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A nonuniformly accelerated quantum field in a cavity undergoes the coordinate transformation of
annihilation and creation operators, known as the Bogoliubov transformation. This study considers the
entropy production of a quantum field in a cavity induced by the Bogoliubov transformation. By classifying
the modes in the cavity into the system and environment, we obtain the lower bound of the entropy
production, defined as the sum of the von Neumann entropy in the system and the heat dissipated to the
environment. This lower bound represents the refined second law of thermodynamics for a quantum field in
a cavity and can be interpreted as the Landauer principle, which yields the thermodynamic cost of changing
information contained within the system. Moreover, it provides an upper bound for the quantum mutual
information to quantify the extent of the information scrambling in the cavity due to acceleration.
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I. INTRODUCTION

The validity of classical mechanics is challenged in
processes involving massive spatial scale as relativistic
effects become non-negligible at this scale. For instance,
clocks in satellites of the global positioning system (GPS)
tick faster than those on the ground owing to speed and
gravity, and thus, the accuracy of the GPS deteriorates
without considering the relativistic effects. About half a
century ago, the discoveries of Hawking radiation [1] and
Unruh effect [2] revealed that incorporating relativistic
effects in quantum mechanics can yield surprising phe-
nomena that cannot be realized through conventional
quantum mechanics. However, more recently, certain con-
cepts in quantum information, such as entanglement, have
been recognized as crucial in relativistic settings [3,4].
Currently, an entanglement distribution was performed
between a satellite and receivers on the ground located
1200 km apart [5]. Against this background, relativistic
quantum information has garnered considerable research
attention, focusing on the relativistic effects of quantum
information, e.g., Unruh [2] and dynamical Casimir
effects [6], using the quantum field theory [7–12].
Quantum thermodynamics is an extension of the sto-

chastic thermodynamics operating at the mesoscopic scale
to quantum microscopic scale. It generalizes the concept
of stochastic work, heat, and entropy to the quantum
domain, and accordingly, several thermodynamic relations,
e.g., Jarzynski equality [13], fluctuation theorem [14–16],
and thermodynamic uncertainty relation [17,18], have

been demonstrated to hold in the quantum domain as
well [19–21]. Recently, the thermodynamic quantities and
relations have been further generalized to quantum field
theory. References [22,23] derived the Jarzynski equality
for quantum field theory in a flat spacetime using two-point
and indirect measurements, respectively. Regarding the
quantum thermodynamics for quantum field theory in a
curved spacetime, Ref. [24] investigated the work exerted
by the expanding universe. Moreover, Ref. [25] consi-
dered several quantities to formulate the quantum thermo-
dynamics of a quantum field in an accelerating cavity.
Herein, we study the entropy production [26] in a

quantum field confined in a cavity that undergoes accel-
eration. In thermodynamics, the entropy production quan-
tifies the extent of irreversibility of the system as well as
the thermodynamic cost of thermal machines. The non-
negativity of the entropy production is a signature of the
second law of thermodynamics and directly implies the
Landauer principle [27], which formulates the relation
between information, quantified by entropy, and dissipated
heat. Despite its significance in quantum thermodynamics,
the entropy production induced by acceleration has not
been investigated thus far. We consider a quantum field
experiencing arbitrary acceleration in a cavity to induce a
coordinate transformation referred to as the Bogoliubov
transformation. By defining the entropy production based
on the sum of entropy and dissipated heat in a quantum
field, we can derive the lower bound of the entropy
production, corresponding to a refinement of the second
law of thermodynamics for the quantum field in a cavity,
resulting in the Landauer principle. Moreover, using the
obtained inequality, an upper bound of the quantum mutual*hasegawa@biom.t.u-tokyo.ac.jp
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information can be obtained to quantify the extent of
information scrambling caused by acceleration.

