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We present an exact time-dependent solution for a charged scalar field on a two-dimensional cylinder,
that can be interpreted as representing a long-standing excitation on a S-wave superconducting state, which
propagates along a nanotube constructed out of twisted bilayer graphene. The solution has a topological
charge characterized by an integer number, which counts the winding of the Higgs phase winds around the
cylinder. The resulting electric current generates its own electromagnetic field in a self-consistent way,
without the need of any external fields to keep it alive.
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I. INTRODUCTION

The charged scalar field in two space dimensions is a
very simple yet very useful quantum field theory. It has
been studied as a lower-dimensional toy model for quantum
electrodynamics [1], as a constructive laboratory to inves-
tigate the properties of solitonic solutions in gauge field
theories [2], and most importantly, in the condensed matter
realm, as the effective Ginzburg-Landau theory describing
a two-dimensional S-wave superconductor [3].
In the last context, the charged scalar represents the

degrees of freedom of the superconducting condensate. The
homogeneous solution with a nonvanishing scalar expect-
ation value is interpreted as the superconducting state, since
it spontaneously breaks the Uð1Þ charge invariance. Static
inhomogeneous solutions then represent excitations; a well
known example of which is the Nilsen-Olesen vortex [4],
which depicts an Abrikosov vortex on the superconducting
background [5].

Understanding the dynamics of such excitations requires
the inclusion of time derivatives in the scalar field equations
of motion. First order time derivatives result in the time-
dependent Ginzbug-Landau theory [6,7]. This model is
noninvariant under time reversal and then it results in
dissipation. Alternatively, a Lorentz covariant approach has
been suggested, in which the dynamics corresponds to
(2þ 1)-dimensional scalar electrodynamics [8]. It has the
advantage of being consistent with the covariance of
Maxwell equations, as well as providing a finite penetration
depth for the electric field [9]. Dissipation due to non-
condensed electrons can then be included through a
Rayleigh dissipation function [10].
Recently, unconventional high Tc superconductivity has

been observed in twisted bilayer graphene [11], when the
twist is adjusted at the so called “magic angle” ∼1.1° at
which the fermionic dispersion relation develops a flat
band [12,13]. It is not clear yet what the symmetry of the
resulting wave function is. It has been argued that single
[14] and multilayer [15] graphene might form S-wave pairs,
of which some experimental evidence has been found [16].
In the present paper, inspired in the above consider-

ations, we explore the solutions to (2þ 1)-dimensional
scalar electrodynamics. We are interested in long-standing
time-dependent configurations. Hence, the ansatz must be
chosen in such a way as to minimize all possible sources of
dissipation. We find a traveling nonlinear wave that moves
along the noncompact direction of a cylinder, at the speed
of light. We interpret it as an excitation propagating in the

*fabrizio.canfora@uss.cl
†alexgiacomini@uach.cl
‡grandi@fisica.unlp.edu.ar
§juoliva@udec.cl
∥aldo.vera@uach.cl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 065007 (2023)

2470-0010=2023=107(6)=065007(10) 065007-1 Published by the American Physical Society

https://orcid.org/0000-0003-3184-0881
https://orcid.org/0000-0002-0692-4744
https://orcid.org/0000-0001-8258-0595
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.065007&domain=pdf&date_stamp=2023-03-13
https://doi.org/10.1103/PhysRevD.107.065007
https://doi.org/10.1103/PhysRevD.107.065007
https://doi.org/10.1103/PhysRevD.107.065007
https://doi.org/10.1103/PhysRevD.107.065007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


superconducting state of a nanotube constructed out of
twisted bilayer graphene.
A particularly interesting problem is whether the energy

and charge transport can be self-sustained. In other words,
is an external field necessary to keep these excitations
alive, or is it enough to consider the electromagnetic field
generated by the excited charges themselves? Such a
question is notoriously difficult (see [17–19] and references
therein) since it entails to consider the backreaction of the
excitations on the electromagnetic field and vice versa. Our
construction shows that, at least in the present setting, the
second possibility is a viable option.
The paper is organized as follows: In Sec. II we define our

model and parametrize the fields. In Sec. III we investigate
the decoupling conditions which minimize dissipation. In
Sec. IV wewrite the explicit solution and Secs. Vand VI are
dedicated to the study of its transport and topological
properties. In Sec. VII we discuss some specific examples.
In Sec. VIII, we analyze the stability of a special type of
perturbations. Finally, in Sec. IX we discuss our findings.

