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The spatial variation and temporal variation in surface potential are important error sources in various
precision experiments and deserved to be considered carefully. In the former case, the theoretical analysis
shows that this effect depends on the surface potentials through their spatial autocorrelation functions. By
making some modification to the quasilocal correlation model, we obtain a rigorous formula for the patch
force, where the magnitude is proportional to 1

a2 ðawÞβða=wÞþ2 with a the distance between two parallel plates,
w the mean patch size, and β the scaling coefficient from −2 to −4. A torsion balance experiment is then
conducted, and we obtain a 0.4 mm effective patch size and 20 mV potential variance. In the latter case, we
apply an adatom diffusion model to describe this mechanism and predicts a f−3=4 frequency dependence
above 0.01 mHz. This prediction meets well with a typical experimental results. Finally, we apply these
models to analyze the patch effect for two typical experiments. Our analysis will help to investigate the
properties of surface potentials.
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I. INTRODUCTION

The surface of an ideal metallic conductor is often
assumed to be an equipotential. However, it would not
be true for a real metallic surface according to the
measurements of surface potential [1–10], for example,
Camp et al.measured surface potential variations of 70 mV
over scales of 10 mm in a mental sample [2]. Furthermore,
fluctuations in the electric potential are also observed by
different experiments [4,9,10]. This phenomenon of the
spatial variations and temporal fluctuations in surface
potential is usually referred to as the “patch effect” [11].
There are many reason why patch potentials can be
generated: such as the regions of different crystal
orientation, the nonuniform segregation of the elements
and the presence of contaminants adsorbed on the
surface [1,3–5,7]. These dynamic patches produce an
electrostatic force or electric filed noise which is different
from the equipotential situation [11,12]. Since the magni-
tude of this noise is dependent on the specific distribution
and temporal fluctuations of surface potentials, its influence

is difficult to evaluate with high precision. This electrostatic
noise has been recognized as an important error source in
various precision experiments, including tests of the gravi-
tational inverse-square law (ISL) [13–17], measurement of
the Casimir force [18–20], heating in ion traps [21–24],
spaceborne gravitational wave detection [25–29], and so on
[30,31]. For example, the measurement precision of the
GP-B mission and ISL experiments at short range were
mainly limited by the patch effect [13–16,31,32]. In
addition, the coupling between the potential fluctuation
with net free charge on the test mass is also a major
acceleration noise term for the Laser Interferometer Space
Antenna (LISA) [29,33–36]. Therefore, it is significant to
investigate the properties of surface potential in pursuit of
higher experimental sensitivity.
Generally, the methods to study the origin and influence

of patch potential includes the experimental measurement
and the theoretical modeling. For the experimental meas-
urement of the patch effect, the Kelvin probe and the
torsion pendulum methods are often used [4–9,32]. The
Kelvin probe force microscopy can measure the potentials
over the testing region with an extremely high spatial
resolution of about several nanometers. However, the
potential resolution of Kelvin probe force microscopy is
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limited to about 1 mV=Hz1=2 when the probe tip remained
at the same place and measurements [4]. The torsion
pendulum can measure the temporal fluctuations of surface
potentials with a resolution of 30 μV=Hz1=2, but it cannot
obtain the information about the spatial potential distribu-
tion [9]. Therefore, Huazhong University of Science and
Technology (HUST) research group developed a torsion
pendulum with a scanning probe to measure the surface
potential [6,7]. Their results show that the voltage reso-
lution can reach a level of 4 μV=Hz1=2 for a millimeter area
and the spatial distribution is about 330 μV at 0.125 mm
spatial resolution. However, the above measurements did
not show a consistent pattern, which leads to the physical
origin of the patch potentials still remaining mysterious.
The theoretical modeling itself can provide valuable

predictions for the influences of patch potentials [24].
Currently, the theoretical analysis of the patch effect in
precision experiments focused on two main problems,
namely, the electrostatic force between closed spaced
metallic surfaces [11–20,37] and the electric filed noise
above a conducting surface [21–24]. In the former case,
Speake et al. obtained a rigorous formula for the patch
force between two infinite parallel plates by solving the
Laplace’s equation, which can also be extended to the
sphere-plane geometry [11–13]. Their results show that this
kind of force or force power spectrum depends on the
potentials only through their spatial autocorrelation func-
tions (SAFs). Subsequently, a number of correlation
models were proposed to describe the spatial distribution
of patch potentials, such as the sharp-cutoff model [12], the
quasilocal correlation model [19], and the exponential
model [21]. Based on these models, the magnitude of
spatial patch noise can be estimated to some extent. In the
latter case, Dubessy et al. analyzed the time-dependent
electric noise above a conducting surface [21]. Under
the assumption of the temporal and spatial variations of
the patches decouple, this noise is also depends on the
potentials only through their SAFs. Therefore, similar
analyses are conducted for estimating this noise [22–24].
In those cases, the SAFs are all the information we have
about the spatial patch potentials. While the spatial patch
potentials on metal surfaces are relatively well understood,
little is known about their fluctuations. Although the
fluctuating adatomic dipoles and adatom diffusion have
been suggested as the possible mechanisms for localized
field fluctuations, they have different frequency depend-
ence predictions [24].
The aim of this work is to study the influence of the

electrostatic effect due to patch potentials between closely
spaced surfaces. (1) For the spatial variations, the SAFs are
typically related to the effective patch size and the variance
of patch potentials over the surface. The quasilocal
correlation model based on the polycrystalline surface
assumption is more suitable to describe random surface
potentials than others in terms of physical explanations.

