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We examine some features of the nonrenormalizability induced through the use of low-energy effective
Lagrangians in loop diagrams, in the context of a scalar model which is ultraviolet finite and partially
soluble. In this framework, one can directly demonstrate the mechanism leading to the nonrenormaliz-
ability of the effective theory. This behavior is generated by approximations that are applicable at low
energies but are generally inappropriate for evaluating loop diagrams that contain virtual high-energy
particles. However, it is explicitly shown that one can match the results obtained in the renormalized
effective theory with those found in the full theory at low energy. We argue that the infrared sectors of these
theories are inherently similar, independently of the matching procedure. A closed-form expression is
obtained, to leading order in the energy expansion, for the complete effective Lagrangian at all orders in
perturbation theory. The model may be useful to clarify certain aspects of realistic, but more complex,
effective field theories.
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I. INTRODUCTION

Effective field theories are approximations which include
the proper degrees of freedom that describe phenomena
occurring at accessible energies but disregard the substruc-
ture of the underlying theories at higher energies [1–4].
This procedure works because under certain conditions,
the heavy particles decouple from the low-energy physics
(modulo a renormalization of the parameters of the
theory) [5]. Effective theories are most useful when the
coupling constants with negative mass dimensions involve
a mass scale that is much larger than the typical energy of
the process being studied. One of the best-known examples
is the effective Fermi theory, which is obtained in the
low-energy limit of the electroweak theory [6]. Another
interesting instance is the effective Euler-Heisenberg
Lagrangian, which arises in the low-energy limit of
the photon-photon scattering amplitude in QED [7,8].

A further example is the effective theory of the pion-
nucleon interaction, which describes certain properties of
QCD at low energies [9]. Other important aspects and
applications of effective field theories for the Standard
Model are discussed in Refs. [10–12].
Any effective theory may include, apart from renorma-

lizable interactions, an infinite number of nonrenormaliz-
able interactions. In particular, there are no renormalizable
interactions in Einstein’s general relativity [13], which is
expected to be a low-energy effective theory of some
fundamental quantum theory. There is an extensive liter-
ature on this subject, as can be seen in the reviews [14–17]
and references cited therein. Accordingly, the gravitational
interactions that occur at low energies may be described
by Einstein-Hilbert Lagrangian. Using the tree vertices
deduced from this effective Lagrangian, one can perform
perturbative calculations of loop diagrams in quantum
gravity [18–20]. But such contributions require an infinite
number of counterterms to cancel all the ultraviolet
divergences in this effective field theory [21,22].
In this work, we examine some features of such a

nonrenormalizability, which can be induced by the use
of effective Lagrangians beyond the tree approximation. To
this end, we study in Sec. II a solvable one-dimensional
scalar field theory involving two interacting scalar fields,
which is ultraviolet finite. In this context, we clarify the
procedure leading to the nonrenormalizability of the
effective theory. This feature occurs due to approximations
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that hold at low energy, but are generally unsuitable for the
evaluation of loop diagrams containing internal high-
energy particles. Nevertheless, one can include an infinite
number of counterterms to cancel all nonrenormalizable
divergences in the effective theory. We compute the
scattering amplitude at tree level and the self-energy at
one loop for light particles in the renormalized effective
model. One can match the results found in this theory with
the corresponding ones obtained, respectively, at one loop
and at two loops in the full theory at low energy. In this
way, the effective field theory becomes consistent and can
be used to predict other low-energy effects. In Sec. III we
analyze the effective Lagrangian, up to next-to-leading
order in the energy expansion. To leading order, we deduce
an exact result for the complete effective Lagrangian to all
orders in perturbation theory [Eq. (3.5)]. In Sec. IV, a basic
argument is given for the agreement between the infrared
sectors of the effective and the full theory, that occurs
irrespective of the matching procedure. We conjecture that
somewhat similar features may possibly also arise in the
usual formulation of quantum gravity, which relies upon
the effective Einstein-Hilbert Lagrangian. The scattering
amplitude at higher orders is briefly examined in the
Appendix A. In the Appendix B we present a derivation
of the static effective action.

