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We explore the properties of a recently proposed background independent exact renormalization group
approach to gauge theories and gravity. In the process we also develop the machinery needed to study it
rigorously. The proposal comes with some advantages. It preserves gauge invariance manifestly, avoids
introducing unphysical fields, such as ghosts and Pauli-Villars fields, and does not require gauge-fixing.
However, we show that in the simple case of SUðNÞ Yang-Mills it does not completely regularize the
longitudinal part of vertex functions already at one loop, invalidating certain methods for extracting
universal components. Moreover, we demonstrate a kind of no-go theorem: within the proposed structure,
whatever choice is made for covariantization and cutoff profiles, the two-point vertex flow equation at one
loop cannot be both transverse, as required by gauge invariance, and fully regularized.
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I. INTRODUCTION

Understanding the Wilsonian renormalization group
(RG) structure of quantum gravity is surely of importance,
see, e.g., [1–10], and central to this is the role of diffeo-
morphism invariance. One approach is to try to generalize
the exact RG [11,12] to gravity, in such a way that it is
manifestly diffeomorphism invariant. On the one hand this
would allow computations to be done while keeping exact
diffeomorphism invariance at every stage, i.e., without
gauge fixing, and on the other hand, these computations
would be background independent, that is performed
without first choosing the space-time manifold and back-
ground metric.
At the classical level this can be done [13]. However in

order to compute quantum corrections, extra ultraviolet
regularization has to be incorporated into the exact RG so
that the integration is properly cut off in some diffeo-
morphism invariant way at the effective cutoff scale Λ. For
the simpler case of gauge invariance in SUðNÞ Yang-Mills
theory this problem was solved by incorporating gauge
invariant PV (Pauli-Villars) fields arising from a sponta-
neously broken SUðNjNÞ gauge theory [14–36]. It is not
clear whether one can generalize such a scheme to gravity

however, in particular it is not clear what should play the
role of SUðNjNÞ, although a kind of supergravity has been
suggested in [37].
Recently a different approach to the problem of regu-

larization has been pursued [38]. Explicit PV fields are
avoided and instead replaced by functional determinants
which, if constructed as squares of simpler determinants,
can be shown to work in the framework of standard
perturbation theory [39–41]. Furthermore a geometric
approach is followed where the determinants can be
regarded as defining a regularized volume element on
the orbit space of the gauge theory [41]. The flow equation
is then formulated in a way that is manifestly invariant
under field redefinitions, and applies equally well to both
gravity and gauge theory [38].
Although this new proposal has elegant features, it is not

immediately evident that the regularization is successfully
implemented in the flow equation once we delve into the
details of the relevant Feynman diagrams, first at one loop
and then also at higher loops. In this paper we put the
proposal to the test by constructing explicit expressions for
the relevant vertices and then carefully analyze their UV
(ultraviolet) behavior, as a function of loop momentum, in
the form that they appear in quantum corrections. For this
purpose it is sufficient to focus on Yang-Mills since if the
regularization fails for Yang-Mills it most certainly fails for
quantum gravity (given the latter’s poor UV behavior).
Working with Yang-Mills also means we can take over
methods used for these investigations in the earlier suc-
cessful construction [14–36]. As we will see, the proposal
of Ref. [38] unfortunately fails to fully regularize already at
one loop, but in a rather subtle way, which in particular
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invalidates powerful techniques previously used to extract
universal information [23,42].
The paper is organized as follows. In Sec. II we review

the proposal, and in the process, set out our notation and
conventions. In Sec. III we sketch why the regularization
can fail. In Sec. IV we build the machinery needed to
rigorously test the structure of the renormalization scheme
at the perturbative level. In Sec. V we confirm that the
higher point classical vertices incorporate the assumed
regularization. Then in Sec. VI we apply the techniques
extensively to an analysis of the simplest one-loop correc-
tion namely that for the effective action two-point vertex.
We show that the regularization is sufficient for the
momentum independent part, giving a vanishing result
as it should by gauge invariance, only if the Λ-derivative of
quadratically divergent constant part is discarded. (Recall
that Λ is the effective cutoff scale.) The part that is second
order in momentum ought to give the one-loop beta
function, if properly regulated. However we show that
the result cannot both be completely regularized and
transverse. It can be taken to be transverse only if the
Λ-derivative of a linearly divergent part is discarded. Since
this holds for all choices of covariantization and cutoff
profiles, it points to some inherent limitations in the
structure of the proposed flow equation. In Sec. VII we
summarize and draw our conclusions.

II. A PROPOSAL FOR A BACKGROUND
INDEPENDENT EXACT RG

A. Notation and basic ingredients for regularization

The flow equation proposed in Ref. [38] incorporates a
geometric approach to the quantization of gauge theories
[43,44] and as such it is useful to use DeWitt notation. On
the other hand, as we will see, a detailed understanding of
the UV properties can only be reached by working with
explicit expressions for the vertices. In the case of Yang-
Mills theories, the flow equations then take their simplest
form if we regard the gauge fields as valued in the Lie
algebra, i.e., contracted into the generators [14,15]. We will
therefore work with both notations as appropriate.
We work in Euclidean signature and, therefore, we will

keep all gauge group indices as superscripts and Lorentz
indices as subscripts for convenience. For position and
momentum space integrals we introduce the shorthand

Z
dDx ¼

Z
x
;

Z
dDp
ð2πÞD ¼

Z
p
; ð2:1Þ

respectively, where D is the number of dimensions we are
working in. Wewill frequently switch between position and
momentum space representations throughout the paper and
this will help us keep everything clean and concise. For
similar reasons we will adopt the following convention:

δðpÞ≡ ð2πÞDδðDÞðpÞ; ð2:2Þ

where δðDÞðpÞ is the standard D-dimensional Dirac delta
function. Our convention for Fourier transforms is then

ϕðpÞ ¼
Z
x
ϕðxÞe−ipx: ð2:3Þ

We will use the DeWitt compact notation and its explicit
representation interchangeably, so for example

ϕaJa ≡
X
a

Z
x
Aa
μðxÞJaμðxÞ: ð2:4Þ

Last, but not least, we will adopt the following shorthand
for momenta and scalar functions of momenta, respec-
tively:

p
Λ
≡ p̃; ð2:5Þ

K

�
p2

Λ2

�
≡ Kp; ð2:6Þ

where Λ is the effective cutoff energy scale.
We work with the gauge group SUðNÞ. We use DeWitt

Latin indices from the start of the alphabet to label gauge
fields, thus ϕa, but as already mentioned, when we need
more explicit expressions it will be convenient to regard the
gauge fields AμðxÞ as contracted into the generators:

ϕa ≡ AμðxÞ ¼ Aa
μðxÞTa: ð2:7Þ

With appropriate definitions for the vertex functions in
either language, the expressions will of course be equal,
and the two representations are thus equivalent. The
generators Ta are taken to be Hermitian, in the fundamental
representation, and orthonormalized as trðTaTbÞ ¼ 1

2
δab. A

second set of DeWitt Greek indices from the start of the
alphabet is used to label gauge parameters; the map from
the two languages is thus:

ϵα ≡ ωðxÞ ¼ ωaðxÞTa: ð2:8Þ

If we adopt the geometric approach of [43,44] to the
quantization of gauge theories, we regard the fields ϕa as
coordinates on an infinite dimensional “manifold” Φ, the
space of all possible field configurations. This has the
structure of a fibre bundle, and the fibers are the gauge
orbits G. However, all the physics happens on the quotient
space Φ=G, where each point belongs to a unique equiv-
alence class fϕg, which encompasses all the possible field
configurations related by gauge transformations. The gen-
erators of the gauge transformation are of the following
form:
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Ka
α½ϕ�≡Dμδðx − yÞ; ð2:9Þ

where the covariant derivative is given by
Dμ ≔ ∂μ − iAμðxÞ, and Aμ is understood to act by com-
mutation. This means that gauge transformations can be
written equivalently as

δϕa ¼ Ka
α½ϕ�ϵα; ð2:10Þ

δAμðxÞ ¼ Dμ · ω ≔ ½Dμ;ω�: ð2:11Þ

The field strength is given by Fμν ≔ i½Dμ; Dν�. We write the
SUðNÞ Yang-Mills action in the following way:

I½ϕ�≡ 1

4g2

Z
x
ðFa

μνÞ2 ¼
1

2g2
tr
Z
x
F2
μν: ð2:12Þ

In momentum

I½ϕ�≡ 1

2g2

Z
p
Iμ1μ2ðpÞtrðAμ1ðpÞAμ2ð−pÞÞ þ

1

3g2

Z
p1…p3

Iμ1…μ3ðp1…p3ÞtrðAμ1ðp1Þ…Aμ3ðp3ÞÞδðp1 þ p2 þ p3Þ

þ 1

4g2

Z
p1…p4

Iμ1…μ4ðp1…p4ÞtrðAμ1ðp1Þ…Aμ4ðp4ÞÞδðp1 þ � � � þ p4Þ; ð2:13Þ

where the vertex functions Ið2Þ; Ið3Þ, and Ið4Þ, are given by:

Iμ1μ2ðpÞ ¼ 2□μ1μ2ðpÞ ≔ 2ðp2δμ1μ2 − pμ1pμ2Þ; ð2:14Þ

Iμ1…μ3ðp1…p3Þ ¼ 2ðp3μ2δμ1μ3 − p3μ1δμ2μ3Þ þ cycles;

ð2:15Þ

Iμ1…μ4ðp1…p4Þ ¼ ðδμ1μ4δμ2μ3 − δμ1μ3δμ2μ4Þ þ cycles:

ð2:16Þ

We note that “cycles” stands for all cyclic permutations of
momenta p1μ1 → p2μ2 → … → p1μ1 . The exact preserva-
tion of gauge invariance at all stages during the flow,
together with the choice to rescale the coupling in front of
the integral in (2.12), ensures that Aμ cannot run: any wave
function renormalization by Z ≠ 1, AR

μ ¼ Z−1=2Aμ, would
break gauge invariance: δAR

μ ¼ Z−1=2
∂μω − i½AR

μ ;ω�
[14,15,45]. Therefore the coupling g ¼ gðΛÞ is the only
quantity that runs.
Functional derivatives are written as

S;a ¼
δS
δϕa ≡

δS
δAμðxÞ

; ð2:17Þ

where δ=δAμðxÞ ≔ 2Taδ=δAa
μðxÞ. The properties of the

latter can be understood as follows [15,16]. For conven-
ience here we temporarily write the gauge fields AμðxÞ
simply as A, suppressing spacetime dependence and
Lorentz indices. Given a well-behaved gauge invariant
function fðAÞ such that δfðAÞ ¼ trðδAXÞ, for some X, we
can exploit the SUðNÞ completeness relation to see that:

δf
δA

¼ X −
1

N
trX; ð2:18Þ

effectively isolating X. This property will be crucial in our
endeavor later on. Following the same reasoning, we have
two more useful relations:

trY
δf
δA

¼ trYX −
1

N
trYtrX; ð2:19Þ

and,

tr
δ

δA
W ¼ trYtrZ −

1

N
trYZ; ð2:20Þ

for some W ¼ TaWa such that δW ¼ YδAZ. The func-
tional derivatives of I½ϕ� are (in position space):

Ea ¼ I;a ≡ 1

g2
DαFμα; ð2:21Þ

I;ab ≡ 1

g2
ðiFμν þDνDμ − δμνD2Þδðx − yÞ: ð2:22Þ

Ultralocal metrics are introduced on Φ and G, respec-
tively, such that their corresponding line element (e.g.,
δϕaγabδϕ

b) is made dimensionless by using the appropriate
power of the effective scale Λ [38]. They allow us to raise
or lower DeWitt indices, e.g., ϕa ¼ γabϕb. At this abstract
level the formulation can be developed in a way that
applies equally well to gravity, and indeed Ref. [38] treats
gravity as a special case. For gravity however, γab
and ηαβ necessarily depend on ϕ (which in this case is
the spacetime metric). Then to keep equations covariant on
Φ requires the use of a connection Γc

ab in function space
and covariant derivatives, e.g., replacing I;ab above with
I;ab ¼ I;ab − Γc

abI;c. Since we will treat only Yang-Mills
theory in this paper, where one can take the metrics to be ϕ
independent:
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γab ¼
Λ2

g2
δμνδðx − yÞ; γab ¼ g2

Λ2
δμνδðx − yÞ; ð2:23Þ

ηαβ ¼
Λ4

g2
δðx − yÞ; ηαβ ¼ g2

Λ4
δðx − yÞ; ð2:24Þ

we do not need this extra complication and thus we work
only in the flat function space limit.
Again following [38], we will introduce higher covariant

derivatives into the effective action S via functions of
Laplace-like differential operators, which we list below:

Δa
b ¼ γacI;cb þKa

αη
αβKc

βγcb ≡ Δμν

¼ Λ−2ð2iFμν − δμνD2Þδðx − yÞ; ð2:25Þ

ðΔkÞαβ ¼ ηαδKa
δγabK

b
β ≡ Δk ¼ −Λ−2D2δðx − yÞ: ð2:26Þ

For two (matrix valued) functions JμðxÞ and JνðxÞ and a
momentum kernelKμνðp2=Λ2Þwe introduce the shorthand:

Jμ · Kμν · Jν ≔ 2tr
Z
x
JμðxÞKμνð−∂2=Λ2ÞJνðxÞ; ð2:27Þ

Kμνð−∂2=Λ2Þδðx − yÞ ¼
Z
p
Kμνðp2=Λ2Þeipðx−yÞ: ð2:28Þ

Gauge invariant quantities have all DeWitt indices
contracted (i.e., behaves as a scalar on Φ and G). One
gauge invariant object that plays a fundamental role in the
regularization is the action A:

A ¼ I þ 1

2
I;a ½XðΔÞ�abI;b : ð2:29Þ

It is quasilocal, i.e., has an all orders expansion in momenta
[15,16]. The kernel XðzÞ is given by:

XðzÞ ¼ 1 − cðzÞ
zcðzÞ ; ð2:30Þ

where cðzÞ is a smooth UV cutoff profile such that
cð0Þ ¼ 1, and cðp2=Λ2Þ → 0 as p2=Λ2 → ∞.
The anomalous dimension is η ≔ −g2Λ∂Λð1=g2Þ ¼

2
gΛ∂Λg. Given that η ∝ ℏ (i.e., actually ℏg2), we can write
down a loop expansion for it:

η ¼ η1g2 þ η2g4 þ � � � ; ð2:31Þ

and thus for β ≔ Λ∂Λg as well (ηi ¼ 2βi):

β ¼ β1g3 þ β2g5 þ � � � : ð2:32Þ

It will prove useful to analyze expressions using the
following projection operators:

ΠT
a
b ≔ δab − ΠL

a
b ≡ ΠT

μν ≔ δμν − ΠL
μν; ð2:33Þ

ΠL
a
b ≔ Ka

αðΔ−1
k ÞαβKc

βγbc ≡ ΠL
μν ≔ DμðD2Þ−1Dν; ð2:34Þ

although they are not directly involved in the regularization
scheme because of their nonlocal nature.