The SAF can be denoted by the probability that the two
points are in the same grain. However, the current result of
this model does not give a simple analytical expression for
the form of SAF; therefore, it is unclear how the patch force
is affected by patch size and distance scaling. These unclear
points motivate us to revisit this model from a statistical
perspective [38]. Based on a theoretical analysis and
Monte Carlo simulation, we give a cleaner relationship
between the patch force and the patch size. A finite element
analysis is performed to study the finite size effects of the
plates, and also some assumptions are used. Furthermore, a
torsion balance experiment at μm range is conducted. The
fit result shows that a 0.4 mm effective patch size is
obtained and is much larger than the empirical values
(typically in the range 10 nm to 1 μm). (2) For the temporal
variations, the analysis is lacking in previous theoretical
modeling. We thus introduce the time term, and analyze
the fluctuation term by assuming the temporal and spatial
variations are decoupled. We then apply the adatom
diffusion model to describe the potential fluctuation and
compare the theoretical frequency dependence of mean
potential with the experimental results provided by the
HUST group. Finally, we apply our model to analyze the
patch effect for a typical ISL experiment at the submillim-
eter range [15] and LISA [25].
This paper is organized as follows. In Sec. II, we

reproduce the electrostatic patch effect between two
infinite parallel plates by using the Green’s function
method and introduce the assumptions of patch potentials.
Based on the expression we obtain, in Sec. III, we give a
complete analysis for the correlation functions, including
the theoretical modeling of the quasilocal models
and a Monte Carlo simulation based on Voronoi nuclei.
A simple finite element analysis of the patch force is
also introduced here. In Sec. IV, based on the adatom
diffusion model, a temporal analysis of mean potential is
presented. In Sec. V, a comparison between the theoretical
model and experimental results are given. In Sec. VI, we
estimate the possible influence of patch effect for two
typical experiments. Our final remarks are included in
Sec. VII.

II. BASIC THEORY FOR PATCH POTENTIAL

For a clean and regular surface the otherwise homo-
geneous density of the electrons inside the metal is
distorted at the surface, which creates an effective dipole
layer at the metal-air interface. This dipole layer changes
the work function of the surface and thus is related to the
surface potential. In the limit when the layer is adjacent to
the surface, this moment distribution generates variations in
the potentials. Then the patch potential Vðx; y; tÞ of this
surface can be written as [11,39]

Vðx; y; tÞ ¼ Pðx; y; tÞ=ε0; ð1Þ
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where Pðx; y; tÞ is the dipole moment density and ε0 is the
vacuum permittivity. Consider two infinite parallel plates
separated by a distance a in the z direction. These plates are
labeled as A and B, respectively. r⃗1 and r⃗2 are the two-
dimensional coordinates in the plates of A and B, respec-
tively. The common area of plates A and B is S. The
membranes of dipole moment are located at zA ¼ h and
zB ¼ a − h, where 2h is the separation between the charges
that comprise the dipole layer. The electrostatic energy in
the region limited by plates A and B at time t is given by

WðtÞ ¼ 1

2

Z
ϕðr⃗1; z1; tÞρðr1!; z1; tÞdr⃗1dz1; ð2Þ

where ρðr⃗1; z; tÞ and ϕðr⃗1; z; tÞ are the charge density and
the electrostatic potential in this region, respectively.
ϕðr⃗1; z; tÞ is given by

ϕðr⃗1; z1; tÞ ¼
1

ε0

Z
ρðr⃗2; z2; tÞGðr⃗1; z1; r⃗2; z2Þdr⃗2dz2; ð3Þ

where Gðr⃗1; z1; r⃗2; z2Þ is Dirichlet Green’s function for the
parallel plate configuration. Inserting Eq. (3) into Eq. (2),
we can obtain

WðtÞ ¼ 1

2ε0

Z Z
ρðr⃗2; z2; tÞρðr⃗1; z1; tÞ

×Gðr⃗1; z1; r⃗2; z2Þdr⃗2dz2dr⃗1dz1: ð4Þ

Since the dipole moment layer is the only source in this
region, the charge density can be written as follows

ρðr⃗1; z1; tÞ ¼ PAðr⃗1; tÞδ0ðz1 − hÞ þPBðr⃗1; tÞδ0ðz1 − aþ hÞ;
ð5Þ

where δ0ðz1Þ is the first derivative of Dirac’s function.
Using the relationship in Eq. (3), the energy is

WðtÞ ¼ ε0
2

X2
A¼1

X2
B¼1

Z Z
dr⃗2dz0dr⃗1dz1VAðr⃗1; tÞ

× VBðr⃗2; tÞ
∂
2Gðr⃗1; z; r⃗2; z2Þ

∂z1∂z2

����
z1¼zAþh;z2¼zBþh

; ð6Þ

where VAðr⃗1; tÞ and VBðr⃗2; tÞ are the observable potential
of plates A and B, respectively. Now the target is to obtain
the formula of Gðr⃗1; z1; r⃗2; z2Þ. Using the method in
Ref. [40], Gðr⃗1; z1; r⃗2; z2Þ is easily computed by using
Fourier transform method

Gðr⃗; z1; r⃗2; z2Þ ¼ G0ðr⃗1; z1; r⃗2; z2Þ þ
1

8π2

Z
ejk⃗ðr⃗1−r⃗2Þ

k sinh ka

× ½sinh kða − z2Þ · e−kz1
þ sinh kz2 · e−kða−z1Þ�dk⃗; ð7Þ

where G0ðr⃗1; z1; r⃗2; z2Þ is the Green’s function in the
absence of boundaries, k⃗ is the corresponding variable of
r⃗ ¼ r⃗1 − r⃗2 in Fourier spaces, and k ¼ jk⃗j. In this limit
h → 0, we finally get

WðtÞ ¼ ε0S
8π2

Z ½CAAðk⃗; tÞ þ CBBðk⃗; tÞ� cosh ka − CABðk⃗Þ − CBAðk⃗Þ
sinh ka

kdk⃗; ð8Þ

where CABðk⃗; tÞ ¼
R
CABðr⃗; tÞejk⃗ r⃗dr⃗ ¼ 1

S

R R
VAðr⃗2 þ r⃗; tÞVBðr⃗2; tÞejk⃗ r⃗dr⃗2dr⃗ can be regarded as the two-dimensional