II. THE MODEL

The effective degrees of freedom of a relativistic S-wave
superconductor are described in a Lorentz covariant way
by standard scalar electrodynamics in 2þ 1 dimensions
[8,10], which couples a charged scalar field Ψ to
the electromagnetic field Aμ minimally, according to the
action

S ¼ −
1

2

Z
Ω×R

d3x
ffiffiffiffiffiffi
−g

p �
ðDμΨÞ�DμΨ

þ γ

2
ðjΨj2 − ν2Þ2 þ 1

2
FμνFμν

�
; ð2:1Þ

where the system is defined in a spatial manifold Ω, being
Dμ ¼ ∂μ − ieAμ the covariant derivative, e the scalar
electric charge, γ its coupling constant, and ν its vacuum
expectation value.
We parametrize the scalar in the most general way, as

Ψ ¼ heieG; ð2:2Þ

where the factor of e in the exponent is introduced for later
convenience. Regarding the gauge field, we use a “Clebsch
representation” of the form

Aμ ¼ ∂μΛþ λ∂μF; ð2:3Þ

in terms of the “Clebsch potentials” Λ, λ, and F. In 2þ 1
dimensions this decomposition is completely general and
does not restrict the fields in any sense. Of course the
gradient part ∂μΛ can be adjusted to any desired value by a
gauge transformation, but we leave that for later after
deriving the equations of motion.

Since the parametrization is not restrictive, we can safely
plug it into the action and then obtain the equations of
motion by varying h, G, Λ, λ, and F. To do that, we need
the expressions for the gauge curvature and the covariant
derivative

Fμν ¼ ∂μλ∂νF − ∂νλ∂μF; ð2:4Þ
DμΨ ¼ ð∂μhþ iehð∂μG − ∂μΛ − λ∂μFÞÞeieG; ð2:5Þ

which, together with Eqs. (2.2) and (2.3), result in the
rewritten form of the action

S ¼ 1

2

Z
Ω×R

d3x
ffiffiffiffiffiffi
−g

p �
−ð∂hÞ2 − e2ð∂G − ∂Λ − λ∂FÞ2h2

−
γ

2
ðh2 − ν2Þ2 þ ð∂λ · ∂FÞ2 − ð∂λÞ2ð∂FÞ2

�
: ð2:6Þ

This can be varied with respect to the different fields, to
obtain the equations of motion of the system. We start with
the scalar phase G, obtaining the equation

∂
μðð∂μG − ∂μΛ − λ∂μFÞh2Þ ¼ 0: ð2:7Þ

Notice that the same equation can be obtained by varying
with respect to Λ. Then, we can choose the gauge Λ ¼ G
and, replacing it into the action, the remaining equations
take the form

∂
μðð∂FÞ2∂μλ − ð∂λ · ∂FÞ∂μFÞ − e2λh2ð∂FÞ2 ¼ 0; ð2:8Þ

□h − e2hλ2ð∂FÞ2 − γðh2 − ν2Þh ¼ 0; ð2:9Þ
∂
μðð∂λ · ∂FÞ∂μλ − ðð∂λÞ2 þ e2h2λ2Þ∂μFÞ ¼ 0; ð2:10Þ

while Eq. (2.7) simplifies to

∂
μðh2λ∂μFÞ ¼ 0: ð2:11Þ

Equations (2.8)–(2.11) constitute the full set of equations of
motion of the system.

III. LONG TERM BEHAVIOR

In the above Eqs. (2.8)–(2.11) the electromagnetic
variables F and λ are coupled among them and to the
scalar one h. This means that any amount of energy stored
on any of the fields will get distributed among all the
degrees of freedom as the system evolves. In any realistic
situation, each variable is coupled to an external dissipative
channel. This implies that the energy will then flow out of
the system through all of them. If one waits long enough,
it is reasonable to expect that one should be left with a
configuration in which all the possible dissipative processes
have already happened. Thus, the ansatz describing such
configuration must minimize the coupling among the
different dissipative channels; this happens when the
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different degrees of freedom of the gauge and scalar fields
are decoupled. In that case, the energy stored on any degree
of freedom dissipates only through the corresponding
channel, resulting in less dissipation overall.
These intuitive arguments lead to the following consis-

