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The scattering of Dirac fermions in the background fields of topological solitons of the (2þ 1)-
dimensional CPN−1 model is studied using analytical and numerical methods. It is shown that the exact
solutions for fermionic wave functions can be expressed in terms of the confluent Heun functions. The
question of the existence of bound states for the fermion-soliton system is then investigated. General
formulas describing fermion scattering are obtained, and a symmetry property for the partial phase shifts is
derived. The amplitudes and cross sections of the fermion-soliton scattering are obtained in an analytical
form within the framework of the Born approximation, and the symmetry properties and asymptotic
forms of the Born amplitudes are investigated. The dependences of the first few partial phase shifts on the
fermion momentum are obtained by numerical methods, and some of their properties are investigated and
discussed.
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I. INTRODUCTION

A number of (2þ 1)-dimensional field models admit
the existence of planar topological solitons [1–3], which
play an important role in field theory, high-energy
physics, condensed matter physics, cosmology, and
hydrodynamics. The vortices of the effective theory of
superconductivity [4] and of the (2þ 1)-dimensional
Abelian Higgs model [5] are probably the most important
topological solitons of this type. The next most important
is the topological soliton of the (2þ 1)-dimensional
nonlinear Oð3Þ sigma model [6]. One feature of the
soliton solutions of the nonlinear Oð3Þ sigma model is
the presence of an arbitrary parameter determining their
spatial size. This is because the static energy functional of
the (2þ 1)-dimensional Oð3Þ sigma model is invariant
under scale transformations.
Nonlinear sigma models can also be formulated for

orthogonal groups OðNÞ with N ≥ 4, but unlike the Oð3Þ
sigma model, these models have no soliton solutions.
However, there is another family of nonlinear scalar field
modelswhose properties are similar to those of the nonlinear
OðNÞ sigma models in many respects, but which have
topological soliton solutions for an arbitrary number of
fields. These are the so-called CPN−1 models [7–10].

For N ¼ 2, the CPN−1 model is reduced to the Oð3Þ sigma
model, but for N ≥ 3, the CPN−1 model is a better gener-
alization than theOðN þ 1Þ sigma model, as it continues to
have soliton solutions [11,12] even in this case.
Since their appearance in the late 1970s, the CPN−1

models have consistently attracted interest, primarily based
on the fact that the two-dimensional CPN−1 models are an
useful instrument for studying nonperturbative effects in the
four-dimensional Yang-Mills models. The two-dimensional
CPN−1 models share many common properties with four-
dimensional Yang-Mills models, including conformal
invariance at the classical level, asymptotic freedom in
the ultraviolet regime [13], strong coupling in the infrared
regime, and the existence of a topological term and instan-
tons [11,12] resulting in a complex structure of the vacuum
at the quantum level. The lower dimensionality of theCPN−1

models facilitates the analysis of nonperturbative effects in
the strong coupling regime, compared to the more complex
four-dimensional Yang-Mills models. In addition, two-
dimensional CPN−1 models can be considered as effective
field theories describing low-energy dynamics on the world
sheet of non-Abelian vortex strings in a class of four-
dimensional gauge theories [14–19]. The CPN−1 models
also have interesting applications in the field of condensed
matter physics [20], and particularly in (anti)ferromagnet-
ism, the Hall effect, and the Kondo effect. They also find
application in the study of the sphaleron-induced fermion
number violation at high temperature [21].
The CPN−1 model can be extended to include fermionic

matter fields. This can be achieved either by a super-
symmetric extension of the CPN−1 model or by minimal
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coupling between fermionic fields and a composite gauge
field of the CPN−1 model (the so-called minimal
model [22]). The supersymmetric extension of the CPN−1

model involves Majorana fermion fields that satisfy non-
trivial constraints, whereas the minimal model deals with
unconstrained Dirac fermion fields. In the present paper, we
investigate a fermion-soliton system in the minimal model
within the background field approximation. In particular, we
find that the fermionicwave functions are expressed in terms
of the confluentHeun functions, and that the fermion-soliton
system has no bound states. The results obtained here can be
used to describe the interaction of fermions with two-
dimensional or threadlike three-dimensional topological
defects in condensed matter physics. We note that it was
stated in Ref. [23] that thewave functions of a Dirac fermion
minimally coupled to the two-dimensional CP1 model can
be expressed in terms of the confluent Heun functions.
Furthermore, it was shown in Refs. [24,25] that the fermion
scattering on a one-dimensional kink or Q-ball can also be
described in terms of Heun-type functions.
This paper is structured as follows. In Sec. II, we

describe briefly the Lagrangian, symmetries, field equa-
tions, and topological solitons of the CPN−1 model. In
Sec. III, we study the fermion-soliton scattering in the
background field approximation. We show that for CPN−1

solitons with winding numbers n ¼ �1, the fermionic
wave functions can be expressed in terms of the confluent
Heun functions. We also consider the question of the
existence of bound fermionic states for these solitons,
and establish a symmetry property for partial phase shifts.
In Sec. IV, we give an analytical description of the fermion
scattering within the framework of the Born approximation.
In Sec. V, we present numerical results for the first few
partial phase shifts, and compare the exact results with
those obtained in the Born approximation. In the final
section, we briefly summarize the results obtained in the
present work.
Throughout the paper, the natural units c ¼ 1 and ℏ ¼ 1

are used.

II. LAGRANGIAN, FIELD EQUATIONS, AND
TOPOLOGICAL SOLITONS OF THE MODEL

The Lagrangian density of the CPN−1 model minimally
interacting with fermionic fields has the form

L ¼ g−1ðDμnaÞ�Dμna þ iψ̄aγ
μDμψa −Mψ̄aψa; ð1Þ

where na are complex scalar fields, ψa are fermionic fields,
g is a coupling constant, and the index a runs from one to
N. The complex scalar fields na satisfy the normalization
condition n�ana ¼ 1, where summation over repeated
indices is implied. In Eq. (1), the covariant derivatives
of fields are

Dμna ¼ ∂μna þ iAμna; ð2aÞ

Dμψa ¼ ∂μψa þ iAμψa; ð2bÞ

where Aμ is a vector gauge field.
By varying the action S ¼ R

Ld2xdt in the fields na, ψ̄a,
and Aμ, and taking into account the constraint n�ana ¼ 1 by
means of the Lagrange multiplier method, we obtain the
field equations for the minimal CPN−1 model:

DμDμna − ðn�bDμDμnbÞna ¼ 0; ð3Þ

ðiγμDμ −MÞψa ¼ 0; ð4Þ

Aμ − in�a∂μna −
g
2
ψ̄aγμψa ¼ 0: ð5Þ

It follows from Eq. (5) that the gauge field Aμ is not a
dynamic one, and is expressed in terms of the fields na
and ψa.
The minimal CPN−1 model possesses a number of

symmetries. The invariance of the model (1) under the
global UðNÞ transformations na → Uabnb, ψa → Uabψb
results in the existence of the Noether current, which is a
vector field with values in complex anti-Hermitian
ðN × NÞ-matrices, with matrix entries

ðjμÞab ¼ g−1½naðDμnbÞ� − ðDμnaÞn�b� þ iψ̄aγμψb: ð6Þ

In addition, the model is also invariant under the local Uð1Þ
transformations

naðxÞ → eiΛðxÞnaðxÞ; ð7aÞ

ψaðxÞ → eiΛðxÞψaðxÞ; ð7bÞ

AμðxÞ → AμðxÞ þ ie−iΛðxÞ∂μeiΛðxÞ: ð7cÞ

The corresponding gauge current is the trace of the matrix-
valued current in Eq. (6).
A characteristic feature of the CPN−1 models is that they

possess localized solutions [11,12], which can be inter-
preted either as instantons in the two-dimensional
Euclidean case or as static topological solitons in the
(2þ 1)-dimensional case. All of these solutions can be
obtained in analytical form. In particular, the Zjnj sym-
metric soliton solution of the (2þ 1)-dimensional CPN−1

model can be written as

nðρ; θÞ ¼ λjnjuþ ρjnjeinθv
ðλ2jnj þ ρ2jnjÞ1=2 ; ð8Þ

where n is a nonzero integer, ρ and θ are polar coordinates,
u ¼ ð1; 0;…; 0Þ and v ¼ ð0; 0;…; 1Þ are orthonormal
N-dimensional vectors, and λ is a scaling parameter, which
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determines the effective size of the soliton. The gauge field
Aμ that corresponds to the solution (8) is