II. METHODS

We consider a (1þ 1) dimensional Minkowski space
[28]. Suppose that a cavity of length L > 0 contains a
massless scalar field. The confined quantum field model
has been extensively employed in relativistic quantum
information. The scalar quantum field satisfies the Klein-
Gordon equation in a curved spacetime [29]. The field Φ
admits the mode expansion with respect to fϕng∞n¼1,
expressed as

Φ̂ ¼
X
n

ðânϕn þ â†nϕ�
nÞ; ð1Þ

where ân and â†n denote the annihilation and creation
operators, respectively, which satisfy the canonical com-
mutation relation ½ân; â†m�¼δn;m and ½ân;âm�¼ ½â†n;â†m�¼0.
A coordinate transformation between different observers,
induced by acceleration can be modeled based on the
Bogoliubov transformation, which transforms the modes
fϕng in the original coordinate to modes fϕ̃ng in another
coordinate. Moreover, the field Φ̂ can be expanded by
fϕ̃ng∞n¼1 as well:

Φ̂ ¼
X
n

ðb̂nϕ̃n þ b̂†nϕ̃
�
nÞ; ð2Þ

where b̂n and b̂
†
n represent distinct annihilation and creation

operators, respectively, satisfying the canonical commuta-
tion relation ½b̂n; b̂†m� ¼ δn;m and ½b̂n; b̂m� ¼ ½b̂†n; b̂†m� ¼ 0.
ân and b̂n are related via

b̂m ¼
X
n

ðAmnân þ Bmnâ
†
nÞ; ð3Þ

where Amn and Bmn are the Bogoliubov coefficients. The
matrices A ¼ fAmng and B ¼ fBmng should satisfy the
Bogoliubov identities AA†−BB†¼1 and AB⊤ − BA⊤ ¼ 0,
where 1 is the identity matrix. For all n ∈ f1; 2;…g, the
annihilation operator ân defines the vacuum state j0i via
ânj0i ¼ 0. Therefore, the vacuum state j0i represents an
eigenstate with a vanishing eigenvalue of the annihilation
operator. One of the most prominent properties of the
Bogoliubov transformation is that the vacuum states of
different coordinates are not generally consistent with each
other. Indeed, the vacuum state j0̃i for b̂n can be expressed
as b̂nj0̃i ¼ 0 for all n, which does not agree with j0i in
general. Therefore, the vacuum state of a coordinate
may be populated with particles with respect to another
coordinate.
Suppose that the cavity is in an inertial frame at the

initial state. In relativistic quantum information, we are

typically interested in only one or two modes in the cavity,
whereas the remaining modes are regarded as the environ-
ment [9,25]. Therefore, following Ref. [25], we divide all
the modes into the system S and environment E. A set of
modes in the system S is defined as S ¼ fns1 ; ns2 ;…; nsKg,
where nsi ∈ f1; 2;…g denotes an index of the system
mode satisfying nsi ≠ nsj for i ≠ j, K indicates the number
of modes of the system, and a set of modes in the
environment E comprises the remaining modes, i.e.,
E ¼ fn ∈ f1; 2;…gjn ∉ Sg. Thus, a set of all the cavity
modes can be expressed as C ¼ E ∪ S ¼ f1; 2;…g.
As the quantum field is an infinite-dimensional system,

the thermodynamic quantities cannot be easily calculated.
Thus, we employ the Gaussian state formalism [30–32]
that is widely used in relativistic quantum information to
compute thermodynamic quantities. Let ξ̂≡ ½â1; â2;…; â†1;
â†2;…�⊤. Subsequently, the covariance matrix σ ¼ fσmng
can be defined as

σmn ≡ hξ̂mξ̂†n þ ξ̂†nξ̂mi − 2hξ̂mihξ̂†ni; ð4Þ

where h•i denotes the expectation value. Let σi and σf

denote the covariance matrices before and after the coor-
dinate transformation, respectively (hereinafter, variables
with superscripts i and f indicate the stated aspect). In
particular, the covariance matrix after Bogoliubov trans-
formation can be expressed as

σf ¼ SσiS†; ð5Þ

where S denotes a complex symplectic transformation,
specified by the Bogoliubov matrices A and B:

S ¼
�
A B

B� A�

�
: ð6Þ

The thermodynamic quantities of interest can be repre-
sented by the covariance matrix σ.