tent ansatz. First of all, one needs to impose the “force free”
conditions ∂λ · ∂F ¼ ∂h · ∂F ¼ 0 and the “lightlike” con-
dition ð∂FÞ2 ¼ 0, since in this way two degrees of freedom
(the gauge field and the amplitude of the scalar field) get
decoupled. Then, the additional condition ∂ðð∂λÞ2Þ · ∂F ¼
0 must be imposed for consistency. In this way, the full set
of coupled field equations is reduced to the decoupled pair

□h − γðh2 − ν2Þh ¼ 0; ð3:1Þ
□F ¼ 0; ð3:2Þ

where we assumed ð∂λÞ2 þ e2h2λ2 ≠ 0. These equations
must be solved together with the constraints

ð∂FÞ2 ¼ 0; ð3:3Þ
∂λ · ∂F ¼ 0; ð3:4Þ
∂h · ∂F ¼ 0; ð3:5Þ

∂ðð∂λÞ2Þ · ∂F ¼ 0; ð3:6Þ
to obtain a full solution of the system.

IV. THE SUPERCONDUCTING CYLINDER

The next step is to specify the space-time geometry
Ω ×R in which our fields propagate. We choose a cylinder
topology with planar metric

ds2 ¼ −dt2 þ dz2 þ dφ2; ð4:1Þ

where the coordinate φ ≈ φþ Lφ goes around the cylinder,
while −Lz=2 < z < Lz=2 runs along it (the case of a very
long cylinder corresponds to Lz → þ∞). We can change to
lightlike coordinates z� ¼ ðz� tÞ= ffiffiffi

2
p

obtaining

ds2 ¼ 2dzþdz− þ dφ2; ð4:2Þ

which implies in the equations of motion

2∂þ∂−hþ ∂
2
φh − γðh2 − ν2Þh ¼ 0; ð4:3Þ

2∂þ∂−F þ ∂
2
φF ¼ 0; ð4:4Þ

and in the constraints

2ð∂þFÞð∂−FÞ þ ð∂φFÞ2 ¼ 0; ð4:5Þ

∂þλ∂−F þ ∂−λ∂þF þ ∂φλ∂φF ¼ 0; ð4:6Þ

∂þh∂−F þ ∂−h∂þF þ ∂φh∂φF ¼ 0; ð4:7Þ

∂þðð∂λÞ2Þð∂−FÞ þ ∂−ðð∂λÞ2Þð∂þFÞ þ ∂φðð∂λÞ2Þ∂φF ¼ 0:

ð4:8Þ

The lightlike condition in the first line can then be solved
by first choosing ∂φF ¼ 0 and then imposing ∂þF ¼ 0 or
∂−F ¼ 0. The force free conditions in the second and third
lines then imply that λ and h should depend on the same z�
variable as F. With these choices, the condition on the last
line as well as the equation of motion for F are automati-
cally satisfied. We are then left with only one equation of
motion, the one for h, which now reads

∂
2
φh − γðh2 − ν2Þh ¼ 0: ð4:9Þ

This equation corresponds to a quartic oscillator, and can be
integrated once to get the first-order relation

ð∂φhÞ2
2

−
γ

4
ðh2 − ν2Þ2 ¼ −

γν4

4

�
m − 1

mþ 1

�
2

; ð4:10Þ

where the integration constant in the right-hand side was
conveniently parametrized in terms of a new number m.
This can reduced to quadratures, as

Z
dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh2 − ν2Þ2 − ν4ðm−1
mþ1

Þ2
q ¼ �

ffiffiffi
γ

2

r
ðφ − φ0Þ; ð4:11Þ

where φ0 is a new integration constant. The remaining
integral can be performed explicitly.
For the particular case m ¼ 1 we get the solution

h ¼ ν tanh

 
ν

ffiffiffi
γ

2

r
ðφ − φ0Þ

!
; ð4:12Þ

where an overall � sign was removed by a gauge trans-
formation. Is evident that this function approaches the
vacuum value at φ → �∞. This implies that the natural
boundary condition, namely that the Higgs field matches its
vacuum value at the boundary of the sample, can only be
satisfied in an infinite plane.
Ifm ≠ 1 the solution can be written in terms of the Jacobi