Aμ ¼ n
ρ2ðjnj−1Þ

ρ2jnj þ λ2jnj
ð0; y;−xÞ; ð9Þ

where we factor out the common factor of the covariant
components of the gauge field.
Equation (8) tells us that n → einθv as ρ → ∞, and,

consequently, the solution (8) tends to the same element of
the complex projective space CPN−1 in this limit. It follows
that the field configurations in Eq. (8) map from the
compactified plane (which is topologically equivalent to
the two-sphere S2) to CPN−1. Since the second homotopic
group π2ðCPN−1Þ ¼ Z, the field configurations in Eq. (8)
can be labeled by an integer Q called the winding number,
as explicitly given in Ref. [11]:

Q ¼ −
1

2π

Z
d2x ϵij∂iAj ¼ −

1

2π

Z
S1
Aidxi; ð10Þ

where ϵij is the two-dimensional antisymmetric tensor and
ϵ12 ¼ 1. It can easily be shown that for the soliton solutions
(8), the winding number Q ¼ n, meaning that they are
stable to transition into field configurations belonging to
the topologically trivial sector with n ¼ 0.
In contrast to the usual solutions satisfying second-order

field equations, the solution (8) also satisfies the first-order
equations,

Din� iϵijDjn ¼ 0: ð11Þ

Depending on the sign, this is called the self-duality or
antiself-duality condition. It can be shown [11] that the
energy of any solution in the topological sector withQ ¼ n
satisfies the inequality

E ≥ 2πjnjg−1; ð12Þ

and that saturation of this inequality is possible only for
(anti-)self-dual solutions satisfying Eq. (11). Note that for
N > 2, the CPN−1 models also have nonself-dual solutions
[26–32] that do not satisfy Eq. (11) and are only unstable
saddle points of the energy functional.
The energy density of the soliton solution (8) is

E ¼ g−1½ðD0naÞ�D0na þ ðDinaÞ�Dina�

¼ 2n2λ2g−1
ðλρÞ2ðjnj−1Þ

ðρ2jnj þ λ2jnjÞ2 ; ð13Þ

and the soliton energy

Es ¼ 2π

Z∞
0

EðρÞdρ ¼ 2πjnjg−1 ¼ 2πjQjg−1: ð14Þ

We see that the soliton energy (14) saturates the inequality
(12), and therefore is the absolute minimum in the
topological sector with a given Q. The soliton energy does
not depend on the scaling parameter λ since the bosonic
part of the action of the model (1) is invariant under scale
transformations x → ax.

III. FERMIONS IN THE BACKGROUND FIELD
OF A CPN − 1 SOLITON

We consider fermion scattering on the topological
CPN−1 soliton within the background field approximation,
i.e., we neglect the fermion backreaction on the soliton
field configuration (8). Equation (5) tells us that the gauge
field Aμ ¼ in�a∂μna þ 2−1gψ̄aγμψa. The background field
approximation involves neglecting the fermionic term
2−1gψ̄aγμψa in comparison with the bosonic term
in�a∂μna. In this case, the gauge field Aμ ¼ in�a∂μna, and
it follows from Eqs. (2) and (3) that there is no fermion
backreaction on the soliton field. An analysis shows that
this approximation is possible under the condition

g ≪ jnjλ−1ϱ−1F ; ð15Þ

where ϱF is the two-dimensional density of incident
fermions.
The presence of the fermionic part in the gauge field Aμ

causes the Dirac equation (4) to be nonlinear (cubic) in
fermionic fields, which does not allow us to obtain an
analytical solution. In order to avoid this, we must neglect
this nonlinear cubic term compared to the linear Dirac mass
term in Eq. (4). This is possible if the condition

g ≪ Mϱ−1F ð16Þ

is satisfied, where M is the fermion mass.
We see that the conditions (15) and (16) can always be

fulfilled if the density of incident fermions is sufficiently
low. From the viewpoint of QFT, however, we are talking
about the scattering of a fermion of mass M on a CPN−1

soliton of mass Ms ¼ 2πjnjg−1. To allow us to neglect the
recoil of the CPN−1 soliton in fermion scattering, the mass
Ms must be much larger than the energy ε of the incident
fermion, which leads to the condition

g ≪ 2πjnjε−1 < 2πjnjM−1: ð17Þ

The conditions (15), (16), and (17) do not contradict
each other, and can always be satisfied if the coupling
constant g is sufficiently small. In this case, the Dirac
equation (4) can be written in the Hamiltonian form
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i∂tψa ¼ Hψa; ð18Þ

where the Hamiltonian

H ¼ −iαk½∂k − ðn�b∂knbÞ� þ βM; ð19Þ

the matrices αi ¼ γ0γi and β ¼ γ0, and the Dirac matrices

γ0 ¼ σ3; γ1 ¼ −iσ1; γ2 ¼ −iσ2: ð20Þ

Note that all components ψa of the fermionic multiplet
ðψ1;…;ψNÞ satisfy the same equation (18).
We now discuss the symmetry properties of the Dirac

equation (18) under discrete transformations. Let ψðt;xÞ be
a solution to the Dirac equation (18) in the background field
of CPN−1 soliton (8). It can easily be shown that in this
case,

ψCðt;xÞ ¼ σ1ψ
�ðt;xÞ; ð21Þ

ψPðt;xÞ ¼ σ3ψðt;−xÞ; ð22Þ

and

ψΠ2Tðt; x; yÞ ¼ ψ�ð−t; x;−yÞ ð23Þ

are also solutions to this equation. The solutions (21)–(23)
are obtained from the original solution ψðt;xÞ by means of
the C, P, and combined Π2T transformations, respectively,
where the symbol Π2 denotes the operation of coordinate
reflection about the Ox1 axis.

A. Exact fermionic wave functions

It can easily be shown that the Hamiltonian (19)
commutes with the angular momentum operator

J3 ¼ −i∂θ þ σ3=2: ð24Þ

The presence of the conserved angular momentum J3 is due
to the fact that according to Eq. (9), the vector field Aμ ¼
in�a∂μna in the Hamiltonian (19) is invariant under in-plane
rotations. The common eigenfunctions of the operators H
and J3 have the form

ψm ¼
�
eiðm−1=2ÞθfðρÞ
eiðmþ1=2ÞθgðρÞ

�
e−iεt; ð25Þ

where ε and m are the eigenvalues of H and J3,
respectively.
By substituting Eq. (25) into Eq. (18), we obtain a

system of first-order differential equations for the radial
functions fðρÞ and gðρÞ

f0ðρÞ ¼ ρ−1ðAmnðρÞ − 1=2ÞfðρÞ þ ðM þ εÞgðρÞ; ð26Þ

g0ðρÞ ¼ ðM − εÞfðρÞ − ρ−1ðAmnðρÞ þ 1=2ÞgðρÞ; ð27Þ

where

AmnðρÞ ¼ m − n
ρ2jnj

λ2jnj þ ρ2jnj
: ð28Þ

The system of differential equations (26) and (27) is
equivalent to the second-order differential equation

f00ðρÞ þ ρ−1f0ðρÞ þ ½k2
− ρ−2ð1=2 − AmnðρÞÞ2 − ρ−1A0

mnðρÞ�fðρÞ ¼ 0; ð29Þ

where k2 ¼ ε2 −M2, taken together with the differential
relation

gðρÞ ¼ ½ρ−1ð1=2 − AmnðρÞÞfðρÞ þ f0ðρÞ�ðM þ εÞ−1: ð30Þ

The substitutions f → g, g → f, Amn → −Amn, ε → −ε in
Eqs. (29) and (30) lead to the second-order differential
equation and differential relation for the radial functions
gðρÞ and fðρÞ, respectively.
From Eq. (28), it follows that the functions Amn depend