III. RESULTS

Let us consider a massless quantum field in a cavity that
is initially in an inertial frame. According to the Klein-
Gordon equation, the field mode ϕn (n ∈ f1; 2;…g) can be
expressed as

ϕnðt; xÞ ¼
1ffiffiffiffiffiffi
nπ

p sin ½ωnðx − xlÞ�e−iωnt; ð7Þ

where we select a comoving frame ðt; xÞ with xl and xr as
the cavity boundaries for any t with xr − xl ¼ L > 0 [refer
to Fig. 1(a)], and the Dirichlet boundary condition is
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imposed at the boundaries. The Hamiltonian operators of
the system and environment are respectively defined as

Ĥsys ≡
X
n∈S

ωnâ
†
nân; ð8Þ

Ĥenv ≡
X
n∈E

ωnâ
†
nân; ð9Þ

where ωn ≡ πn=L denotes the angular frequency of the
field mode. Let βsys and βenv be the inverse temperature of
the system and environment, respectively. We define the
thermal states of the system and environment as follows:

ρthsysðβsysÞ≡ 1

ZsysðβsysÞ
e−βsysĤsys ; ð10Þ

ρthenvðβenvÞ≡ 1

ZenvðβenvÞ
e−βenvĤenv ; ð11Þ

where ZsysðβsysÞ and ZenvðβenvÞ are the partition functions
defined as

ZsysðβenvÞ≡ Trsys½e−βenvĤsys �; ð12Þ

ZenvðβenvÞ≡ Trenv½e−βenvĤenv �: ð13Þ

The initial density operator of the cavity is assumed to be
ρicav ¼ ρisys ⊗ ρienv, where ρisys and ρienv are given by ρisys ¼
ρthsysðβisysÞ and ρienv ¼ ρthenvðβienvÞ with βisys and βienv repre-
senting the initial inverse temperature of the system
and environment, respectively. Let ηn ≡ cothðβisysωn=2Þ
and νn ≡ cothðβienvωn=2Þ be the symplectic eigenvalues
of the system and environment, respectively. The initial
Gaussian states of the system and environment are respec-
tively defined as

σisys ¼ diagð½ηn�n∈S; ½ηn�n∈SÞ; ð14Þ

σienv ¼ diagð½νn�n∈E ; ½νn�n∈EÞ: ð15Þ

Based on symplectic eigenvalues, the mean energy of
the initial environment state can be derived as (refer to
Appendix A)

Trenv½ρienvĤenv� ¼
X
n∈E

ωn
σinn − 1

2
: ð16Þ

Furthermore, the von Neumann entropy can be defined as

SsysðρsysÞ≡ −Trsys½ρsys ln ρsys�: ð17Þ

The von Neumann entropy is defined similarly for the
environment Senv and cavity Scav. In the covariance matrix
formalism, the von Neumann entropy can be represented by
a symplectic eigenvalue of the system [33]:

Ssys ¼
X
n∈S

fsþðηnÞ − s−ðηnÞg; ð18Þ

where s�ðxÞ≡ fðx� 1Þ=2g ln fðx� 1Þ=2g.
After preparing the initial state, the cavity undergoes

arbitrary acceleration. An example of the trajectory for
t > 0 is exhibited in Fig. 1(a), where the cavity starts to
accelerate satisfying the rigidity of the cavity. The coor-
dinate transformation induced by the acceleration is
modeled by the Bogoliubov transformation. Let ζ̂≡
½b̂1; b̂2;…; b̂†1; b̂

†
2;…�⊤. The Bogoliubov transformation

on operators ξ̂ can be unitarily implemented as follows
[30,34,35]:

ζ̂ ¼ Sξ̂ ¼ Û†ðSÞξ̂ ÛðSÞ; ð19Þ

where S denotes a symplectic transformation defined
as Eq. (6) and ÛðSÞ denotes a unitary operator satisfying
ÛðS1S2Þ¼ÛðS1ÞÛðS2Þ. Equation (19) is the Heisenberg
picture of the creation and annihilation operators. Therefore,
in the Schrödinger picture, the density operator of the entire
cavity evolves unitarily as ρfcav ¼ ÛðSÞρicavÛ†ðSÞ. In the
quantum thermodynamics, the dissipated heat is often

acceleration

acceleration

rest

(a)

(b)

FIG. 1. Illustration of relativistic quantum field in a cavity.
(a) Example of cavity trajectory in Minkowski space. xl and xr
are boundaries of the cavity, where xr − xl ¼ L > 0. The cavity
is inertial for t < 0 and starts to accelerate for t ≥ 0. Because of
the acceleration, the annihilation and creation operators undergo
the Bogoliubov transformation specified by Amn and Bmn.
(b) Separation of system and environment. Modes specified by
S correspond to the system and the remaining modes E relate to
the environment.
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defined by the energy difference in the environment between
the final and initial states:

ΔQ≡ Trenv½ρfenvĤenv� − Trenv½ρienvĤenv�

¼
X
n∈E

ωn
σfnn − σinn

2
; ð20Þ

where ρfenv ≡ Trsys½ρfcav� ¼ Trsys½ÛρicavÛ
†� denotes the final

density operator of the environment. The entropy difference
between the initial and final states can be expressed as

ΔSsys ≡ SsysðρfsysÞ − SsysðρisysÞ; ð21Þ

where the covariance matrix representation of Ssys follows
that in Eq. (18).
Subsequently, we define the entropy production for a

quantum field in a cavity. The entropy production plays
fundamental roles in stochastic and quantum thermody-
namics, which can be defined following several manners
[26,36]. For instance, in stochastic thermodynamics,
the entropy production can be quantified by the probability
ratio between the forward and backward processes, or it
may be defined by a total entropy that includes both the
system and environment. In the quantum domain, owing to
the high degree of freedom in modeling, the entropy
production can be defined following several mechanisms
[26]. Here, we define the entropy production as

Σ≡ βienvΔQþ ΔSsys; ð22Þ

which denotes the sum of the dissipated heat [Eq. (20)] and
the von Neumann entropy of the system [Eq. (21)]. As the
modes in the cavity undergo Bogoliubov transformation,
the density operator of the entire cavity ρcav evolves via the
corresponding unitary operator [Eq. (19)]. Therefore, from
Refs. [37,38], the following relation holds (refer to
Appendix B):

Σ ¼ I þDðρfenvjjρienvÞ ≥ DðρfenvjjρienvÞ ≥ 0; ð23Þ

where DðρfenvjjρienvÞ and I are the quantum relative
entropy and the quantum mutual information, respectively,
defined by

DðρfenvjjρienvÞ≡Trenv½ρfenv lnρfenv�−Trenv½ρfenv lnρienv�; ð24Þ

I ≡ SsysðρfsysÞ þ SenvðρfenvÞ − ScavðρfcavÞ: ð25Þ

The quantum relative entropy and quantum mutual infor-
mation are non-negative [39] [non-negativity of quantum
mutual information was used in Eq. (23)]. As expressed
in Eq. (23), the entropy production is non-negative,
Σ ≥ 0, under a coordinate transformation induced by the

acceleration, which is a second law of thermodynamics for
a quantum field in a cavity.
Prior to delving into deeper analysis of the entropy