elliptic sine function as

h ¼ ν

ffiffiffiffiffiffiffiffiffiffiffiffi
2m

1þm

r
sn

 
ν

ffiffiffiffiffiffiffiffiffiffiffiffi
γ

1þm

r
ðφ − φ0Þ; m

!
; ð4:13Þ

where again an overall � sign was gauged away. In this
expression, in order to have a real h we need a positive
value form. Since the solution is invariant whenm → 1=m,
we only need to consider 0 < m < 1. According to the
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constraint ∂þh ¼ 0 or ∂−h ¼ 0, the integration constants m
and φ0 are arbitrary functions of z− or zþ, respectively.
These will be restricted further as we impose physically
meaningful boundary conditions on the obtained solution.
If the solution is defined on a tube, then the value of hðφÞ

must differ from the value hðφþ LφÞ by a gauge trans-
formation, i.e., by a phase. Since h is real, the only possible
phase is an overall sign �, implying a periodic or
antiperiodic solution. This imposes

ν
ffiffiffi
γ

p
Lφ ¼ 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmÞ

p
KðmÞ; ð4:14Þ

where n ∈ Z is an arbitrary integer and KðmÞ is the
complete elliptic integral of the first kind. Then m is fixed
to a constant value independent of z�. For the model
parameters satisfying ν

ffiffiffi
γ

p
Lφ > πn, this equation has a

nontrivial solution; see Fig. 1. The solution is periodic for n
even and antiperiodic for n odd.
If instead we want to define the solution on a ribbon

extending from φ0 to φ0 þ Lφ, we need to impose that the
Higgs field reaches its vacuum expectation value at the edges
hðφ0Þ ¼ �hðφ0 þ LφÞ ¼ ν. It has to do it smoothly, thus
we also need to satisfy h0ðφ0Þ ¼ �h0ðφ0 þ LφÞ ¼ 0. This is
just a particular case of the (anti)periodicity conditions
discussed in the previous paragraph, and imposes the same
quantization condition for m. However, since the overall
factor satisfies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=ð1þmÞp

< 1 for the allowed range of
m, the value of h is never �ν, implying that the solution
cannot exist on a ribbon.
Notice that the solution (4.13) changes sign n times as

the variable φ goes around the tube. This can be made
explicit by writing

h ¼ jhjei½
nπφ
Lφ

�; ð4:15Þ

where ½� � �� stands for the integer part. The exponent is
then a discontinuous function, which jumps as φ grows.
However, a smooth overall phase for the Higgs field Ψ can
be obtained by choosing the function G in our ansatz (2.2)
in the form

eGþ
�
nπφ
Lφ

�
¼ nπφ

Lφ
: ð4:16Þ

With this form ofG, the number n is measuring the winding
of the Higgs phase around the cylinder.
The full solution of the system then reads

F ¼ Fðz�Þ; ð4:17Þ

λ ¼ λðz�;φÞ; ð4:18Þ

h ¼ ν

ffiffiffiffiffiffiffiffiffiffiffiffi
2m

1þm

r
sn

�
ν

ffiffiffiffiffiffiffiffiffiffiffiffi
γ

1þm

r
ðφ − φ0Þ; m

�
; ð4:19Þ

eG ¼ nπφ
Lφ

−
�
nπφ
Lφ

�
¼ eΛ; ð4:20Þ

where m is quantized as in Fig. 1 with n ∈ Z, and the
functions Fðz�Þ, φ0ðz�Þ, and λðz�;φÞ are chiral but
otherwise completely arbitrary, being determined by the
initial conditions.

V. CHARGE AND ENERGY TRANSPORT

The electric current of the above solution can be written
as twice the coefficient of the gauge potential λ∂�F in the
action, and it takes the form

J� ¼ −e2h2λ∂�F; ð5:1Þ

Jφ ¼ 0; ð5:2Þ

implying Jt ¼ �Jz ¼ �J�. Here and along this section,
the top (respectively bottom) signs represent the solution
that depends on zþ (respectively z−). The above result
implies in particular that, in order to have a well defined
current, the function λðz�;φÞ has to be periodic in the
variable φ.
We can also calculate the electromagnetic field strength,

which reads

Fφ� ¼ ∂φλ∂�F ¼ −∂φðJz=e2h2Þ; ð5:3Þ

F�∓ ¼ F�� ¼ 0; ð5:4Þ

or in other words

Ez ¼ 0; −B ¼ �Eφ ≡ Fφ�: ð5:5Þ

FIG. 1. From bottom to top, the profiles of the expression
4n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þmÞp
KðmÞ as a function ofm for growing n ¼ 1; 2;…; 7.