II. A SOLVABLE SCALAR MODEL

Wewill consider here a workable one-dimensional scalar
field theory that involves two interacting scalar fields,
described by the Lagrangian

Lðϕ;ψÞ ¼ 1

2
ð∂tϕ∂tϕ − λ2ϕ2Þ þ ∂tψ

⋆
∂tψ −m2ψ⋆ψ

− igϕðψ⋆
∂tψ − ψ∂tψ

⋆Þ ð2:1Þ

where the real scalar field ϕ is much lighter than the
complex field ψ (λ ≪ m). The mass dimension of the
coupling constant g is 3=2, so that the model is
superrenormalizable.
The only diagrams that appear to be, by power counting,

logarithmically ultraviolet divergent are tadpole graphs that
have a single external light field. But in consequence of

charge conjugation invariance, the Green’s functions with
an odd number of external light fields vanish, so that this
theory is actually ultraviolet finite.
The model leads to a Feynman diagrammatic represen-

tation of perturbative processes that is somewhat similar to
that in scalar QED. However, unlike the case in QED where
the photon-photon scattering amplitude cannot be evalu-
ated in closed form [23], in this simple theory one can
obtain analytical results for Feynman amplitudes with
external light fields.

A. The scattering amplitude

In this model, one can exactly evaluate the scattering
amplitudes of the light field coming from the diagrams
shown in Fig. (1). There are three other diagrams that differ
only by the arrow direction in the closed-loop, that yield the
same contribution. These graphs may also occur as part of a
larger diagram, where some light field lines become virtual
and do not satisfy the condition k ≪ m, as will be discussed
next. It is, therefore, useful to evaluate the diagrams with

k2i ≠ λ2; k1 þ k2 þ k3 þ k4 ¼ 0: ð2:2Þ
For reasons of symmetry, it is convenient to treat all four
light particles as being incoming. Using the theorem of
residues to evaluate the integral over the internal energy,
together with the fact that only three external energies are
independent, we then obtain for the four-point amplitude
the analytical expression

Mðk1; k2; k3Þ ¼ −
4g4

m

�
1

ðk1 þ k2Þ2 − 4m2 þ iϵ

þ 1

ðk2 þ k3Þ2 − 4m2 þ iϵ

þ 1

ðk3 þ k1Þ2 − 4m2 þ iϵ

�
: ð2:3Þ

We note that this explicit result exhibits poles at the
threshold energy 2m for pair production. At low energies
such that jk1j, jk2j, jk3j ≪ m, in the approximation corre-
sponding to an energy expansion up to the next-to-leading
order, the above equation reduces to the expression

FIG. 1. One-loop diagrams for the scattering amplitude of the light field. The full line denotes the virtual heavy particle.
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M0ðk1; k2; k3Þ

≈
g4

m3

�
3þ ðk1 þ k2Þ2 þ ðk2 þ k3Þ2 þ ðk3 þ k1Þ2

4m2

�
: ð2:4Þ

We remark that Eq. (2.3) is well behaved when the energies
become very large. If this result is used for boxes that are
subdiagrams in higher-loop graphs, like those shown in
Fig. 2, one can see that this leads to contributions that are
rapidly converging for large values of k3. On the other
hand, Eq. (2.4) involves terms that are quadratic in the
energies. If this effective 4-point vertex is used in effective
loop graphs like those shown in Fig. 3, these terms will
induce spurious linear ultraviolet divergences, coming from
the region k3 → ∞ (see the next subsection). The reason for
this bad ultraviolet behavior is due to the inappropriate use
of Eq. (2.4) in the region where jk3j ≫ m. In this region, the
low-energy expression (2.4) is invalid and one must use the
correct result (2.3) in order to ensure a good high-energy
behavior of the amplitudes.

B. The self-energy function

The one-loop diagram for the self-energy of the light
field is shown in Fig. 4(a). Performing the integration over

the internal energy by using the residue theorem, we get the
result

Πð2Þ ¼ −
g2

m
ð2:5Þ

which is independent of the external energy and real. An
imaginary part does not occur at the threshold energy for
pair production, k ¼ 2m, since at this point the cubic
vertices vanish.
The evaluation of the one-particle irreducible self-energy

in the full theory at two loops, shown in Figs. (4b), (4c)
and (4d), is more involved as one has to take into account
the bubble and the vertex subdiagrams. Carrying out the
integrations over the energies of the virtual particles in
these figures, one obtains for the self-energy at two-loops
the analytical result