only on the dimensionless combination τ ¼ −ρ2=λ2, which
therefore plays the role of a natural independent variable. In
terms of this new variable τ, Eq. (29) takes the form

f00ðτÞ þ τ−1f0ðτÞ − 2−2τ−1½k2λ2 þ τ−1

× ð1=2 − AmnðτÞÞ2 þ 2A0
mnðτÞ�fðτÞ ¼ 0; ð31Þ

where

AmnðτÞ ¼ m − n
τjnj

ð−1Þjnj þ τjnj
: ð32Þ

It follows from Eq. (32) that AmnðτÞ has first-order poles at
the points

τk ¼ ei
π
jnjð2kþjnjþ1Þ; k ¼ 0;…; jnj − 1: ð33Þ

The point τ ¼ 0 and the jnj points of Eq. (33) are the
regular singular points of the differential equation (31),
whereas the point τ ¼ ∞ is the irregular singular point. At
present, analytical solutions to such differential equations
are known only when the number of regular singular points
does not exceed two [33]. In our case, this means that
analytical fermionic wave functions can be found only for
the winding numbers n ¼ �1, which correspond to the
elementary soliton (n ¼ 1) or antisoliton (n ¼ −1) of the
model (1).
We will therefore consider the case where n ¼ �1. As

τ → 0, the radial wave function fðτÞ ∼ τl=2, where l ¼
jm − 1=2j. By the substitution fðτÞ ¼ τl=2ð1− τÞ−n=2FðτÞ,
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the differential equation (31) is reduced to the confluent
Heun differential equation [33–35]

F00ðτÞ þ
�
γ

τ
þ δ

τ − 1
þ ϵ

�
F0ðτÞ þ ατ − q

τðτ − 1ÞFðτÞ ¼ 0; ð34Þ

where the parameters are

α ¼ −
1

4
k2λ2; ð35aÞ

γ ¼ lþ 1; ð35bÞ

δ ¼ −n; ð35cÞ

ϵ ¼ 0; ð35dÞ

q ¼ −
1

4
k2λ2 þ n

2

�
l −

�
m −

1

2

��
: ð35eÞ

Equation (34) has two independent local solutions in the
neighborhood of the point τ ¼ 0: the first is regular, while
the other is irregular and diverges as τ−l for l > 0 or as lnðτÞ
for l ¼ 0. To obtain the regular radial wave function, we
must choose the regular solution

FðτÞ ¼ HC½q; α; γ; δ; ϵ; τ�; ð36Þ

which is called the confluent Heun function [33–35]. In the
same way, we can find a solution for the other radial wave
function in the form gðτÞ ¼ τl

0=2ð1 − τÞn=2GðτÞ, where
l0 ¼ jmþ 1=2j. The function GðτÞ is also expressed in
terms of the confluent Heun function

GðτÞ ¼ HC½q0;α0; γ0; δ0; ϵ0; τ�; ð37Þ

where the parameters are

α0 ¼ α ¼ −
1

4
k2λ2; ð38aÞ

γ0 ¼ l0 þ 1; ð38bÞ

δ0 ¼ n; ð38cÞ

ϵ0 ¼ ϵ ¼ 0; ð38dÞ

q0 ¼ −
1

4
k2λ2 −

n
2

�
l0 þ

�
mþ 1

2

��
: ð38eÞ

The confluent Heun function satisfies the condition
HC½q; α; γ; δ; ϵ; 0� ¼ 1. In the region jτj < 1, it can be
expanded into a uniformly convergent series. Further-
more, it can be analytically extended to the entire complex
plane with a branch cut running from 1 to ∞.
Solutions (36) and (37) are defined up to arbitrary

multipliers κ1 and κ2, respectively, and their ratio κ ¼
κ2=κ1 can be determined using the differential relation (30)
and the series expansion [33,34] of the confluent Heun
function at the origin, as follows:

κ ¼
8<
:

− λ
2

ε − M
m þ 1=2 ; m > 0

2
λ
1=2 − m
ε þ M ; m < 0

ð39Þ

Using the results obtained, we can write an analytical
expression for the total fermionic wave function in terms of
the radial variable ρ:

ψm ¼ N
�

κ−1=2ðρ=λÞlð1þ ðρ=λÞ2Þ−n=2HC½q; α; γ; δ; ϵ;−ρ2=λ2�eiðm−1=2Þθ

κ1=2ðρ=λÞl0 ð1þ ðρ=λÞ2Þn=2HC½q0;α0; γ0; δ0; ϵ0;−ρ2=λ2�eiðmþ1=2Þθ

�
e−iεt; ð40Þ

whereN is a normalization factor and the winding number
n of the CPN−1 soliton can take the values �1.
We now find the symmetry properties of the wave

function (40) with respect to the discrete transformations
(21)–(23). It is easy to see that ψεmn is an eigenfunction of
the operators P and Π2T:

½ψεmnðt;xÞ�P ¼ ð−1Þm−1=2ψεmnðt;xÞ; ð41Þ

½ψεmnðt;xÞ�Π2T ¼ ð−1Þð1þm=jmjÞ=2ψεmnðt;xÞ; ð42Þ

where the eigenvalues of the operators H and J3 and the
winding number of the CPN−1 soliton are indicated. At the

same time, the action of the charge conjugation operator C
transforms the wave function ψεmn into the wave function
ψ−ε−m−n corresponding to a negative energy state, with
opposite values of the quantum numbers m and n:

½ψεmnðt;xÞ�C ¼ ψ−ε−m−nðt;xÞ; ð43Þ
where

ψ−ε−m−nðt;xÞ ¼
�
eið−m−1=2ÞθgðρÞ
eið−mþ1=2ÞθfðρÞ

�
eiεt: ð44Þ

Note that the permutation of the radial wave functions
in Eq. (44) compared to Eq. (25) is equivalent to the
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replacements ε → −ε, m → −m, n → −n, as follows from
Eqs. (35)–(40). Equation (43) tells us that in the study of
fermion-soliton systems, it is sufficient to restrict ourselves
to fermionic (∝ e−iεt) solutions, since antifermionic (∝ eiεt)
solutions are obtained from the fermionic ones via charge
conjugation.

B. Existence of fermionic bound states

Consider the question of the existence of fermionic
bound states in the background field of a CPN−1 soliton
with winding number n ¼ �1. It is convenient to perform
the substitution fðρÞ ¼ ρ̃−1=2uðρ̃Þ, gðρÞ ¼ ρ̃−1=2vðρ̃Þ to
give differential equations for the new radial functions as
follows:

u00ðρ̃Þ − ½ϰ̃2 þ Uðρ̃; m; nÞ�uðρ̃Þ ¼ 0; ð45Þ

v00ðρ̃Þ − ½ϰ̃2 þ Vðρ̃; m; nÞ�vðρ̃Þ ¼ 0; ð46Þ

where ρ̃ ¼ ρ=λ, ϰ̃2 ¼ λ2ðM2 − ε2Þ, and the potentials

Uðρ̃; m; nÞ ¼ mðm − 1Þ
ρ̃2

þ nðn − 2mþ 1Þ
1þ ρ̃2

−
nð2þ nÞ
ð1þ ρ̃2Þ2 ;

ð47Þ

Vðρ̃; m; nÞ ¼ mðmþ 1Þ
ρ̃2

þ nðn − 2m − 1Þ
1þ ρ̃2

þ nð2 − nÞ
ð1þ ρ̃2Þ2

ð48Þ

do not depend on the scale parameter λ. Equations (45) and
(46) have the form of a one-dimensional Schrödinger
equation with the potentials (47) and (48), respectively.
The quantity −ϰ̃2 plays the role of energy and must be
negative for fermionic bound states. At the same time, the
potentials U and V have second-order poles at ρ̃ ¼ 0, and
tend to zero as ρ̃ → ∞. From the general properties [36] of
the Schrödinger equation, it follows that for bound states to
exist, U and V must take negative values. An analysis
shows that both U and V have areas of negative values only
for m ¼ 1=2, n ¼ 1 and m ¼ −1=2, n ¼ −1. For other
values of m and n, at least one of U and V turns out to be
positive for all ρ̃ ∈ ð0;∞Þ, which makes the existence of
bound fermionic states impossible.
Consider one of the possible cases, say m ¼ 1=2, n ¼ 1.

