ2□ð∂μϕÞ2; O5 ¼

1

ϕ6
ð∂μϕÞ2ð□ϕÞ2;

O6 ¼
1

ϕ7
ð∂μϕÞ4□ϕ; O7 ¼

1

ϕ8
ð∂μϕÞ6: ð48Þ

Thus, the scale-invariant Lagrangian can be written as

L6 ¼ A1O1 þ A2O2 þ � � � þ A7O7: ð49Þ

A straightforward computation shows that the requirement
of conformal invariance imposes three conditions on the
coefficients An,

A5 ¼ 14A3 þ 4A4 − 4A1;

A6 ¼ −6ðA4 þ 4A3Þ;
A7 ¼ 9A3 − 6A4: ð50Þ

Thus, we are left with only four operators allowed by the
conformal symmetry. All of them can be constructed within
the method described at the beginning of this section: just
take (44) and put D ¼ 6, getting four operators:
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O1 ¼
1

ϕ
□

3
1

ϕ
; O2 ¼

1

ϕ3
□ϕ□2 logϕ;

O3 ¼
1

ϕ5
ð□ϕÞ3; O4 ¼

□ϕ

ϕ2
□

�
□ϕ

ϕ2

�
: ð51Þ

This set is linearly connected to the set defined by
conditions (50) as it should be.

C. Operators in D= 6

The number of structures appearing in the scale-invariant
Lagrangian with six derivatives is the same in four and six
dimensions [see (48)]. Thus, there are seven scale-invariant
operators and only four independent combinations of them
are conformal. These operators can be constructed along
the lines of this section. The only subtle point in this
construction is that the operator containing□3 is vanishing
in D ¼ 6. The way out of that is the same as in four
dimensions and includes assuming the 1=ðD − 6Þ2 coef-
ficient in front of it. In this way,

b1
ðD − 6Þ2 ϕ

D−6
D−2□

3ðϕD−6
D−2Þ → b1

9
logϕ□3ðlogϕÞ: ð52Þ

The full set of conformal operators with six derivatives in
D ¼ 6 can be written as

L6 ¼
b1
9
logϕ□3ðlogϕÞ þ b2ϕ−3

2□
2ðϕ1

2Þ□ϕ

þ b3ϕ−3ð□ϕÞ3 þ b4ϕ−1
□ϕ□ðϕ−1

□ϕÞ: ð53Þ

D. Operators in D= 2

The set of operators in (38) is not well defined at D ¼ 2.
This subsection shows how to construct all invariant
operators in two dimensions. For this end, we redefine
the scalar field in such a way that there are no divergent
pieces at D ¼ 2. Namely, if we replace ϕ by φ as follows:

ϕ ¼ φ
D−2
2 ; ð54Þ

we get rid of D − 2 in the denominators in (36) and (37).
Within this definition, the field φ has a dimension of mass
to the first power in any D. Then, all the operators (38) will
have a regular limit for D → 2,

ÔN ¼ φ−ðNþ1Þ
□

Nφ
D−2N

2 : ð55Þ

For N ¼ 0 we have a potential term in the form φ2,
allowed by the conformal symmetry. For N ¼ 1 we get an
operator

Ô1 ¼ φ
D−2
2 □φ

D−2
2 ; ð56Þ

formally vanishing for D ¼ 2. As previously, to get a
nonzero contribution we have to take

�
2

D − 2

�
2

ð∂μφD−2
2 Þ2 ¼ ð∂μðlog ðφ=μÞÞÞ2: ð57Þ

Here μ is arbitrary, but the action does not depend on it
because of the derivative acting on the log.
At the level of four derivatives, we can have two

operators constructed with the use of (38),

�
□

�
1

φ

��
2

;

�
1

φ
□ logðφ=μÞ

�
2

: ð58Þ

It is convenient to redefine the scalar field further and
convert the essentially nonlinear kinetic term for φ to the
canonically normalized one. This can be done with the help
of the transformation

φ ¼ μeσ; ð59Þ

where σ is a dimensionless field. In terms of this field, the
action constructed from operators (38) has the form

Sσ ¼
Z

d2x

�
c0μ2e2σ þ c1ð∂σÞ2 þ

c2
μ2

ð□e−σÞ2

þ c3
μ2

e−2σð□σÞ2 þ � � �
�
: ð60Þ

Since this action was found as a limit D → 2 of
D-dimensional action, it is actually not invariant under a
full conformal group which is known to have an infinite
number of generators in two dimensions [47]. The infini-
tesimal conformal transformation of the field σ is a shift