B. The main idea

Before delving into details, it is instructive to outline the
main steps undertaken in Ref. [38] to construct a flow
equation for the effective action S. Essentially this is a three
step procedure, where the first two steps represent a
geometric reformulation of Slavnov’s higher derivative
regularization scheme [39,40], while in the last step the
freedom one has to design an exact RG [14,46–48] is
exploited to avoid fixing the gauge and to manifestly
preserve gauge invariance at all stages during the flow.
First of all we need to incorporate higher covariant

derivatives, SUV, into the effective action S, to improve the
UV behavior by modifying the propagators1:

S ¼ I þ SUV þ S; ð2:35Þ

where S stands for all the other interactions in the effective
action that are generated by the flow. However higher
covariant derivatives do not regularize all one-loop diver-
gences, and therefore further regularization is
required [39,40].
The second step addresses this issue by introducing PV

regularization, which however is introduced directly
through functional determinants in such a way that these
act as quasilocal metrics for Φ, and G; they are called
Gab½ϕ� and Hαβ½ϕ�, respectively. Now, the partition func-
tion Z takes in general the following form:

Z ¼
Z
Φ=G

dfϕgM½fϕg�e−S½fϕg�; ð2:36Þ

where M½fϕg� is the volume element on the quotient space
Φ=G. Factoring the integration measure using the func-
tionals mentioned above,

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detG½ϕ�

p
¼ dfϕgM½fϕg�dξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detH½ϕ�

p
; ð2:37Þ

we thus rewrite the partition function (Tr stands for a
functional trace of the kernels):

1As it stands, this equation is almost devoid of meaning since S
could modify or even cancel terms in SUV. At the classical level,
we give it meaning by insisting that S0 contains only three-point
and higher vertices: S0ðn<3Þ ¼ 0., which, in turn, fixes the on-
shell two-point classical effective action. This choice will allow
us to compute classical vertices in terms of quantities already
known [23].
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Z ∝
Z
Φ
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detG½ϕ�p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detH½ϕ�p e−S½ϕ�

¼
Z
Φ
dϕe−S½ϕ�þ1

2
Tr lnGab½ϕ�−1

2
Tr lnHαβ ½ϕ� ð2:38Þ

(up to some actually infinite constant that we are free to
discard without altering the physics).
The idea then is that G is chosen to cancel one-loop UV

divergences arising from S. In the infrared (IR), G and H
are both order Λ2, corresponding to PV masses of order the
cutoff. G thus has a longitudinal part which will contribute
divergences, but H can be used to cancel them. Finally by
choosing G and H each such that they factor into other
operators that are less divergent, we can avoid so-called
“overlapping” divergences, ones that correspond at one
loop to having external PV legs [40,49,50]. Thus at this
stage, PV regularization will require the following:

(PV1) At high momentum the Hessian for fluctuations
matches that of G in the transverse space:

ΠT
c
aGcdΠT

d
b ∼ S;ab: ð2:39Þ

(PV2) Similarly H matches the longitudinal part of G:

Ka
αGabKb

β ∼Hαβ: ð2:40Þ

(PV3) Gab½ϕ� and Hαβ½ϕ� must be chosen so that they
factor into operators that are less divergent.

Slavnov’s original scheme does not avoid fixing the
gauge [39,40]. In Ref. [38] gauge fixing is completely
avoided by exploiting the freedom [14,15,42,46–48,51]
one has to design an exact RG [11,12] flow for the effective
action S. This leads to the final flow equation:

ΛDΛS ¼ 1

2
Tr½G−1ΛDΛG −H−1ΛDΛH�; ð2:41Þ

where ΛDΛ ≔ Λ∂Λ þ LΨ is the total RG derivative, LΨ
being a Lie derivative on Φ associated to the change of
variables ϕa ↦ ϕa − δΛΨa. The total RG derivative acts in
the following way:

ΛDΛS ¼ Λ∂ΛSþ ΨaS;a ; ð2:42Þ

ΛDΛHαβ ¼ Λ∂ΛHαβ þ ΨaHαβ;a; ð2:43Þ

ΛDΛGab ¼ Λ∂ΛGab þΨcGab;c þ Ψc
;aGbc þΨc

;bGac:

ð2:44Þ

The strategy is that, altogether, the higher covariant
derivatives and PV field determinants should provide a
regularized “kinetic” I þ SUV ∈ S part, while a careful
choice of Ψa is meant to ensure that the exact RG then
generates only an S ∈ S part that is free of divergences.

C. Regularization structure

The method proposed in Ref. [38] to construct the
regularization scheme, i.e., PVoperators and higher covar-
iant derivatives, proceeds as follows. First of all, we need to
construct Gab½ϕ� and Hαβ½ϕ� by taking into account the
requirements outlined in Sec. II B. To satisfy (PV3) they are
set to

Gab ¼ ðC−1ÞcaγcdðC−1Þdb; ð2:45Þ

Hαβ ¼ Bγ
αbγδBδ

β; ð2:46Þ

where we require Bα
β, bαβ, and ðC−1Þab to be constructed

such that Gab → γab and Hαβ → ηαβ as Λ → ∞. This latter
requirement ensures that in the continuum limit the
quasilocal and ultralocal metrics coincide, and hence
encode the same physics [35]. Furthermore, the condition
(PV1) implies that C2Sð2Þ ∼ 1, which essentially means that
all divergences coming from C−1 vertices should be
regulated by contributions in the effective action involving
the effective propagator. The remaining condition (PV2)
together with (2.45), and (2.46) relates the PVoperators to
one another in the high momentum limit:

ðC−1ÞabKb
α ∼ Ka

βB
β
α; ð2:47Þ

bαβ ∼ ðΔkÞαβ ¼ Ka
αγabKb

β: ð2:48Þ

The second part of the regularization scheme amounts to
introducing higher covariant derivatives into the effective
action S. Given that G is bilinear in C−1 we will keep the
same structure for SUV [40],

SUV ¼ 1

2
A;aγ

abA;b; ð2:49Þ

and thus write the effective action S as

S ¼ I þ S þ 1

2
A;aγ

abA;b: ð2:50Þ

Here it is instructive to pause and make some comments on
the choice of using A and on the strategy for analysis of the
regularization and flow equation. If we functionally differ-
entiate (2.29) twice we get:

A;ab ¼ ðΔ · c−1ðΔÞÞadΠT
d
b þOðEÞ: ð2:51Þ

Following Ref. [38] it is useful to write equations such as
this where the equality is given up to terms that vanish on
the equations of motion E, cf., (2.21). Since E vanishes if
we set Aμ ¼ 0, we can read off from the above that the first
term provides the effective inverse propagator that would
arise from using A as the action. We see that it is transverse
and that it would lead to an effective propagator ∼cq=q2
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which is regularized by a cutoff function in the usual way.
The first term above is also solely responsible for the one-
loop contribution that A would provide (through the func-
tional determinant of A;ab) when the result is evaluated on
shell. From (2.51) we can also infer the large momentum
behavior of the vertices AðnÞ. Clearly Að2Þ ∼ q2c−1q . In fact,
for any integer n, AðnÞ ∼ c−1q up to some multiplicative
power of momentumwhich can be ignored in comparison if
the cutoff is chosen to be strong enough, for example
cðxÞ ¼ e−x or cðxÞ ¼ ð1þ xÞ−m for some largem. To write
this we will use the following shorthand AðnÞ ≈ c−1q . These
properties will be more precisely defined and confirmed in
Sec. IV B 6. Until then in the spirit of Ref. [38], we count
only powers of cutoffs to analyze the behavior of different
expressions in the large momentum limit. For example,
looking at (2.50) we see that

S;ab ∼ Að2ÞAð2Þ ≈ c−2q ; ð2:52Þ

which means that the (PV1) condition can now be recast as:

C−1 ≈ c−1q : ð2:53Þ

To properly implement regularization, (PV1-3) ought to
be fulfilled or, equivalently, (2.47), (2.48), and (2.53). A
particular choice which satisfies this is the following:

ðC−1Þab ¼ δab þ γacA;cb þKa
αYαβKc

βγcb; ð2:54Þ

Bα
β ¼ δαβ þ YαγðΔkÞγβ; ð2:55Þ

bαβ ¼ tαβ þ ðΔkÞαβ; ð2:56Þ

where Y ¼ YðΔkÞ is a quasilocal function such that YðzÞ →
∞ as z → ∞ at the same rate as 1=cðzÞ and Yð0Þ is finite,
while t ¼ tðΔkÞ is a quasilocal function such that tðzÞ → 0

as z → ∞ and tð0Þ ¼ 1.

D. Flow equation

For the flow equation to have fixed points it has to be
nonlinear which implies that the blocking functional Ψ½ϕ�
must itself depend on S. Generalizing [14–36,42,51,52],
which are themselves generalizations of the Polchinski
equation [53], the blocking functional is written in the
following way:

Ψa ¼ −
1

2
KabΣ;b þ ψa; ð2:57Þ

where

Σ ≔ S − Ŝ ¼ S −
1

2
I;aXabI;b; ð2:58Þ

and the “seed” action Ŝ is given by:

Ŝ ≔ Aþ SUV ¼ Aþ 1

2
A;aγ

abA;b: ð2:59Þ

We will call the quasilocal functionals Kab and ψa

the exact RG kernels. We will try to fine-tune them to
remove the unwanted divergences still present in the flow
equation. In addition to this, it will prove useful to fix the
classical two-point function [15,16,23]. As such, we
require

S0 ¼ I þ 1

2
A;aγ

abA;b þ S0; ð2:60Þ

where S0 ¼ OðE3Þ, to be a solution of the classical flow
equation

ΛDΛS0 ¼ 0: ð2:61Þ

This fixes the classical two-point function to be

S0;ab ¼ I;ab þ A;maγ
mnA;nb þOðEÞ: ð2:62Þ

The only thing left now is to fix the exact RG kernels.
The main constraint comes from the left-hand side of
(2.41), i.e., the classical flow equation. One needs to
carefully choose the kernels such that the effective
interactions generated during the flow (i.e., S) do not
destroy the regularization. In other words we need to
ensure that S diverges more weakly than SUV ≈ c−2q . Since
we are unable to write a closed form expression for S (we
can only determine a finite number of higher order
contributions to it by repeated iterations), following
Ref. [38] we suppose that its maximum divergence rate
is given by:

SðnÞ ∼ AðnÞ ≈ c−1q ; ð2:63Þ

or, equivalently, using the definition (2.58) of Σ, that

ΣðnÞ ≈ c−1q : ð2:64Þ

The strategy now is to fine-tune the exact RG kernels such
that they cancel all the terms which diverge faster than c−1q
in the flow equation of SðnÞ, and hence prove a posteriori
that the assumption (2.63) is consistent. If we unwrap the
left-hand side of (2.41) we get:

ΛDΛS ¼ _A;aγ
abA;b þ

1

2
A;a _γ

abA;b þ A;aðC−1Þabψb

−
1

2
A;cðC−1ÞcaKabΣ;b þ _Aþ _Σ

−
1

2
Σ;aKabΣ;b þ Σ;aψ

a; ð2:65Þ
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where “ ·” denotes the RG time derivative Λ∂Λ. To arrive at
this expression we have used the identity:

Ŝ;b ¼ A;aðC−1Þab; ð2:66Þ

which follows from (2.54) and the gauge invariance of A,
Ka

αA;a ¼ 0. The first two terms of (2.65) are bilinear in A;a

and hence diverge as ≈c−2q . To eliminate them we use the
third term, setting

ψa ¼ −Ca
b

�
γbc _A;c þ

1

2
_γbcA;c

�
: ð2:67Þ

Now looking at the remaining terms, we see that the
potentially dangerous ones are the fourth term which,
ignoring Kab for the moment, diverges as ≈c−3q , and
similarly the next to last term, which diverges as ≈c−2q .
Canceling the C−1 factor in the former by writing

Kab ¼ Ca
c½κðΔÞ�cb; ð2:68Þ

the kernel κab is then fixed uniquely by substituting S0
from (2.60), into (2.65) and requiring cancellation, i.e.,
requiring the classical flow (2.61) at OðE2Þ. The result is

κab ¼
�
2
cðΔÞ − 2Δc0ðΔÞ

c2ðΔÞ þ Δ

�
a

b
ð2:69Þ

(see Sec. IIIB and Appendix A of Ref. [38]). This means
that κab ≈ cq and hence Ref. [38] concluded that all the
potentially offending terms in (2.65) are now brought
under control. This part of the flow equation (the classical
part) now simplifies to:

ΛDΛS ¼ −
1

2
ðΣ;a þ Ŝ;aÞCa

cκ
cbΣ;b þ _Aþ _Σþ Σ;aψ

a;

ð2:70Þ

and indeed a direct substitution of the above estimates
suggests that now no terms diverge faster than c−1q .
Moreover, although more involved, one can similarly
check that the exact RG kernels (2.67)–(2.69) ensure that
the right-hand side (rhs) of (2.41) is also apparently
properly regularized [38].