Another possible case, m ¼ −1=2, n ¼ −1, is reduced to
the previous one through the relation Uðρ̃; m; nÞ ¼
Vðρ̃;−m;−nÞ. It follows from Eq. (47) that the potential
Uðρ̃; 1=2; 1Þ ¼ −ð2ρ̃Þ−2 − 3ð1 þ ρ̃2Þ−2 þ ð1 þ ρ̃2Þ−1.
Furthermore, Eq. (45) admits a mechanical analogy; it
describes the one-dimensional motion of a unit mass
particle along the u-axis in time ρ̃. The motion of the
particle occurs under the action of the time-dependent
linear force Fðρ̃Þ ¼ ðϰ̃2 þ Uðρ̃; 1=2; 1ÞÞuðρ̃Þ. Since for

m ¼ 1=2 the solution uðρ̃Þ ∼ ρ̃1=2 as ρ̃ → 0, the particle
has the coordinate u ¼ 0 and possesses an infinite speed
at the initial time ρ̃ ¼ 0. This infinite speed, however, is
compensated by the action of the force Fðρ̃Þ, which also
tends to infinity as ρ̃ → 0.
We now consider the limiting case ϰ̃2 ¼ 0, which

corresponds to ε ¼ �M. It is easy to see that in this case,
the system of first-order differential equations in Eqs. (26)
and (27) splits, and its solutions can therefore be expressed
in terms of the elementary functions

ψM1
2
1 ¼

� ðλ2 þ ρ2Þ−1=2
0

�
e−iMt; ð49aÞ

ψ−M−1
2
−1 ¼

�
0

ðλ2 þ ρ2Þ−1=2
�
eiMt: ð49bÞ

Equations (49a) and (49b) are special cases of Eq. (40). It
follows from Eq. (39) that the multiplier κ tends to zero
(infinity) when ε → M and m ¼ 1=2 (ε → −M and
m ¼ −1=2). The infinity arising in the upper (lower)
component of fermionic wave function (40) is compen-
sated, since the normalization factor N is proportional to
κ1=2 (κ−1=2). As a result, the lower (upper) component of
fermionic wave function (40) vanishes, and we arrive at
Eq. (49a) [Eq. (49b)]. In this case, the confluent Heun
function that corresponds to the nonzero component of the
fermionic wave function (40) degenerates to a constant.
It follows fromEqs. (49a) and (49b) that at large distances

from the soliton, the solutions ψ�M�1=2�1 ∝ ρ−1. Hence, the
solutions ψ�M�1=2�1 cannot be normalized, and therefore
cannot be regarded as a part of the discrete spectrum of the
Hamiltonian (19). From Eq. (49a), we obtain the solution

uM1
2
1ðρ̃Þ ¼ ρ̃1=2ð1þ ρ̃2Þ−1=2 ð50Þ

to Eq. (45). It follows from Eq. (50) that the solution uM1
2
1ðρ̃Þ

increases monotonically from zero to 2−1=2 on the interval (0,
1) and then decreases monotonically to zero on the interval
ð1;∞Þ. Note that the solution uM1

2
1ðρ̃Þ ∼ ρ̃−1=2 as ρ̃ → ∞.

Next, we define the effective potential Ueffðρ̃; ϰ̃Þ ¼
ϰ̃2 þ Uðρ̃; 1=2; 1Þ, where ϰ̃2 ¼ λ2ðM2 − ε2Þ must be
positive for fermionic bound states. The effective potential
Ueffðρ̃; ϰ̃Þ increases monotonically from −∞ to
0.0428454þ ϰ̃2 on the interval (0, 2.79921), and then
decreases monotonically to ϰ̃2 on the interval ð2.79921;∞Þ.
In addition, Ueffðρ̃; ϰ̃Þ vanishes at ρ̃ ¼ ρ̃0ðϰ̃Þ, where
ρ̃0ð0Þ ≈ 1.85216 and ρ̃0ðϰ̃Þ decreases monotonically with
an increase in ϰ̃. It follows that the force Fðρ̃Þ ¼
Ueffðρ̃; ϰ̃Þuðρ̃Þ is attractive when ρ̃ ∈ ð0; ρ̃0ðϰ̃ÞÞ, and is
repulsive when ρ ∈ ðρ̃0ðϰ̃Þ;∞Þ. This means that in order
to correspond to a ground state of energy ε0, the trajectory
uε0121ðρ̃Þ of the particle must reach a maximum at some point
ρ̃max < ρ̃0ðϰ̃0Þ in the region of attraction and then decrease
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monotonically, tending to zero as ρ̃ → ∞. The monotonic
decrease of uε0121ðρ̃Þ is due to the fact that the radial wave
function of the ground state has no nodes. In addition,
Eq. (45) tells us that uε0121ðρ̃Þ ∼ expð−ϰ̃0ρ̃Þ as ρ̃ → ∞,

where ϰ̃20 ¼ λ2ðM2 − ε20Þ.
As ϰ̃2 increases, the region of attraction ð0; ρ̃0ðϰ̃ÞÞ

of Ueffðρ̃; ϰ̃Þ decreases while the region of repulsion
ðρ̃0ðϰ̃Þ;∞Þ increases. Since the force Fðρ̃Þ ¼
Ueffðρ̃; ϰ̃Þuðρ̃Þ ¼ ðϰ̃2 þ Uðρ̃; 1=2; 1ÞÞuðρ̃Þ, the attraction
force decreases and the repulsion force increases with
the growth of ϰ̃2. We can normalize the wave function
uε0121ðρ̃Þ of the assumed bound state by the condition
uε0121ðρ̃Þ=uM1

2
1ðρ̃Þ → 1 as ρ̃ → 0. It then follows from the

above that the trajectories uM1
2
1ðρ̃Þ and uε0121ðρ̃Þ must satisfy

the inequality uε0121ðρ̃Þ > uM1
2
1ðρ̃Þ. Recall, however, that

uM1
2
1ðρ̃Þ ∼ ρ̃−1=2 and uε0121ðρ̃Þ ∼ expð−ϰ̃0ρ̃Þ as ρ̃ → ∞, and

hence the ratio uε0121ðρ̃Þ=uM1
2
1ðρ̃Þ must tend to zero in this

limit, which contradicts the condition uε0121ðρ̃Þ > uM1
2
1ðρ̃Þ.

We can conclude that there are no bound fermionic states
with quantum numbers m ¼ 1=2, n ¼ 1. It follows that
there are no bound fermionic states in the background field
of a CPN−1 soliton with n ¼ �1.

