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The orbital angular momentum (OAM) of photons has shown the ability to generate high-dimensional
entanglement. Here, we examine a novel kind of entanglement degradation caused by the Unruh effect. By
paraxially quantizing the light field, we derive the mode functions in both inertial and noninertial reference
frames and demonstrate that, from the perspective of an accelerating observer, empty inertial space may
seem to be full of OAM particles. They may inundate the high-dimensional entangled OAM photons and
cause them to decay. Additionally, we investigate high-dimensional entanglement in the vicinity of a
Schwarzschild black hole. Our results suggest that higher-dimensional entanglement will suffer from
greater adverse impacts in both instances.
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I. INTRODUCTION

Quantum entanglement is one of the most nonclassical
physical phenomena. It has shown tremendous potential in
the fields of computation, information, and communica-
tion [1–9]. Among the well-known applications are quan-
tum teleportation, quantum cryptography, and superdense
coding. Quantum entanglement has been realized with
photons, electrons, molecules, and the different degrees of
freedom associated with them. Take the photon, for
example; entanglement has been manifested by its posi-
tion, momentum, polarization, and energy. The discovery
of the orbital angular momentum (OAM) of photons has
revealed additional degrees of freedom for entanglement.
In contrast to polarization, which is described in a two-
dimensional space, the OAM of light may take on well-
defined values of lℏ, where l ¼ 0;�1;�2;…, that span an
infinite-dimensional Hilbert space [1,10–21]. There has
been a surge of interest in researching high-dimensional
OAM entanglement during recent years [1,12,15].
Regrettably, quantum entanglement has a highly

complicated structure and is very sensitive to its surround-
ings [22,23]. In particular, entanglement decay may occur
when the system interacts with its environment. In this
paper, we explore another source of entanglement deterio-
ration that is not related to the environment, but rather to the
fact that particle definitions vary across different reference
frames [24–31]. This was first predicted by Hawking
radiation, and then the same prediction was made by the
Unruh effect [32–36]. According to the Unruh effect, a
noninertial observer moving through the Minkowski vac-
uum may observe a thermal spectrum of particles.
Moreover, a recent study found that if an observer has a

rotational vortex structure in the transverse dimensions and
carries a well-defined OAM, it can absorb or emit Rindler
particles with the same OAM when interacting with the
background thermal bath [37]. These particles exhibit no
hidden connections, and they obscure the original entangled
particles. As a result, an accelerating observer may detect
entanglement degradation. This kind of decay has been
investigated for a variety of objects, including fermions and
bosons. However, to the best of our knowledge, a related
research for photons with OAM has not been conducted.
In this paper, we study the quantization of the paraxial

light field in Minkowski and Rindler spacetimes by using
the Laguerre-Gaussian (LG) modes, which in cylindrical
coordinates are given by

LGl;pðx;kÞ ¼
N
wðzÞ

� ffiffiffi
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with w0 being the waist radius and zR ¼ kw2

0=2 being the
Rayleigh range, RðzÞ ¼ z½1þ ðzR=zÞ2� is the curvature
radius of the wave fronts, ΦðzÞ ¼ −ðjlj þ 2pþ 1Þ
arctanðz=zRÞ is the Gouy phase, k is the wave number,

and Ljlj
p ðxÞ are the associated Laguerre polynomials. The

radial index p ¼ 0; 1; 2;… indicates the number of
radial nodes of the mode, while the azimuthal index
l ¼ 0;�1;�2;… corresponds to the topological charge.
It can be shown that the azimuthal index l represents the
amount of orbital angular momentum carried by each
photon in that mode. We demonstrate that a vacuum space*chenlx@xmu.edu.cn
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for an inertial observer may be saturated with uncorrelated
Rindler OAM photons for an accelerating observer. In
light of this finding, we study the deterioration of high-
dimensional OAM entanglements in Rindler spacetime.
Finally, we extend our findings by demonstrating that
entanglements shared by a free-falling observer and a
stationary observer are impacted by a black hole.
Unless otherwise specified, geometrized units with c ¼