III. REGULARIZATION FAILURE: A SKETCH

The problem with the analysis reviewed in the previous
section is more easily grasped if we convert the analysis
into the language of Feynman graphs. The reason this is
helpful, is because we can then derive closed formulas for
all the component vertices and propagatorlike terms of
these graphs, and then rigorously characterize their asymp-
totic behavior in the limit that certain momenta diverge. In
particular in quantum corrections, UV divergences arise

from the limit in which loop momenta q → ∞ while
external momenta are held fixed. The components in the
flow equation (2.70) do not necessarily behave in this limit
with the assumed powers of cq because their UV behavior
depends on the details of how q is routed through the
vertices.
By focusing in Sec. VI on the part of the one-loop action

that should provide the beta function, we show that
regularization fails here in a somewhat subtle way. There
are parts that are UV divergent, but can be set to zero once
treated as Λ independent. However, gauge transformations
still map the one-loop beta function contribution into those
improperly regularized parts. In fact we show that the
contribution cannot then both be gauge invariant and
properly regularized. Actually this latter conclusion holds
for all choices of cutoff functions and some generalizations
of the construction. Although the flow equation is con-
structed to be covariant by using functions of the differ-
ential operators Δ and Δk, other choices of covariantization
are possible that still reduce to the same functions when the
gauge field Aμ is set to zero (for example by allowing the
functions to depend separately on Fμν). Our derivation is
independent of these details.
In fact the first hint of regularization failure seems to

come from how the regularization is constructed in the first
place. Reference [38] argues that in the high momentum
limit the leading divergent part of the propagator is its
transverse part. The argument goes as follows. Starting
from the gauge invariance of S (under a gauge trans-
formation ϕa → ϕa þ δϕa),

Ka
αS;a ¼ 0; ð3:1Þ

and differentiating it once we obtain:

Ka
αS;ab ¼ −Ka

α;bS;a: ð3:2Þ

Regarding this expression as a differential operator one can
think of the large momentum as going from α to b. Then
this equation tells us that the behavior at large momentum is
given by Ka

α;b, and since Ka
α is a first order differential

operator the divergence is only with one power of momen-
tum. However as an expression about vertices more
generally we see that we cannot exclude the possibility
that the loop momentum threads instead through S;a whose
high momentum behavior can behave as badly as does S;ab.

IV. PERTURBATIVE EXPANSION

In summary, the robustness of the regularization scheme
outlined in Sec. II needs to be thoroughly tested
by analyzing carefully the high momentum behavior of
n-point vertices at each order in the loop expansion. In what
follows we will lay out the machinery needed to do this
properly, before returning to these issues in Sec. VI.
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A. Loop expansion

The effective action S, and in fact any gauge invariant
action appearing in this analysis, has a weak coupling
expansion (i.e., loop expansion) in g2 (actually in ℏg2):

S ¼ 1

g2
S0 þ S1 þ g2S2 þ � � � : ð4:1Þ

This means that purely classical actions such as S0, but also
e.g., A, SUV, and Ŝ, carry only a single 1=g2 prefactor.
The form of the ultralocal metrics γab and ηαβ ensure that

the factors of g embedded in the kernels combine with
actions to preserve this property. Therefore we simplify
matters from now on by ignoring the factors of g entirely
and trusting that they can be put back in the form (4.1)
above. (Actually, one can also simplify matters by recog-
nizing that the powers of Λ appearing through these metrics
are as required to make the equations dimensionally
correct, and thus essentially ignore these metrics.) Note
that in the ensuing we will also place the loop index as a
superscript when convenient (so write S0 ≡ S0 etc.).
Similarly to (4.1) we can write down a loop expansion

for the blocking functional Ψa:

Ψa ¼ Ψa
0 þ g2Ψa

1 þ � � � ð4:2Þ

¼
�
−
1

2
KabΣ0

;bþψa
0

�
þg2

�
−
1

2
KabΣ1

;bþψa
1

�
þ���: ð4:3Þ

This can be further refined. If we explicitly compute the RG
time derivatives in (2.67) and use the commutativity of RG
time and functional derivatives, we can recast ψa in the
following way:

ψa ¼ Cabθ;b; ð4:4Þ

where we have introduced the gauge invariant action θ,
given by

θ ≔
η

2
Aþ I þ I;m½WðΔÞ�mnI;n; ð4:5Þ

with WðzÞ ≔ 3
2
XðzÞ þ zX0ðzÞ, which thus has a loop

expansion:

θ0 ¼ I þ I;mWmnI;n; ð4:6Þ

θn ¼ ηn
2
A: ð4:7Þ

This enables us to rewrite (4.3) as

Ψa ¼
�
−
1

2
KabΣ0

;b þ Cabθ0;b

�

þ g2
�
−
1

2
KabΣ1

;b þ Cabθ1;b

�
þ � � � : ð4:8Þ

If we substitute (4.1) and (4.8) into the flow equa-
tion (2.41), we will obtain its loopwise expansion. Thus we
find that the flow of the effective action at the classical level
is given by:

Λ∂ΛS0 ¼
1

2
S0;aKabΣ0

;b − S0;aCabθ0;b; ð4:9Þ

at the one-loop level by:

Λ∂ΛS1 ¼ η1S0 þ
1

2
S1;aKabΣ0

;b þ
1

2
S0;aKabΣ1

;b − S1;aCabθ0;b − S0;aCabθ1;b

þ Tr

�
Ca

c½Λ∂ΛðC−1Þcb� þ Ca
cðC−1Þcb;dΨd

0 þ
δΨa

0

δϕb þ δab − ðB−1Þαγ½Λ∂ΛBγ
β�

− ðB−1ÞαγBγ
β;aΨa

0 −
1

2
ðb−1Þαγ½Λ∂Λbγβ� −

1

2
ðb−1Þαγbγβ;aΨa

0 − 2δαβ

�
; ð4:10Þ

at the two-loop level by:

Λ∂ΛS2 ¼ η2S0 þ
1

2
S2;aKabΣ0

;b þ
1

2
S1;aKabΣ1

;b þ
1

2
S0;aKabΣ2

;b − S2;aCabθ0;b

− S1;aCabθ1;b − S0;aCabθ2;b þ Tr

�
Ca

cðC−1Þcb;dΨd
1 þ

δΨa
1

δϕb −
η1
2
δab þ

η1
2
δαβ

− ðB−1ÞαγBγ
β;aΨa

1 −
1

2
ðb−1Þαγbγβ;aΨa

1

�
; ð4:11Þ

etc. It will prove useful in the subsequent analysis to rewrite (4.10) in a different way:
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Λ∂ΛS1 ¼ η1S0 þ
1

2
S1;aKabΣ0

;b þ
1

2
S0;aKabΣ1

;b − S1;aCabθ0;b − S0;aCabθ1;b

þ Tr

�
Λ∂Λ½lnðC−1Þ�ab þΨd

0

δ

δϕd ½lnðC−1Þ�ab þ
δΨa

0

δϕb − Λ∂Λ½lnBα
β�

−Ψa
0

δ

δψa ½lnBα
β� −

1

2
Λ∂Λ½ln bαβ� −

1

2
Ψa

0

δ

δψa ½ln bαβ�
�
: ð4:12Þ

Here note that we have also discarded the two vacuum
contributions δab and δαβ.

B. Vertex expansion

In the above equations we have actions (Si, Σi, θi) and
kernels (e.g., Kab; Cab; Bγ

β etc.). To analyze their behavior
precisely we break them down into vertices. The above
equations then tell us how these vertices fit together to

determine effective action vertices at each loop order. In
this subsection we sketch the form of these vertices and
their properties [15,16].

1. Action vertex properties

Any gauge invariant action has an expansion in traces
and products of traces [15,16], which, in position space,
takes the following form:

S ¼
X∞
n¼2

1

n

Z
x1…xn

Sμ1…μnðx1…xnÞtrðAμ1ðx1Þ…AμnðxnÞÞ þ
1

2!

X∞
n;m¼2

1

nm

Z
x1…xn

Z
y1…ym

Sμ1…μn;ν1…νmðx1…xn; y1…ymÞ

trðAμ1ðx1Þ…AμnðxnÞÞtrðAν1ðy1Þ…AνmðymÞÞ þ � � � : ð4:13Þ

From this we can see that single trace vertices are defined as
cyclically symmetric in all indices,

Sμ1…μnðx1…xnÞ ¼ Sμnμ1…μn−1ðxn; x1…xn−1Þ; ð4:14Þ

whereas the remaining vertices are separately cyclically
symmetric for each string. However, the latter have been
included for completeness only and are of no interest
to us in the present paper. Therefore, from now on we
will consider only the single trace vertices. The fact that the
action S is real, together with the Hermiticity
of the generators Ta, implies that S�μ1…μnðx1…xnÞ ¼
Sμn…μ1ðxn…x1Þ. This is an expression of charge conjuga-
tion invariance. To exploit translation invariance we
work in momentum space where it implies momentum
conservation:

Sμ1…μnðp1…pnÞδ
�X

i

pi

�

¼
Z
x1…xn

Sμ1…μnðx1…xnÞe−i
P

i
pi·xi : ð4:15Þ

By convention, we take all momenta pointing in toward the
vertex. Note that the Sμ1…μnðp1…pnÞ are well-defined only
when momentum is conserved. For the two-point vertex we
write more simply SμνðpÞ ¼ Sμνðp;−pÞ. Lorentz invari-
ance implies that:

Sμ1…μnðp1;…; pnÞ ¼ ð−1ÞnSμ1…μnð−p1;…;−pnÞ: ð4:16Þ

In other words, vertices with an even/odd number of legs
are even/odd under a change of sign in all its momentum
arguments. Combined with charge conjugation invariance
we thus also have that they are even/odd under reversal of
their arguments

Sμn…μ1ðpn;…; p1Þ ¼ ð−1ÞnSμ1…μnðp1;…; pnÞ: ð4:17Þ

As an example we note that these symmetries tell us that a
three-point action vertex is totally antisymmetric in its
arguments ðp1μ1 ; p2μ2 ; p3μ3Þ.
The flow equation (2.41) manifestly preserves gauge

invariance, namely (2.11), and this allows us to write a set
of “trivial” Ward identities for the effective action S that
relates the longitudinal part of n-point vertices to
differences of (n − 1)-point vertices:

p1μ1Sμ1…μnðp1…pnÞ ¼ Sμ2…μnðp1 þ p2; p3…pnÞ
− Sμ2…μnðp2…pn−1; p1 þ pnÞ:

ð4:18Þ
Since there are no (n < 2)-point vertices, the two-point
vertex is transverse:

pμSμνðpÞ ¼ 0: ð4:19Þ
In the limit of small contracted momentum p1, (4.18) yields
differential Ward identities e.g.,
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Sμνλð0; p;−pÞ ¼ ∂
p
μSνλðpÞ; ð4:20Þ

where we have introduced the shorthand ∂
p
μ ¼ ∂

∂pμ
. This

follows straightforwardly starting from (4.18) after Taylor
expanding its right-hand side:

ϵμSμνλðϵ; p;−p − ϵÞ ¼ Sνλðpþ ϵÞ − SνλðpÞ ð4:21Þ

¼ ϵμ∂
p
μSνλðpÞ þOðϵ2Þ; ð4:22Þ

recovering (4.20) from OðϵÞ. We can proceed similarly
about the four-point vertex to get:

Sμνλσð0; 0; p;−pÞ þ Sνμλσð0; 0; p;−pÞ ¼ ∂
p
μ∂

p
νSλσðpÞ:

ð4:23Þ

The IðnÞ vertices already introduced in Eqs. (2.14)–(2.16)
satisfy the above properties.

2. Kernel vertex properties

The regularization and the flow equation are built up
from constructs where actions are joined together by
kernels to form new compound actions. Generically for
two actions, say R½A� and S½A�, the construct takes the
form R;aKabS;b and involves some kernel Kab½A�.
Since everything is constructed gauge covariantly, these
kernels are themselves necessarily functionals of Aμ.
Although the kernels we need are constructed in a specific
way, as reviewed in Sec. II C, they are special cases
of a more general form of kernel namely any such that
provides a covariantization of some momentum kernel

Kab½A ¼ 0�≡ KμνðpÞ, cf., (2.27), via gauge fields Aμ that
act by commutation. (The latter property is assured here to
the 2-point level that we will require them, in essence by
constructing the kernels using covariant derivatives Dμ, see
Sec. IV B 5 and Appendix A.) Such kernels have vertices
whose properties generalize those for an action and ensure
that the vertices of the compound action continue to satisfy
the correct properties.
Expressions involving such a covariantized kernel Kμν

can be equivalently written in the following way:

R;aKabS;b ≡ 1

Λ2

δR
δAμ

· Kμν ·
δS
δAν

ð4:24Þ

≡ 1

2Λ2
tr
Z
x

Z
y

δR
δAμðxÞ

Kμνðx; yÞ ·
δS

δAνðyÞ
;

ð4:25Þ

where we suppress the functional dependence on the
gauge field. Taylor expanding with respect to the gauge
field in Kab½A� gives a series expansion in nested commu-
tators [15,16,23]:

R;aKabS;b ≡ 1

2Λ2

X
n¼0

Z
x

Z
y

Z
x1���xn

Kμ1…μn;μνðx1…xn; x; yÞ

× tr

�
δR

δAμðxÞ
Aμ1ðx1Þ � � �AμnðxnÞ ·

δS
δAνðyÞ

�
:

ð4:26Þ

Now, expanding the commutators, we obtain:

R;aKabS;b ≡ 1

2Λ2

X
m;n¼0

Z
x

Z
y

Z
x1���xn;y1���ym

Kμ1…μn;ν1…νm;μνðx1…xn; y1…ym; x; yÞ

tr

�
δR

δAμðxÞ
Aμ1ðx1Þ � � �AμnðxnÞ

δS
δAνðyÞ

Aν1ðy1Þ � � �AνmðymÞ
�
: ð4:27Þ

In momentum space, kernel vertices take the following form:

Kμ1…μn;ν1…νm;μνðp1…pn; q1…qm;p; qÞδ
�X

pi þ
X

qi þ pþ q

�

¼
Z
x

Z
y

Z
x1���xn;y1���ym

Kμ1…μn;ν1…νm;μνðx1…xn; y1…ym; x; yÞe−iðp·xþq·yþ
P

i
pi·xiþ

P
j
qj·yjÞ: ð4:28Þ

The two sets of vertices in (4.26) and (4.27) are related through “interleave” identities (also called “coincident line”
identities [15,16,23]) which here just express the fact that covariantization is via commutation:

Kμ1…μn;ν1…νm;μνðp1…pn; q1…qm;p; qÞ ¼ ð−1Þm
X

interleaves

Kα1…αnþm;μνðk1…kmþn;p; qÞ: ð4:29Þ

In the above the sum runs over all the possible arrangements of the combined sequence of pμ1
1 …pμn

n and qν11 …qνmm , in which
the pmomenta remain ordered with one another, whereas the qmomenta order is reversed (via the so-called shuffle productP

kα11 …kαmþn
mþn ¼ pμ1

1 …pμn
n ⧢ qνmm …qν11 ).
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The case where m ¼ n ¼ 0 (thus leaving a double
semicolon) is of course just the momentum kernel again:

K;;μνð; ;p;−pÞ ¼ KμνðpÞ: ð4:30Þ

We write the m ¼ 0 case more simply as:

Kμ1…μn;;μνðp1…pn; ;p; qÞ ¼ Kμ1…μn;μνðp1…pn;p; qÞ;
ð4:31Þ

then from (4.29) the n ¼ 0 case is given by

K;ν1…νm;μνð;q1…qm;p;qÞ¼ð−1ÞmKνm…ν1;μνðqm…q1;p;qÞ:
ð4:32Þ

A useful special case of (4.29) is

Kμ;ν;αβðp; q; r; sÞ ¼ −Kμν;αβðp; q; r; sÞ − Kνμ;αβðq; p; r; sÞ:
ð4:33Þ

Kernel vertices obey Ward identities closely similar to
(4.18) [15,16]. Furthermore the contracted momentum can
reach the end of the string of momenta, where it attaches to
the outer momentum:

p1μ1Kμ1…μn;ν1…νm;μνðp1…pn; q1…qm;p; qÞ
¼ Kμ2…μn;ν1…νm;μνðp1 þ p2; p3…pn; q1…qm;p; qÞ
− Kμ2…μn;ν1…νm;μνðp2…pn; q1…qm;p1 þ p; qÞ: ð4:34Þ

Again one can derive differential Ward identities [cf., (4.20)
and (4.23)]. We list below some of the more useful ones:

Kλ;μνð0;−p; pÞ ¼ ∂
p
λKμνðpÞ; ð4:35Þ

Kλσ;μνð−p; 0; 0; pÞ ¼ ∂
p
σKλ;μνð−p; 0; pÞ: ð4:36Þ

3. Two-point action vertices

Combining these definitions with those of Sec. II one can
derive the expressions for the vertices that are needed and
work through the classical and quantum corrections sys-
tematically. Thus for example, from the definition (2.29) of
the quasilocal action A, combined with that of X, (2.30),
and the fundamental two-point vertex Ið2Þ in (2.14), or
alternatively directly from (2.51), one gets its two-point
vertex:

Aμ1μ2ðpÞ ¼ 2□μ1μ2ðpÞFAðpÞ; FAðpÞ ≔
1

cp
: ð4:37Þ

Armed with this one finds from (2.59) the two-point vertex
for the seed action:

Ŝμ1μ2ðpÞ¼2□μ1μ2ðpÞFŜðpÞ; FŜðpÞ≔
p̃2þcp

c2p
; ð4:38Þ

and from (2.60) the classical effective action S0 two-point
vertex:

S0μ1μ2ðpÞ ¼ 2□μ1μ2ðpÞFðpÞ; FðpÞ ≔ 1þ p̃2

c2p
: ð4:39Þ

From the definition (2.58) of Σ and X one gets immediately
its classical two-point vertex:

Σ0
μ1μ2ðpÞ¼2□μ1μ2ðpÞFΣðpÞ; FΣðpÞ≔1−

1

cp
: ð4:40Þ

Finally from its definition (4.5) we get the classical two-
point vertex for the action θ:

θ0μ1μ2ðpÞ ¼ 2□μ1μ2ðpÞFθðpÞ; FθðpÞ ≔
cp − 2p̃2c0p

c2p
:

ð4:41Þ

4. Zero-point kernel functions

The zero-point vertices for the simple (i.e., noncom-
pound) kernels X, Y, B, b, t, κ, and W, follow straight-
forwardly from their definitions in (2.30), (2.55), (2.56),
(2.69), and (4.5), by replacing their argument (Δ or Δk as
appropriate) by p̃2, for example:

κðpÞ ¼ 2
cp − 2p̃2c0p
c2p þ p̃2

: ð4:42Þ

(The zero-point X kernel was in effect already used to
derive the two-point action vertices above.) Those for the
compound kernels follow almost as straightforwardly. Thus
the zero point vertex for ðC−1Þab follows from its definition
(2.54) since the generator of gauge transformations (2.9)
collapses to a partial derivative in this case. Writing

C−1
μν ðpÞ ¼

1

CTðpÞ
□μνðpÞ
p2

þ 1

CLðpÞ
pμpν

p2
; ð4:43Þ

we have that its longitudinal and transverse functions are
given by:

CTðpÞ ≔
cp

cp þ p̃2
; CLðpÞ ≔

1

1þ p̃2Yp
: ð4:44Þ

Note that despite appearances in (4.43), the kernel has a
Taylor expansion in pμ (is quasilocal) because Y is
quasilocal and cp is normalized to cð0Þ ¼ 1 [cf., below
(2.30)]. Inverting gives us the zero-point vertex for Ca

b:
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CμνðpÞ ¼ CTðpÞ
□μνðpÞ
p2

þ CLðpÞ
pμpν

p2
; ð4:45Þ

which is also quasilocal for the same reasons. Then that for
K follows from (2.68):

KμνðpÞ ¼ KTðpÞ
□μνðpÞ
p2

þKLðpÞ
pμpν

p2
;

KIðpÞ ≔ κðpÞCIðpÞ ðI ¼ T; LÞ: ð4:46Þ

5. Higher-point vertices

The n-point vertices for the simple kernels can be
computed by Taylor expanding in Δ or Δk as appropriate.
Keeping only n instances of Aμi as in (4.26), the momentum
dependence can then be resummed to give the explicit
formula. The vertices for those that are simply functions of
Δk ¼ −D2=Λ2—namely Y, B, b, and t—have vertices that
have already been computed this way in Sec. 5 of Ref. [16].
We just quote the results:

Yμðp; r; sÞ ¼ ðr − sÞμ
Yr − Ys

p · ðr − sÞ ; ð4:47Þ

Yμνðp; q; r; sÞ ¼ δμν
Ys − Yr

s2 − r2
− ðpþ 2rÞμðqþ 2sÞν

ΞYðp; q; r; sÞ; ð4:48Þ

ΞYðp; q; r; sÞ ¼
Ysþq

q · ðqþ 2sÞp · ðpþ 2rÞ

þ 1

s2 − r2

�
Yr

p · ðpþ 2rÞ −
Ys

q · ðqþ 2sÞ
�
;

ð4:49Þ

where we have introduced the shorthand ΞY , and where for
the others one simply replaces Y by B, b, or t as appropriate.
We note that these equations need care at special momenta
where denominators vanish. For example the correct equa-
tion for Yμνðp;−p; r;−rÞ follows from limϵ→0 Yμνðp;−p−
ϵ; rþ ϵ;−rÞ. Againwe refer to Sec. 5 ofRef. [16] for details.
The vertices for the other simple kernels X, κ andW follow
from using a similar strategy. We only have to take into
account the presence of Fμν when expanding in a series of
powers of Δμν, cf., (2.25). Thus we find:

Xλ;μνðp; r; sÞ ¼
�
ðr − sÞλδμν þ 4δλ½μpν�

�
Xr − Xs

p · ðr − sÞ ;

ð4:50Þ

Xλσ;μνðp; q; r; sÞ ¼ ðδμνδλσ þ 4δλ½μδν�σÞ
Xs − Xr

s2 − r2
þ ð16δλ½μpϵ�δσ½ϵqν� − 4δλ½μpν�ðqþ 2sÞσ

þ 4ðpþ 2rÞλδσ½μqν� − δμνðpþ 2rÞλðqþ 2sÞσÞΞXðp; q; r; sÞ: ð4:51Þ

Here T ½μν� ≔ 1
2
ðTμν − TνμÞ. As above, those for κ and W follow simply by replacing the name.

With the above building blocks and techniques it is a tedious but straightforward exercise to arrive at explicit expressions
for compound kernel and action n-point vertices. For example from (2.29), one finds

Aμνλðp; q;−p − qÞ ¼ Iμνλðp; q;−p − qÞ þ 1

2Λ2
½Iαμνð−p − q; p; qÞXpþqIαλðpþ qÞ

þ Iανλðp; q;−p − qÞXpIαμðpÞ þ Iαλμðq;−p − q; pÞXqIανðqÞ þ IαμðpÞXν;αβðq;p;−p − qÞIβλðpþ qÞ
þ IανðqÞXλ;αβð−p − q; q; pÞIβμðpÞ þ Iαλðpþ qÞXμ;αβðp;−p − q; qÞIβνðqÞ�: ð4:52Þ

Using (2.54), this is sufficient to construct the one-point vertex for the compound kernel ðC−1Þab:

C−1
μ;αβðp; r; sÞ ¼

1

2Λ2
Aμβαðp; s; rÞ þ

1

Λ2
fδμαsβYs − rαδμβYr − rαsβYμðp; r; sÞg; ð4:53Þ

and from this we also have the C one-point vertex:

Cμ;αβðp; r; sÞ ¼ −CαγðrÞC−1
μ;γδðp; r; sÞCδβðsÞ: ð4:54Þ

We give further details on the construction of the compound kernels in Appendix Awhere we also prove that up to the two-
point level the compound kernels obey the interleave identities (4.29). Note that, as a consequence of their symmetric
definition as operators, and the interleave identities, all the kernel one-point vertices so far treated are antisymmetric under
rα ↔ sβ, for example:
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C−1
μ;αβðp; r; sÞ ¼ C−1

;μ;βαð;p; s; rÞ ¼ −C−1
μ;βαðp; s; rÞ: ð4:55Þ

The definition (2.68), Kab ¼ Ca
cκ

cb, is not symmetric, and
thus its one-point vertex does not obey this identity.
However, using (4.54), and (4.50) with X ↦ κ, we get
an explicit expression for it also:

Kμ;αβðp; r; sÞ ¼ Cμ;αβðp; r; sÞκðsÞ þ CαγðrÞκμ;γβðp; r; sÞ:
ð4:56Þ

We should distinguish this from the vertex made from the
Hermitian conjugate κacCc

b:

K⃖μ;αβðp; r; sÞ ¼ κðrÞCμ;αβðp; r; sÞ þ κμ;αγðp; r; sÞCγβðsÞ;
ð4:57Þ

and the symmetrized combination

K
↔

μ;αβðp;r;sÞ¼
1

2

�
Kμ;αβðp;r;sÞþ K⃖μ;αβðp;r;sÞ

�
; ð4:58Þ

coming from 1
2
ðCa

cκ
cb þ κacCc

bÞ, since these versions can
also appear. As a consequence of the interleave identities,

K
↔

μ;αβðp; r; sÞ obeys (4.55), while the directed versions
satisfy

Kμ;αβðp; r; sÞ ¼ −K⃖μ;βαðp; s; rÞ: ð4:59Þ

6. Large momentum behavior

As we will see in Sec. VI, these vertices play a closely
similar role to those of Feynman rules. In particular in one-
loop diagrams, three-point vertices will carry a loop
momentum q and external momentum p and thus have
arguments p, q, and −p − q. Therefore the large momen-
tum behavior that actually determines whether the flow
equation is properly regularized is one where q → ∞ while
keeping p fixed. As before, it is sufficient to characterize
the large momentum behavior in terms of the power of cq,
since the proposed regularization structure works only if
the quantum corrections are regularized overall by some
negative power of cq.
In fact the three-point action vertices2 Sμνλðp; q;−p − qÞ

diverge at least as rapidly in terms of cq, as their
corresponding two-point action vertices SμλðqÞ. This fol-
lows from the Ward identity:

qνSμνλðp; q;−p − qÞ ¼ SμλðpÞ − Sμλðpþ qÞ: ð4:60Þ

Similarly the degree of divergence of a one-point kernel is
set by the zero-point kernel. If q goes from end to end, the
one-point kernel behaves with at least the same power of cq
as Kq:

pλKλ;μνðp; q;−p − qÞ ¼ KμνðqÞ − Kμνðqþ pÞ: ð4:61Þ

But if q passes through the side, the large q behavior
depends on whether Kq diverges or decays:

qλKλ;μνðq;p;−p − qÞ ¼ KμνðpÞ − Kμνðqþ pÞ: ð4:62Þ

If Kq diverges, then the one-point kernel diverges at least as
rapidly, while if Kq decays then Kλ;μνðq;p;−p − qÞ cannot
decay, because the right-hand side of the Ward identity has
KμνðpÞ which is independent of q.
However, Ward identities only set a lower bound on the

power of cq, because there remains the possibility that
vertices have a worse behaving transverse part. We now pin
down the precise behavior as a power of cq, i.e., both
longitudinal and transverse parts.3

We start by analyzing Að3Þ. This is displayed in (4.52).
The fundamental vertices IðnÞ in (4.52) only provide some
power of q at worst, cf., (2.14)—(2.16), so Að3Þs large q
behavior is set by its kernels. From (2.30) we have
Xq ≈ Xpþq ≈ c−1q , and from (4.50) we see that all the X
one-point vertices in (4.52) also diverge in this way. Two
terms in Að3Þ do not diverge with the cutoff, namely the pure
I term (i.e., the first term) and the term containing Xp on the
second line, but the others dominate, so overall Að3Þ ≈ c−1q ,
as previously assumed, and matching its two-point vertex
(2.51) as per the minimum required by the Ward identity.
Since from (4.6) the classical action θ0 has the same

formula as (4.52), only with the replacement X ↦ W, we
see immediately that its three-point vertex also ≈c−1q . In
fact, given that the quantum correction is ∝ A, this holds for
the full θð3Þ.
We can borrow the same formula also for the seed action

Ŝ. From (2.59) we replace I ↦ A and X ↦ 1 on the right-
hand side of (4.52) (and so delete the three terms involving
the X one-point vertex). Since we have already established
that Aμνλðp; q;−p − qÞ ≈ c−1q , we see that indeed
Ŝμνλðp; q;−p − qÞ ≈ c−2q again as previously assumed
and enforced by the Ward identity.
It is not hard to see that these estimates hold also for the

higher point AðnÞ, θðnÞ and ŜðnÞ action vertices, where again
two of their momentum arguments diverge as ∼� q with
the others held fixed. For the four-point example, their
explicit formulas can be read off from the right hand side of

2Recall that three-point action vertices are totally antisym-
metric so the order of the arguments is irrelevant.