Fourier transform of the correlation function of the potential of plates A and B. Then the force along the z axis can be
given by

FzðtÞ ¼
ε0S
8π2

Z
CAAðk⃗; tÞ þ CBBðk⃗; tÞ − ½CABðk⃗; tÞ þ CBAðk⃗; tÞ� cosh ka

sinh2 ka
k2dk⃗: ð9Þ

This formula is consistent with previous results in the
literatures except for the time term [11,12]. One can recover
the usual result for perfect conductors by assuming that
VAðr⃗1; tÞ ¼ VAðtÞ and VBðr⃗2; tÞ ¼ V̄BðtÞ. In this case,
CABðk⃗; tÞ ¼ 4π2V̄AðtÞV̄BðtÞδ2ðk⃗Þ, which leads to

FzðtÞ ¼
ε0S
2a2

ðV̄AðtÞ − V̄BðtÞÞ2: ð10Þ

where V̄AðtÞ − V̄BðtÞ is referred to as contact potential
differences (CPD). In this limit, the model reduces to the
parallel-plate capacitor model. This long range force is

relatively easily calculated, and the CPD can be eliminated
by applying compensationvoltage in real experiment. Please
note that the CPD is a function of time t, which means that a
time monitor of voltage is needed for every data run.
Therefore, it is convenient to assume that the potentials
of plates have only stochastic components fluctuating
around 0, i.e., hVA=Bðr⃗1; tÞiS ¼ 0 [18]. The purpose of this
paper is to study the influence of the random patch force.
In order to evaluate Eq. (9), we have to make some

assumptions about the nature of the patch potentials. One
assumption is that the spatial and temporal variations of the
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potentials decouple. Another one is that the surface can be
divided into N separate patches based on the potential
difference. Providing that N is large and the stochastic
process is stationary and ergodic, we can write the patch
potential over surface A as [23]

VAðr⃗1; tÞ ¼
XN
i¼1

vA;iðtÞχiðr⃗1Þ; ð11Þ

where vA;iðtÞ is the fluctuating potential of ith patch, and
the step function χiðr⃗1Þ is 1 only for r⃗1 within the area of
the ith patch, and 0 otherwise. Then the correlation function
of the potentials in plate A can be further expressed as

CAAðr⃗; tÞ ¼
1

S

Z XN
i¼1

vA;iðtÞχiðr⃗1 þ r⃗Þ
XN
j¼1

vA;jðtÞχjðr⃗1Þdr⃗1:

ð12Þ
This integration can be divided into N patches. Each

patch i has area Si. In this case, it becomes

CAAðr⃗; tÞ ≃
P

N
k¼1

R
Sk
vA;kðtÞ

P
N
i¼1 vA;iðtÞχiðr⃗k þ r⃗Þdr⃗k
S

:

ð13Þ

As usual, the variance of patch potentials over the surface
A can be given by setting r⃗ ¼ ð0; 0Þ

V2
rmsðtÞ ¼ CAAð0; tÞ ≃

P
N
k¼1

R
Sk
v2A;kðtÞdr⃗k
S

: ð14Þ

Now recalling Eq. (13), the integral term can be
rewritten as

Z
Sk

vA;kðtÞ
XN
i¼1

vA;iðtÞχiðr⃗k þ r⃗Þdr⃗k

¼
Z
Sk

v2A;kðtÞχkðr⃗k þ r⃗Þdr⃗k

þ
Z
Sk

vA;kðtÞvA;iðtÞχiðr⃗k þ r⃗Þdr⃗kj
i≠k

: ð15Þ

Physically, the potential of each patch is statistically
independent. Equation (13) can be further expressed as

CAAðr⃗; tÞ ≃
P

N
k¼1

R
Sk
v2A;kðtÞχkðr⃗k þ r⃗Þdr⃗k

S
≃ V2

rmsðtÞWðr⃗Þ;
ð16Þ

whereWðr⃗Þ is the probability that points r⃗1 and r⃗2 are in the
same patch with r⃗ ¼ r⃗1 − r⃗2. Notice that, under the
assumption of Eq. (11), Eq. (16) is almost identical to
the result in Ref. [19] except for the t term. It tell us that a

repeated potential measurement is needed even at the same
place of plate. Now the target is to obtain the explicit form
ofWðr⃗Þ. Before entering the next section, one can discuss a
special case for Wðr⃗Þ. We assume that the size of the patch
is small, i.e., the point patch. In this case, Wðr⃗Þ ¼ S

N δ
2ðr⃗Þ

and CABðk⃗; tÞ ¼ S
N V

2
rmsðtÞ. Usually, there are no cross

correlations between the patches on different plates, yet
A and B have similar patch distribution. Then we have

Fz;ppðtÞ ¼
ε0S
4π2

S
N
V2
rmsðtÞ

Z
k2

sinh2 ka
dk⃗

≈ 0.90
ε0S
π

S
N
V2
rmsðtÞ
a4

: ð17Þ

Although this 1=a4 scaling law shows a stronger relationship
with distance, the magnitude of force is suppressed by the
number of patches. Therefore, we need more information
about the relationship between the force and the patch size.