Πð4ÞðkÞ ¼ −
g4

m2

��
2m
λ

þ 1

�
1

k2 − ð2mþ λÞ2 þ iϵ
−

1

4mλ

�

ð2:6Þ

which is ultraviolet finite. For the reason given following
Eq. (2.5), this expression has a pole only at the threshold
energy for three particle production. Assuming that λ ≪ m
and k ≪ m, one can expand the exact result (2.6) up to
terms of order k2, getting

Πð4ÞðkÞ ≈ g4

4m3

�
1

λ

�
3þ k2

2m2

�
−

1

m
−

3λ

2m2
þ k2 − λ2

4m3

�
:

ð2:7Þ

Let us now compare the low-energy result (2.7) with the
one obtained by using the effective 4-point vertex (2.4).
One then finds that the graph in Fig. 3(a), where the
effective vertex is given by the expression (2.4) with
k1 ¼ −k2 ¼ k, yields the contribution

Πð4Þ
ef ðkÞ ¼

g4

2m3

�
1

2λ

�
3þ k2 þ λ2

2m2

�
−

Λ
4m2

�
; ð2:8Þ

where we have introduced in the last term a Pauli-Villars
regulator Λ. In contrast to (2.7), this contribution exhibits a
spurious linear divergence, which was induced by the
improper use of the effective low-energy 4-point vertex
(2.4). As we have pointed out, such an approximation is

FIG. 2. Examples of higher-order Feynman diagrams with light
external particles.

FIG. 3. Examples of effective one-loop graphs. The small blob
denotes the effective low-energy 4-point vertex of the light field.

FIG. 4. Loop diagrams for the self-energy of the light field.
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invalid at high values of the energy k3. One may cancel the
linear ultraviolet divergence in Eq. (2.8) by introducing a
suitable counterterm C which can be generated by a
renormalization of the mass of the light particle in the
Lagrangian (2.1)

λ2 ¼ λ2r þ
g2

m
C ¼ λ2r −

g4

4m4

�
Λ
2m

− 1 −
2λ

m

�
: ð2:9Þ

In this way, using Eq. (3.3) together with Eq. (2.8), we
obtain for k, λ ≪ m the following result

Πð4Þa
ef ðkÞ ¼ g4

4m3

�
1

λ

�
3þ k2

2m2

�
−

1

m
−

3λ

2m2

�
: ð2:10Þ

Comparing Eq. (2.10) with the relation (2.7) obtained at
low energy in the full theory, we can see that one still must
match the last term in this relation. To this end, we must
also consider a contribution from the wave-function
renormalization of the light field in the Lagrangian (2.1)
given by ϕ ¼ Z1=2ϕr, with

Z ¼ 1þ g4

16m6
: ð2:11Þ

Using Eq. (3.3) to order g4, this gives the contribution

Πð4Þb
ef ðkÞ ¼ 1

16

g4

m6
ðk2 − λ2Þ: ð2:12Þ

Together with Eq. (2.10), this yields a result which agrees
with that given in Eq. (2.7). There is no coupling-constant
renormalization at order g4. Thus, one can match the result
obtained for the self-energy in the renormalized effective
theory at one-loop, to the one calculated at two-loops in the
full theory at low energy.
We note here that the infrared singular contributions,

which occur in the limit λ → 0 of the terms proportional to
1=λ, are the same in both theories, independently of any
matching

Πð4Þ
λ ðkÞ ¼ Πð4Þ

ef;λðkÞ ¼
g4

4m3

�
1

λ

�
3þ k2

2m2

��
: ð2:13Þ

This happens because the infrared singular terms arise from
the region where all internal energies are also small, in
which case the low-energy approximations are adequate.