The horizontal line represents an arbitrary value of the combi-
nation ν

ffiffiffi
γ

p
L of the model parameters. This shows that the

equation ν
ffiffiffi
γ

p
L ¼ 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þmÞp
KðmÞ has a nontrivial solution

for ν
ffiffiffi
γ

p
L > πn.

CANFORA, GIACOMINI, GRANDI, OLIVA, and VERA PHYS. REV. D 107, 065007 (2023)

065007-4



This results on a vanishing total magnetic flux ΦB on the
cylinder, as the integral

ΦB ¼
Z
Ω
B ¼

Z
dφdz∂φ

�
Jz
e2h2

�

¼
Z

dz
Jz
e2h2

����φþLφ

φ

¼ 0; ð5:6Þ

vanishes in virtue of the periodicity of Jz=e2h2.
Effective electric conductivities can be defined as quo-

tients of the electric current components divided by the
electric field ones. This results in an infinite effective direct
conductivity σzz ¼ Jz=Ez, and an effective Hall conduc-
tivity with value

σzφ ¼ Jz=Eφ ¼ ∓ e2h2=∂φ log λ: ð5:7Þ

Finally, the components of energy momentum tensor
read

T�� ¼ −e2h2λ2ð∂�FÞ2 − ð∂�hÞ2 − F2
�φ; ð5:8Þ

T�∓ ¼ 1

2
ð∂φhÞ2 þ

γ

4
ðh2 − ν2Þ2; ð5:9Þ

Tφφ ¼ −
1

2
ð∂φhÞ2 þ

γ

4
ðh2 − ν2Þ2; ð5:10Þ

Tφ� ¼ −∂φh∂�h; ð5:11Þ

which results on an energy density Ttt ¼ T�� − T�∓,
implying that for a finite tube of length Lz the total energy
is finite. Notice that Tφφ is minus the constant (4.10), while
T�∓ is minus the Lagrangian in (2.6) evaluated on the
restrictions (3.3) and (3.4) with G ¼ Λ.
It is important to notice that the field strengths, the

electric current, and the energy momentum tensor, are all
periodic in φ, even in the case when h is antiperiodic.

VI. TOPOLOGICAL CHARGE AND A BPS-LIKE
BOUND

Since our solutions are characterized by an integer n
which is a winding number, we may wonder whether it is
related to some topological charge. If we write the standard
form of the topological charge for 2þ 1 scalar electrody-
namics as

Q ¼ i
Z
Ω
dΨ ∧ dΨ� ¼ i

Z
∂Ω

Ψ ∧ dΨ�; ð6:1Þ

where Ω is now our cylinder and ∂Ω are the two circles at
the cylinder ends, we get the explicit expression

Q ¼ i
Z

dφ

�
Ψ∂φΨ�jz¼Lz

2

þ Ψ∂φΨ�jz¼−Lz
2

�
¼ 2nπ: ð6:2Þ

Then we see that our solutions are topological in nature,
being characterized by a topological charge.
An interesting point is that the charge Q was obtained

from the same expression that would result in the
topological charge of an Abrikosov-Nielsen-Olesen vor-
tex. Thus, our solutions may in principle be continuously
deformed into such a vortex, without changing the value
of Q.
In static configurations, the presence of a topological

charge is often related to the existence of a Bogomol’nyi-
Prasad-Sommerfield (BPS) bound on the energy. A natural
question is whether something similar may exist for the
present time dependent solutions. To check that, we
evaluate the on shell action of the configuration

Son−shell ¼ −
Z

dzþdz−dφ
�
1

2
ð∂φhÞ2 þ

γ

4
ðh2 − ν2Þ2

�
;

ð6:3Þ

which can be rewritten as

Son−shell ¼ −
1

2

Z
dzþdz−dφ

�
∂φh− s

ffiffiffi
γ

2

r
ðh2 − ν2Þ

�
2

þP;