σðxÞ → σðx0Þ ¼ σðxÞ þ τðxÞ; x0μ ¼ xμ þ ξμ; ð61Þ

where τ is an arbitrary solution of the equation

□τ ¼ 0; ð62Þ

and ξμ is a Killing vector defined in Sec. II. Equation (62)
has an infinite number of solutions, τ ¼ f1ðx0 þ x1Þ þ
f2ðx0 − x1Þ with f1;2 being arbitrary functions.
The action (60) contains, for instance, a term with

coefficient c2 which is not invariant under the full con-
formal group. Dropping this and similar terms we arrive at
the proper conformal action

Sσ ¼
Z

d2y

�
ð∂σÞ2 þ

�X∞
n¼0

cnð□σÞne2ð1−nÞσ
��

; ð63Þ

where we introduced dimensionless coordinates y ¼ μx.
This equation can also be written in the form

Sσ ¼
Z

d2y½ð∂σÞ2 þ e2σF ðe−2σ□σÞ�; ð64Þ
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where F is an arbitrary function which can be expanded in
the Taylor series around the zero value of the argument.
This form coincides with the dilaton action that can be

obtained from the Weyl rescaling of the curvature invar-
iants; see the discussion below in Sec. VI.
The quantum theory based on the action (64) with

F ðxÞ ∝ x2 was investigated in [48]. Moreover, recent
works [49,50] present arguments in favor of the conjecture
that the general conformal action (64) actually can be
reduced to the quadratic F ðxÞ, in addition to the canonical
kinetic term.6

V. STABILITY OF THE FLAT DIRECTION

The spontaneous breaking of conformal symmetry
occurs only if the exact effective potential for scalar fields
has a flat direction. For example, for a theory of two scalar
fields, ϕ and χ, the potential Vðϕ; χÞ ¼ χ4VχðxÞ, where x ¼
ϕ=χ has to obey the following properties [8]: Vχðx0Þ ¼
V 0
χðx0Þ with finite x0. If true, the theory has a degenerate

ground state and the dilaton is a Goldstone boson of the
broken dilatation symmetry having zero mass.
At the level of effective action constructed for the dilaton

in Sec. IV the flat direction is present if the coefficient λ, in
front of the operator without derivatives, ϕ4, vanishes.
Within the procedure described in Sec. III, the choice λ ¼ 0
is perturbatively stable for the dilaton effective action.
Indeed, the full dilaton action in D dimensions has the

form

L ¼ 1

2
ð∂ϕÞ2 − λ

4
ϕ2D=ðD−2Þ þ � � � ; ð65Þ

where dots represents all operators (38) with more than two
derivatives. In a nonzero dilaton background, the dilaton
mass mD is proportional to λ and is given by

m2
D ¼ λ

DðDþ 2Þ
2ðD − 2Þ2 ϕ

4=ðD−2Þ: ð66Þ

This means that all the perturbative loop corrections to the
effective potential in DimReg necessarily contain powers of
λ and are zero when λ ¼ 0.
It is difficult to say what happens at the nonperturbative

level. We present below a consideration based on a specific
resummation inspired by the one-loop Coleman-Weinberg
construction of the effective potential [51].
The standard expression for the one-loop effective action

reads

S1 ¼ −
i
2
log det

�
δ2L
δϕ2

�
; ð67Þ

leading to an effective potential for background field ϕ in
our theory (65) with λ ¼ 0:

V ¼ 1

2

Z
dDk
ð2πÞD log ½k2ð1þ Fðk2=ϕ4=ðD−2ÞÞÞ�

¼ 1

2

Z
dDk
ð2πÞD log ½1þ Fðk2=ϕ4=ðD−2ÞÞ�: ð68Þ

Here the function F is determined by the higher-dimen-
sional operators (38). We used DimReg and Euclidean
spacetime.
On dimensional grounds

V ¼ κ½F;D�ϕ2D=ðD−2Þ; ð69Þ

where κ is controlled by the dimension of spacetime and
function F. Depending on the choice of the coefficients in
front of higher-dimensional operators leading to a specific
function F, different scenarios are possible.

(i) If the integral (68) is convergent forD ¼ 4 [take, for
instance, FðxÞ ¼ expð−x2Þ], then κ½F;D� is finite,
meaning that the ϕ4 interaction will be generated
with a computable coefficient.7

(ii) If κ½F;D� contains poles in D − 4, the scalar self-
interaction is generated but it can be consistently set
to zero using the renormalization procedure. This
case would happen, for instance, if only one higher-
dimensional operator, such as

a
ð□ϕÞ2
ϕ

4
D−2

; ð70Þ

is added to the kinetic term.
(iii) If κ½F;D� ¼ 0, the self-interaction is not generated by

the resummed one-loop quantum corrections. This
option can be realized if 1þ FðxÞ ¼ expðPðxÞÞ,
where PðxÞ is an arbitrary finite polynomial.