production Σ, we explain certain aspects. In this study,
we defined heat as the variation in the energy of the
environment. Heat is induced by the interaction between
the system and environment. Although the exchange of
energy between the system and environment is identified as
heat in classical thermodynamics, the distinction of heat
from work in the quantum setting is often nontrivial. Prior
studies have attempted to define heat and work in quantum
thermodynamics, which can be primarily classified into two
fundamental definitions, namely, heat-first and work-first
definitions [40]. In the heat-first definition, heat is defined as
the variation in the energy of the environment [41]. This
definition is commonly applied to the two-point measure-
ment scheme [42], where projective measurement with
respect to the environmental energy eigenbasis is performed
at the beginning and end of the process, and the heat is
defined as the difference between them. In the second
category, work is defined first, which was initially proposed
in Ref. [43]. This study employed the heat-first definition.
The first term in Eq. (22) represents the increase in

environmental entropy, which is true for the ideal envi-
ronment that maintains its equilibrium and with constant
temperature during the evolution. However, the definition
of temperature in general nonequilibrium states persists to
be a challenge [44]. Therefore, in the standard quantum
thermodynamics, the entropy production in Eq. (22) is
defined as the entropy production for an arbitrary envi-
ronment [26]. This is because Σ defined in Eq. (22) is
positive in all cases, consistent with the most essential
requirement for entropy production. Moreover, the defi-
nition of Eq. (22) is consistent with that of classical
thermodynamics. Note that the entropy production in
Eq. (22) exhibits the operational meaning in the case of
considering a fluctuation theorem [45], which is the
fundamental equality in nonequilibrium thermodynamics.
This study focuses on heat but not on work, which

constitutes the counterpart quantity in thermodynamics.
As the unitary ÛðSÞ in Eq. (19) implicitly includes the
contribution of work, the variation in energy of the system
is not equal to the heat, ΔHsys þ ΔQ ≠ 0 [26], where
ΔHsys represents the variations in the system energy:

ΔHsys ≡ Trsys½ρfsysĤsys� − Trsys½ρisysĤsys�

¼
X
n∈S

σfnn − σinn
2

: ð26Þ

According to the first law, the exerted work can be defined
as the difference between ΔHsys and ΔQ:

ΔW ≡ ΔHsys þ ΔQ: ð27Þ
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Based on the work defined in Eq. (27), the entropy
production of Eq. (22) can be represented as

Σ ¼ βienvðΔW − ΔFÞ; ð28Þ

where ΔF≡ FðρfsysÞ − FðρisysÞ represents the variation in
free energy, and FðρsysÞ indicates the free energy defined as

FðρsysÞ≡ Trsys½Ĥsysρsys� −
1

βienv
SsysðρsysÞ: ð29Þ

The second law Σ ≥ 0 yields ΔW ≥ ΔF, which states that
the work exerted on the system is greater than or equal
to the free energy difference, which is consistent with
another classical definition of entropy production.
We can refine Eq. (23) by using the fact that the

environment comprises a bosonic quantum field. To cal-
culate the lower bound of DðρfenvjjρienvÞ, we follow
Ref. [38]. According to the Pythagoras relation [38] that
can be proved by simple calculations, DðρfenvjjρienvÞ is
bounded from below by

DðρfenvjjρienvÞ ¼ Dðρfenvjjρth;fenv Þ þDðρth;fenv jjρienvÞ
≥ Dðρth;fenv jjρienvÞ; ð30Þ

where ρth;fenv denotes a thermal state that yields the same
energy as ρfenv. Let EðβenvÞ be the mean energy of the
environment with respect to a thermal state with the inverse
temperature βenv:

EðβenvÞ≡ Trenv½ρthenvðβenvÞĤenv�: ð31Þ

Thereafter, we obtain

Ei þ ΔQ ¼ Trenv½ρfenvĤenv� ¼ Trenv½ρth;fenv Ĥenv�; ð32Þ

where Ei ≡ EðβienvÞ ¼ Trenv½ρienvĤenv�. As ðd=dβenvÞ×
EðβenvÞ < 0, βth;fenv satisfies Eðβth;fenv Þ ¼ Ei þ ΔQ and can
be uniquely specified given ΔQ. Therefore, given ΔQ,
ρth;fenv ¼ ρthenvðβth;fenv Þ can be uniquely identified, indicating
that Dðρth;fenv jjρienvÞ in Eq. (30) can be calculated with ΔQ.
The relative entropy admits the following expression:

Dðρth;fenv jjρienvÞ ¼ βienvΔQ − ½Senvðρth;fenv Þ − SenvðρienvÞ�: ð33Þ

Based on Ref. [38], Dðρth;fenv jjρienvÞ in Eq. (33) can be
rewritten as (refer to Appendix C)

Dðρth;fenv jjρienvÞ ¼
Z

EiþΔQ

Ei
dE0

Z
E0

Ei

dE00

VarβenvðE00Þ½Ĥenv�
; ð34Þ

where Varβenv ½Ĥenv� denotes the variance of Ĥenv with
respect to the thermal state of the environment with inverse
temperature βenv:

Varβenv ½Ĥenv� ¼
1

4

X
n∈E

ω2
ncsch

�
βenvωn

2

�
2

; ð35Þ

where βenvðEÞ denotes the inverse temperature βenv,
satisfying E ¼ Trenv½ρthenvðβenvÞĤenv�, which can be
uniquely identified because EðβenvÞ is a monotonically
decreasing function. Thereafter, we calculate the
maximum value of Varβenv ½Ĥenv� within the integral domainR EiþΔQ
Ei dE0 R E0

Ei dE00. Specifically, we need to separately
consider the two cases of ΔQ > 0 and ΔQ < 0. As βenvðEÞ
is a monotonically decreasing function of E, Varβenv ½Ĥenv�
provides the maximum value for ΔQ > 0 and ΔQ < 0 at
the points indicated in Figs. 2(a) and 2(b), respectively.
Considering the maximum, we derive a refined version of
the second law for the accelerated cavities as follows:

ΔSsys þ βienvΔQ ≥

8<
:

ðΔQÞ2
2Varβienv

½Ĥenv� ΔQ ≤ 0

ðΔQÞ2
2VarβenvðEiþΔQÞ½Ĥenv� ΔQ > 0;

ð36Þ

which forms the main result of this research. In Eq. (36),
the variance term for ΔQ < 0 does not rely on ΔQ, unlike
ΔQ > 0. Equation (36) holds for an arbitrary Bogoliubov
transformation, indicating that Eq. (36) should hold for any

0

0

(a)

(b)

FIG. 2. Integral regions of Eq. (34) for (a) ΔQ > 0 and
(b) ΔQ < 0. Pink regions denote values of E00 and E0 at which
Varβ½Ĥenv� gives the maximum.
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acceleration undergone by the cavity. Equation (36) is a
refined version of the second law for the quantum field
in the cavity. Although the above calculation follows
Ref. [38], the lower bound of Eq. (36) differs from that
reported in Ref. [38] because the cavity is an infinite-
dimensional system, whereas Ref. [38] concerns finite-
dimensional systems.
Although Eq. (36) represents the statement for entropy

production, it can be regarded as a statement between
the variation in information in the system and the energy
dissipated in the environment, i.e., Eq. (36) can be
identified as the Landauer principle for a quantum field
in the cavity undergoing acceleration. The Landauer
principle concerns the entropy decrease in the system,
quantified by −ΔSsys, and yields the lower bound of
the heat dissipation to realize the entropy decrease.
Equation (36) is plotted in Fig. 3 with the solid lines for
two inverse temperature settings in (a) βienv ¼ 0.5 and
(b) βienv ¼ 5.0 (explicit parameters are stated in the cap-
tion). The regions above the solid lines denote the feasible
regions predicted by Eq. (36). In Fig. 3, the dashed lines
represent the lower bound of Σ ¼ ΔSsys þ βienvΔQ ≥ 0,
which represents the naive second law. As observed,
the area of the negative heat region diminishes with the
temperature. Equation (36) is tighter than the naive second
law under low temperature.
Another consequence of Eq. (36) pertains to its relation