G ¼ 1 are used. We use the metric signature ð−;þ;þ;þÞ.
All greek indices run in f0; 1; 2; 3g. The following
approximations are made for simplicity. First, the paraxial
approximation is applied so the paraxial quantization is
valid; second, the degrees of freedom associated with
polarization will be ignored, since these degrees of free-
dom are unrelated to those associated with OAM in
our study.
This paper is structured as follows. In Sec. II a paraxial

quantization procedure in Minkowski spacetime is reviewed.
Section III extends this procedure to Rindler spacetime and
finds the corresponding mode functions and annihilation
operators. In Sec. IV, by constructing another set of mode
functions in Minkowski spacetime, the Bogoliubov trans-
formation between these two spacetimes is derived. In
Sec. V, high-dimensional OAM entanglements in Rindler
spacetime are explored to show that the system loses its
coherence and entanglement when the acceleration is
increasing. Moreover, higher-dimensional system will be
affected more severely. Section VI generalizes this result to
the Schwarzschild metric. Last, in Sec. VII, our results are
summarized and discussed.

II. QUANTIZATION OF PHOTONS WITH OAM
IN MINKOWSKI SPACETIME

Here, we review the paraxial quantization procedure
introduced in Ref. [11]. For now, the polarization degrees
of freedom will be omitted, so the light field ϕðxμÞ satisfies
the massless Klein-Gordon equation, □ϕðxμÞ ¼ 0. By
solving this equation, one may find that its normalized
mode function with four-wave-vector kμ ¼ ðωk;kÞ, where
ωk is the frequency, k is the wave vector, and ωk ¼ jkj, is
given by

ukðxμÞ ¼ ð16π3ωkÞ−1=2eikμxμ ; ð2Þ

and the general solution can be written as

ϕðxμÞ ¼
Z
k
½αðkÞukðxμÞ þ c:c:�: ð3Þ

We introduce a positive function

fðkÞ ¼ kz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 2q2

p
2

; ð4Þ

where q ¼ ðkx; kyÞ, and q ¼ jqj. Then in the paraxial
approximation, by utilizing

R∞
0 dkδ½k − fðkÞ�eikðz−tÞ=

eikðz−tÞ ¼ 1, one can find

ϕðxμÞ ¼
Z

∞

0

dk
Z

d2qk−1=2½αðq; kÞeikðz−tÞeiðq·r⊥−kϑ2zÞ

þ c:c:�; ð5Þ

where r⊥ ¼ ðx; yÞ, and ϑ ¼ q=
ffiffiffiffiffiffiffi
2k2

p
is the paraxiality

parameter. Since the LG modes satisfy the relation
eiðq·r⊥−kϑ2zÞ ¼ P

l;p LG
�
l;pðqÞLGl;pðx; kÞ, where LGl;pðqÞ

is the Fourier-transformed LG modes, the field can be
expressed as

ϕðxμÞ ¼
X
l;p

Z
∞

0

dk½αl;pðkÞfk;l;pðxμÞ þ c:c:�; ð6Þ

where fk;l;pðxμÞ ¼ ð4πkÞ−1=2eikðz−tÞLGl;pðx; kÞ are the par-
axial mode functions and αl;pðkÞ ¼

R
d2qLG�

l;pðqÞαðq; kÞ.
By using the inner product defined by [24] ðϕ1;ϕ2Þ ¼
−i

R
Σðϕ1∇μϕ

�
2 − ϕ�

2∇μϕ1Þnμ ffiffiffi
γ

p
dn−1x, where Σ is a space-

like hypersurface with induced metric γij and unit normal
vector nμ, one can verify that the paraxial mode functions
fk;l;pðxμÞ are orthonormal, i.e.,

ðfk;l;pðxμÞ; fk0;l0;p0 ðxμÞÞ ¼ δðk − k0Þδll0δpp0 : ð7Þ

By using the conventional field quantization formalism,
one may identify αl;pðkÞ as the LG mode annihilation
operator ak;l;p, so the quantized version of the OAM field is

ϕðxμÞ ¼
X
l;p

Z
∞

0

dk½ak;l;pfk;l;pðxμÞ þ a†k;l;pf
�
k;l;pðxμÞ�: ð8Þ

In particular, the paraxial OAM operator is given by
Lz ¼

P
l;p ℏl

R∞
0 dka†k;l;pak;l;p. As will be shown later,

the azimuthal number l plays an important role, so from
now on, we will use only one index l to represent a pair of
OAM numbers ðl; pÞ, and let −l denote ð−l; pÞ, i.e., the
radial index remains unaltered.