III. THE EFFECTIVE LAGRANGIAN

Let us consider a local effective Lagrangian involving
the light scalar field ϕ, up to terms which are of next-to-
leading order in the energy expansion. Using Eq. (2.1), the
most general expression for such a Lagrangian may be
written, up to order g4, in the form

Lefðϕ; λÞ ¼
1

2
ð∂tϕ∂tϕ − λ2ϕ2Þ þ l0

g2

2m
ϕ2

þ g4

8m3

�
l1ϕ4 þ l2

m2
ϕ2

∂
2
tϕ

2 þ l3
m2

ϕ3
∂
2
tϕ

�
;

ð3:1Þ

where l0, l1, l2 and l3 are some dimensionless parameters
which have a perturbative expansion in terms of the
dimensionless quantity g2=m3.
After a renormalization of the field ϕ and its mass λ,

given by

ϕ ¼ Z1=2ϕr; λ2 ¼ λ2r þ
g2

m
C; ð3:2Þ

the effective Lagrangian (3.1) may be written, up to order
g4, as

Lefðϕr;λrÞ ¼
Z
2

�
∂tϕr∂tϕr−

�
λ2r þ

g2

m
C

�
ϕ2
r

�

þ l0
g2

2m
Zϕ2

r þ
g4

8m3

×

�
l1ϕ4

r þ
l2
m2

ϕ2
r∂

2
tϕ

2
r þ

l3
m2

ϕ3
r∂

2
tϕr

�
: ð3:3Þ

The parameters in Eq. (3.3) may be determined so as to
bring agreement between the renormalized effective theory
and the full theory at low energies. Thus, comparing the
one-loop self-energy in the effective theory with the self-
energy up to two loops in the full theory, fixes the values of
Z and C as shown in Eqs. (2.9) and (2.11), and determines
the parameter l0 to be l0 ¼ −1. Moreover, comparison of
the tree-level scattering amplitude in the effective theory
with the one-loop scattering amplitude in the exact theory
at low energy, fixes to lowest order the parameters l1, l2 and
l3 to be l0 ¼ 1, l2 ¼ 1=4 and l3 ¼ 0.
We may obtain the complete effective Lagrangian by

integrating out the heavy field ψ in the full theory described
by the Lagrangian (2.1)

exp i
Z

dt

�
1

2
ð∂tϕ∂tϕ − λ2ϕ2Þ þ Lloop

ef ðϕÞ
�

¼
Z

DψDψ⋆ exp i
Z

dtLðϕ;ψÞ; ð3:4Þ

where Lloop
ef ðϕÞ is determined by the requirement that it

vanishes when g ¼ 0. Lloop
ef corresponds to the sum of all

loop contributions with an arbitrary number of external
light fields. This can be evaluated by using the method
given in [24], which assumes that the fields are slowly
varying. In the energy space, this condition corresponds to
small values of k such that k ≪ m. The integrations can be
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performed iteratively order by order in perturbation theory,
leading to a rather involved result. The lowest order terms
in the perturbative expansion yield the expression given in
Eq. (3.1), with the correct values of the parameters li. On
the other hand, when ϕ ¼ φ is a static field, one obtains a
simple closed-form expression for the exact static effective
Lagrangian to all orders in g

Lloop
ef ðφÞ ¼ m − ðm2 þ g2φ2Þ1=2: ð3:5Þ

We note that Eq. (3.5) corresponds to the case where all
external legs carry zero energy, so that −Lloop

ef ðφÞ gives the
effective potential. This is positive and bounded from
below, which ensures the vacuum stability of the theory.
A more direct derivation of Eq. (3.5) may be obtained by
noticing that in Eq. (2.1), one can make the following
transformation of the heavy field

ψ̃ðtÞ ¼ ψðtÞ exp ig
Z

t

−∞
dt0ϕðt0Þ: ð3:6Þ

In this way, we can write the Lagrangian (2.1) in the
alternative form

Lðϕ; ψ̃Þ ¼ 1

2
ð∂tϕ∂tϕ − λ2ϕ2Þ þ ∂tψ̃

⋆
∂tψ̃ −m2ψ̃⋆ψ̃

− g2ϕ2ψ̃⋆ψ̃ : ð3:7Þ

Using this Lagrangian, we integrate out the heavy field ψ̃ in
Eq. (3.4), to get

exp i
Z

dtLloop
ef ðϕÞ ¼ det−1

�
1þ 1

∂
2
t þm2

g2ϕ2

�

¼ exp−Tr
�
ln
�
1þ 1

∂
2
t þm2

g2ϕ2

��
;

ð3:8Þ

where we used the condition that Lloop
ef vanishes at g ¼ 0.