with information scrambling [46,47]. Generally, the extent

of scrambling is quantified by out-of-order correlators. As
proposed earlier, the extent of scrambling can alternatively
be quantified by quantum mutual information [48]. The
cavity undergoing a nonuniform acceleration can be iden-
tified as a process of information spreading. Suppose that
the cavity contains modes only in S and the remaining
modes are vacant. After acceleration, the other remaining
modes are populated because of the Bogoliubov trans-
formation, which is reminiscent of the scrambling process.
The mutual information I is bounded from above by
I ≤ ΔSsys þ βienvΔQ −Dðρth;fenv jjρienvÞ. Based on Eq. (36),
we obtain

I ≤

8<
:

βienvΔQþ ΔSsys −
ðΔQÞ2

2Varβienv
½Ĥenv� ΔQ ≤ 0

βienvΔQþ ΔSsys −
ðΔQÞ2

2VarβenvðEiþΔQÞ½Ĥenv� ΔQ > 0;

ð37Þ

which indicates that the degree of scrambling induced by
the acceleration of the cavity can be upper bounded by the
entropy ΔSsys and dissipated heat ΔQ in the cavity.

IV. CONCLUSION

In this paper, we obtained the lower bound for the
entropy production of a quantum field in a cavity under-
going acceleration. First, the cavity mode of interest
was regarded as the system and the remaining modes as
the environment. Thereafter, the entropy production was
defined as the sum of the von Neumann entropy of the
system and the dissipated heat. The non-negativity of the
entropy production is a signature of the second law and
provides the statement of the Landauer principle for the
accelerated cavity.
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APPENDIX A: QUANTITIES OF
QUANTUM FIELD

For readers’ convenience, we review the quantities of
quantum fields in a general setting. Let us consider the
thermal state of the Hamiltonian Ĥ ¼ P

n ωnâ
†
nân. The

density operator can be expressed as

ρth ≡ 1

ZðβÞ e
−βĤ; ðA1Þ

where β denotes the inverse temperature and ZðβÞ≡
Tr½e−βĤ�. The number operator n̂n ≡ â†nân admits the
eigendecomposition

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-10

0

10

(a)

(b)

FIG. 3. Region plot of lower bound [Eq. (36)] for cavity with
(a) βienv ¼ 0.5 and (b) βienv ¼ 5.0. The solid line represents
Eq. (36) and the dashed line denotes ΔSsys ≥ −βienvΔQ. The
regions above the solid lines are physically feasible, whereas the
other settings are S ¼ f1g and L ¼ 1.
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n̂njnni ¼ nnjnni; ðA2Þ

which implies that n̂n can be represented as n̂n ¼P
nn
nnjnnihnnj. Based on this representation, the terms

in ρth can be expressed as

e−βĤ ¼
Y∞
n¼1

e−βωnn̂n ¼
Y∞
n¼1

X
nn

e−βωnnn jnnihnnj; ðA3Þ

and

Tr½e−βĤ� ¼
Y
n

�X
nn

e−βωnnn

�
¼

Y
n

eβωn

eβωn − 1
: ðA4Þ

Let us consider the expectation of â†nân with respect to the
thermal state ρth:

hâ†nâni ¼ Tr½n̂nρ
th� ¼

P
nn
nne−βωnnnP
nn
e−βωnnn

¼ 1

eβωn − 1
: ðA5Þ

As σnn ¼ hâ†nân þ ânâ
†
ni ¼ 2hâ†nâni þ 1, the covariance

matrix becomes

σnn ¼ 2hâ†nâni þ 1 ¼ coth

�
βωn

2

�
: ðA6Þ

According to Eq. (A5), the mean of Ĥ can be derived as

Tr½ρthĤ� ¼
X
n

ωn

eβωn − 1
: ðA7Þ

Similarly, the second moment of Ĥ can be evaluated as

Tr½ρthĤ2� ¼
X
n

ðeβωn þ 1Þω2
n

ðeβωn − 1Þ2

þ
X
n≠m

�
ωn

eβωn − 1

��
ωm

eβωm − 1

�
: ðA8Þ

Using Eqs. (A7) and (A8), the variance of Ĥ is expressed as

Var½Ĥ� ¼ Tr½ρthĤ2� − Tr½ρthĤ�2

¼
X
n

eβωnω2
n

ðeβωn − 1Þ2

¼ 1

4

X
n

ω2
ncsch

�
βωn

2

�
2

; ðA9Þ

where cschðxÞ≡ 1= sinhðxÞ.

EðβÞ is defined in Eq. (31) with a derivative of

d
dβ

EðβÞ ¼ −
X
n∈E

eβωnω2
n

ðeβωn − 1Þ2 < 0: ðA10Þ

The above equation establishes the definition of the
inverse function βðEÞ.

APPENDIX B: DERIVATION OF EQ. (23)

The derivation of Eq. (23) is presented herein, which
has been proved in Refs. [37,38]. We will express the
following relation:

βienvΔQþ ΔSsys ¼ I þDðρfenvjjρienvÞ: ðB1Þ

As discussed in the main text, the entire cavity undergoes a
unitary transformation: ρfcav ¼ UρicavU†. Therefore, the von
Neumann entropy of the entire cavity is invariant under
the transformation: ScavðρfcavÞ¼ScavðρicavÞ¼SsysðρisysÞ þ
SenvðρienvÞ, where we considered that the state is initially
in a product state in the last equality. Therefore, we obtain

IþDðρfenvjjρienvÞ¼ΔSþTrenv½ðρienv−ρfenvÞ lnρienv�: ðB2Þ

As ρienv ¼ ZenvðβienvÞ−1e−βienvĤenv , the second term in
Eq. (B2) can be rewritten as

Trenv½ðρienv − ρfenvÞ ln ρienv�
¼ Trenv½ðρienv − ρfenvÞð−βienvĤenvÞ�
¼ βienvΔQ: ðB3Þ

Equation (23) directly follows from Eqs. (B2) and (B3).

APPENDIX C: DERIVATION OF EQ. (34)

Herein, we derive Eq. (34) based on Ref. [38]:

Dðρth;fenv jjρienvÞ ¼ βienvΔQ −
Z

EiþΔQ

Ei

dSthenvðβenvðE0ÞÞ
dE0 dE0

¼ βienvΔQ −
Z

EiþΔQ

Ei
βenvðE0ÞdE0

¼
Z

EiþΔQ

Ei
ðβienv − βenvðE0ÞÞdE0

¼
Z

EiþΔQ

Ei
dE0

Z
Ei

E0

dβenvðE00Þ
dE00 dE00

¼
Z

EiþΔQ

Ei
dE0

Z
E0

Ei

dE00

VarβenvðE00Þ½Ĥenv�
; ðC1Þ

where SthenvðβenvÞ is defined as

SthenvðβenvÞ≡ −Trenv½ρthenvðβenvÞ ln ρthenvðβenvÞ�: ðC2Þ
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When calculating Eq. (C1), we used the following relations:

dβenv
dE

¼ 1

dE=dβenv
¼ −

1

VarβenvðEÞ½Ĥenv�
; ðC3Þ

dρthenvðβenvÞ
dβenv

¼ −Ĥenvρ
th
envðβenvÞ

þ ρthenvðβenvÞTrenv½ρthenvðβenvÞĤenv�; ðC4Þ

dSthenv
dβenv

¼ −Trenv
�
dρthenvðβenvÞ

dβenv
ln ρthenvðβenvÞ

�

¼ −βenvVarβenv ½Ĥenv�; ðC5Þ

dSthenvðβenvðEÞÞ
dE

¼ dSthenvðβenvÞ
dβenv

dβenv
dE

¼ βenvðEÞ: ðC6Þ
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