III. QUANTIZATION OF PHOTONS WITH OAM
IN RINDLER SPACETIME

In the context of special relativity, an observer, called the
Rindler observer, moving at a uniform acceleration of
magnitude α in the z direction has the trajectory

tðτÞ ¼ α−1 sinhðατÞ; zðτÞ ¼ α−1 coshðατÞ; ð9Þ

where τ is the proper time for the observer. We introduce
new coordinates ðη; ξÞ, adapted by [24]
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t¼ a−1eaξ sinhðaηÞ; z¼ a−1eaξ coshðaηÞ ðz> jtjÞ; ð10Þ

with ranges −∞ < η; ξ < þ∞ and where a is a parameter.
These coordinates expand region I in Rindler space.
Similarly, coordinates in region IV can be defined by

t¼−a−1eaξ sinhðaηÞ; z¼−a−1eaξ coshðaηÞ ðz <−jtjÞ:
ð11Þ

Both regions have the same metric, ds2 ¼ e2aξð−dη2þ
dξ2Þ þ dx2 þ dy2. The spacetime diagram is shown in
Fig. 1. The hyperbolas are trajectories for uniformly
accelerating particles. For an observer with a ¼ α, its
trajectory is η ¼ τ, ξ ¼ 0.
Since the Rindler metric does not depend on coordinates

x and y, we can decouple these coordinates and reserve
them for the transverse components. The Klein-Gordon
equation now reads

□ψðx0μÞ ¼ e−2aξð−∂2η þ ∂
2
ξÞψðx0μÞ ¼ 0; ð12Þ

where x0μ ¼ ðη; x; y; ξÞ. By switching coordinates t → η,
z → ξ, we can easily derive the normalized mode functions
in Rindler coordinates,

gðIÞk;lðx0μÞ ¼ ð4πkÞ−1=2eikðξ−ηÞLGlðx; yÞ; ð13Þ

gðIVÞk;l ðx0μÞ ¼ ð4πkÞ−1=2eikðξþηÞLGlðx; yÞ; ð14Þ

where k > 0, gðIÞk;lðx0μÞ and gðIVÞk;l ðx0μÞ are defined in Rindler
region I and IV, respectively, and we have dropped the
dependence of k and ξ in LG modes because for a given
frequency k and coordinate ξ, their orthonormal properties

do not rely on them. One can verify that gðIÞk;lðx0μÞ and

gðIVÞk;l ðx0μÞ satisfy the orthonormal property,

ðgðSÞk;l ; g
ðS0Þ
k0;l0 Þ ¼ δðk − k0Þδll0δpp0δSS0 ; ð15Þ

where S ¼ I or IV.
Their corresponding annihilation operators are labeled

by bðIÞk;l and bðIVÞk;l , respectively. Hence, the quantized field
can be described by

ψðx0μÞ ¼
X
l

Z
∞

0

dk½bðIÞk;lgðIÞk;lðx0μÞ þ bðIVÞk;l gðIVÞk;l ðx0μÞ þH:c:�:

ð16Þ

The operator bðIÞ†k;l will create an OAM photon moving in

Rindler region I, while the photon created by bðIVÞ†k;l moves
in region IV. Although these two particles are correlated,
they are in different Rindler regions, and hence they may
never access the information carried by their counterpart.