VI. CONFORMAL OPERATORS FROM
CURVATURE INVARIANTS

Up to now all of our considerations were carried out in the
flat spacetime. Since conformal symmetry acts as a Weyl
transformation of metric with a specific rescaling factor
[see Eq. (9)], it is closely related to the Weyl symmetry. In
D-dimensional curved spacetime, the Weyl transformations
of the metric and a scalar field are defined as

gμν → Ω2gμν; ϕ → ΩΔϕ; ð71Þ

6We thank Yuri Makeenko for discussion of these points.

7This type of function may appear in the ghost-free nonlocal
theories [52,53].
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where Ω is an arbitrary function of spacetime. The theory is
Weyl invariant if the transformation (71) does not change its
action.
This connection between the conformal and Weyl

symmetries provides yet another way to construct con-
formally invariant operators in flat spacetime (see, e.g.,
[34,35,38,39]). One can take an arbitrary Diff-invariant
action constructed from the metric only (i.e., consider pure
gravity) and replace the metric gμν by gμνϕ2=Δ=M2

P, where
MP is any scale normally taken to coincide with the Planck
mass. One gets in this way a scalar-tensor gravity that is
Weyl invariant by construction. Now, it is obvious that a
Weyl-invariant theory is automatically conformal invariant
if the metric is taken to be flat (for original discussion
see [54]).
It is instructive to see that this procedure indeed allows

finding the conformally invariant operators obtained pre-
viously. For several operators related to the Weyl anomaly,
it is important to start from fractionalD and eventually take
a limit D → 4 resolving possible singularities. We will
carry out this consideration for a few operators in D ¼ 4
and the complete dilaton action in D ¼ 2.

A. D= 4

Let us start with the curvature operator having two
derivatives of the metric

L2 ¼ AR: ð72Þ

Applying the described procedure to this Lagrangian and
omitting total derivatives, one obtains the conformally
invariant dilaton kinetic term

Lϕ ¼ −6Aϕ□ϕ ¼ 6Að∂μϕÞ2: ð73Þ

This matches the previous consideration of Sec. IV.
The operators with four derivatives are expected to

appear from the quadratic curvature invariants. There are
three of them,

L4 ¼ C1R2 þ C2WμνλρWμνλρ þ C3E4: ð74Þ

Here

E4 ¼ WμνλρWμνλρ þ 2

3
R2 − 2RμνRμν ð75Þ

is the Euler density operator and Wμνλρ is the Weyl tensor.
As we know, there are two independent conformal oper-
ators with four derivatives (46). And, indeed, the term W2

cannot produce any nontrivial dilaton operators, so the only
relevant terms are R2 and E4. The first of them leads to the
dilaton action

36C1

ð□ϕÞ2
ϕ2

; ð76Þ

matching the second operator in (46). The first operator in
(46) can be obtained as a formal limit

lim
D→4

E4=ðD − 4Þ2 → 4 logϕ□2 logϕ: ð77Þ

Note that this expression was obtained up to total deriv-
atives (in arbitrary D). The term E4=ðD − 4Þ would also
give a total derivative Lagrangian for the scalar field.
The reason for this singular prescription is that E4 is a

total derivative in D ¼ 4. If we were to construct con-
formally invariant operators with this method directly in
D ¼ 4, we would miss this operator. This mismatch in the
number of operators is connected to the Weyl anomaly.
For more than four derivatives, the number of different

curvature invariants and their contractions grows and
becomes larger than the number of conformal operators.
We expect that all conformal operators with more than four
derivatives can be obtained from the curvature invariants
without any singular terms in four dimensions. It is
important to stress that this statement does not contradict
the well-known mathematical fact that there are no higher
derivative Weyl invariant kinetic terms for a scalar field
with positive Weyl weight [55–57]. In the field theory
language, the results of [55–57] tell that in the space of even
2k integer dimensions the quadratic in field Φ action in the
form Φ□

lΦ can be extended in a Weyl-invariant way to
generic curved spacetime only if l ≤ k. The procedure
outlined at the beginning of this section produces the
actions that are not quadratic in the scalar field, explaining
why the theorem of [55–57] is not applicable.
We illustrate this conjecture for operators with six

derivatives. There are five curvature invariants with six
derivatives that do not contain the Weyl tensor (those with
the Weyl tensor are irrelevant as W is zero on the
conformally flat metric ημνϕ