We assume that the field ϕðtÞ varies slowly in time and
reduces to the field φ in the static limit. Doing first the time
differentiations and taking next the limit ϕ → φ in
Eq. (3.8), one gets in energy space the relation

expi
Z

dtLloop
ef ðφÞ ¼ exp−

Z
dt
Z

∞

−∞

dq0
2π

ln

�
1þ g2φ2

m2−q20

�
:

ð3:9Þ

As shown in Appendix B, this result is applicable for static
fields.
Expanding the logarithm in a power series of g2, one can

integrate this series term by term [25], yielding

Lloop
ef ðφÞ ¼ m

X∞
k¼1

ð−1Þk
2k

ð2k − 3Þ!!
k!

�
g2φ2

m2

�
k

¼ m − ðm2 þ g2φ2Þ1=2; ð3:10Þ

which agrees with the expression given in Eq. (3.5).

IV. DISCUSSION

We have studied a solvable UV-finite scalar model and
its associated effective field theory. In this simple frame-
work, we aimed to clarify the mechanism leading to the
nonrenormalizability of loop amplitudes, which arises by
using the effective Lagrangian beyond the tree approxima-
tion. This feature is induced by approximations that are
applicable at low energies, but are generally incorrect for
the evaluation of loop graphs involving virtual high-energy
particles. One may include an infinite number of counter-
terms to cancel all nonrenormalizable ultraviolet diver-
gence in the effective theory, but this leads to a lack of
predictivity at high energy. Nevertheless, we have shown
explicitly that we can match the results obtained in the
renormalized effective theory with the corresponding
results found at low energy in the full theory. Such a
matching fixes all free parameters in the effective theory
which enables the use of this theory to evaluate other low-
energy processes. This procedure works because the ultra-
violet effects are local and can be absorbed into the local
terms of the effective Lagrangian. An explicit expression
was obtained, to leading order in the energy expansion, for
the complete effective Lagrangian to all orders in pertur-
bation theory [Eq. (3.5)]. This result yields the negative of
the exact effective potential of the model, which is positive
and has a lower bound, that assesses the vacuum stability of
this theory.
There are important differences between the interaction

vertices in the effective theory and those in the full theory.
A relevant point is that the low-energy approximations
require that the energies of all particles emerging from the
effective vertices, including the ones which may become
internal in loop graphs, should be small. As we saw, this
generates the nonrenormalizability pointed out above. We
have further analyzed this issue in the case of the self-
energy to order g4 and shown that the infrared singular
terms in both theories are similar, independently of the
matching scheme. This property was also explicitly verified
in the scattering amplitude at higher orders (see
Appendix A). A basic explanation of this behavior relies
upon the fact that the infrared singularities arise from the
emission and propagation of soft massless particles. In this
regime the internal loop energies are also small, in which
case the low-energy approximations become reliable. Thus,
the infrared sectors in the effective theory and in the full
theory at low energy naturally turn out to be similar,
regardless of the matching operation which is necessary in
other sectors.
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Furthermore, the nonanalytic parts of the Feynman loop
amplitudes, like logarithmic terms, are generally the same in
both theories due to the fact that the S-matrix has just those
singularities which are required by unitarity [1,26,27]. In our
simple model there are no such terms, so that this property is
manifestly satisfied.
One may expect analogous features to appear as well in

other effective field theories. Thus, it would be interesting
to examine whether these properties could lead to a useful
model for what might happen in a quantum theory of
gravity based on the Einstein-Hilbert Lagrangian. Although
the underlying theory has not yet been fully elucidated,
the mechanism leading to the nonrenormalizability of this
effective theory may be rather similar. Here, the infrared
divergences occur for soft gravitons coupled to other hard
particles and their cancellation can be proved by the same
method used in QED [28,29]. Based on this fact along with
the above reasoning, one may conjecture that the infrared
sector of quantum general relativity could be somewhat
analogous to that occurring at low energies in a funda-
mental renormalizable theory of gravity.
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APPENDIX A: SCATTERING AMPLITUDES
AT HIGHER ORDERS

Let us compare the scattering amplitudes in the full
and the effective theories, shown respectively in Figs. 2(b)
and 3(b). Such amplitudes may be written in the form
(k1 þ k2 ¼ k01 þ k02)Z

dk3
2πi

1

k23 − λ2 þ iϵ
1

ðk1 þ k2 þ k3Þ2 − λ2 þ iϵ

×Mðk1; k2; k3ÞMð−k01;−k02;−k3Þ: ðA1Þ

In the full theory, Mðk1; k2; k3Þ is given by Eq. (2.3). For
simplicity, we consider the scattering in the special case
where k1 ¼ k2 ¼ k01 ¼ k02 ¼ k. The result found by per-
forming the k3 integration is rather involved, but it
simplifies in the low-energy limit where k; λ ≪ m. In this
case, we obtain