C. General formalism for fermion scattering

We now turn to the description of fermion scattering in
the background field of aCPN−1 soliton. For a fermion with
initial momentum k ¼ ðk; 0Þ, according to the general
principles of the theory of scattering [36,37], the asymp-
totics of the wave function of the fermionic scattering state
has the form

Ψ ∼ ψε;k þ 1ffiffiffiffiffi
2ε

p uε;k0fðk; θÞ eikρffiffiffiffiffiffiffiffi
−iρ

p ; ð51Þ

where

ψε;k ¼ 1ffiffiffiffiffi
2ε

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

εþM
p

i
ffiffiffiffiffiffiffiffiffiffiffiffi
ε −M

p
�
e−ikx ð52Þ

is the wave function of the incoming fermion with
momentum k ¼ ðk; 0Þ,

uε;k0 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

εþM
p

i
ffiffiffiffiffiffiffiffiffiffiffiffi
ε −M

p
eiθ

�
ð53Þ

is the spinor amplitude of the wave function of the outgoing
fermion with momentum k0 ¼ ðk cosðθÞ; k sinðθÞÞ, and
fðk; θÞ is the scattering amplitude.
The scattering amplitude fðk; θÞ can be expanded in

terms of the partial scattering amplitudes fmðkÞ as

fðk; θÞ ¼
X
m

fmðkÞeiðm−1=2Þθ; ð54Þ

where the summation is taken over the half-integer eigen-
values of the angular momentum (24). The partial scatter-
ing amplitudes can in turn be written in terms of the partial
elements of the S-matrix as

fmðkÞ ¼
1

i
ffiffiffiffiffiffiffiffi
2πk

p ðSmðkÞ − 1Þ: ð55Þ

Similarly, the wave function (51) can also be decomposed
into partial waves as Ψ ¼ P

m ψm. The asymptotic behav-
ior of the partial waves can be expressed in terms of the
partial elements of the S-matrix as follows:

ψm ∼
ð−1Þ1=4ffiffiffiffiffiffiffiffiffiffi
2πkρ

p

0
BB@−i

ffiffiffiffiffiffiffiffi
εþM
2ε

q
½ið−1Þm−1=2e−ikρ þ Smeikρ�eiðm−1=2Þθ

ffiffiffiffiffiffiffi
ε−M
2ε

q
½ið−1Þmþ1=2e−ikρ þ Smeikρ�eiðmþ1=2Þθ

1
CCA: ð56Þ

Using standard methods from the theory of scattering
[36,37], we can write the differential cross section for the
elastic fermion scattering in terms of the scattering ampli-
tude fðk; θÞ as

dσ=dθ ¼ jfðk; θÞj2: ð57Þ

In turn, the partial cross sections for the elastic fermion
scattering are expressed in terms of the partial scattering
amplitudes as

σm ¼ 2πjfmðkÞj2 ¼ k−1jSmðkÞ − 1j2: ð58Þ

Note that in (2þ 1) dimensions, the cross sections dσ=dθ
and σm have the dimension of length [36]. The unitarity
of the S-matrix, SS† ¼ S†S ¼ I, results in the unitarity
condition for the partial S-matrix elements, jSmðkÞj ¼ 1.
This condition allows us to express the partial S-matrix
elements Sm in terms of the partial phase shifts δm as

SmðkÞ ¼ e2iδmðkÞ: ð59Þ
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The scale invariance of the bosonic sector of the model
(1) leads to the existence of the parameter λ, which
determines the effective size of the soliton solution (8),
and hence affects the fermion-soliton scattering. It follows
from a dimensional analysis and Eqs. (35)–(40) that the
dependence of Sm on the momentum k ¼ ðε2 −M2Þ1=2 and
the scale parameter λ enters only through the dimensionless
combination k̃ ¼ kλ.
The phase shifts δmðk̃Þ are determined only by the

arguments of the confluent Heun functions in Eq. (40),
and do not depend on the prefactors. These arguments
depend on the parameter ε only through the momentum
squared k2 ¼ ε2 −M2, i.e., only through ε2. The charge
conjugation in Eq. (21) is reduced to a permutation of the
wave function components and to their complex conjuga-
tion, which cannot change the phase shifts. This is because
all arguments of the confluent Heun functions in Eq. (40)
are real, meaning that these functions are also real, and
therefore do not change under the complex conjugation.
From this and Eq. (43), we come to the conclusion that the
phase shifts satisfy the relation

δmnðk̃Þ ¼ δ−m−nðk̃Þ; ð60Þ

where the dependence of the phase shift on the soliton
winding number n ¼ �1 is indicated.

IV. FERMION SCATTERING IN THE BORN
APPROXIMATION

In Sec. III, we were able to obtain the analytical
expression (40) for the fermionic wave functions in the
background field of the CPN−1 soliton for winding num-
bers n ¼ �1. The next step would be to obtain an exact
analytical expression for the scattering amplitude (54). To
do this, according to Eqs. (55) and (59), we need to know
exact analytical expressions for the partial phase shifts
δmðkÞ. However, unlike the well-studied Bessel functions,
exact analytical expressions δmðkÞ are unknown for the
confluent Heun functions appearing in Eq. (40). Hence,
we cannot obtain an exact analytical expression for the
scattering amplitude. In view of this, it is important to study
the fermion scattering in the Born approximation, which
gives us a chance to obtain an approximate analytical
expression for the scattering amplitude.
It follows from Eqs. (1) and (2) that the fermion-soliton

interaction is described by the potential term

V int ¼ ψ̄aγ
μAμψa: ð61Þ

In the background field approximation, the gauge field Aμ

defined by Eq. (9) does not depend on the fermion fields ψa.
It follows from this and Eq. (61) that all components of the
fermionic multiplet ðψ1;…;ψNÞ interact with the CPN−1

soliton in the same way and independently of each other.

Using Eq. (61), we can write the first-order Born
amplitude for the fermion-soliton scattering as follows:

fðk0;kÞ ¼ −ð8πkÞ−1=2ūε;k0γμAμðqÞuε;k; ð62Þ

where

AμðqÞ ¼
Z

AμðxÞe−iq·xd2x ð63Þ

and q ¼ k0 − k is the momentum transfer. The Born
amplitude (62) can be expressed in an analytical form.
For winding numbers jnj ≥ 2, the Born amplitude is
expressed in terms of the MeijerG-functions [38]; however,
for winding numbers n ¼ �1, corresponding to the elemen-
tary CPN−1 solitons, the Born amplitude can be written in
terms of modified Bessel functions of the second kind:

fðk0;kÞ ¼ in
ffiffiffiffiffiffi
2π

p
k1=2λsignðϑ2 − ϑ1Þe−iðϑ2−ϑ1Þ=2K1ðqλÞ;

ð64Þ

where the angle ϑ1 (ϑ2) defines the direction ofmotion of the
“in” (“out”) fermion, q ¼ 2k sin ðjϑ2 − ϑ1j=2Þ is the mag-
nitude of themomentum transfer, andn ¼ �1 is thewinding
number of theCPN−1 soliton. The amplitude of antifermion
scattering differs only in terms of its sign from the amplitude
of fermion scattering in Eq. (64). Using known criteria
[36,37], it can be shown that the Born approximation is
applicable under the following conditions

kλ ≫ 1 and jϑ2 − ϑ1j ≪ ðkλÞ−1=2 ≪ 1: ð65Þ

It follows from Eq. (65) that the Born approximation is
suitable for describing the low-angle scattering of high-
energy fermions.
Equation (64) tells us that the amplitude fðk0;kÞ is