2=Δ=M2
P). They are collected

in the action

L6 ¼ A1R3 þ A2R2
μνRþ A3RμνRν

λR
λμ

þ A4∇μR∇μRþ A5∇μRνρ∇μRνρ: ð78Þ

The straightforward but tedious computation shows that
this action produces four independent conformal operators
(as it should be; see Sec. IV),

Lc ¼ B1O1 þ B2O2 þ B3O3 þ B4O4; ð79Þ

where the operators Oi are defined in (51).
There is no contradiction in the fact that five curvature

operators are mapped to four conformal scalar field
operators because one specific combination, namely,
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Lb ∝ R3 − 7R2
μνRþ 12RμνRν

λR
λμ

− 2∇μR∇μRþ 6∇μRνρ∇μRνρ; ð80Þ

is a total derivative on the conformally flat metric. The
values of Ai and Bi are connected as

B1 ¼
A3

2
− A5;

B2 ¼ 2ð6A2 þ 5A3 − 3A5Þ;
B3 ¼ −2ð108A1 þ 30A2 þ 9A3 − 18A4 − 7A5Þ;

B4 ¼ −
1

2
ð24A2 þ 21A3 þ 72A4 þ 10A5Þ: ð81Þ

For completeness, we also give the inverse relations:

A2 ¼ −7A1 þ
1

216
ð81B1 − 24B2 − 7B3 − 7B4Þ;

A3 ¼ 12A1 −
1

18
ð27B1 − 6B2 − B3 − B4Þ;

A4 ¼ −2A1 þ
1

108
ð60B1 − 9B2 − B3 − 4B4Þ;

A5 ¼ 6A1 −
1

36
ð63B1 − 6B2 − B3 − B4Þ: ð82Þ

In this way, we can present one-to-one explicit correspon-
dence between the curvature invariants and conformal
operators.
TheWeyl invariant action involving the scalar field ϕ in a

nonpolynomial way and the arbitrary metric gμν can be
constructed from Eq. (78) by replacing gμν → gμνϕ2=Δ=M2

P
and using the rules for conformal transformations of the
curvature tensors given, for instance, in [58]. The explicit
formula for the Weyl-invariant generalization of the most
interesting part of the action associated with the operator
O1 defined in Eq. (51) is given in the Appendix.

B. D= 2

In D ¼ 2 the Riemann and Ricci tensors can be
expressed through the Ricci scalar. For this reason, the
relevant Lagrangian that can be used to construct the
dilaton action can be written as

L ¼
X∞
n¼0

cnRn: ð83Þ

Substituting gμν ¼ e2σημν one can recover the general form
of the dilaton action given in (63). Note that the first term
here is a result of the limit limD→2

1
D−2R, associated with

the fact that in D ¼ 2 the scalar curvature R is a total
derivative, in analogy with E4 invariant in four dimensions.

VII. WEYL ANOMALY IN CURVED SPACETIME
AND CONFORMAL SYMMETRY

A. Weyl anomaly

The discussion of the previous section shows that for a
fractional number of dimensions D all conformally invari-
ant operators in flat spacetime can be constructed from
Weyl-invariant action taking its flat space limit. If the
number of dimensions is odd, D ¼ 2kþ 1, and k is an
integer, the limitD → 2kþ 1 is regular, and any conformal
operator allows a Weyl-invariant extension. If the number
of dimensions is even, D ¼ 2k, all conformally invariant
operators with N ≠ 2k derivatives also allow a regular
Weyl-invariant extension, meaning that only one operator,
with N ¼ 2k derivatives, presents an obstruction for the
building of the Weyl-invariant action. For example, the
Weyl-invariant curved space extension of the flat space
conformally invariant action

S ¼
Z

dDxϕ
4−D
D−2□

2ðϕ4−D
D−2Þ ð84Þ

for D → 4 is given by

Z
d4xðτ□2τÞ → S

¼ lim
D→4

Z
dDx

ffiffiffiffiffiffi
−g

p �
τΔ4τ þ 2τ

�
−
1

6
□Rþ 1

4
E4

�

þ R2

36
þ Lanom

�
; ð85Þ

where τ ¼ logðϕ=μÞ, Δ4 is the Riegert operator [59–61],

Δ4 ¼ □
2 þ 2Rμν∇μ∇ν −

2

3
R□þ 1

3
ð∇μRÞ∇μ; ð86Þ

and

Lanom ¼ E4

2ðD − 4Þ : ð87Þ

The Euler density E4 is a total derivative only inD ¼ 4 so it
cannot be dropped if D ≠ 4. This is exactly the manifes-
tation of the Weyl anomaly [3].
Given the fact that the term τ□2τ will inevitably appear