ð6:4Þ

where s ¼ �1 is a sign, and we have defined the magnitude
P according to

P ¼ −s
ffiffiffi
γ

2

r Z
dzdφðh2 − ν2Þ∂φh: ð6:5Þ

In this expression, the integral in φ can be explicitly
performed, resulting in

P ¼ −s
ffiffiffi
γ

2

r Z
dz

�
h2

3
− ν2

�
h

����φþLφ

φ

; ð6:6Þ

this vanishes for periodic (n even) solutions, but not for
antiperiodic (n odd) ones. In this last case, the result has the
somewhat disappointing feature of being dependent on the
value of φ where the circle is closed φ ≈ φþ Lφ, which
makes it difficult to determine a proper physical interpre-
tation of P as a topological charge. However, we can write
the following BPS-like bound

Son−shell ≤ P; ð6:7Þ

whose saturation implies the field equations, as expected
from a standard BPS bound. Indeed, the above bound is
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saturated when Eq. (4.10) is satisfied, for the particular case
m ¼ 1. As we mention earlier, the corresponding solution
(4.12) does not satisfy the boundary conditions on a tube,
and can only be defined on an infinite plane.
In conclusion, the family of solutions we have found on

the tube satisfies the bound (6.7).

VII. SOME EXPLICIT EXAMPLES

In order to get some insight on the behavior of the
solutions, we need to specify an explicit form for the
arbitrary chiral functions Fðz�Þ and φ0ðz�Þ, and for
the function λðz�;φÞ. We can write Fourier decompositions
for all of them, as

Fðz�Þ ¼ aF0 z� þ
X
kF¼0

aFk sin

�
2πkF

Lz
z�

�
þ bFk cos

�
2πkF

Lz
z�

�
;

φ0ðz�Þ ¼ aφ0z� þ
X
kφ¼0

aφk sin

�
2πkφ

Lz
z�

�
þ bφk cos

�
2πkφ

Lz
z�

�
;

λðz�Þ ¼ aλ0z� þ
X
kλ¼0

aλk sin

�
2πkλ

Lz
z�

�
þ bλk cos

�
2πkλ

Lz
z�

�
;

where the coefficients aλk and b
λ
k are periodic functions of φ,

and can be decomposed according to

aλkðφÞ ¼
X
l¼0

aλkl sin

�
2πl
Lφ

φ

�
þ ãλkl cos

�
2πl
Lφ

φ

�
;

bλkðφÞ ¼
X
l¼0

bλkl sin

�
2πl
Lφ

φ

�
þ b̃λkl cos

�
2πl
Lφ

φ

�
:

With this expressions, we can plot the profiles of the
observable functions, namely the electric current J�, the
energy density Ttt, and the electromagnetic field E ¼ ∓ B,
for some simple examples, see Figs. 2–6.
In Fig. 2 we plot some simple configurations with

growing values of n, which implies a growing number
of maxima of the functions around the cylinder. In Fig. 3 we
draw some solutions with different values of kφ, the linear
mode controlling the winding of the level curves around the
cylinder, the higher modes counting their oscillations along
it. Figure 4 shows configurations with different values of
kλ, which controls the number of maxima of the functions
along the cylinder. Figure 5 shows the some profiles with
fixed kλ for different values of l, which combines with n
to tweak the number of maxima around the cylinder.
Finally, Fig. 6 contains profiles with different values of
kF, contributing to the number of maxima of the observable
functions along the cylinder.

VIII. STABILITY

We proved in Sec. VI that our solutions are characterized
by a topological charge Q ¼ 2πn, in which n represents
the winding around the cylinder of the phase of the Higgs
field. This feature is a proxy for the overall stability of the
configuration, since a finite-energy deformation cannot
change the winding number. Then, if an instability exists,
it must drive the solution into a different one with the same

FIG. 2. Electric current J� (top) and energy density Ttt
(bottom) for n ¼ 1, 2, 3 from left to right, with nonvanishing
bφ0 ; b̃