III. SPATIAL VARIATION OF THE SURFACE
POTENTIAL

A. Theoretical modeling of the random electrostatic
force correlation function

The analytical way to calculate Wðr⃗Þ is employing
expressions for the probability density of the effective
patch length. As mentioned before, the patch correlation
function has been studied by Behunin et al. [19]. They used
a quasilocal correlation model with a better physical
explanation than the sharp-off model to describe this
phenomenon in the Casimir experiment. However, they
did not give a simple analytical expression for the final
form of WðrÞ, nor did WðkÞ, which leads the relationship
between the patch size and the distance to be ambiguous.
Motivated by this, we revisit this model from a statistical
perspective and find some unnoticed points. Following the
discussion in Sec. II, the surface is divided into N separate
patches: N is large and the stochastic process is stationary
and ergodic. To obtain an analytical expression ofWðr⃗Þ, we
denote the random variable ξ by two possible outputs

ξðr⃗1; r⃗Þ ¼
�
1; O1

0; O2
; ð18Þ

where O1 is defined to be the output for the points 1 and 2
are in the same patch, and O2 otherwise. Therefore, Wðr⃗Þ
can be regarded as the spatial average of ξ by assuming that
the stochastic process is stationary:

Wðr⃗Þ ¼ hξðr⃗1; r⃗ÞiS ¼ lim
S→∞

1

S

Z
S
ξðr⃗1; r⃗Þdr⃗1: ð19Þ

This integration can be divided into N patches. Each
patch i has area Si. In this case, it becomes
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Wðr⃗Þ ¼ lim
N→∞

1
N

P
N
i¼1

R
Si
ξðr⃗i; r⃗Þdr⃗i

1
N

P
N
i¼1 Si

: ð20Þ

By assuming a probability density function pðsÞ,
Eq. (20) can be written as

Wðr⃗Þ ¼
R
pðsÞd2s RSi ξðr⃗1; r⃗Þdr⃗1R

spðsÞd2s : ð21Þ

From Eq. (21), we can know thatWðr⃗Þ is depending on the
shape of patch. We can assume that the patches are
isotropic, i.e., that autocorrelations are spherically sym-
metric. This assumption leads to two simplifying situations.
One is that we only choose the direction of displacement r
along one direction, i.e., r ¼ x or r ¼ y [38]. It means that
every single patch can be approximated as one line with
cord length l. Here we refer it as the one-dimensional
quasilocal model. Equation (21) can be rewritten as

W1ðrÞ ¼
R R

ξðx1; rÞpðlÞdx1dlR
lpðlÞdl : ð22Þ

In this case, ξðx1; rÞ ¼ θðl=2 − x1Þθðl=2 − rþ x1Þ and
θðx1Þ is the unit step function. Then we have

W1ðrÞ ¼
R∞
r ðl − rÞpðlÞdlR

lpðlÞdl : ð23Þ

Usually, we assume that the cord length l has a Poisson
statistic, which is a good approximation due to the “mem-
oryless” property [33]. The resulting density function is

pðlÞ ¼ e−l=λ=λ; ð24Þ

where λ is the constant of proportionality. Inserting Eq. (24)
into (23), we can obtain

W1ðrÞ ¼ e−r=λ: ð25Þ

This is the result that has been used many times, such
as in Refs. [13,18,19,21]. The advantage of this model
is that a simple form of WðkÞ in Fourier space can be
obtained. By using the zero-order Hankel transforms, we
have

W1ðkÞ ¼
2πλ2

ð1þ k2λ2Þ3=2 : ð26Þ

Another situation is that the patch is circular with a
radius l. We refer it as two-dimensional quasilocal model. It
is worth emphasizing that the circular cannot fill surface,
the gaps have been ignored in this analysis. Equation (21)
can be rewritten as

W2ðrÞ ¼
4

π

R R
Si
ξðr⃗1; r⃗Þdr⃗1pðlÞdl

l̄2
; ð27Þ

where ξðr⃗1; r⃗Þ ¼ θðl=2 − jr⃗1jÞθðl=2 − jr⃗ − r⃗1jÞ. Thus

W2ðrÞ ¼
2

πl2

Z
∞

r

�
l2 arccos

�
r
l

�
− r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − r2

p �
pðlÞdl:

ð28Þ

It should note that l̄2 is used in the denominator, rather than
l2 in Ref. [19]. Similarity, if a Poisson statistic of l is used,
we have

W2ðrÞ ¼
1

π

�
2G4;0

2;4

�
r2

4λ2

�
−
r2

λ2
K1

�
r
λ

��
; ð29Þ

where Gm;n
p;q ðxÞ is the Meijer’s G function and K1ðxÞ is the

first-order modified Bessel function [41]. We also can
obtain the Fourier transform of

W2ðkÞ¼ 4
ð1þk2λ2ÞEpKð−k2λ2Þ−ð1−k2λ2ÞEpEð−k2λ2Þ

ðkþk3λ2Þ2 ;

ð30Þ

where EpKðxÞ and EpEðxÞ are the complete elliptic
integral of the first kind and of the second kind, respec-
tively. One can make some check for Eqs. (25) and (30)
by using

R∞
0 kWðkÞdk ¼ 2π. Note that, one-dimensional

situation has a simple correlation function than two-
dimensional quasilocal model, but two-dimensional qua-
silocal model has a stronger physical explanation. Figure 1
shows the comparison between the one-dimensional and
two-dimensional quasilocal model with λ ¼ 1. We can see
that the difference exists and the two-dimensional model
corresponds to a stronger correlation.
In order to verify the correctness of the above assump-

tions, we performed a Monto Carlo simulation to obtain the
specific values of WðrÞ. This simulation is relatively
straightforward based on Eq. (20). First, we construct N
Voronoi nuclei in a fixed surface with area S by using the
method introduced by Debye, as shown in Fig. 2 (left). The
basic principle of constructing Voronoi nuclei is determin-
ing the area with the closet center point. After finishing this
procedure, we select point r1 randomly within the surface.
Then we select another point r2 with a fixed distance r from
r1. Finally, we determine whether both points of each pair
lie within a single grain. To make the results convergence to
below 1%, the procedures are repeated 105 times for every
value of distance. The distance r is incrementally varied to
produce a discrete sampling of WðrÞ. In addition, we
use λ → w=q to obtain a more obvious statistical property
since we have no information about the value of N, where
w ¼ ffiffiffiffiffiffiffiffiffi

S=N
p

and q is a dimensionless constant to be
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determined. Therefore, the simulation result can be
expressed as a function of r=w, as shown in Fig. 2 (right)
(triangle shape). We use Eqs. (25) and (28) to fit the result
and find that the covariances are good (red dashed line and
blue solid line). The best least-squares fits give q ¼ 1.79
and q ¼ 2.33, respectively. Although the fit results of these
two models are similar, the one-dimensional quasilocal
model correspond to a bigger patch size. Therefore, we
adopt Eqs. (29) and (30) in the sequel calculations. In
addition, we also find that the values of q are almost
identical for different N. This result proves that the
procedure of replacing λ with w=q is necessary.