3For a detailed analysis of the large momentum behavior of
arbitrary n higher-point (simple) kernel vertices see Sec. 5 of
Ref. [16].
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(6.11). The same is true for higher point kernel vertices
where the zero-point kernel diverges at large momentum.
However we will only use the estimates for the three-point
vertices in this paper.
At one loop we need also the classical effective action

three-point vertex and this in turn depends on the kernelsK
and C and their one-point vertices [see Eq. (6.10)]. From
(4.45) we clearly have CαβðqÞ ≈ cq (recall Yq ≈ c−1q ).
Clearly from (4.53), the C−1 one-point vertex ≈c−1q what-
ever the arrangement of the arguments p, q, and −p − q,
this being the minimum imposed by the Ward identity.
But from (4.54) the arrangement of the arguments matters
for C:

Cμ;αβðp; q;−p − qÞ ≈ Cq ≈ cq; ð4:63Þ

Cν;αβðq;p;−p − qÞ ≈ 1; ð4:64Þ

again precisely as predicted by the Ward identities. One can
check using the explicit formulas from the previous section
that the behavior predicted by the Ward identities, holds for
all the kernel vertices whose zero-point kernels decay at
large momentum, namely t, κ, C and K. In particular we
have also

Kμ;αβðp; q;−p − qÞ ≈Kq ≈ c2q; ð4:65Þ

Kν;αβðq;p;−p − qÞ ≈ 1: ð4:66Þ

V. REGULARIZATION OF HIGHER POINT
CLASSICAL VERTICES

As we saw in Sec. II, the space-time trace terms are
designed to implement PV regularization of the SUV ≈ c−2q
part. We will see in Sec. VI D that there are subtleties with
this however. The remaining regularization works provided

Sðn≥3Þ
0 corrections diverge slower than c−2q . This was the

key property set out in Eqs. (2.60) and (2.63), where it was

assumed that in fact SðnÞ
0 ≈ c−1q , or equivalently ΣðnÞ

0 ≈ c−1q .
For the three-point we can now state this more precisely as:

Σ0
βναðqþ p;−p;−qÞ ≈ c−1q : ð5:1Þ

In this section we confirm in detail that this estimate holds
true. It is then clear that the estimates are correct for all the

higher point ΣðnÞ
0 vertices also.

In order to compute Σð3Þ
0 we need the classical action

three-point vertex. The latter follows from the flow equa-
tion ΛDΛS0 ¼ 0. The analysis is simpler if instead we
recast it directly as a flow for Σ0. Taking the classical limit
(i.e., Oð1=g2Þ in the loop expansion) of (2.70), and using
the identity (2.66), we have

_Σ0 ¼ − _Aþ 1

2
Σ0
;aKabΣ0

;b þ
1

2
A;aκ

abΣ0
;b − Σ0

;aCabθ0;b: ð5:2Þ

Expanding to the three-point level:

_Σ0
μνλðp; q;−p − qÞ ¼ − _A0

μνλðp; q;−p − qÞ þ 1

2Λ2
Σ0
μαðpÞKTðpÞΣ0

ανλðp; q;−p − qÞ

þ 1

2Λ2
Σ0
μαðpÞK

↔

ν;αβðq;p;−p − qÞΣ0
βλðpþ qÞ þ 1

4Λ2
Σ0
αμðpÞκðpÞAανλðp; q;−p − qÞ

þ 1

4Λ2
Σ0
μναðp; q;−p − qÞκðpþ qÞAαλðpþ qÞ þ 1

4Λ2
Σ0
μαðpÞκν;αβðq;p;−p − qÞAβλðpþ qÞ

−
1

4Λ2
Σ0
μαðpÞκλ;αβð−p − q;p; qÞAβνðqÞ −

1

2Λ2
Σ0
αμðpÞCTðpÞθ0ανλðp; q;−p − qÞ

−
1

2Λ2
Σ0
μναðp; q;−p − qÞCTðpþ qÞθ0βλðpþ qÞ − 1

2Λ2
Σ0
μαðpÞCν;αβðq;p;−p − qÞθ0βλðpþ qÞ

þ 1

2Λ2
Σ0
μαðpÞCλ;αβð−p − q;p; qÞθ0βνðqÞ þ cycles: ð5:3Þ

Here we have used properties of the kernels. First of all,
if we contract a zero-point kernel into a two-point vertex,
e.g., as on second line, then only its transverse part
contributes because of the transversality of the two-
point function. In addition to this, we used that Ka

b,
Ca

b, and κab, kernel one-point vertices obey interleave
identities (4.29).
Those terms that depend on Σð3Þ

0 in (5.3) we take to
the left of the equation. Their multiplying factors collect
into

ZμνðpiÞ ¼ KTðpiÞΣ0
μνðpiÞ ð5:4Þ

for each external momentum pi, as follows from the
identity

CTðpÞθ0μνðpÞ ¼
1

2
KTðpÞS0μνðpÞ ð5:5Þ

(this can be shown from their explicit form given in
Secs. IV B 3 and IV B 4) and κðpÞAμνðpÞ ¼ KTðpÞ
ŜμνðpÞ, which is the identity (2.66) at two-point level.
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Using the results of the previous section it is straightfor-
ward to verify explicitly that the remaining terms, which we
call Tμνλðp;q;−p−qÞ, diverge as Tμνλðp;q;−p−qÞ≈c−1q .
Indeed, given that in (5.2) the action vertices diverge as c−1q ,
the only way to produce a contribution that diverges
faster than this would be to have the high momentum
flow, q, go through both action factors. But this requires q

to flow through the kernel from end to end, thus
reducing the divergence by at least a factor of cq again
(cq for κ and C, while K would provide c2q). In this way we

verify ΣðnÞ
0 ≈ c−1q for all n, i.e., (2.64) at the classical

level.
The flow at the three-point level can be written

now as

Λ∂ΛΣ0
μνλðp; q;−p − qÞ − 1

4Λ2
½ZμαðpÞΣ0

ανλðp; q;−p − qÞ þ ZναðqÞΣ0
αλμðq;−p − q; pÞ þ Zλαðpþ qÞΣ0

αμνð−p − q; p; qÞ�
¼ Tμνλðp; q;−p − qÞ: ð5:6Þ

This is in a form where it can also be integrated with respect to Λ. Tμνλðp; q;−p − qÞ is a known function which can be
constructed explicitly from the vertices discussed in the previous sections. The terms in square brackets on the left-hand side
of (5.6) provide the integrating factor for the differential equation. Regarding ZμνðpÞ as a matrix ZðpÞ, we define

ζμνðpÞ¼
�
exp

Z
∞

Λ

dΛ1

4Λ3
1

ZðpÞ
�
μν

¼δμνþ
□μνðpÞ
p2

�
−1þexp

Z
∞

Λ

dΛ1

2Λ1

p̃2KTðpÞFΣðpÞ
�
; ð5:7Þ

where for the second equality we use (5.4) and (4.40). The integrated Σð3Þ
0 is then given by

Σ0
μνλðp; q;−p − qÞ ¼ −ζ−1μα ðpÞζ−1νβ ðqÞζ−1λγ ð−p − qÞ

Z
∞

Λ

dΛ1

Λ1

ζαα0 ðpÞζββ0 ðqÞζγγ0 ð−p − qÞTα0β0γ0 ðp; q;−p − qÞ; ð5:8Þ

where ζ−1μν ðpÞ is of course given by the same expression as
(5.7) except for a minus sign in the exponential, and it is
understood that all terms under a Λ1-integral are evaluated
at cutoff scale Λ1. Note that the integration constant
vanishes because, by gauge invariance and dimensions,
Σ0 vanishes in the limit Λ → ∞.4 Expanding the exponen-
tial in (5.7) we see that all the corrections that arise from
these integrating factors are also transverse. In this sense
the full vertex involves in fact an exponentiation of the
equations of motion. It does not affect the divergence with
cq however, since ZðqÞ vanishes in the large q limit. The
integrated version of the n ≥ 4-point vertices can be
explicitly written down in a similar way.

VI. ONE LOOP BETA FUNCTION

To see why it is the large q behavior of the above vertices
that is important, and to provide a test of the formalism, we
focus on the simplest quantum correction: the one-loop
contribution to the effective action two-point vertex. Since
gauge invariance is exactly preserved this computation
should, if the flow equation is regularized correctly, also
yield the one-loop beta function (i.e. β1 ¼ η1=2). To extract
it, we need to define the coupling constant gðΛÞ beyond
classical level. We do this by imposing a convenient
renormalization condition:

S ¼ 1

2g2ðΛÞ tr
Z
x
F2
μν þOð∂3Þ; ð6:1Þ

which means that the full two-point function of S at Oðp2Þ
is given by:

Sμ1μ2ðpÞjOðp2Þ ¼ 2□μ1μ2ðpÞ: ð6:2Þ

Extracting the Oðp2Þ part of (4.39) we have that:

S0μ1μ2ðpÞjOðp2Þ ¼ 2□μ1μ2ðpÞ ¼ Sμ1μ2ðpÞjOðp2Þ: ð6:3Þ

This means that the renormalization condition at Oðp2Þ is
already saturated at tree level, and, thus, all higher order
loop contributions must vanish,

Snμ1μ2ðpÞjOðp2Þ ¼ 0; ∀ n ≥ 1: ð6:4Þ

Since Σ0 ¼ S0 − Ŝ and Σn ¼ Sn, we also obtain that:

Σn
μ1μ2ðpÞjOðp2Þ ¼ 0; ∀ n ≥ 1: ð6:5Þ

The remaining action θ behaves differently with respect to S
andΣ. Its loopwise expansionwas already given in (4.7) and
from there we see that at Oðp2Þ we have a nonvanishing
higher loop contribution from its two-point vertex:

4As can be seen by Taylor expanding (4.40) for example, Σ0

has a minimum of four space-time derivatives and thus has an
overall 1=Λ2 factor.
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θnμ1μ2ðpÞjOðp2Þ ¼ ηn□μ1μ2ðpÞ: ð6:6Þ

We computed explicitly all the relevant classical action two-
point vertex functions in Sec. IV B 3.
At this point we are able to recast (4.12) as an algebraic

equation for β1. If we look at the flow equation of S1μνðpÞ
and restrict it to Oðp2Þ, we obtain:

−4β1□μνðpÞ ¼ Tr
�
Λ∂Λ½lnðC−1Þab� − Λ∂Λ½lnBα

β�

−
1

2
Λ∂Λ½ln bαβ� þ Ψd

0

δ

δϕd ½lnðC−1Þab�

− Ψa
0

δ

δϕa ½lnBα
β� −

1

2
Ψa

0

δ

δϕa ½ln bαβ�

þ δΨa
0

δϕb

�
2-pt:function
atOðp2Þ

: ð6:7Þ

Here we have used the requirement imposed on us by the
renormalization condition (6.1) and the fact that Σ0

μνðpÞ is
Oðp4Þ, whereas θ0μνðpÞ and S0μνðpÞ are Oðp2Þ. The only
task we are left with is to evaluate the right-hand side of
(6.7), and then β1 can be extracted from its coefficient.

A. Classical flow equations

The classical flow equation (4.9) can equivalently be
written as follows:

Λ∂ΛS0 ¼
1

2Λ2

δS0

δAα
·Kαβ ·

δΣ0

δAβ
−

1

Λ2

δS0

δAα
· Cαβ ·

δθ0

δAβ
: ð6:8Þ

The right-hand side of the above expression has two terms
with similar structure, and thus, to write the flow equation
for some n-point vertex, one just needs to compute the
contributions coming from one term as the contributions
coming from the second one follow from the former by a
mere relabeling. We write below the flow equations for
those vertices that are relevant for the computation of β1.
The flow equation for S0μ1μ2ðpÞ takes the following form:

Λ∂ΛS0μ1μ2ðpÞ ¼
1

4Λ2
S0αμ1ðpÞKTðpÞΣ0

αμ2ðpÞ

−
1

2Λ2
S0αμ1ðpÞCTðpÞθ0αμ2ðpÞ þ ðμ1 ↔ μ2Þ:

ð6:9Þ

By gauge invariance and dimensions, S0μνðpÞ (and in fact
any two-point function) must have a structure similar to
(4.39). If we substitute this into the above flow equation
and solve for some function FðpÞ, we recover the same
result as stated in (4.39). This is an extra check that the flow
equation (6.9) is derived in a consistent manner.
The flow equation for S0μ1μ2μ3ðp1; p2; p3Þ is given by:

2Λ∂ΛS0μ1μ2μ3ðp1; p2; p3Þ ¼
1

4Λ2
½S0αμ1ðp1ÞKμ2;αβðp2;p1; p3ÞΣ0

βμ3
ðp3Þ − S0αμ1ðp1ÞKμ3;αβðp3;p1; p2ÞΣ0

βμ2
ðp2Þ

þ S0αμ1μ2ðp3; p1; p2ÞKTðp3ÞΣ0
αμ3ðp3Þ þ S0αμ1ðp1ÞKTðp1ÞΣ0

αμ2μ3ðp1; p2; p3Þ�

−
1

2Λ2
½K ↦ C;Σ ↦ θ� þ cycles; ð6:10Þ

where the terms inside brackets from the last line follow from those written explicitly inside brackets above them after the
relabeling indicated. One can proceed similarly to derive the flow equation for S0μ1μ2μ3μ4ðp1; p2; p3; p4Þ:

Λ∂ΛS0μ1μ2μ3μ4ðp1; p2; p3; p4Þ ¼
1

4Λ2
½S0αμ1μ2μ3ðp4; p1; p2; p3ÞKTðp4ÞΣ0

αμ4ðp4Þ
þ S0αμ1μ2ð−p1 − p2; p1; p2ÞKαβðp1 þ p2ÞΣ0

βμ3μ4
ð−p3 − p4; p3; p4Þ

þ S0αμ1ðp1ÞKTðp1ÞΣ0
αμ2μ3μ4ðp1; p2; p3; p4Þ

þ S0αμ1ðp1ÞKμ2;αβðp2;p1; p3 þ p4ÞΣ0
βμ3μ4

ð−p3 − p4; p3; p4Þ
− S0αμ1ðp1ÞKμ4;αβðp4;p1; p2 þ p3ÞΣ0

βμ2μ3
ð−p2 − p3; p2; p3Þ

þ S0αμ1μ2ð−p1 − p2; p1; p2ÞKμ3;αβðp3;p1 þ p2; p4ÞΣ0
βμ4

ðp4Þ
− S0αμ1μ2ð−p1 − p2; p1; p2ÞKμ4;αβðp4;p1 þ p2; p3ÞΣ0

βμ3
ðp3Þ

þ S0αμ1ðp1ÞKμ2μ3;αβðp2; p3;p1; p4ÞΣ0
βμ4

ðp4Þ − S0αμ1ðp1ÞKμ2μ4;αβðp2; p4;p1; p3ÞΣ0
βμ3

ðp3Þ
− S0αμ1ðp1ÞKμ4μ2;αβðp4; p2;p1; p3ÞΣ0

βμ3
ðp3Þ þ S0αμ1ðp1ÞKμ4μ3;αβðp4; p3;p1; p2ÞΣ0

βμ2
ðp2Þ�

−
1

2Λ2
½K ↦ C;Σ ↦ θ� þ cycles: ð6:11Þ
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In deriving these, we again exploit the interleave identities
(4.29) up to and including the two-point level, as proven in
Appendix A.
Although we will not need them in this paper, let us note

that these equations can be integrated to give explicit
formulas for the (integrated) classical effective action
vertices. Taking all the Sð3Þ0 terms to the left hand side in

(6.10), including the Sð3Þ0 part of Σð3Þ
0 , we find the same

integrating factors ZμiαðpiÞ as in (5.4). Thus the flow for

Sð3Þ0 can be similarly integrated. This results in an explicit

formula for Sð3Þ0 of the same form as (5.8)—except that in
this case there is also an integration constant, namely
Iμ1μ2μ3ðp1; p2; p3Þ. The latter follows because the Λ → ∞

limit of Sð3Þ0 is Ið3Þ, as e.g., can be seen from (6.1) and

(2.12). Similarly, taking all Sð4Þ0 terms to the left-hand side
in (6.11) gives the same integrating factors and allows its

flow to be integrated up to an explicit formula for Sð4Þ0 . This
time on the right-hand side we have instances of the just

computed Sð3Þ0 vertex, and now the integration constant is
Ið4Þ as in (2.16).

B. Trace terms

To evaluate the trace terms in (6.7) above one needs to
expand the log terms. The vertex expansion for the Bα

β

terms, for example, can be done in the following way:

Tr lnBα
β ≡ Tr ln

�
Br

z}|{OðA0
μÞ

þ Bμðp; r; sÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{OðA1

μÞ

þ Bμνðp; q; r; sÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{OðA2

μÞ

þ…

�
ð6:12Þ

¼
Z
r
lnBr þ Tr ln½1þ B−1

r Bμðp; r; sÞ þ B−1
r Bμνðp; q; r; sÞ þ…� ð6:13Þ

¼ 2N
Z
q
B−1
q Bμνðp;−p; q;−qÞ −

1

2
B−1
q Bμðp; q;−q − pÞB−1

pþqBνð−p;pþ q;−qÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OðA2

μÞ

þ…; ð6:14Þ

where N accounts for group combinatorics and the extra
factor of two for the pμ ↔ −pν symmetry (or, equivalently,
for the definition of the two-point function). Here note that
in going from the second to the third line we have discarded
the log term because it is just a vacuum contribution to the
flow equation (or it is differentiated away), and we have
also Taylor expanded the remaining log term using

lnð1þ xÞ ¼ x −
x2

2
þ � � � : ð6:15Þ

Similar expressions can be written for ðC−1Þab and bαβ
terms, respectively.

To evaluate the remaining trace term δΨa
0=δϕ

a it is useful
to use its covariant representation:

δΨa
0

δϕa ¼ δ

δϕa

�
−
1

2
KabΣ0

;b þ Cabθ0;b

�
ð6:16Þ

≡ −
1

2Λ2

δ

δAα
·Kαβ ·

δΣ0

δAβ

þ 1

Λ2

δ

δAα
· Cαβ ·

δθ0

δAβ
: ð6:17Þ

This allows us to compute it at the two-point level using
(2.20), yielding:

δΨa
0

δϕa






2-pt:function

¼ 1

2Λ2

Z
q

�
2

�
N −

1

N

�
CαβðqÞθ0βαμνðq;−q; p;−pÞ −

1

N
CαβðqÞθ0βμανðq; p;−q;−pÞ

þ 2NCμ;αβðp; q;−p − qÞθ0βναðqþ p;−p;−qÞ þ 2NCμν;αβðp;−p;q;−qÞθ0βαðqÞ

− 2NCμα;αβðp;−q; q;−pÞθ0βνðpÞ
�
−

1

4Λ2
½C ↦ K; θ ↦ Σ�: ð6:18Þ
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This can be further refined. If we split the kernels into their
transverse and longitudinal parts, respectively, then one can
check explicitly that theOð1=NÞ longitudinal pieces cancel
each other after using Ward identities. One can also show
that, under the q integral and by using Lorentz invariance
(q → −q, pμ ↔ −pν etc.) together with (4.6), (2.59), and
(6.11), the following identities hold:

θ0αμανðq; p;−q;−pÞ ¼ −2θ0ααμνðq;−q; p;−pÞ; ð6:19Þ

Σ0
αμανðq; p;−q;−pÞ ¼ −2Σ0

ααμνðq;−q; p;−pÞ: ð6:20Þ

This means that the Oð1=NÞ transverse pieces vanish as
well, and thus (6.18) becomes:

δΨa
0

δϕa






2-pt:function

¼ N
Λ2

Z
q
fCαβðqÞθ0βαμνðq;−q; p;−pÞ

þ Cμ;αβðp; q;−p − qÞθ0βναðqþ p;−p;−qÞ
þ Cμν;αβðp;−p; q;−qÞθ0βαðqÞ
− Cμα;αβðp;−q; q;−pÞθ0βνðpÞg

−
N
2Λ2

½C ↦ K; θ ↦ Σ�: ð6:21Þ

C. Two-point vertex at zeroth
order in momentum

If the one-loop two-point vertex is transverse and
quasilocal, as it should be, it can have no momentum
independent part, i.e., atOðp0Þ it ought to vanish. However
this property is strictly only true if the flow equation is
properly regulated since, as we will see, it would then
follow from the fact that this contribution can be cast as a
momentum-space surface integral at large q, which van-
ishes if properly regularized. Actually with sufficient care
the construction proposed in Ref. [38] does ensure this, up
to a divergent term that can be discarded since it is Λ
independent but differentiated by Λ, because it in fact
depends only on two-point action vertices or zero-point
kernels, as we will see.
Thus we turn to computing the two-point Oðp0Þ part of

the one-loop flow equation (4.12), or equivalently (4.10).
As we have just noted, it ought to vanish. The first line on
the right-hand side is clearly of Oðp2Þ and above and can
therefore be discarded. This means that the only contribu-
tion comes from the functional trace terms, and hence, at
Oðp0Þ, the right-hand side of (4.12) becomes:

Tr

�
Λ∂Λ½lnðC−1Þab�−Λ∂Λ½lnBα

β�−
1

2
Λ∂Λ½lnbαβ�þ

δΨa
0

δϕb þΨm
0

δ

δϕm ½lnðC−1Þab�−Ψm
0

δ

δϕm ½lnBα
β�−

1

2
Ψm

0

δ

δϕm ½lnbαβ�
�

2-pt:function
atOðp0Þ

:

ð6:22Þ

Moreover, one can easily see that the second line above does not contribute at Oðp0Þ because the blocking functional part
(i.e.,Ψm

0 ) has either a two-point function residue which is at least ofOðp2Þ, or a three-point function residue which is at least
OðpÞ (furthermore it is multiplied by a term that is antisymmetric in q, and hence vanishes under the q integral). The first
three terms can be computed using trace expansions as described in Sec. VI B above. For example, using (6.12) we will
obtain the following:

TrfΛ∂Λ½lnBα
β�g2-pt:function

atOðp0Þ
≡ 2NΛ∂Λ

Z
q
B−1
q Bμνð0; 0; q;−qÞ −

1

2
B−1
q Bμð0; q;−qÞB−1

q Bνð0; q;−qÞ: ð6:23Þ

Here note that quasilocality ensures that the p → 0 limit is straightforward. The above expression can be simplified by using
differential Ward identities:

TrfΛ∂Λ½lnBα
β�g2-pt:function

atOðp0Þ
≡ 2NΛ∂Λ

Z
q
B−1
q

1

2
∂
q
μ∂

q
νBq −

1

2
B−1
q ∂

q
μBqB−1

q ∂
q
νBq ð6:24Þ

¼ NΛ∂Λ
Z
q
∂
q
μ∂

q
ν ½lnBq�: ð6:25Þ

Similar expressions can be computed for C and b terms, respectively. The remaining term can be computed starting from
(6.21) and following a similar strategy, yields:

δΨa
0

δϕa j2-pt:functionatOðp0Þ
¼ N
Λ2

Z
q

�
CαβðqÞ

1

2
∂
q
μ∂

q
νθ0βαðqÞþ∂

q
μCαβðqÞ∂qνθ0βαðqÞþ

1

2
∂
q
μ∂

q
νCαβðqÞθ0βαðqÞ

�
−

N
2Λ2

½C↦K;θ↦Σ�; ð6:26Þ
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which can be recast as:

δΨa
0

δϕa






2-pt:function
atOðp0Þ

¼ N
4Λ2

Z
q
∂
q
μ∂

q
ν ½2CTðqÞθ0ααðqÞ −KTðqÞΣ0

ααðqÞ�

ð6:27Þ

¼ N
2
ðD − 1Þ

Z
q
∂
q
μ∂

q
ν ½q̃2KTðqÞFŜðqÞ� ð6:28Þ

¼ N
2
ðD − 1Þ

Z
q
Λ∂Λ∂

q
μ∂

q
ν ½ln P̃⊥

q �; ð6:29Þ

where to get the second line we used (5.5). The result can
be cast as a total Λ-derivative which we do in the final line,
where

P̃⊥
q ≔ Λ2P⊥ðqÞ; P⊥ðqÞ ≔ 1

2q2FðqÞ : ð6:30Þ

As we will see in Sec. VI D this object plays the role of an
effective action propagator (in the transverse space). Indeed
from (4.39):

P⊥ðqÞS0αβðqÞ ¼ δαβ −
qαqβ
q2

: ð6:31Þ

In (6.29) one can see that the Λ∂Λ sits inside the integral,
whereas in (6.25) it sits outside the momentum integral. In
general, changing the integration and differentiation order
is not trivial and to ensure consistency one must show that
the undifferentiated expression is sufficiently well-behaved
in both UV and IR. However as stressed in Ref. [38], the
flow equation is consistent only if we consider all trace
terms together. Therefore, we should interpret this as
having the Λ∂Λ outside the integral in (6.29), as long as
we add to it all the remaining terms similar to and including
(6.25). This means that (6.22) becomes:

Λ∂Λ
Z
q
∂
q
μ∂

q
ν

�
½lnC�ααðqÞ þ lnBq þ

1

2
lnbq −

D− 1

2
ln P̃⊥

q

�
;

ð6:32Þ

where ½lnC�ααðqÞ ¼ ðD − 1Þ lnCTðqÞ þ lnCLðqÞ. Given
that the above integral is an integral of a total derivative,
it amounts to a surface integral at large q, as advertised at
the beginning of this section. This surface integral can be
discarded, and thus the integral vanishes, if the term in
braces above is UV finite. Using the definitions (2.54)–
(2.56), we can write it as follows:

ðD − 1Þ ln cq
cq þ q̃2

þ ln
1

1þ q̃2Yq
þ lnð1þ q̃2YqÞ þ

1

2
lnðtq þ q̃2Þ þD − 1

2
ln
2q̃2ðc2q þ q̃2Þ

c2q

¼ −ðD − 1Þ ln
�
cq
q̃2

þ 1

�
þD − 1

2
ln

�
c2q
q̃2

þ 1

�
þ 1

2
ln

�
tq
q̃2

þ 1

�
þ 1

2
ln q̃2: ð6:33Þ

All but the last term vanish rapidly for large momentum
(from (6.15) and because cq and tq do). In this calculation,
the last term can be formally discarded because it vanishes
under the combined action of q and Λ derivatives. In this
sense we are justified in dropping all the Oðp0Þ terms,
confirming the arguments outlined in Ref. [38] work
to Oðp0Þ.
However, it is unclear whether the part that leads to this

unregulated ln q̃2 term can always be safely discarded. In
particular it is unclear whether such a part could cause an
unrecoverable failure of UV regularization at higher loops.
If we first compute the q derivatives, the resulting momen-
tum integral is quadratically UV divergent. By dimensions
one might expect to find an analogous logarithmic UV
divergence in the Oðp2Þ part. In the next section we
confirm this expectation.

D. Two-point vertex at second order in momentum

The next step is to compute the one-loop beta function
by analyzing the flow equation (6.7). The coefficient of

the beta function at one loop is a universal quantity and
thus it should be independent of all artefacts of the
regularization scheme [23]. In the earlier successful
construction [14–36] this could be understood as follows.
Since the beta function is dimensionless, the momentum
integrals that compute it are also dimensionless. By
trading the higher-point regularization vertices in these
integrals for Λ-derivatives of effective action vertices,
using the classical flow equations, one finds that the
results combine into terms that either vanish, because they
are Λ-derivatives of regularized dimensionless integrals
(which thus do not actually depend on Λ), or terms that
survive but only because when cast in this way a finite
result is obtained from a logarithmic IR divergence, where
the effective action is universal—as determined by the
renormalization condition (6.1) [23,42]. Here we will
follow this route by manipulating the δΨa

0=δϕ
a term.