IV. THE BOGOLIUBOV TRANSFORMATION

We want to find the following Bogoliubov transforma-
tion, which can be used to describe the modes in
Minkowski spacetime by those in Rindler spacetime,

fk;lðxμÞ ¼
X
j

Z
∞

0

dk0½αðIÞk;k0;l;jgðIÞk0;jðx0μÞ þ αðIVÞk;k0;l;jg
ðIVÞ
k0;j ðx0μÞ

þβðIÞ�k;k0;l;jg
ðIÞ�
k0;j ðx0μÞ þ βðIVÞ�k;k0;l;jg

ðIVÞ�
k0;j ðx0μÞ�: ð17Þ

This Bogoliubov transformation is difficult to find. Instead,
we adopt the conventional procedure [24] where one may
use the fact that

eaðξ�ηÞ ¼
�
að�tþ zÞ I;

−að�tþ zÞ IV;
ð18Þ

along with the LG mode orthonormal propertiesR
d2x⊥LGmðx; kÞLG�

nðx; kÞ ¼ δm;n and
R
d2x⊥LG�

mðx; kÞ
LG�

nðx; kÞ ¼ δm;−n, where (−n) means that only the sign of
the azimuthal number is flipped. Two new sets of normal-
ized modes can be constructed as

hðIÞk;lðx0μÞ ¼ α½βgðIÞk;lðx0μÞ þ β−1gðIVÞ�−k;−lðx0μÞ�
∝ ðz − tÞik=aLGlðx; yÞ; ð19Þ

hðIVÞk;l ðx0μÞ ¼ α½βgðIVÞk;l ðx0μÞ þ β−1gðIÞ�−k;−lðx0μÞ�
∝ ð−z − tÞik=aLGlðx; yÞ; ð20ÞFIG. 1. Spacetime diagram for Minkowski spacetime in Rindler

coordinates.
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where α ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπk=aÞp

and β ¼ eπk=2a. Their corre-

sponding annihilation operators are labeled by cðIÞk;l and

cðIVÞk;l , respectively. Similarly, their corresponding creation
operators describe particles moving in Rindler region I and
IV, respectively. Note that these modes are not monochro-
matic wave packages. Instead, they are a polychromatic
combination of them. However, they are sufficient to study
the Bogoliubov transformation since they have well-
defined OAM indices l, which we are most interested in.
The Bogoliubov transformation tells us that the Rindler
operators and Minkowski operators are related by

bðIÞk;l ¼ α½βcðIÞk;l þ β−1cðIVÞ†−k;−l�; ð21Þ

bðIVÞk;l ¼ α½βcðIVÞk;l þ β−1cðIÞ†−k;−l�: ð22Þ

We introduce a new Dirac notation jn; k; liR in the
occupation number representation, which means that there
are n photons with frequency k, and an OAM index l in
region R. R ¼ I, IV, or M stands for Rindler region I, IV, or
the Minkowski spacetime, respectively. Particles defined in
Rindler spacetime will be named Rindler particles. By
using Eqs. (21) and (22), the Minkowski vacuum state can
be shown to be

j0iM ¼
Y
i;j

ð1 − β−4i Þ1=2
X
n

β−2ni jn; ki; ljiIjn;−ki;−ljiIV

¼
Y
i;j

Fij; ð23Þ

where
Q

represents direct products. We see that one photon
with frequency ki and OAM index lj in one Rindler region
will be accompanied by one with the same frequency and
inverse OAM index in the other Rindler region, so in total
the orbital angular momentum is conserved. Similarly, a
one-photon state that propagates in Minkowski spacetime
can be written as

j1; ki; ljiM ¼ αiβið1− β−4i Þ1=2
X
n

β−2ni

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1; ki; ljiI

× jn;−ki;−ljiIV
Y

i0≠i;j0≠j

Fi0j0 : ð24Þ

From these transformations, we can see that Rindler
particles are linked via two distinct Rindler regions.
Due to the spacelike nature of the two regions, an observer
in one region may never acquire information from the other
region, resulting in the loss of connections between those
Rindler particles. As a result, particles in one region are
anticipated to be uncorrelated. For a Minkowski vacuum
state, the expected number of particles of frequency k and
OAM index l observed by a Rindler observer in region I

is h0jMbðIÞ†k;l b
ðIÞ
k;lj0iM ¼ ðe2πk=a − 1Þ−1δð0Þ. Therefore, these

particles exhibit a Planck spectrum with tempera-
ture T ¼ a=2π.