−
g8

m6

1

λ

��
9

4
þ 3λ2

2m2

�
1

k2 − λ2 þ iϵ
þ 9

4m2
þ 2k2 þ 3λ2

4m4

�

þ g8

m9

�
7

8
þ 13k2 þ 9λ2

16m2

�
: ðA2Þ

On the other hand, in the effective theory one employs the
low-energy form given in Eq. (2.4). Then, after performing
the k3 integration, we obtain the result

−
g8

8m9

Λ
m
−

g8

m6

1

λ

��
9

4
þ 3λ2

2m2

�
1

k2 − λ2 þ iϵ
þ 9

4m2

�
; ðA3Þ

which has a spurious linear ultraviolet divergence.
Moreover, onemust also take into account the correspond-

ing contribution coming from the effective Lagrangian (3.1),
which is given by

g4

m3

�
3Δl1 þ ð8Δl2 − Δl3Þ

k2

2m2

�
: ðA4Þ

Requiring the sum of the expressions given by Eqs. (A3) and
(A4) to match the result given in Eq. (A2), yields the
following corrections to the effective parameters

Δl1 ¼
g4

m6

�
1

24

Λ
m
þ 7

24
−

λ

4m
þ 3λ2

16m2

�
; ðA5Þ

8Δl2−Δl3¼
g4

m6

�
13

8
−
m
λ

�
: ðA6Þ

Although we have derived the above relations for a
special configuration of the external energies, such rela-
tions hold in general since the effective parameters are
independent of the energies. But in the general case, one
would be able to fix Δl2 and Δl3 separately.
We note that the terms proportional to 1=ðk2 − λ2 þ iϵÞ

in Eqs. (A2) and (A3) are equal and do not require any
matching. These terms yield at k ¼ 0, the leading infrared
singularities which are proportional to 1=λ3. Such terms
come from the region where all internal loop energies are
also small (of order λ), in which case the low-energy
approximations are appropriate. This explains the equality
of the above contributions.

APPENDIX B: THE STATIC EFFECTIVE
LAGRANGIAN

In the static case, one can see from Eqs. (3.4) and (3.7)
that the Lagrangian Lloop

ef satisfies the relation

exp i
Z

dtLloop
ef ðφÞ ¼ N

Z
Dψ̃Dψ̃⋆ exp−i

×
Z

dtψ̃⋆ð∂2t þm2 þ g2φ2Þψ̃ ; ðB1Þ

where N is a normalization constant determined by the
requirement that Lloop

ef ¼ 0 when g ¼ 0. Differentiating
both sides of (B1) with respect toM2 ≡m2 þ g2φ2, we get

∂Lloop
ef

∂M2
¼ −Nhψ̃⋆ðtÞψ̃ðtÞi ¼ iNGðt; tÞ; ðB2Þ

where Gðt; tÞ is the exact Green’s function Gðt; t0Þ evalu-
ated at the coincidence point t ¼ t0. This Green’s function
satisfies the differential equation
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ð∂2t þm2 þ g2φ2ÞGðt; t0Þ ¼ δðt; t0Þ: ðB3Þ

Using (B3), one can see that the Fourier-transformed
Green’s functions is given by

G̃ðq0Þ ¼
Z

dteiq0ðt−t0ÞGðt; t0Þ ¼ 1

m2 þ g2φ2 − q20
: ðB4Þ

Thus, we find

Gðt; tÞ ¼
Z

dq0
2π

G̃ðq0Þ ¼
Z

dq0
2π

1

m2 þ g2φ2 − q20
: ðB5Þ

Substituting this result in Eq. (B2) and integrating overM2,
we obtain the result

Lloop
ef ðφÞ ¼ iN

Z
dq0
2π

lnðm2 þ g2φ2 − q20Þ

¼ i
Z

dq0
2π

ln

�
1þ g2φ2

m2 − q20

�
; ðB6Þ

which is equivalent to that given in Eq. (3.9).
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