λ
00, and aF0 . It is evident that, as expected, the number n

controls the number of maxima around the cylinder.
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winding number, as for example the Abrikosov-Nielsen-
Olesen vortex.
A complete perturbative analysis of the obtained sol-

utions is beyond the scope of the present paper, since it
would involve five coupled linear partial differential
equations on a nontrivial background. Nevertheless, in this
section we analyze a special type of perturbations which
have both interesting physical meaning and allow some
analytic control; those that preserve the decoupling proper-
ties of our ansatz. Such perturbations are defined by the
following small deformations of our ansatz functions

Fðz�Þ → Fðz�Þ þ εδFðz�Þ; ð8:1Þ

hðφÞ → hðφÞ þ εδhðφÞ; ð8:2Þ

where ε is a small dimensionless parameter. These pertur-
bations are very likely to be the smallest energy perturba-
tions of the present exact solutions. The reason is that it
takes “a little effort” to perform an angular deformation of h
(see, for instance, the discussion of the hedgehog ansatz
[20,21]) as compared to deformations on h depending also
on the other coordinates. For this reason the linear operator
that determines the spectrum of these perturbations plays a
very important role.
The linearized field equations are obtained expanding to

the first nontrivial order in ε. They read

∂�F∂∓δF ¼ 0; ð8:3Þ

−∂2φδhþ γð3h2 − ν2Þδh ¼ 0; ð8:4Þ

where h and F are the background solutions.

FIG. 3. Electric current J� (top) and energy density Ttt

(bottom) for nonvanishing aφ0 , b
φ
1 , and bφ2 from left to right,

with n ¼ 3 and nonvanishing b̃λ00 and a
F
0 . We see that aφ0 regulates

the winding of the level curves around the cylinder, while kφ is
counting their oscillations along z.

FIG. 4. Electric current J� (top) and energy density Ttt

(bottom) for nonvanishing b̃λ00, b̃
λ
10, and b̃λ20 from left to right,

with n ¼ 4 and nonvanishing bφ0 and a
F
0 . Notice that k

λ counts the
number of maxima along z.
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As far as the equation for the perturbation δF is
concerned, since F only depends on one of the two light
cone variables z� we get that the solution for δF must
depend on the same light cone variable

δF ¼ δFðz�Þ: ð8:5Þ

Thus, imposing reasonable boundary conditions in the
z-direction, one gets a Fourier expansion for δF with real
frequencies, so that the perturbation is always well-
behaved.
Regarding the perturbation δh, if we take

δh ¼ ∂φh; ð8:6Þ

FIG. 5. Electric current J� (top) and energy density Ttt

(bottom) for nonvanishing b̃λ11, b̃
λ
12, and b̃λ13 from left to right,

with n ¼ 4 and nonvanishing bφ0 and aF0 . Here l combines with n
to control the number of maxima around the cylinder.

FIG. 6. Electric current J� (top), energy density Ttt (center),
and electromagnetic field Eφ ¼ ∓ B (bottom) for nonvanishing
bF1 , b

F
2 , and b

F
3 from left to right, with n ¼ 4 and nonvanishing bφ0

and b̃λ11. We see that kF combines with Kλ to control the number
of maxima along the cylinder.
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where h is the background solution satisfying Eq. (4.9),
then δh satisfies identically the corresponding linearized
field equation in Eq. (8.3). Moreover, from Eq. (4.10) it is
clear that we can choose the integration constant m close
enough to one, in such a way that ∂φh never changes sign;
this implies that δh has no node. In other words, we have a
nodeless zero mode of the linearized field equations.
Standard arguments in quantum mechanics then suggest
that all the other eigenvalues are positive.
Although the above arguments are not a complete proof

of the stability, they suggest that the family of analytic
solutions constructed here have interesting physical
properties.

IX. DISCUSSION

We have found exact solutions to 2þ 1 scalar electro-
dynamics, that represent solitonic configurations propagat-
ing along a cylinder. The solutions are topological in
nature, being indexed by an integer number that counts
the winding of the Higgs phase around the cylinder. They
are continuously connected to Abrikosov-Nielsen-Olesen
vortices. Even if a partial perturbative analysis does not
show instabilities, our solutions may in principle relax into
vortices via some instability channel we had not consid-
ered, or through external dissipation.
There is both a charge density and an electric current

along the cylinder, which are equal (up to a sign) and have
arbitrary shapes on the cylinder surface. The current is self-
sustained since there is no need for an external field to keep
it alive. There is no electric current around the cylinder, nor
electric field along it. As time runs, the profile moves as a
whole along the cylinder, at the speed corresponding to that
of the light in the model.