Hermitian with respect to the permutation of the fermion
momenta

fðk0;kÞ ¼ f�ðk;k0Þ; ð66Þ

as it should be in the Born approximation [36,37]. Another
symmetry relation

fðk0;kÞ ¼ fðk̃; k̃0Þ; ð67Þ

where k̃ ¼ ðkx;−kyÞ and k̃0 ¼ ðk0x;−k0yÞ, follows from the
invariance of the Dirac equation (18) under the Π2T
transformation in Eq. (23). As already mentioned, the
scattering amplitude for antifermions is obtained from
Eq. (64) by the replacement n → −n. It follows that the
scattering of an antifermion on the CPN−1 soliton with
winding number n ¼ �1 is equivalent to the scattering of a
fermion on the CPN−1 soliton with winding number
n ¼ ∓1, which corresponds to Eq. (43).
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Using Eq. (64) and the known asymptotic forms of the
modified Bessel function K1 ðqλÞ, we can study the
behavior of the Born amplitude for large and small values
of the momentum transfer q. For large momentum transfers,
we find that the Born amplitude

f ∼ inπðλ=2Þ1=2signðϑ2 − ϑ1Þe−iðϑ2−ϑ1Þ=2
× e−λq sin ðjϑ2 − ϑ1j=2Þ−1=2; ð68Þ

where the angles ϑ1 and ϑ2 are fixed and ϑ1 ≠ ϑ2. It follows
from Eq. (68) that the Born amplitude decreases
exponentially with an increase in the dimensionless com-
bination λq. We now consider the case of low momentum
transfer q and high fixed fermion momentum k, which
corresponds to small scattering angles Δϑ≡ jϑ2 − ϑ1j ¼
2 arcsin ½q=ð2kÞ� ≈ q=k. In this case, the asymptotics of the
Born amplitude is

f ∼ in
ffiffiffiffiffiffi
2π

p
k1=2q−1 þ n

ffiffiffiffiffiffiffiffi
π=2

p
k−1=2: ð69Þ

We see that in the limit of small q, the Born amplitude
diverges as q−1. Furthermore, unlike Eq. (68), the leading
asymptotic terms shown in Eq. (69) do not depend on the
parameter λ determining the soliton size.
Next, we turn to the study of the partial amplitudes

fmðkÞ ¼ ð2πÞ−1 R 2π
0 e−iðm−1=2Þϑfðk;ϑÞdϑ corresponding to

the Born amplitude (64). The imaginary part of the
integrand diverges as ϑ → 0; 2π and is odd with respect
to ϑ ¼ π, and hence the corresponding integral vanishes in
the sense of the principal value. The real part of the
integrand is finite and even with respect to ϑ ¼ π, meaning
that the corresponding integral exists and is nonzero. From
this result, it is easy to show that the partial Born
amplitudes are odd under the replacement m → −m, i.e.,

fmðkÞ ¼ −f−mðkÞ: ð70Þ

The partial Born amplitudes fmðkÞ can be expressed in
terms of the Meijer G-functions [38]. These expressions,
however, can be significantly simplified in the limit of large
fermion momenta k as

fm ∼ nm
ffiffiffiffiffiffiffiffi
π=2

p
λ−1k−3=2: ð71Þ

From Eqs. (55) and (71), we can obtain asymptotic forms
for the partial S-matrix elements and phase shifts in the
Born approximation:

Sm ¼ e2iδm ∼ 1þ i
nmπ

kλ
ð72Þ

and

δm ∼
nmπ

2kλ
: ð73Þ

It follows from Eq. (73) that the phase shifts δm tend to zero
as k → ∞, which is consistent with the basic principles of
scattering theory [36,37].
Using Eq. (64), we obtain an expression for the differ-

ential cross section of the fermion scattering in the Born
approximation

dσ=dϑ ¼ 2πkλ2K1ð2kλ sin ðϑ=2ÞÞ2: ð74Þ

We see that dσ=dϑ ∼ 2πk−1ϑ−2 as ϑ → 0. At the same time,
dσ=dϑ ∼ 2πk−1ð2π − ϑÞ−2 as ϑ → 2π. It follows that the
total cross section σ ¼ R

2π
0 ðdσ=dϑÞdϑ of the fermion-

soliton scattering diverges at the lower and upper
limits of the integral. However, the transport cross section
σtr ¼

R
2π
0 ð1 − cosðϑÞÞðdσ=dϑÞdϑ is finite, and can be

expressed in terms of the Meijer G-functions, defined
according to Ref. [38], as

σtr ¼ 4π2kλ2G3;1
2;4

�
4k2λ2

���� − 1
2
; 1
2

−1; 0; 1;−1

�
: ð75Þ

Using known asymptotic expansion for the Meijer G-
function, we obtain the asymptotics of the transport cross
section (75) for large fermion momentum k as

σtr ∼
3π3

16k2λ
þOðλ−3k−4Þ: ð76Þ

V. NUMERICAL RESULTS

In Sec. III, we found an exact solution for the fermionic
wave function in the background field of the CPN−1

soliton with winding number n ¼ �1. This exact
solution is expressed in terms of the confluent Heun
functions [33–35]. We now want to find the partial phase
shifts δmðk̃Þ for a range of values for the dimensionless
combination k̃ ¼ kλ, as these will give the most complete
description of the fermion scattering. Since there is no
analytic form for the asymptotics of the confluent Heun
function in the region of large ρ, we need to use numerical
methods to solve this problem.
The exact solution (40) and the general asymptotic

form (56) are two-component spinors. Let us define the
ratio of the spinor components taken at two successive
points ρ and ρþ Δρ as

riεmnðρ;ΔρÞ ¼ ψ i
εmnðρþ ΔρÞ=ψ i

εmnðρÞ; ð77Þ

where the index i ¼ 1, 2 numbers the spinor components.
For sufficiently large ρ, the exact solution (40) tends to the
general asymptotic form (56). It follows that in this case,
the ratio riεmn calculated with Eq. (40) must be close to
that calculated with Eq. (56). Equating these two ratios
calculated for some ρ ≫ λ and Δρ ∼ λ, we obtain an
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approximate equation to determine the partial S-matrix
element Sm ¼ expð2iδmÞ in Eq. (56). Since we can use
both r1εmn and r2εmn for this purpose, we have two
approximate equations determining Sm. When ρ ≫ λ,
kρ ≫ 1, and Δρ ∼ λ, the solutions to these two equations
become very close to each other, and tend to the same limit
as ρ → ∞. We used the arithmetic mean of these two
solutions as a numerical value for Sm. To calculate the
confluent Heun functions for large values of their argu-
ments, the highly efficient numerical algorithms of the
Mathematica [39] and MAPLE [40] software packages
were used.
Figure 1 shows the dependences of the phase shifts

δmn on the dimensionless combination k̃ ¼ kλ for the
angular momentum eigenvalues m ¼ 1=2; 3=2; 5=2; 7=2;
9=2; 11=2; 13=2, and the soliton winding number n ¼ 1.
Similarly, Fig. 2 shows the curves δmnðk̃Þ for m ¼ −1=2;
−3=2;−5=2;−7=2;−9=2;−11=2;−13=2, and n ¼ 1.
Equation (60) tells us that the curves δm−1ðk̃Þ ¼ δ−m1ðk̃Þ,
and these can therefore be obtained from the curves shown
in Figs. 1 and 2. We checked Eq. (60) using numerical
methods. It follows from Eq. (60) and Figs. 1 and 2 that
δmnð0Þ ¼ signðmnÞπ=2. Note that in the case of short-range
forces, the phase shifts vanish if the momentum of a
scattered particle tends to zero [36]. In our case, the
nonzero value of δmnð0Þ is caused by the long-range
(∝ ρ−1) character of the gauge field (9).
In the following, we discuss this issue in more detail.

Since the phase shifts depend on the dimensionless

combination k̃ ¼ kλ, the regime of small k is equivalent
to the regime of small λ. Due to the long-range character of
the gauge field Aμ, the function AmnðρÞ included in the
system of differential equations (26) and (27) tends to a
constant value m − n as λ → 0. As a result, the system of
differential equations (26) and (27) is simplified, and its
solution can be expressed in terms of Bessel functions
Jm−n�1=2ðkρÞ. The free motion of fermions corresponds to
n ¼ 0 (the absence of a CPN−1 soliton). In this case, the
function Am0ðρÞ ¼ m, and the solution to the system of
differential equations (26) and (27) is expressed in terms of
Bessel functions Jm�1=2ðkρÞ. Using the well-known asymp-
totic expansions of the Bessel functions, it is easy to show
that the phase shift between Jm−n�1=2ðkρÞ and Jm�1=2ðkρÞ
is πn=2. This can be regarded as the phase shift at
zero k̃, and can be written as signðnÞπ=2 for n ¼ �1.
This expression is compatible with the result
δmnð0Þ ¼ signðmnÞπ=2, as the phase shifts are defined
modulo π.
Using analytical and numerical methods, we were able to

establish the behavior of the phase shifts δmn in the region
of small k̃ as

δmnðk̃Þ ≈
( π

2
þ π

lnðk̃2Þ if mn ¼ 1
2

smn
π
2
þ αmnk̃

2βmn if mn ≠ 1
2

; ð78Þ

where k̃ ¼ kλ, smn¼ signðmnÞ, βmn ¼ jmj þ 1=2 − smn,
and αmn are coefficients satisfying the condition

m=1/2

m=3/2

m=5/2

m=7/2

m=9/2

m=11/2

m=13/2

0.001 0.010 0.100 1 10 100
0.0

0.5

1.0

1.5

k

FIG. 1. Dependence of the phase shifts δmn on the dimension-
less combination k̃ ¼ kλ for m ¼ 1=2; 3=2; 5=2; 7=2; 9=2;
11=2; 13=2, and n ¼ 1.