in an effective theory for the dilaton [38], we cannot avoid
the singularity that is required to make the action Weyl
invariant. In other words, Weyl symmetry cannot survive if
quantum effects leading to the generation of the arbitrary
dilaton effective action are accounted for. (However, non-
local operators providing the Weyl invariant action can be
constructed [62,63].) This makes it clear that the extension
of the flat space conformal invariance to the curved space
cannot be theWeyl symmetry if the dimension of spacetime
is four and the locality of the action is imposed.
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A similar situation shows up in all even dimensions. For
example, the Weyl invariant extension of the operator σ□σ
requires adding the term R=ðD − 2Þ in two dimensions
which is singular when D → 2. In the same way, in six
dimensions the Weyl-invariant extension of the operator
logϕ□3ðlogϕÞ will require the term E6=ðD − 6Þ where E6

is the six-dimensional Euler density that is cubic in
curvature tensor and is total derivative in six dimensions
(see [35] for the explicit expression).
Though the Weyl symmetry cannot be realized in

quantum theory, it is natural to ask whether one can find
some subgroup of the Weyl group that is anomaly-free and
matches with the flat-space conformal symmetry. We will
show that the only anomaly-free subgroup is that of global
scale transformations, meaning that the full conformal
group in the curved spacetime is broken down to this
symmetry due to quantum effects.

B. Anomaly-free condition in D= 4

As we see, the absence of the regular Weyl-invariant
extension of the term (84) leads to the conclusion that Weyl
symmetry cannot be made anomaly-free in four dimen-
sions. Can the smaller subgroup of Weyl transformations be
kept free from the quantum anomaly? In this section, we
derive the condition on ω for the infinitesimal Weyl
transformation Ω ¼ 1þ ω.
A small Weyl transformation (1þ ω) acts on the term (84)

(which is the only source of the Weyl anomaly in D ¼ 4) in
the limit D → 4 as

δωS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
∇αω∇ατ□τ þ 1

2
□ω□τ

�
: ð88Þ

Recall that here τ ¼ logϕ=μ. The first term can be written in
a bit different form by means of omitting the total derivative,

δωS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−∇α∇βω∇ατ∇βτ þ 1

2
□ω□ðτ2Þ

�
:

ð89Þ

One can see that the condition

∇μ∇νω ¼ 0 ð90Þ

is sufficient to make the symmetry restricted by the condition
(90) anomaly-free.
What does this condition mean for the curved space with

an arbitrary metric? Differentiating the condition (90) and
taking the commutator, one can find

½∇ρ∇μ�∇νω ¼ Rμρσν∇σω ¼ 0: ð91Þ
All solutions of Eq. (90) must satisfy Rμν∇νω ¼ 0. On top
of an arbitrary spacetime, this equation has only a trivial
solution ∇σω ¼ 0, which means that ω ¼ const reflecting

the fact that only dilatation symmetry can be kept
anomaly-free.
The condition (90) guarantees the absence of the

anomaly but it can be too strong. Can it be weaker, in
fact, at least for some special background metrics? The
problematic term τ□2τ can be written in Weyl-invariant
form (85). Recall that the only problem of preserving the
Weyl symmetry anomaly-free is related to the term Lanom
which will bring extra divergence when making the
counterterm for τ□2τ Weyl invariant. If our requirement
is weaker and we want to preserve only some class Ms of
Weyl transformations free from anomaly, then we have to
require that for ω ∈ Ms the transformation of Lanom

δωLanom ¼ 1

2
E4ω ð92Þ

leads to a surface integral in the action

Z
d4x

ffiffiffiffiffiffi
−g

p 1

2
E4ω: ð93Þ

This can happen only if the variation of (93) with respect to
the metric gμν → gμν þ hμν is zero up to a total derivative.
A straightforward computation of the perturbed action

(93) up to the total derivative gives

δEω ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
hμνΣμναβ∇α∇βω; ð94Þ

where

Σμναβ ¼ 2Rðgαμgβσ − gαβgμνÞ þ 4Rμνgαβ þ 4gμνRαβ

− 8gμβRαν − 4Rμανβ: ð95Þ

Thus, the necessary condition on ω that can make the
symmetry anomaly-free reads

Σμναβ∇α∇βω ¼ 0: ð96Þ

Recall that we consider theories with dynamical gravity,
which means that we are dealing with a dynamical metric of
spacetime. If the metric is arbitrary, condition (96) can be
satisfied only for ∇μ∇νω ¼ 0, which brings us back to the
condition (90).
One may wonder if there can exist some peculiar

geometries allowing for solutions of (96) with
ω ≠ const. We were not able to find any. For example,
for the maximally symmetric space with Rμανβ ¼
R0ðgμνgαβ − gμβgναÞ Eq. (96) turns out to be