We would like to interpret our solutions as long standing
excitations on a superconducting nanotube. As these
configurations are independent of the value of the coupling,
they can describe both type I and type II superconductors.
For this interpretation to work, we need that (1) the
superconducting condensate has an S-wave symmetry
[14–16], (2) the matter dynamics can be considered
relativistic [8–10], and (3) our two-dimensional fields have
to be embedded into a three dimensional setup (this can be
done by solving Maxwell’s equation in vacuum and then
imposing at the tube radius a suitable set of boundary
conditions, that in cylindrical coordinates read Br ¼ B,
Ez ¼ 0, Eφ ¼ �Fφ�). If these hypotheses are fulfilled, the
device could in principle be constructed out of twisted
bilayer graphene, by compactifying one direction on a
certain number of its moiré periods of around ≃13 nm.

ACKNOWLEDGMENTS

N. G. is grateful to Mauricio Sturla, Guillermo Silva, and
Martin Schvellinger for useful references and insights, and
to Universidad de Concepción (through the Grant
UCO1866) and Centro de Estudios Científicos for hospi-
tality and support. His work is partially supported by
CONICET Grants No. PIP-2017-1109 and No. PUE084
“Búsqueda de nueva física,” and UNLP Grant No. PID-
X791. A. G. has been funded by FONDECYT Grant
No. 1200293. F. C. has been funded by FONDECYT Grant
No. 1200022. J. O. thanks the support of FONDECYT
Grant No. 1221504. A. V. has been funded by
FONDECYT post-doctoral Grant No. 3200884. The
Centro de Estudios Científicos (CECs) is funded by the
Chilean Government through the Centers of Excellence
Base Financing Program of ANID.

[1] M. Peskin and D. Schroeder, An Introduction to Quantum
Field Theory (Westview Press, Boulder, Colorado, USA,
1995).

[2] Gerard ’t Hooft and Falk Bruckmann, Monopoles, instan-
tons and confinement, arXiv:hep-th/0010225.

[3] M. Tinkham, Introduction to Superconductivity (McGraw-
Hill, New York, 1996).

[4] H. B. Nielsen and P. Olesen, Vortex-line models for dual
strings, Nucl. Phys. B61, 45 (1973).

[5] A. A. Abrikosov, The magnetic properties of superconduct-
ing alloys, J. Phys. Chem. Solids 2, 199 (1957).

[6] A. Larkin and V. Andrei, Theory of Fluctuations in Super-
conductors (Oxford University Press, Oxford, 2005), Vol. 127.

[7] N. Kopnin, Theory of Nonequilibrium Superconductivity
(Oxford University Press, New York, 2001), Vol. 110.

[8] J. Govaerts, B. Damien, and S. Geoffrey, On electric fields
in low temperature superconductors, Supercond. Sci. Tech-
nol. 14, 463 (2001).

[9] J. E. Hirsch, Electrodynamics of superconductors, Phys.
Rev. B 69, 214515 (2004).

[10] K. V. Grigorishin, Extended time-dependent Ginzburg-
Landau theory, J. Low Temp. Phys. 203, 262 (2021).

[11] Y.Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional supercon-
ductivity in magic-angle graphene superlattices, Nature
(London) 556, 43 (2018).

[12] E. Suarez Morell, J. D. Correa, P. Vargas, M. Pacheco, and
Z. Barticevic, Flat bands in slightly twisted bilayer gra-
phene: Tight-binding calculations, Phys. Rev. B 82, 121407
(2010).

SOLITONIC SELF-SUSTAINED CHARGE AND ENERGY … PHYS. REV. D 107, 065007 (2023)

065007-9

https://arXiv.org/abs/hep-th/0010225
https://doi.org/10.1016/0550-3213(73)90350-7
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1088/0953-2048/14/7/308
https://doi.org/10.1088/0953-2048/14/7/308
https://doi.org/10.1103/PhysRevB.69.214515
https://doi.org/10.1103/PhysRevB.69.214515
https://doi.org/10.1007/s10909-021-02580-0
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1103/PhysRevB.82.121407


[13] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
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