We now employ the two-dimensional quasilocal model
to obtain the properties of the random patch force. We will
also assume that there are no cross correlations between the
patches on different plates A and B have similar patch
distribution. Inserting Eqs. (16) and (30) into Eq. (9), which
leads to

Fz ¼
2ε0
π

V2
rmsS
a2

Z
∞

0

k3

sinh2 k
Ω
�
k;
a
w

�
dk; ð31Þ

where

Ω
�
k;
a
w

�
¼

ð1þ k2 1
q2

w2

a2ÞEpKð−k2 1
q2

w2

a2Þ − ð1 − k2 1
q2

w2

a2ÞEpEð−k2 1
q2

w2

a2Þ
ðkþ k3 1

q2
w2

a2Þ2
; ð32Þ

FIG. 2. Left: 2D diagrams of Voronoi polycrystals. Right: comparison of two different least-squares-fit models with the simulation
result.

FIG. 1. Comparison of the one-dimensional and two-dimensional model in real space and Fourier space with λ ¼ 1.
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where q ¼ 2.33 and variable substitution ka ¼ k has been
used. Therefore, we can obtain the relationship between the
random patch force and a=w, as shown in Fig. 3 (left).
Furthermore, we focus on two important limits: in the case
of a ≫ w, we obtain Fz ¼ 1.5π−1ε0V2

rmsSw2d−4 and, in the
case of a ≪ w, we obtain Fz ¼ 3π−1ε0V2

rmsSd−2. To obtain
a simpler expression of Eq. (31), we introduce a scaling
coefficient, such that

Fz

�
a
w

�
¼ 2ε0SV2

rmsfðβÞ
πa2

�
a
w

�
βða=wÞþ2

; ð33Þ

where fðβÞ is a correction factor and βða=wÞ can be
determined by

βða=wÞ ¼ ∂ lnFz

∂ ln ½a=w� ∈ ð−4;−2Þ: ð34Þ

Equation (33) is the main result of this paper. We also can
plot βða=wÞ as a function of a=w, as shown in Fig. 3 (right).
One can obtain that once a=w > 10, β ¼ −4 and
a=w < 0.1, β ¼ −2.
Similarity, for the force gradient along the z axis, we

have

Ke ¼
4ε0
π

V2
rmsS
a3

Z
∞

0

k4 cosh k
sinh3 k

Ω
�
k;
a
w

�
dk; ð35Þ

then

Ke ¼
4ε0SV2

rmsfðβÞ
πa3

�
a
w

�
χða=wÞþ3

; ð36Þ

where

χða=wÞ ¼ ∂ lnKe

∂ ln ½a=w� ∈ ð−5;−3Þ: ð37Þ

According to the Monte Carlo simulation, we give a clear
relationship between the force and the patch size. One can
obtain the effective patch size through the distance scaling
coefficient. Generally, values of patch size reported by
experiments are in the range 10 nm to 1 μm. Therefore, we
can choose suitable distance based on the empirical patch
sizes. However, patch size is very dependent on material
and surface preparation. An additional calibration estima-
tion is needed for specific experiment.

B. The finite element analysis of the random
electrostatic force

In the above discussion, we neglect the finite size effects
of the plates. In order to make our analysis more precisely,
we perform a finite element analysis to explore this effect
by using a commercial software package (COMSOL

Multiphysics) [42]. The package used in our simulations is
AC(Alternating Current)/DC (Direct Current) module and
the CAD(Computer Aided Design) models are created by
using the parameters in Sec. II. The distances between
plates are set at μm level.
We first draw two rectangular boxes to represent the

plates. The boxes are placed inside a big vacuum solution
domain held at zero potential. Following the discussion in
Sec. III, we build one surface based on the Voronoi
polycrystals in COMSOL. Then this surface is placed on
the opposite side of the two boxes, as shown in Fig. 4 (left).
The number of the patch changes with our needs. The
potentials of the plates are set to 0. Random potentials with
variance are assigned to the patches by using a random
number generator. For example, we obtain a Voronoi

FIG. 3. Left: normalized random patch force as a=w varies (black solid line), for a ≫ w one has Fz ¼ 1.5π−1ε0V2
rmsSw2d−4

(red dashed line), and for a ≪ w one has Fz ¼ 3π−1ε0V2
rmsSd−2 (blue dot-dashed line). Right: the scaling coefficient βða=wÞ as a

function a=w.
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surface with 200 patches with standard deviation of voltage
30 mV [see Fig. 4 (right)]. Different colors represent
different potentials. Then the force due to these patches
can be obtained through the runs of simulation. Since the
potentials of patches are random, we need to repeat the
process. Therefore, a mean value and the standard deviation
can be obtained on each data point.
We first explore the finite size effects at different

separations with 200 patches. As shown in Fig. 5 (left),
the simulated electrostatic forces (black square and blue
circle) are plotted as a function of separations with different
potential variances. The simulation results are in agreement
with theoretical results (black solid line and blue dotted
line) at different separations. The standard deviations are
about one-tenth of the mean values. It is worth emphasizing

that we only check the autocorrelation function by setting
one patch surface. Then we study the finite size effects of
different lengths, as shown in Fig. 5 (right). The simulation
results (black square) also match well with theoretical
results (black solid line). Therefore, we can conclude that
the finite size effects of plates are at an acceptable level and
the approximation of Eq. (16) is effective. The number of
patches is limited by the storage space of the computer.