−4R0ðgμν□ω −∇μ∇νωÞ ¼ 0; ð97Þ

which is equivalent to ∇μ∇νω ¼ 0, leading again to the
solution ω ¼ const.
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Let us stress here that Eq. (96) is the necessary condition
that is not sufficient to claim the absence of the conformal
anomaly on top of some specific geometry. However, as we
have shown, even this condition cannot be satisfied for
either the general metric in dynamical gravity or the
maximally symmetric spaces. The only exception corre-
sponds to the case of the flat spacetime for which we obtain
that conformal symmetry can be anomaly-free, which is
fully consistent with the results of Sec. III obtained in a way
that does not involve gravity and curved space.
A remark is now in order. Our result says that there are

no anomaly-free subgroups of Weyl transformations with
dynamical gravity except dilatations. There are two larger
subgroups of the Weyl symmetry considered in the liter-
ature [44,64–66]. The covariant extension of the conformal
transformations in curved space can be defined [44,64] (see
also [42]) via the Killing vector ξμ satisfying the equation

∇μξν þ∇νξμ ¼
2

D
gμν∇αξα: ð98Þ

The corresponding infinitesimal Weyl factor is given by
ω ¼ ∇αξ

α. For the transformations (98)

∇α∇βω ¼ D
2 −D

�
ξμ∇μRαβ þ

2

D
ωRαβ

þ gαβ
2ð1 −DÞ

�
2

D
ωRþ ξμ∇μR

��
; ð99Þ

which is, in general, nonzero for the arbitrary choice of the
metric, meaning that this symmetry is anomalous. Another
related possibility extending the conformal symmetry was
named restricted Weyl transformations [65,66]. In these
works, it was shown that in D ¼ 4 all the transformations
satisfying □Ω ¼ 0 form a subgroup in the full group of all
Weyl transformations, with respect to the operation of their
composition. In an arbitrary number of dimensions the
similar condition

□ðΩD−2
2 Þ ¼ 0 ð100Þ

highlights the same subgroup structure. Still, this symmetry
cannot be preserved at the quantum level because this
condition is weaker than ∇μ∇νΩ ¼ 0, which would grant
the absence of the anomaly.

VIII. SCALE-INVARIANT LAGRANGIAN FOR
THE DILATON AND GRAVITY

In this section, we present a Lagrangian for the dilaton
and gravity in D ¼ 4, which is invariant under the
anomaly-free scale transformations. All terms that could
be written with two derivatives are

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ζϕ2Rþ 1

2
ð∂μϕÞ2 −

λ

4
ϕ4

�
; ð101Þ

where ζ and λ are arbitrary constants (note that Weyl
invariance would impose a specific value for the non-
minimal coupling ζ ¼ −1=6). Making a transition to the

Einstein frame one can see that the combination λM4
P

ζ2
is the

vacuum energy. In these terms, the cosmological constant
problem is converted to the question of why λ=ζ2 ≪ 1.
The general Lagrangian invariant under the scale trans-

formations and respecting parity at the level of four
derivatives can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½AR□τ þ BRð∂μτÞ2Þ þ CGμν
∂μτ∂ντ

þ FτE4 þ ER2 þ EW2
μνλρ þGðð∂μτÞ2Þ2

þHð□τÞ2 þ Jð□τ þ ð∂μτÞ2Þ2�: ð102Þ

Here A;B;C; E; F;G;H, and J are arbitrary constants,
Gμν is the Einstein tensor, and τ ¼ logðϕ=μÞ with μ being
an arbitrary scale which is not relevant in perturbation
theory. The field τ transforms under the dilatations
as τ → τ − ω.
The second line of (102) contains only the operators that

are allowed by the conformal symmetry in the flat space
limit. Given the fact that the conformal symmetry is broken
by gravity, the operators in the first line are expected to be
suppressed by the Planck scale. This could not be the case
for the two conformal operators since they have an
enhanced symmetry in the flat space limit.
The structure of the action given by (101) and (102)

also allows us to clarify the situation with the energy-
momentum tensor. It is well-known [67] that in CFT in flat
space it is possible to define an (improved) stress-energy
tensor Tμν with zero trace, T

μ
μ ¼ 0. If the theory were Weyl

invariant, this relation would remain in force in the
gravitational background. However, when the quantum
corrections are incorporated in a Weyl-invariant way in
D dimensions as in [8,13], and the limitD → 4 is taken, Tμ