m 1/2

m 3/2

m 5/2

m 7/2

m 9/2

m 11/2
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FIG. 2. Dependence of the phase shifts δmn on the dimensionless
combination k̃ ¼ kλ for m ¼ −1=2;−3=2;−5=2;−7=2;−9=2;
−11=2;−13=2, and n ¼ 1.
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αmn¼α−m−n. Based on Eqs. (55), (59), and (78), we can
write the corresponding expressions for the partial ampli-
tudes as

fmn ≈

8>><
>>:

ffiffiffiffi
2
πk

q h
i − 2

lnðk̃2Þ

i
if mn ¼ 1=2ffiffiffiffi

2
πk

q
½i − αmnk̃

2βmn � if mn ≠ 1=2
ð79Þ

We see that as k̃ → 0, all partial amplitudes tend to the same
limiting form i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπkÞp

. Accordingly, the partial cross
sections σmn ¼ 2πjfmnj2 tend to 4k−1, and hence attain
the unitary bound in this limit. Note that all partial waves
make the same contribution to the fermion scattering when
k̃ ¼ kλ → 0. This is due to the fact that jδmnð0Þj ¼ π=2 for
all m.
Let us define k̃1=2 as the value of k̃ at which jδmnj takes

the value of π=4, i.e., half of the maximum value π=2.
We have established numerically that the dependence of
the parameter k̃1=2 on the eigenvalue m of the angular
momentum has the approximate linear form

k̃1=2 ¼ k1=2λ ≈ 1.74jmj: ð80Þ

As jmj grows, the main contribution to the angular
momentum in Eq. (24) comes from its orbital part.
Equation (80) then tells us that the orbital part of the
angular momentum is approximately proportional to the
fermion momentum k1=2 and the linear size λ of the soliton,
which is consistent with classical conceptions.
It follows from Figs. 1 and 2 that for fixed k̃, the absolute

values of δmn increase with an increase in jmj. This is true
for both positive and negative m. Using the formula
σmn ¼ 4k−1sin2ðδmnÞ, we conclude that the partial cross
sections σmn behave similarly. We see that for all values of
k, the contribution of partial waves to the fermion-soliton
scattering increases with an increase in jmj. This is because
the long-range gauge field (9) of theCPN−1 soliton makes a
significant contribution to the fermion scattering, even at
large distances from the soliton. As k̃ increases, jδmnj
decreases monotonically and tends to zero as k̃ → ∞. We
have found numerically that in this limit, the phase shifts

δmnðk̃Þ ≈
π

2k̃

�
nm −

1

4

�
: ð81Þ

These features of the curves δmnðk̃Þ can be understood in
the framework of the quasiclassical approximation. Using
methods of scattering theory [36], it can be shown that for
sufficiently large jmj and k̃, the fermion-soliton scattering
is quasiclassical. There is an approximate quasiclassical
expression for the phase shifts, which in our case can be
written as

δmnðk̃Þ ≈
Z∞
ρ̃0

�
k̃2 −

ðm − 1=2Þ2
ρ̃2

−Wðρ̃; m; nÞ
�
1=2

dρ̃

−
Z∞
ρ̃0

�
k̃2 −

ðm − 1=2Þ2
ρ̃2

�
1=2

dρ̃; ð82Þ

where the potential

Wðρ̃; m; nÞ ¼ nðn − 2mþ 1Þ
1þ ρ̃2

−
nð2þ nÞ
ð1þ ρ̃2Þ2 ð83Þ

and the lower limit of integration

ρ̃0 ≈ jm − 1=2jk̃−1: ð84Þ

If quasiclassical conditions are fulfilled, then the potential
W will be small compared to the term k̃2 − ðm − 1=2Þ2ρ̃−2
in the region making the main contribution to the first
integral in Eq. (82). Expanding the integrand of the first
integral in W and keeping the first expansion term, we can
obtain an approximate analytical expression for the phase
shifts as

δmnðk̃Þ ≈
πn
2
½ð2m − n − 1Þð2k̃2 þ ð2m − 1Þ2Þ

þ 2k̃2ð2mþ 1Þ�½4k̃2 þ ð2m − 1Þ2�−3
2: ð85Þ

From Eq. (85), we can obtain two asymptotic expressions
for the phase shifts. The first is valid for k̃ → ∞ and fixed
m, and coincides with Eq. (81). The second is valid for
jmj → ∞ and fixed k̃, and has the form

δmnðk̃Þ ∼ smn
π

2
−

π

4jmj ; ð86Þ

where the factor smn ¼ signðmnÞ. Thus, the asymptotic
behavior in Eq. (81) can be obtained within the quasiclass-
ical approximation. Furthermore, Eq. (86) tells us that for
fixed k̃, the phase shifts δmnðk̃Þ → smnπ=2 as jmj → ∞,
which is consistent with the numerical results. It follows
that the partial cross sections σmn ¼ 4k−1 sin2ðδmnÞ reach
the unitary bound 4k−1 as jmj → ∞.
As already noted, this behavior of the phase shifts δmnðk̃Þ

is due to the slow (∝ ρ−1) decrease of the gauge field (9) far
from the soliton. This behavior of the gauge field leads to
the long-range asymptotics W ∼ nðn − 2m − 1Þρ̃−2 of the
quasiclassical potential (83). It is this asymptotic behavior
of W that leads to the fact that the phase shifts δmnðk̃Þ →
smnπ=2 as jmj → ∞. Indeed, a faster decrease in the gauge
field (9) leads to a faster decrease in the quasiclassical
potential (83). It can be shown, however, that if the
quasiclassical potential W decreases more rapidly than
ρ̃−2, the quasiclassical phase shift (82) tends to zero as
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jmj → ∞. In this case, the contribution of partial waves
with sufficiently large jmj to the fermion scattering
becomes negligibly small.
It follows from the results obtained that the difference in

the phase shifts is

δmnð0Þ − δmnð∞Þ ¼ smnπ=2: ð87Þ

This contradicts Levinson’s theorem [41], according to
which this difference must be equal to π multiplied
by the number of bound fermionic states in the partial
channel with given values of m and n. Since there are
no bound fermionic states in our case, the difference
δmnð0Þ − δmnð∞Þ must be equal to zero, which contradicts
Eq. (87). The reason for this is that one of the conditions for
the applicability of Levinson’s theorem is a rather fast
decrease (faster than ρ−3) in the potential term at infinity
[37]. In our case, the slow decrease (∼ρ−2) of the potential in
Eq. (83) for large ρmakes Levinson’s theorem inapplicable.
It follows from the results in Sec. IV that in the Born

approximation, the partial amplitudes fmn are real. At the
same time, Eqs. (55) and (59) tell us that Im½fmn� ¼ffiffiffiffiffiffiffiffiffiffi
πk=2

p jfmnj2 > 0. We see that according to scattering
theory [36,37], unitarity is broken in the Born approxima-
tion. However, it follows from Eqs. (55), (59), and (81)

that Im½fmn� ∼ π2ð1 − 4mnÞ2ð32k̃2Þ−1ð2πkÞ−1=2, and hence
tends to zero ∝ k−5=2 as k → ∞. Consequently, the Born
approximation becomes applicable in the region of large
fermion momenta k.
It was shown in Sec. III that the phase shifts δmn

depend only on the dimensionless combination k̃ ¼ kλ.
Equations (55) and (59) then tell us that the dimensionless
combinations

ffiffiffiffiffiffiffiffi
2πk

p
fmn also depend only on k̃. Figure 3

shows the dependences of
ffiffiffiffiffiffiffiffi
2πk

p
Re½fmn� on k̃ for the first

few positive eigenvalues m of the angular momentum and
the solitonwinding number n ¼ 1. In Fig. 3, the solid curves
correspond to the exact solution (40), and the dashed
curves correspond to the Born approximation (64). Similar
curves for negative eigenvalues m are shown in Fig. 4.
From Figs. 3 and 4, it follows that the accuracy of the