IV. TEMPORAL VARIATION OF THE SURFACE
POTENTIAL

In addition to the spatial variation of the surface
potential, there also exists the temporal variation of the
surface potential [4,9,21–24,43]. Generally, investigators

FIG. 4. Left: the CAD model drawn in COMSOL. Right: a Voronoi surface with 200 patches with standard deviation of voltage 30 mV.

FIG. 5. Comparison between the simulation results and theoretical results for the electrostatic force. Left: the electrostatic force
between the plates at different separations (with different potential variances 30 and 50 mV). Right: the electrostatic force between the
plates with different effective patch length, the distance is 90 μm.
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always use the temporal fluctuation of mean potential to
calculate its influence on experiments [4,14,15]. Therefore,
we assume that the potentials of surface patches share the
same temporal fluctuation and use the temporal fluctuation
of mean potential to represent this property. The mecha-
nism of potential fluctuation is not clear until now. Several
models have been suggested as underlying mechanism for
this fluctuation, such as fluctuating adatomic dipoles and
adatom diffusion. Reference [4] also suspects that the
outgassing of particles related to electrical effects may
be the possible explanation. In this paper, we adopt the
adatom diffusion on the surface as the cause of this
fluctuation. Adatoms that diffuse in and out of the surface
change the average work function and lead to fluctuations
of the mean potential [44]. The relationship can be
written as

δV̄ ¼ ∂V̄
∂n̄

δn̄; ð38Þ

where δV̄ and δn̄ are the fluctuations in the density of
adatoms and in the work function, respectively. Based on
the model in Ref. [24], we can relate the mean density of
adatoms n̄ðtÞ to the mean dipole moment density P̄ðtÞ by
P̄ðtÞ ¼ μ̄ n̄ðtÞ, where μ is the mean dipole moment. Thus

δV̄ ¼ μ̄

ε0S
δN; ð39Þ

where N is the value of the total number of atoms on
surface. It is worth emphasizing that the spatial distribution
on the potentials have been neglected here. Since we

suspect that this distribution may be small in contrast to
the variation cause by the model in Sec. III. Consequently, a
spectral analysis for Eq. (39) can be conducted

SδV̄ðωÞ ¼
μ̄

ε0A
SδNðωÞ: ð40Þ

Based on the analysis in Refs. [45,46], it is easy to obtain
the correlation function of the number fluctuation of
adatoms in a fixed area S caused by random diffusion

hδNð0ÞδNðτÞi¼hðδNÞ2i
S

Z
S
d2r⃗

Z
S
d2 r⃗ 0

1

4πDτ
e−

jr⃗−r⃗0 j2
4Dτ ; ð41Þ

where hðδNÞ2i is the mean square fluctuation of adatoms in
S and D is the diffusion constant. The power spectral
density of δN can be written as

S2δNðωÞ ¼ 2Re

�Z
∞

0

hδNð0ÞδNðτÞie−jωtdt
�
: ð42Þ

Combining Eqs. (41) and (42), we have

S2δNðωÞ ¼
hðδNÞ2i
πDS

Z
S
d2r⃗

Z
S
d2r⃗0Ker0ðjr⃗ − r⃗0j

ffiffiffiffiffiffiffiffiffiffi
ω=D

p
Þ;

ð43Þ

where Ker0ðxÞ is the zeroth-order Kelvin function. It is hard
to obtain a theoretical result for a rectangular surface. But
we can approximate the rectangular surface as a circle by
using S ¼ πR2. In this case, Eq. (43) is given by

S2δNðωÞ ¼ −hðδNÞ2i 8R
2

D
Ber1ðu1=2p ÞKei1ðu1=2p Þ þ Bei1ðu1=2p ÞKer1ðu1=2p Þ

up
; ð44Þ

where up ¼ ωR2=D and Ber1ðxÞ;Kei1ðxÞ;Bei1ðxÞ;
Ker1ðxÞ are the Kelvin functions. Therefore, the final form
of the fluctuation in mean potential is

SδV̄ðωÞ ¼
μ̄

ε0πR

�
8hðδNÞ2i

D
ΘðupÞ

�
1=2

; ð45Þ

where

ΘðupÞ ¼
Ber1ðu1=2p ÞKei1ðu1=2p Þ þ Bei1ðu1=2p ÞKer1ðu1=2p Þ

up
:

ð46Þ

Thus, we can plot ΘðupÞ as a function of up, as shown in
Fig. 6. Note that two limiting cases can be derived: for the
low-frequency part, the spectrum is

FIG. 6. Dependence of the spectral function ΘðupÞ on the
scaled frequency up.
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SδV̄ðω → 0Þ ¼ μ̄

ε0πR

�hðδNÞ2i
D

ln

�
D
ωR2

��
1=2

ð47Þ

for the high-frequency part, the spectrum is

SδV̄ðω → ∞Þ ¼ μ̄

ε0πR2

�
81=2D1=2hðδNÞ2i

R
ω−3=2

�
1=2

: ð48Þ

V. EXPERIMENTAL VERIFICATION OF THE
RESIDUAL ELECTROSTATIC EFFECT

In the previous section, we have discussed the model for
the random patch force. Now we conduct an experiment to
verify these models. This torsion balance experiment is
specifically designed to investigate residual electrostatic
effects. In this experiment, an I-shaped pendulum with a
mass of 13 g, was suspended facing to the membrane by an
80-mm-long, 25-μm-diameter tungsten fiber. A 20 × 20 ×
0.005 mm3 conducting membrane is placed at one side of
the pendulum. The pendulum and the membrane were all
gold coated. A schematic of our apparatus is shown in
Fig. 7. The separation between the pendulum and mem-
brane can be adjusted between 0 and 200 μm within 1 μm
in accuracy. The sensitivity of the closed-loop pendulum
was calibrated synchronously by a rotating copper cylinder.
The apparatus was housed inside a vacuum chamber with a
pressure of approximately 10−5 Pa. More details of this
experimental design can be found in Ref. [47].
In the μm range, the electrostatic disturbance is the