μ

receives several contributions containing Diff invariants
W2, E4, R2, and □R [3]. One of them (E4, the so-called a-
anomaly) cannot be removed by the Weyl-invariant coun-
terterm, signaling that the Weyl symmetry is anomalous.8

The scale symmetry in curved space does not impose that
the trace of stress-energy tensor is zero, only a weaker
condition

R
d4x

ffiffiffiffiffiffi−gp
Tμ
μω ¼ 0, where ω ¼ const must be

satisfied.
The action (102) contains only parity-even operators. If

we relax this assumption, the dilatation symmetry will
allow us to write more operators. In particular, among terms

8Note that the termW2 representing the so-called c-anomaly can
be taken away by the Weyl-invariant counterterm ϕϵW2=ϵ [13].
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containing only the dilaton and gravity with four deriva-
tives, we can have the coupling between the dilaton and
Pontryagin density,

LCP ¼ κτϵαβγδRαβρσRρσ
γδ; ð103Þ

known also as the gravitational Chern-Simons term (κ is an
arbitrary dimensionless constant).
Another phenomenologically interesting possibility is

connected to the fact that the dilaton can also be coupled to
the non-Abelian gauge fields via the Chern-Simons term,

Lgauge ¼ γτTrðGμνG̃
μνÞ: ð104Þ

Here γ is an arbitrary dimensionless constant. In this case, if
the gauge theory is in the strong coupling regime, the scale
symmetry will be broken by nonperturbative effects, similar
to the QCD axion models (see [68] for a review). Thus, the
dilaton becomes massive. Moreover, the dilaton coupled to
the SM gauge fields can be relevant for solving the strong
CP problem acting in a way similar to the axion [69–72]. If
the dilaton field τ is defined in such a way that it transforms
to −τ under the parity transformation (i.e., it is a pseudo-
scalar), then the coupling (104) resembles the effective
action of the QCD axion while preserving the CP sym-
metry.9 The pseudoscalar dilaton would correspond to some
generalization of the original scale symmetry supplemented
by the parity transformation. The phenomenology of this
dilaton model is discussed in a cosmological context in
recent work [73].

IX. CONCLUSIONS AND DISCUSSION

In this paper, we address the question of whether
conformal symmetry can be a fundamental symmetry of
nature, which is spontaneously broken at low energies. To
this end, we first considered a theory in flat spacetime and
elucidated the effective theory construction allowing con-
formal symmetry to be intact in all orders of perturbation
theory. We constructed the most general effective action for
the dilaton in a flat space of arbitrary dimension and
clarified the connection of our method with that which uses
the curved space and curvature invariants. The spontaneous
breaking of conformal invariance requires the existence of
the flat direction in the effective potential for the dilaton.
We discussed the stability of this direction with respect to
perturbative quantum corrections associated with the dila-
ton field itself.
Conformal symmetry was originally defined and widely

used for field theories in flat space without gravity.
However, since any realistic theory should contain gravity
we need to understand the extension of this symmetry for

dynamical gravity and a curved spacetime metric. A natural
candidate for this extension is a Weyl group or its (finite)
subgroups. We have shown that the only anomaly-free
subgroup of the Weyl transformations is that of the global
scale symmetry, meaning that the conformal symmetry is
necessarily broken down to dilatations by the gravitational
effects. We constructed the dilaton-gravity action up to the
terms with four derivatives respecting parity.
Talking about phenomenological and cosmological

applications, the graviton-dilaton action we presented
can be complemented by all the fields of the Standard
Model or νMSM [74,75] in a scale- invariant way, the
explicit equations can be found in [17]. In this work, we
justify that only the scale invariance is a symmetry which
can be preserved at the quantum level in realistic theories
containing gravity. Our findings reveal that scale invariance
implies conformal invariance at the level of the lowest order
action in the flat space; however, when gravity is included,
the symmetry of the Higgs-dilaton action reduces back only
to the subgroup of dilatations. However, the higher-order
operators that had conformal symmetry in the flat space are
expected to be less suppressed than those that have only
scale symmetry. This hierarchy is a key observation that is
relevant for phenomenology since the cutoff scale in the
scalar sector in the Higgs-dilaton model is known to be
much less than the Planck scale.
It has been shown that this Higgs-dilaton Lagrangian can

solve all the observational problems of the Standard Model
(such as inflation, neutrino masses, baryon asymmetry of
the Universe, and dark matter), provided the scale sym-
metry is spontaneously broken (for discussion of inflation
see [18], and for review of other problems see [76]). It is of
crucial importance that the nonminimal couplings of the
Higgs and dilaton fields to the Ricci scalar are not con-
strained by any value (− 1