However, before delving into the details of this, it is
better for the ease of presenting to focus on the other trace
terms first.
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The remaining trace terms can be partitioned into two groups, namely Λ∂Λ lnK and Ψm
0

δ
δϕm lnK, where K ¼ C−1; B; b.

This means that in order to compute them it will be sufficient to do this for one value of K chosen for convenience, all the
other contributions following from this one by substitution. It is straightforward to write down the first B trace terms using
(6.14) as follows:

TrfΛ∂Λ½lnBα
β�g2-pt:function

atOðp0Þ
≡ 2NΛ∂Λ

Z
q
fB−1

q Bμνðp;−p; q;−qÞ −
1

2
B−1
q Bμðp; q;−q − pÞB−1

pþqBνð−p;pþ q;−qÞgOðp2Þ:

ð6:34Þ

The second B trace term can be written using TrΨm
0

δ
δϕm lnB ¼ TrΨm

0 B;mB−1, yielding:

TrfΨm
0

δ

δϕm ½lnBα
β�g2-pt:function

atOðp0Þ
≡ 2N

Z
q

�
2CTðpÞθ0μαðpÞBανðp;−p; q;−qÞB−1

q þ CTðpÞθ0μαðpÞBαðp;−p − q; qÞ

× B−1
ν ð−p;pþ q;−qÞ þ Cαβð0Þθ0μναðp;−p; 0ÞBβð0; q;−qÞB−1

q −
1

2
½C ↦ K; θ ↦ Σ�

�
Oðp2Þ

:

ð6:35Þ

The third line is odd in p and thus has noOðp2Þ part. Furthermore the one-point kernel is antisymmetric in q, whereas Bq is
symmetric, and so the entire row vanishes under the q integral. A similar argument holds for theK sector as well. From (4.6)
we get that θ0μαðpÞjOðp2Þ ¼ 2□μαðpÞ, and, given that all the other functions appearing in (6.35) are quasilocal, we are free to
set p ¼ 0 anywhere else in the C sector. In the K sector on the other hand, Σ0

μαðpÞ is Oðp4Þ, which means that it does not
contribute to (6.35) at all. Collecting everything together we have

Tr

�
Ψm

0

δ

δϕm ½lnBα
β�
�

2-pt:function
atOðp0Þ

≡ 2N
Z
q
f2CTð0Þ2□μαðpÞBανð0; 0; q;−qÞB−1

q

þ CTð0Þ2□μαðpÞBαð0;−q; qÞB−1
ν ð0; q;−qÞgOðp2Þ; ð6:36Þ

which we can recast if we use differential Ward identities
for the kernel vertices:

Tr

�
Ψm

0

δ

δϕm ½lnBα
β�
�

2-pt:function
atOðp0Þ

≡ 4N□μαðpÞ
Z
q
∂
q
α∂

q
ν lnBq:

ð6:37Þ

The flow equation (6.7) shows that if we add up all trace term
contributions we ought to end up with a transverse ex-
pression, i.e., ∝ □μνðpÞ. Terms like (6.37) are transverse on
the ν index if we use Lorentz invariance of the q integral. But
such arguments make sense strictly speaking only if the
integral is properly regularized. As already noted in Sec. VI
C, trace terms should be considered together, not individu-
ally. However for more involved computations, this is not
enough because the sumwould still be ambiguous due to the
so-calledmomentum routing problem (seeAppendixB).We
need in general to make statements about individual terms,
and to do so we need to apply some auxiliary regularization
for each momentum integral to give them a well defined
meaning. In the end one can put all the parts back together
again at which point, provided that the trace terms do
actually fully regularize, the result is finite and the “prereg-
ularization” can be safely removed. Fromnowonwewill use

dimensional regularization for this purpose, i.e., compute in
d ¼ 4 − ε dimensions. This means that terms similar to
(6.37) are indeed transverse on both indices. If we contract
pμ into (6.34) and useWard identities wewill get (ignore the
Oðp2Þ requirement for now):

2NΛ∂Λ
Z
q

�
B−1
q ðBμð0; q;−qÞ − Bμð−p;pþ q;−qÞÞ

−
1

2
B−1
q ðBq − BpþqÞB−1

pþqBνð−p;pþ q;−qÞ
�
: ð6:38Þ

The first term in the bracket on the first line is odd in q, and
thus vanishes when integrated. In the second line we can
relabel q → −q − p for the first term inside the bracket and
use the antisymmetry of the one-point kernel vertex,
Bνð−p;pþ q;−qÞ ¼ −Bνð−p;−q; pþ qÞ, to arrive at

2NΛ∂Λ
Z
q
f−B−1

q Bμð−p;pþ q;−qÞ

þ B−1
q Bνð−p;pþ q;−qÞg ð6:39Þ

¼ 2NΛ∂Λ
Z
q
f0g: ð6:40Þ
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Lorentz invariance implies that a similar result would have
been obtained if pν had been used. Therefore, all terms with
a similar structure to (6.34), when properly regularized, are
individually transverse.
The last step is to compute δΨa

0=δϕ
a. At this point we

note that (6.21) is formally transverse prior to any sub-
stitution being done. One can easily check this by con-
tracting it with pμ (or equivalently pν), and then show that
the expression vanishes at all orders, not only at Oðp2Þ.
This means that formally all trace terms in (6.7) are
individually transverse. This is gratifying but unsurprising:
it is a consistency check on the formal preservation of
gauge invariance by the flow equation. As we have just

emphasized, for these manipulations to be meaningful we
need to verify this with a gauge invariant preregularization
in place. If the expressions are in fact properly regularized
through the PV trace terms, we should then be able to
combine the results into a finite transverse, and in fact
universal, answer.
Thus the real test is to see whether (6.21) remains

transverse in dimensional regularization after we trade four
and three-point Σ0 and θ0 vertices for (Λ derivatives of)
effective action vertices. If we substitute first (6.11) into
(6.21) to trade four-point Σ0 and θ0 vertices, and then use
(6.10) to trade away the Σ0 and θ0 three-point vertices, we
obtain eventually the following:

δΨa
0

δϕa






2-pt:function
atOðp0Þ

¼N
Z
q

�
−Λ∂Λ½P⊥ðqÞS0ααμνðq;−q;p;−pÞ�Oðp2Þ þ

1

2
Λ∂Λ½P⊥ðqÞP⊥ðp−qÞS0αβμðp−q;q;−pÞS0αβνðp−q;q;−pÞ�Oðp2Þ

þ□ανðpÞ
Λ2q2Fq

�ð1−KTðqÞÞΣ0
αμðqÞ−ð1−2CTðqÞÞθ0αμðqÞ

q2
−
1

2
∂
q
μ∂

q
αðS0ββðqÞ−Σ0

ββðqÞþθ0ββðqÞÞ

þ2
qαqμ
q2

ðKTðqÞFΣðqÞ−2CTðqÞFθðqÞ−FqÞþ
1

2Λ2q2Fq
∂
q
μð□βγðqÞFqÞ∂qαðS0βγðqÞ−Σ0

βγðqÞþθ0βγðqÞÞ
��

;

ð6:41Þ

where P⊥ðqÞ is an effective propagator and was defined
already in (6.30). To arrive at this expression we use the
symmetries including differential Ward identities in a
similar way to the trace terms above. As there, we do
not need the explicit formulas except for the zero-point
kernels and two-point action vertices.
All the terms appearing in the above expression are

manifestly transverse except the Λ-derivative ones. We can
evaluate the contribution of the latter in dimensional
regularization and check whether they are transverse or
not. Again, we are free to move the Λ derivative outside the
integral if the resulting momentum integrals are regular-
ized. The first term (containing the four-point vertex)
would then vanish if the UV regularization (as also
provided by the trace terms) is correctly in place, because
the integral is dimensionless in four dimensions and thus
actually independent of Λ. This is so because, although
P⊥ ∼ 1=q2 for small q, this IR divergence is integrable in
four dimensions. Similarly the second term (containing
the three-point effective action vertices) has no surviving
UV contribution if it is properly regulated there, but this
time there is a logarithmic IR divergence which when
differentiated with respect to Λ gives a finite universal
answer dependent only on the renormalization condi-
tion (6.1).
Now we contract the first two terms in (6.41) with pμ and

use Ward identities to further simplify it, following essen-
tially the same steps that took us from (6.38) to (6.39). This
time we get:

NΛ∂Λ
Z
q
P⊥ðqÞfS0αανðq; p − q;−pÞ − P⊥ðp − qÞ

× S0αβðp − qÞS0αβνðq; p − q;−pÞg: ð6:42Þ

Now using the propagator identity (6.31) and Ward
identities recursively this simplifies to

Λ∂Λ
Z
q

ðpþ qÞβ
ðpþ qÞ2

�
δβν −

qβqν
q2

�
: ð6:43Þ

The δβν part is odd in q (one can easily see that this is the
case after expanding the bracket and relabeling
q → q − p), and hence vanishes, whereas the second term
can be recast using q · ðpþ qÞ ¼ 1

2
½ðpþ qÞ2 þ q2 − p2�,

yielding:

−
Λ
2

∂

∂Λ

Z
q

qν
q2

þ qν
ðpþ qÞ2 −

p2qν
ðpþ qÞ2q2 : ð6:44Þ

Again, the first term is odd in q. The second term is
quadratically divergent but in dimensional regularization it
vanishes, whereas the third term is linearly divergent and
gives a finite contribution in dimensional regularization
(due to a logarithmic subdivergence):

Λ∂Λ
�
−
1

2

p2pν

ð4πÞ2 lnΛ
�

¼ −
1

2

p2pν

ð4πÞ2 ; ð6:45Þ
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where we recognize that the regularization scale is set by Λ.
This means that the original Λ derivative terms from (6.41)
give a nonvanishing longitudinal contribution in dimen-
sional regularization, which amounts to

−
1

2

pμpν

ð4πÞ2 ; ð6:46Þ

and thus they cannot be transverse on their own. In fact,
apart from an overall factor of 1

2
, the effective action terms

in (6.41) have precisely the same structure as found in
Ref. [23] as part of the one-loop beta function computation
using the manifestly gauge invariant flow equation devel-
oped there. Moreover, the computed longitudinal part
(6.46) is precisely half the one found in Ref. [23]. The
same arguments in that paper can be used to extract the full
IR contribution from the first two lines of (6.41):

19

6
p2δμν −

11

3
pμpν; ð6:47Þ

and this has the same longitudinal part.
Thus we see that if we assume that (6.7) is sufficiently

regularized in the UV we get a nontransverse answer. As
we noted, the above result is arrived at independently of the
detailed form of the regularization structure, apart from the
expressions for two-point action vertices and zero-point
kernels. This means that the problem cannot be cured by a
more careful choice of cutoff functions or an alternative
covariantization, but lies at a deeper structural level.
Since formally the integrals start out transverse, it

follows that there are unregulated UV divergences which
provide a canceling longitudinal contribution. In fact if the
third term in (6.44) has no UV regularization we can
(cavalierly) regard it as an infinite constant, independent of
Λ, which is then annihilated by the Λ derivative.
The problem then is that we cannot extract universal

information from the S0 terms in (6.41). We can see this
explicitly by substituting S0 ¼ Σ0 þ Ŝ. Since P⊥ðqÞ ≈ c2q,
cf., (4.39) and (6.30), the resulting terms with a Σ0 three-

point or four-point vertex are UV regularized because Σð3Þ
0

and Σð4Þ
0 diverge only as c−1q , as we confirmed explicitly in

Sec. V. As explained above this means that the Σð4Þ
0

contribution actually vanishes, because the integral is then
well defined and dimensionless, and thus annihilated by

Λ∂Λ. The contributions with a Σð3Þ
0 vertex vanish for the

same reason. To see this we only need to show that there is

no longer a logarithmic divergence at small q. Since Σð2Þ
0 is

Oðp4Þ, cf., (4.40), we know by gauge invariance (or
equivalently the Ward identities) that Σ0

αβμðp − q; q;−pÞ
starts cubic in momenta in a small momentum expansion.
In other words, retaining powers of p up to a maximum of
Oðp2Þ, as q → 0 it vanishes with at least one power of q,

and thus indeed there is no longer an IR logarithmic
divergence from the second line of (6.41).
This means that, on substituting S0 ¼ Σ0 þ Ŝ, the top

two lines of (6.41) become precisely the same expression

but with Sð3Þ0 and Sð4Þ0 replaced by Ŝð3Þ0 and Ŝð4Þ0 , respectively.
However Ŝ is freely designed by us as part of the
regularization scheme so cannot of itself contain the
requisite universal information. Indeed we can go one step
further and introduce a transverse space effective propa-
gator for ŜαβðqÞ:

P̂ðqÞ ≔ 1

2q2FŜðqÞ
; ð6:48Þ

which satisfies the obvious transverse projector relation,
cf., (4.38) and (6.31). Substituting

P⊥ðqÞ ¼ P̂ðqÞ þ ½P⊥ðqÞ − P̂ðqÞ�

¼ P̂ðqÞ þ c3q
2q2

1 − cq
ðc2q þ q̃2Þðcq þ q̃2Þ ; ð6:49Þ

for all propagators in the same top two lines, it is apparent
that any part containing the last expression above is again
both UVand IR finite (in the latter case because cð0Þ ¼ 1)
and therefore vanishes under the Λ derivative. Thus the top
two lines only contain information determined by our
choice of seed action.
We have shown that if we assume that (6.7) is sufficiently

regularized in the UV we get a universal nontransverse
answer from a certain IR contribution. Since formally the
integrals start out transverse, it follows that there are
actually unregulated UV divergences which can formally
be viewed as providing a canceling longitudinal contribu-
tion. Although one can indeed proceed in this way, it is then
no longer possible to prove the result is universal. Indeed
we show that this contribution can be expressed solely in
terms of the seed action, a quantity that we are free to
choose.