dominant noise source. In order to maintain the stability of
the separation between the pendulum and membrane, a
proportional-integral-differential electrostatic feedback

control system was used. Therefore, we can obtain the
torque exerted on the pendulum by using the feedback
voltage. In addition, the contact potential differences
between the pendulum and membrane were compensated
by applying a voltage on the membrane. Usually, we think
that the mean patch force can be eliminated by applying
compensation voltage and the random patch force still exist
after compensating. Therefore, it is reasonable to conclude
that the residual electrostatic torque in this experiment is
mainly caused by the random patch potentials. As already
stated, the patch potentials vary with time. In order to avoid
the influence of potential fluctuation, the surface potential
of each membrane needs be compensated for each data run.
The measurement period cannot be so long.
By processing the experimental data, we have obtained

the residual electrostatic gradient at different separations
(points with error bars), as shown in Fig. 8 (left). These
points show a large residual electrostatic gradient exist in
the μm range. We convert Eq. (35) into the torque form by a
moment arm 47.5 mm and then fit these results. A best fit is
achieved and gives V2

rms ¼ ð20 mVÞ2, w ¼ 0.4 mm, and
χ ≈ −3 (black solid line). We note that the predicted mean
patch size is larger than a for the whole range of distances
conducted in the experiment ð6.0–40.0Þ μm. Usually,
typical values of patch size reported by experiments are
in the range 10 nm to 1 μm and are much smaller than our
result. This big patch size can be due to two possible
reasons: one is that the absorption of contaminants in
surface alter the patch size. Another is that the interaction of
the patches on two surfaces alters the patch size. Since we
cannot model the cross correlations between the patches on
different plates, we always ignore this effect. This approxi-
mation may be valid when the area of one surface is

FIG. 7. Schematic drawing of the experimental apparatus.
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relatively smaller than another, and invalid when the areas
are almost identical.
In order to verify the model in Sec. IV, we compared the

theoretical frequency dependence of mean potential with
the experimental results provided by the HUST group [6,7].
This experiment measured the temporal and spatial varia-
tion of surface potential by using a torsion pendulum and a
scanning conducting probe. The areas of the pendulum and
the scanning probe are 100 × 40 mm2 and 5 × 5 mm2,
respectively. The distance between the test mass and the
probe is 100 μm. More details can be found in Refs. [6,9].
A typical potential variation of the test mass is shown in
Fig. 8 (right). The spectrum rises as about 1=f
below 0.01 Hz and is about 50 μV=Hz1=2 at 1 mHz. We
then plot a theoretical line by using Eq. (45), and some
typical parameters are used here, such as μ ¼ 5 D,
hðδNÞ2i ¼ ð2.5 × 1013Þ2, D ¼ 5 × 2.5−10 m2 s−1. This
model predicts a 1=f3=4 scaling in the frequency range
from 10−5 to 1 Hz and predicts a flattened spectrum below
10 μmHz. From Fig. 8 (right), we see that the experimental
result meets well with the theoretical prediction from 10−5

to 10−2 Hz and that the experimental noise is larger than
expected in the high-frequency part. Therefore, we suspect
that the adatom diffusion may be the possible mechanism
for the voltage fluctuation.

VI. APPLICATIONS

Generally, we are not interested in the DC electrostatic
force (or torque), but in the force fluctuating at the target
frequency. The residual electrostatic effect produces force
noise in two ways. First, fluctuations in the distance will
multiply the spring constant of the electrostatic interaction
to produce force noise. Based on Eq. (35),

SFres;randomðδaÞðωÞ ¼ KeSδaðωÞ

¼ 4ε0SV2
rms

πa3

�
a
w

�
χða=wÞþ3

SδaðωÞ; ð49Þ

where δa ≪ a has been used and S2δaðωÞ ¼R
dτhδaðtÞδaðtþ τÞie−jωτ is the displacement noise.
Second, any temporal variation of the patch potential will

also multiply the force gradient of voltage to produce force
noise. By assuming that the potentials of surface patches share
the same temporal fluctuation and using the temporal fluc-
tuation of mean potential to represent this property, we obtain

SFres;meanðδV̄ÞðωÞ ¼
���� ∂F
∂ðVrmsÞ

����SδV̄ðωÞ
¼ 4ε0SVrms

πa2

�
a
w

�
βða=wÞþ2

SδV̄ðωÞ; ð50Þ

where SδV̄ðωÞ is determined by Eq. (45).

A. Applications to the experiment
of testing ISL

We now apply the models to analyze the residual
electrostatic effects existed in the ISL experiment by the
HUST group. In fact, the experimental apparatus and
environmental condition in Ref. [15] are similar to our
experiment in Sec. V. The mean patch potential of each
membrane was compensated to equipotential with the
pendulum for each data run. Based on this, it is reasonable
to assume that the distribution of patch size is also similar.
In this condition, the torque gradient of distance can be
written as

FIG. 8. Left: comparison of the residual random patch torque gradient between the experimental data (points with error bars) and the
best fit of the patch torque gradient within the two-dimensional quasilocal model of Sec. III (black solid line). Right: comparison of the
voltage fluctuation (blue solid line) and the theoretical prediction by using Eq. (45) (black dashed line).
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Ke;T ≈
8ε0SV2

rmsL2

πa3
; ð51Þ

where the gradient is summed over two sides of the
pendulum, a is the separation between the test mass and
membrane (about 90 μm), and L is the distance between
the fiber and the center of the test mass (about 38 mm).
According to the result of Ref. [15], the torque gradient of
distance is about 2.6� 0.4 × 10−8 Nm=rad, which can be
obtained by using Vrms ¼ 50 mV and w ¼ 0.4 mm, respec-
tively. The tiny vibration of the shielding membrane is
about 0.1 nrad and the disturbance of the torque from this
vibration is estimated as < 0.3 × 10−17 Nm.
For the torque gradient of voltage, we have