6
for the Weyl symmetry). This

freedom allows one to arrange the appearance of all scales
in the low energy physics and gravity (namely, Higgs VEV
and Planck mass) from one source—dilaton VEV. We also
briefly discuss the possibility to solve the strong CP
problem in QCD using the dilaton Chern-Simons coupling
to the gauge fields and nonperturbative breaking of the
scale symmetry. We underline once more that the massless
dilaton does not lead to the fifth force and thus is harmless
from the experimental point of view [10,11,17,19].
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APPENDIX: WEYL-INVARIANT
EXTENSION OF □3 OPERATOR

In this appendix, we construct explicitly a Weyl-invariant
extension of the action

S ¼
Z

d4xO1 ¼
Z

d4x
1

ϕ
□

3
1

ϕ
ðA1Þ

to an arbitrary spacetime. To simplify the formulas, we
introduce Φ ¼ 1

ϕ with the canonical mass dimension
GeV−1.
It is known from [55–57] that the Weyl-covariant

generalization of the linear operator □3 does not exist in
four-dimensional spacetime if the Bach tensor is nonzero

(see Appendix A of [35] for definition and helpful
discussions). The procedure formulated in Sec. VI leads
to essentially nonquadratic action, meaning that there is no
contradiction with the nonexistence theorem.
The operator O1 is singled out by the choice B1 ¼ 1;

B2 ¼ B3 ¼ B4 ¼ 0 in Eq. (79). As follows from Eq. (82),
its Weyl-invariant generalization is derived from the fol-
lowing combination of the curvature invariants:

SO ¼ 7

24
R3 −

5

3
RRμνRμν þ 2RμνRνρRμ

ρ −
1

36
R;μR;μ: ðA2Þ

Replacing the metric gμν in (A2) by gμνϕ2=Δ=M2
P one finds

SO ¼ S1 þ S2 þ S3; ðA3Þ

where

S1 ¼ Φ;μ
;μ
;νΦ;ρ

;ρ;ν þ 16

Φ
Φ;μ;νΦ;μ;νΦ;ρ

;ρ −
3

Φ
Φ;μ

;μΦ;ν
;νΦ;ρ

;ρ −
16

Φ
Φ;μ;νΦ

;μ
;ρΦ;ν;ρ þ 2

Φ
Φ;μ

;μΦ;νΦ;ρ
;ρ;ν −

8

Φ
Φ;μΦ;ν

;μΦ;ρ
;ρ;ν

−
8

Φ2
Φ;μΦ;μΦ;ν;ρΦ;ν;ρ þ 16

Φ2
Φ;μΦ;νΦ;μ;ρΦ

;ρ
;ν −

8

Φ2
Φ;μΦ;νΦ;μ;νΦ

;ρ
;ρ þ 3

Φ2
Φ;μΦ;μΦ;ν

;νΦ;ρ
;ρ;

S2 ¼ −
7

24
R3Φ2 þ 1

36
R;μR;μΦ2 þ 1

9
RR;μΦΦ;μ þ 11

18
R2Φ;μΦ;μ −

23

12
R2ΦΦ;ν

;ν −
4

3
R;μΦ;νΦ;μ

;ν þ 1

3
R;μΦ;μΦ;ν

;ν

−
25

6
RΦ;μ

;μΦ;ν
;ν þ 20

3
RΦ;μ;νΦ;μ;ν þ 1

3
R;μΦΦ;ν;μ

;ν þ 2

3
RΦ;μΦ

;ν;μ
;ν þ 20

3
RRμνΦΦ;μ;ν þ 16RμνΦ;μ;νΦ;ρ

;ρ − 12RμνRν
ρΦΦ;μ;ρ

− 16Rμ
νΦ;μ;ρΦ;ν;ρ − 2RμνRμνΦ;ρΦ;ρ þ 4RμνRμνΦΦ;ρ

;ρ þ 5

3
RμνRμνRΦ2 − 8RμνΦ;ρ

;νΦ;ρ;μ − 2Φ2RμνRνρRμ
ρ;

S3 ¼ −
8

3Φ
RΦ;μ;νΦ;μΦ;ν þ 8

3Φ
RΦ;μΦ;μΦ;ν

;ν −
8

Φ
RμνΦ;μ;νΦ;ρΦ;ρ:

Here ; as usual denotes a covariant derivative. This action is invariant under general coordinate andWeyl transformations by
construction. On the flat background, the actions S2 and S3 are equal to zero. One can check that after a few integrations by
parts the action S1 is nothing but O1 if the metric is flat.
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