VII. SUMMARY AND CONCLUSIONS

We finish this paper with a brief summary and discussion
of our main findings. In Sec. VI C, we showed that all but
one term in theOðp0Þ part of the two-point function at one-
loop level is correctly regularized. Key to this, was the
finding that the Oðp0Þ actually only depends on zero-point
kernels and two-point action vertices. If properly regular-
ized, it has to vanish by gauge invariance. We show that it
does vanish. For the properly regularized terms, this is so
because they can be written as a vanishing UV surface term
in momentum space. The one term that is not properly
regularized can however be formally set to zero because it
is the Λ-derivative of a Λ-independent quadratically diver-
gent term.
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TheOðp2Þ part should give us the one-loop beta function,
if properly regularized, and thus be universal (independent of
regularization artefacts). In Sec. VI D we recast the result in a
way that has previously allowed a universal answer to be
extracted, if properly regularized [23,42]. We saw that
although the Oðp2Þ part is formally transverse, if computed
assuming complete UV regularization there is actually a
nonvanishing longitudinal part. The problem is caused by
unregulated UV divergences, which appears to be associated
to the one found at Oðp0Þ, and is independent of choice of
cutoff functions or covariantization.
Similarly to the Oðp0Þ case, if the incompletely regu-

larized longitudinal part is regarded formally as an infinite
constant, it can then be set to zero, since it is differentiated
by Λ. The problem then is that the earlier techniques can no
longer be used to extract a universal answer because it is no
longer clear which IR divergent terms should provide a
universal answer and which should be formally set to zero.
Indeed we saw explicitly that in the current case these terms
can then be made independent of the classical effective
action. Instead they can be seen to depend only on the seed
action, part of the regularization structure which we are free
to choose (and which is thus nonuniversal).
Note that these results are not at variance with Ref. [38]

where the one-loop beta function coefficient is successfully
computed. It is there extracted from determinants of zero-
point kernels and two-point vertices (the result obtained
in VI C), using a heat kernel approach. It is thus insensitive to
the problemswithUV regularization that we are highlighting.
Indeed the heat-kernel expression formally depends only on
the value of these kernels at vanishing momentum.
Our results show that the one-loop off-shell contribution

is not fully regularized. At one loop it appears to be
possible to proceed formally and obtain valid answers, but
it is unclear whether that would still be possible at higher
loops. Also, the powerful techniques [23,42] that previ-
ously allowed universal results to be extracted, unfortu-
nately fail in this formulation. As we have already noted, a
repair of this problem (if there is one which does not
introduce explicit PV fields as done previously [14–36])
would seem to require structural changes. Hints lie in the
insufficient regularization atOðp0Þ seen in VI C, and in the
longitudinal sector as seen in Sec. VI D and discussed in
more general terms in Sec. III. Hopefully, following these
hints, a way can be found to implement a more complete
regularization.
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APPENDIX A: INTERLEAVE IDENTITIES FOR
COMPOUND KERNELS

Interleave identities (4.29) hold for those kernels whose
covariantization is carried by gauge fields acting by com-
mutation. This means, for example, that any well-behaved
(or quasilocal) function of Δa

b or Δk fulfills this condition.
We exploit these identities for example in the one-loop beta
function calculation where it allows the cancellation of
certain terms. However, the two kernels Ka

b and Ca
b, are

not solely constructed in this way, and it is not a priori
evident that they still obey interleave identities. It may be that
they do not at some higher point level. Fortunately for us
they do obey the interleave identities up to the two-point
level, and this is all that we need in this paper.
In this appendix we prove that the identities do hold up to

this level using the other already established symmetries.
At the same time we give more details on how to construct
them. Given the definition ofKa

b in (2.68), it is sufficient to
check the vertices of Ca

b. Then, since κab is a function of
Δa

b, it is guaranteed that a similar behavior is inherited by
the Ka

b vertices. From (2.54) we can write ðC−1Þab in the
following way:

ðC−1Þab ¼ δab þ Ra
b þ zab; ðA1Þ

where Rab ≔ γamA;mnγ
nb and zab ≔ Ka

αYαβKb
β . It is easy to

see that zab is made out of gauge fields which act by
commutation, and hence its vertices obey interleave iden-
tities. However, checking whether R vertices satisfy these
identities or not is nontrivial. From Sec. IV B 2 we see that
for two (matrix valued) functions JμðxÞ and JνðyÞ the
following equivalent statements can be written:

JaRabJb ≡
Z
x

Z
y
JaμðxÞRab

μνðx; yÞJbνðyÞ ðA2Þ

¼ 2

Λ2
tr
Z
x

Z
y
JμðxÞRμνðx; yÞJνðyÞ ðA3Þ

¼ 2

Λ2

X∞
k¼0

Xk
m¼0

Z
x

Z
y

Z
x1���xk

Rμ1…μk−m;μk−mþ1…μk;μνðx1…xk−m; xk−mþ1…xk; x; yÞ

× tr½JμðxÞAμ1ðx1Þ � � �Aμk−mðxk−mÞJνðyÞAμk−mþ1
ðxk−mþ1Þ � � �AμkðxkÞ�; ðA4Þ
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where we note that the sum is half that in (4.27) and we
used the definition of functional derivatives below (2.17)
and normalization of the generators. We also note that
Rab
μνðx; yÞ is given by5

Rab
μνðx; yÞ ¼

1

Λ4

δ2A
δAb

νðyÞδAa
μðxÞ

; ðA5Þ

We can look at the functional derivatives of A in more detail
if we use the trace expansion (4.13). The first functional
derivative takes the following form:

δA
δAa

μðxÞ
¼

X∞
k¼2

Z
x1…xk−1

Aμμ1…μk−1ðx; x1…xk−1Þ

× tr½TaAμ1ðx1Þ…Aμk−1ðxk−1Þ�; ðA6Þ

where we consider only the single-trace terms which are the
only ones of interest to us. If we differentiate it a second
time, we will obtain:

δ2A
δAb

νðyÞδAa
μðxÞ

¼
X∞
k¼2

Xk−2
m¼0

Z
x1…xk−2

Aμμ1…μk−2−mνμk−1−m…μk−2ðx; x1…xk−2−m; y; xk−1−m…xk−2Þ

× tr½TaAμ1ðx1Þ…Aμk−2−mðxk−2−mÞTbAμk−1−mðxk−1−mÞ…Aμk−2ðxk−2Þ�: ðA7Þ

If we now relabel k ↦ kþ 2 and substitute the result into (A2) using (A5), we will obtain the following identity:

JaRabJb ≡ 1

Λ4

X∞
k¼0

Xk
m¼0

Z
x

Z
y

Z
x1…xk

Aμμ1…μk−mνμk−mþ1…μkðx; x1…xk−m; y; xk−mþ1…xkÞ

× tr½JμðxÞAμ1ðx1Þ…Aμk−2−mðxk−mÞJνðyÞAμk−mþ1
ðxk−mþ1Þ…AμkðxkÞ�: ðA8Þ

This means that (A2) and (A4) remain equivalent provided that we make the following identification:

Rμ1…μk−m;μk−mþ1…μk;μνðx1…xk−m; xk−mþ1…xk; x; yÞ ¼
1

2Λ2
Aμμ1…μk−mνμk−mþ1…μkðx; x1…xk−m; y; xk−mþ1…xkÞ; ðA9Þ

which take the exact same form in momentum space.
If we now look at the one-point R part of (A1), we will

obtain:

Rμ;αβðp; r; sÞ ¼
1

2Λ2
Aμβαðp; s; rÞ; ðA10Þ

R;μ;αβð;p; r; sÞ ¼
1

2Λ2
Aμαβðp; r; sÞ: ðA11Þ

Three-point action vertices are totally antisymmetric in all
their arguments, and thus the above expressions can be
recast as

Rμ;αβðp; r; sÞ þ R;μ;αβð;p; r; sÞ ¼ 0; ðA12Þ

which is exactly (4.29) at the one-point level.
At the two-point level the R part of (A1) becomes:

Rμν;αβðp; q; r; sÞ ¼
1

2Λ2
Aμνβαðp; q; s; rÞ; ðA13Þ

Rμ;ν;αβðp; q; r; sÞ ¼
1

2Λ2
Aμβναðp; s; q; rÞ; ðA14Þ

R;μν;αβð;p; q; r; sÞ ¼
1

2Λ2
Aμναβðp; q; r; sÞ: ðA15Þ

From (A13) and (A15) we can write the following:

R;μν;αβð;p; q; r; sÞ − Rνμ;αβðq; p; r; sÞ

¼ 1

2Λ2
Aμναβðp; q; r; sÞ −

1

2Λ2
Aνμβαðq; p; s; rÞ

¼ 1

2Λ2
Aμναβðp; q; r; sÞ −

1

2Λ2
Aμναβðp; q; r; sÞ ¼ 0;

ðA16Þ

where in going from the first to the second line we have
used charge conjugation invariance. Similarly, working out
the explicit form of the four-point A vertices, one can show
that the following expression also holds:

Rμ;ν;αβðp;q;r;sÞþRμν;αβðp;q;r;sÞþRνμ;αβðq;p;r;sÞ¼0:

ðA17Þ

5Recall that we factor out the powers of g, cf., Sec. IVA.

VLAD-MIHAI MANDRIC and TIM R. MORRIS PHYS. REV. D 107, 065012 (2023)

065012-24



These last two identities are exactly the interleave identities
(4.29) at the two-point level for the R part of C−1.
This means that the full one-point and two-point vertices
of C−1 also obey interleave identities.
We are now at the stage where we can inspect the vertices

of Ca
b using Ca

mðC−1Þmb ¼ δab. At OðAμÞ, this can be
expressed schematically in the following way:

one-pointC ¼ −ðzero-pointCÞ × ðone-pointC−1Þ
× ðzero-pointCÞ; ðA18Þ

or explicitly as a set of two identities:

Cμ;αβðp; r; sÞ ¼ −CαγðrÞC−1
μ;γδðp; r; sÞCδβðsÞ; ðA19Þ

C;μ;αβðp; r; sÞ ¼ −CαγðrÞC−1
;μ;γδðp; r; sÞCδβðsÞ: ðA20Þ

If we use (A12) for the full one-point C−1 vertices, we can
recast the expressions above as:

Cμ;αβðp; r; sÞ þ C;μ;αβð;p; r; sÞ ¼ 0; ðA21Þ

which is exactly the interleave identity (4.29) for one-point
C vertices.
Similarly, at OðA2

μÞ one can write schematically:

two-pointC ¼ −ðzero-pointCÞ × ðtwo-pointC−1Þ × ðzero-pointCÞ þ ðzero-pointCÞ × ðone-pointC−1Þ × ðzero-pointCÞ
× ðone-pointC−1Þ × ðzero-pointCÞ: ðA22Þ

From the above expression we can infer the explicit expression for the two-point C vertices:

Cμ;ν;αβðp; q; r; sÞ ¼ −Cαα1ðrÞC−1
μ;ν;α1β1

ðp; q; r; sÞCβ1βðsÞ þ Cαα1ðrÞC−1
μ;α1γðp; r; sþ qÞCγδðsþ qÞC−1

;ν;δβ1
ð; q;pþ r; sÞCβ1βðsÞ

þ Cαα1ðrÞC−1
;ν;α1γð; q; r; sþ pÞCγδðrþ qÞC−1

μ;δβ1
ðp; qþ r; sÞCβ1βðsÞ; ðA23Þ

Cμν;αβðp; q; r; sÞ ¼ −Cαα1ðrÞC−1
μν;α1β1

ðp; q; r; sÞCβ1βðsÞ þ Cαα1ðrÞC−1
μ;α1γðp; r; sþ qÞCγδðpþ rÞC−1

ν;δβ1
ðq;pþ r; sÞCβ1βðsÞ;

ðA24Þ

C;μν;αβð;p;q;r;sÞ¼−Cαα1ðrÞC−1
;μν;α1β1

ð;p;q;r;sÞCβ1βðsÞþCαα1ðrÞC−1
;μ;α1γð;p;r;sþqÞCγδðpþrÞC−1

;ν;δβ1
ð;q;pþr;sÞCβ1βðsÞ:

ðA25Þ

The interleave identities C;μν;αβð;p; q; r; sÞ − Cνμ;αβðq; p;
r; sÞ ¼ 0 and Cμ;ν;αβðp; q; r; sÞ þ Cμν;αβðp; q; r; sÞ þ Cνμ;αβ

ðq; p; r; sÞ ¼ 0 follow trivially from (A23) to (A25) if we
use (A12) and (A16) for the full C−1 vertices. This
concludes the proof that the one and two-point functions
of Ca

b and Ka
b, respectively, obey interleave identities.

APPENDIX B: WHY PREREGULARIZATION
IS NECESSARY

Consider the momentum integral [14]

Z
q

�
1

q2 þ Λ2
−

1

ðqþ pÞ2 þ Λ2

�
: ðB1Þ

Evidently this is zero, since in the second term we can
change variables to q ↦ −q − p to make it equal and
opposite to the first. These sort of canceling terms are
generic and unavoidable in a system of regularization that
uses gauge invariant PV regularization. For example, just
such a relabeling is used in (6.38) to cancel terms against
each other. Depending on how terms are unpacked and

combined, they can then give contributions that appear in a
similar way to above. Expanding the second term in (B1) to
Oðp2Þ, we obtain

Z
q

�
p2

ðq2 þ Λ2Þ2 − 4
ðp · qÞ2

ðq2 þ Λ2Þ3
�
: ðB2Þ

In four dimensions by Lorentz invariance (actually rota-
tional invariance since we are in Euclidean signature) we
can replace ðp · qÞ2 by q2p2=4, so the above result
simplifies to

Λ2p2

Z
q

1

ðq2 þ Λ2Þ3 ; ðB3Þ

a manifestly positive convergent answer from a vanishing
integral! The problem is that (B1) is finite but ambiguous;
the result (B3) can be cast as a total derivative but with a
finite surface term. Generally in situations where PV
regularization is used, we must first preregularize (in a
way that is compatible with gauge invariance) to avoid this
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so-called momentum routing problem. This is done, not to
subtract divergences with respect to the preregulator, but in
order to ensure that the integrals are defined sufficiently
carefully [40,50,54]. In this paper we use dimensional
regularization, working in d ¼ 4 − ε dimensions when

necessary. Then in (B2), we effectively replace ðp · qÞ2
by q2p2=4þ εq2p2=16. Using dimensional regulari-
zation it is straightforward to evaluate the new contribution
and verify that it cancels (B3), restoring agreement
with (B1).
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