Born approximation improves with an increase in k̃. At the
same time, a comparison of Eqs. (73) and (81) shows that
even for large k̃, the Born phases differ from those obtained
numerically (or within the quasiclassical approximation)
by a shift of π=ð8k̃Þ. This difference is due to the violation
of unitarity in the Born approximation, and becomes
insignificant with an increase in jmj. Note that the Born
partial amplitudes change sign under the replacement
m → −m, which is a consequence of Eq. (70). This
property, however, is true only in the Born approximation,
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m 13/2
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FIG. 3. Dependence of
ffiffiffiffiffiffiffiffi
2πk

p
Re½fmn� on the dimension-

less combination k̃ ¼ kλ for m ¼ 1=2; 3=2; 5=2; 7=2; 9=2;
11=2; 13=2, and n ¼ 1. The solid curves correspond to the exact
solution (40), and the dashed curves correspond to the Born
approximation (64).
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FIG. 4. Dependence of
ffiffiffiffiffiffiffiffi
2πk

p
Re½fmn� on the dimensionless

combination k̃ ¼ kλ for m ¼ −1=2;−3=2;−5=2;−7=2;−9=2;
−11=2;−13=2, and n ¼ 1. The solid curves correspond to the
exact solution (40), and the dashed curves correspond to the Born
approximation (64).
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and is lost when we pass to the exact partial amplitudes.
Instead, the exact partial amplitudes satisfy the condition
fmnðkÞ ¼ f−m−nðkÞ, which is a consequence of the general
symmetry relation (60).

VI. CONCLUSION

In this paper, we have investigated fermion scattering on
topological solitons of the (2þ 1)-dimensional CPN−1

model in the framework of the background field approxi-
mation. In particular, we found exact solutions to the Dirac
equation describing fermionic states in the background
fields of CPN−1 solitons with winding numbers n ¼ �1. It
turns out that these exact solutions can be expressed in
terms of the confluent Heun functions. The symmetry
properties of the fermionic wave functions under discrete
transformations of the Dirac equation were found, which
allowed us to establish the discrete symmetry property of
the phase shifts. We studied the presence of fermionic
bound states in the background fields of the CPN−1 solitons
with winding numbers n ¼ �1, and came to the conclusion
that there are no such states.
Within the framework of the background field approxi-

mation, the process of fermion-soliton scattering is elastic,
and can therefore be fully described in terms of phase
shifts. However, the absence of analytical asymptotics for
the confluent Heun functions makes it impossible to obtain
analytical expressions for the phase shifts. In view of this,
we studied the fermion-soliton scattering in the Born
approximation, which gave us the opportunity to obtain
an approximate analytical expressions for the phase shifts,
scattering amplitudes, and differential cross sections, and to
study their asymptotic forms. We found that the total cross
section of the fermion-soliton scattering diverges due to the
long-range character of the soliton field. However, the
transport cross section of the fermion-soliton scattering
turns out to be finite, and can be expressed in terms of the
Meijer G-functions.
We have also performed a numerical study of fermion

scattering in the background fields of the CPN−1 solitons
with winding numbers n ¼ �1. In particular, it was found
that the phase shifts δmn depend only on the dimensionless
combination k̃ ¼ kλ, and the curves δm�1ðk̃Þ were obtained
for jmj ≤ 13=2. The main feature of the curves δmnðk̃Þ is
that they tend to a nonzero value δmnð0Þ ¼ signðmnÞπ=2 as
k̃ → 0. At the same time, the phase shifts δmnðk̃Þ tend to
zero ∝ k̃−1 as k̃ → ∞. The nonzero value of the difference
δmnð0Þ − δmnð∞Þ in spite of the absence of bound fer-
mionic states is related to the long-range gauge field (9) of
the CPN−1 soliton.
We have found that as jmj increases, the curves δmnðk̃Þ

shift to the region of larger k̃. Using the quasiclassical
approximation, we have shown that the phase shifts δmnðk̃Þ

tend to signðmnÞπ=2 as jmj tends to∞, which is consistent
with our numerical results. It follows that partial waves
with arbitrarily large jmj make a significant contribution
to fermion scattering at any value of k̃ (including small
values). This feature of fermion-soliton scattering is also
related to the long-range character of the gauge field
in Eq. (9).
The nonlinear OðN þ 1Þ sigma models and the CPN−1

models have one specific model in common, namely the
Oð3Þ sigma model, which is equivalent to the CP1 model.
The equivalence is realized via the identification
ϕa ¼ n�kσ

a
klnl, where ϕa are the components of the

scalar isotriplet in the Oð3Þ sigma model, and nk are the
components of the scalar isodoublet in the CP1 model.
In Ref. [42], the scattering of fermions on topological
solitons of the nonlinear Oð3Þ sigma model with winding
numbers n ¼ �1 is studied within the framework of the
background field approximation. In this model, the fer-
mionic isodoublet ψ interacts with the scalar isotriplet ϕ via
the Yukawa term hϕ · ψ̄σψ , where h is the Yukawa
coupling constant.
After the identification ϕa ¼ n�kσ

a
klnl, the Yukawa term is

transformed to the linear combination 2hðψ̄anaÞðn�bψbÞ −
hψ̄aψa of the non-Yukawa scalar-fermion interaction term
and the mass term. We see that this scalar-fermion
interaction differs significantly from the minimal scalar-
fermion interaction in the Lagrangian (1). In particular, the
Lagrangian (1) is diagonal with respect to the index of the
internal SUðNÞ symmetry, which leads to the conservation
of the fermion isospin when a fermion is scattered in the
background field of the CP1 soliton. In this case, the
fermion scattering is elastic, and can therefore be described
in terms of the phase shifts (59). The trivial isospin
structure of the Lagrangian (1) makes it possible to reduce
the Dirac equation (18) to the second-order linear differ-
ential equation (29), whose solution can be expressed in
terms of the confluent Heun functions.
In contrast, the Lagrangian of the model considered in

Ref. [42] is not diagonal with respect to the indices of the
internal SUð2Þ symmetry, and therefore the fermion isospin
is not conserved. In this case, the fermion-soliton scattering
can occur both without a change of the fermion isospin
(elastic channel) and with a change of the fermion isospin
(inelastic channel), and therefore a description of the
fermion-soliton scattering in terms of the phase shifts
becomes impossible. The nontrivial isospin structure of
the Lagrangian makes it impossible to reduce the corre-
sponding Dirac equation to a second-order differential
equation and find the fermionic wave functions in an
analytical form.
Significant differences in the scalar-fermion interaction

between the nonlinear Oð3Þ sigma model and the CP1

model lead to differences in the properties of the
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corresponding fermion-soliton systems. In particular, if
fermions are scattered on the CP1 soliton, the elastic
partial S-matrix elements tend to the universal limit of
minus one as the fermion momentum tends to zero. At the
same time, if fermions are scattered on theOð3Þ soliton, the
elastic partial S-matrix elements do not tend to any
universal limit when the fermion momentum vanishes.
Furthermore, the fermion-soliton system of the CP1 model
considered in this paper has no bound states, whereas the

fermion-soliton system of the nonlinear Oð3Þ sigma model
considered in Ref. [42] has bound states if the Yukawa
coupling constant is sufficiently large.
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