Kv;T ≈
8ε0SVrmsL

πa2
: ð52Þ

Inserting the parameters into this equation, we can estimate
the value as 9.3 × 10−10 Nm=V. If we assume that the noise
floor of voltage is less than 50 μV=Hz1=2 around several
millihertz, then the voltage noise introduces a torque noise
of 4.65 × 10−14 Nm=Hz1=2, which is about 25 times larger
than the thermal noise 2 × 10−15 Nm=Hz1=2 of the torsion
balance with Q ≈ 2500. After an integration of 10 days, the
disturbance of the torque from voltage noise is estimated as
5 × 10−17 Nm and is almost identical to the experimental
sensitivity.

B. Applications to LISA

The patch-field related effects have been recognized as
important error sources for LISA. As already stated, the
surface potential can be divided into the contact potential
differences and random patch potential. We consider the
situation that the sensing voltage are not applied on the
electrodes. The first noise term is the stiffness due to
random patch potentials. In their former disturbance
requirement, they used a function based on the model
discussed in Ref. [11]: the stiffness formula is [4,34,35,37]

Ke ¼ γ
ε0SV2

rms

ma3
; ð53Þ

where γ is a dimensionless constant of order 1. This
formula was derived under the assumption of a sharp-off
model and the worst case was selected. In Refs. [35,37], γ
and Vrms are assumed to be 1.8 and 100 mV, respectively.
After substituting the geometric parameters into Eq. (53),
we obtain Ke ¼ 2.65 × 10−9 s−2 in the x axis (four electro-
des), where S ¼ 14.5 × 36 mm2, m ¼ 1.96 kg, and a ¼
4 mm are used. As mentioned before, this model does not
have a suitable physical explanation. We then apply the
model in this paper to give an estimation. Since we have
no information about the patch size in this experiment, we
can obtain the stiffness result as a function of w by using

the parameters mentioned before, as shown in Fig. 9
(Vrms ¼ 100 mV). The stiffness increases rapidly with
the increasing of w and reaches the maximum value
3 × 10−9 s−2 with w ¼ 0.1 m. However, this big size
cannot be realized. We choose a 3 mm-scale patches and
obtain a stiffness value about 8.47 × 10−10 s−2. Therefore,
this kind of stiffness meets the requirement of the maxi-
mum total parasitic coupling. The second noise term is the
acceleration noise induced by the voltage noise and random
patch potentials. The acceleration gradient of voltage is
about 2.03 × 10−11 ms−2=V according to Eq. (50).
Similarity, the acceleration disturbance from this noise is
estimated as 1.02 × 10−15 ms−2=

ffiffiffiffiffiffi
Hz

p
with a noise floor of

voltage 5 × 10−5 V=
ffiffiffiffiffiffi
Hz

p
.

The third and fourth noise terms arise from the
interactions between the free charge on the test mass
and the contact potential differences between opposing
electrodes [48]. In fact, the influence of these terms have
been verified by using an electrostatic measurement made
on board the LISA Pathfinder [49]. Meanwhile, we focus
on the random patch potential rather than the contact
potential differences. We hence adopt their results directly,
which show that the level of charge-induced acceleration
noise on a single test mass (including the coupling with
mean patch potential difference) is about 1.0 fm s−2 Hz−1=2
across the 0.1–100 mHz frequency band [49].

VII. DISCUSSION

To summarize, we give a full analysis for the patch effect
between closely spaced surfaces, including theoretical
modeling, numerical analysis, and experimental verifica-
tion. For the spatial potential variation, we have further
improved the quasilocal correlation model and have
obtained a rigorous formula based on the Poisson statistic
of patch sizes. A cleaner relationship between the force and
the patch size are given. The experimental results show a

FIG. 9. Dependence of the stiffness on the patch length w.
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0.4 mm effective patch size, which is larger than the
empirical values. This comparison indicates a big differ-
ence between the patch force of two closely spaced surfaces
and the electric filed of one surface. For the temporal
potential variation, we have used an adatom diffusion
model to describe the voltage fluctuating. A good agree-
ment between the theoretical prediction and experimental
data from 10−5 to 10−3 Hz shows that this mechanism may
be the possible explanation for the fluctuation. Finally, we
have analyzed the noises induced by random patch poten-
tials for HUST-2020 ISL experiment and LISA with a
revised quasilocal correlation model. These results show
that these effects are potentially among the largest in these
two experimental budgets.
The challenges of forthcoming studies may be stated as

follows. First, it is important to investigate the interaction
between the spatial potential variation and temporal
potential variation. This problem is difficult to explore
because of the unknown origin of patch potential. Second,
it would also be important to study the cross correlations
between the patches on different plates. We are currently
performing finite element analysis for this correlation.
Third, it is necessary to perform Kelvin probe force
microscopy measurement with different probe size to
measure the spatial variations of the potential to confirm
the hypothesis of the revised quasilocal correlation model.

In fact, Garrett et al. have performed a measurement to the
correlation between the patch potentials over a surface [8].
Their result shows that there still exists a strong corre-
lation between two long spaced patches. Therefore, a
further investigation to explore this correlation should be
carried out. Finally, a comparison between different
mechanisms for localized field fluctuations is needed.
Anyway, to obtain a higher experimental sensitivity, we
should prepare a cleaner surface with a smaller patch size,
which can possibly be realized by using some preparation
techniques like the technologies of template stripping and
annealing [8].
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