V. HIGH-DIMENSIONAL OAM
ENTANGLEMENTS IN RINDLER SPACETIME

We now consider a high-dimensional entangled state.
Initially, the first photon is carried by the observer Alice,
while the other one is stored by Bob and the system is
written as

jψi ¼ D−1=2
XM
l¼−M

j1; k;−liAj1; k; liB; ð25Þ

where D ¼ 2M þ 1 is the dimension of the system. Let
Bob send their photon to a Rindler observer Rob in region
I. For brevity, we introduce another Dirac notation
jn−M; n−Mþ1;…; nM−1; nMiR meaning that there are nl
photons in the OAM state l. Note that we have omitted
the frequency dependence in it because under the single-
mode approximation, states in region I all share the
frequency k, while those in region IV have frequency
−k. Then, the state can be written as

jψi ¼ αβð1 − β−4ÞD=2ffiffiffiffi
D

p
XM
l¼−M

X
n

β−2N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nl þ 1

p
j − liA

× jn−M;…; nl þ 1;…; nMiRjn−M;…; nMiR̄; ð26Þ

where R̄ is an imaginary Rindler observer in region IV,
n ¼ ðn−M; n−Mþ1;…; nM−1; nMÞ whose elements can take
integers from zero to infinity, and N ¼ P

ni. The density
operator will be ρ ¼ jψihψ j. Since observer R can never
access information received by observer R̄, we can
partially trace the R̄ part out. Calculations show that the
normalized partial density operator for Alice and Rob is

ρAR ¼ ð1 − β−4ÞDþ1

D

XM
l;j¼−M

X
n

β−4N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnl þ 1Þðnj þ 1Þ

q

× j − liAjn−M;…; nl þ 1;…; nMiR
× h−jjAhn−M;…; nj þ 1;…; nMjR: ð27Þ

To test its coherence, we calculate its purity [38–40] as

P ¼ tr½ðρARÞ2� ¼ ð1 − β−4Þ2ðDþ1Þðβ−8 þDÞ
Dð1 − β−8ÞDþ2

: ð28Þ

We use the negativity to quantify its entanglement, defined
by [5,41,42] N ¼ −

P
σi<0 σi, where σi are eigenvalues of

the partial transpose density. The partial transpose density,
with respect to the second photon, is
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ρARPT ¼ ð1 − β−4ÞDþ1

D

XM
l;j¼−M

X
n

β−4N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnl þ 1Þðnj þ 1Þ

q

× j − liAjn−M;…; nj þ 1;…; nMiR
× h−jjAhn−M;…; nl þ 1;…; nMjR: ð29Þ

It is difficult to find its eigenvalues. Instead, we notice that
the factor β−4N will suppress states with N > 0, and as
stated before, all Rindler particles are uncorrelated.
Therefore, we will approximately calculate its eigenvalues
by setting n ¼ 0. Then, the matrix ρ0ARPT ¼ D−1ð1 −
β−4ÞDþ1

P
M
l;j¼−M j − liAjjiRh−jjAhljR has eigenvalues

ð1 − β−4ÞDþ1=D with degeneracy DðDþ 1Þ=2, and −ð1 −
β−4ÞDþ1=D with degeneracy DðD − 1Þ=2. Therefore, its
negativity is approximated by

N ¼ ðD − 1Þð1 − β−4ÞDþ1

2
: ð30Þ

We define the decay acceleration aD to be the acceleration
of the observer at which the negativity of the system drops
to 1=e of the initial value, i.e., N ðaDÞ ¼ 1

eN ða ¼ 0Þ. For
the system under consideration, its decay acceleration is

aD ¼ −
2πk

ln ½1 − e−1=ðDþ1Þ� : ð31Þ

Figures 2 and 3 depict the purities and negativities for
different dimensional systems, respectively. Also, the decay
accelerations, in units of kc2, where the speed of light c is
temporarily restored, are 4.165, 2.934, 2.487, 2.241, 2.080
for D ¼ 3, 7, 11, 15, 19, respectively, showing that higher-
dimensional entanglement will suffer more deterioration
caused by the Rindler particles. This is because the
structure of a higher-dimensional entanglement is more
complicated and is covered up by more Rindler OAM
photons. Note that this kind of entanglement deterioration
occurs as a result of the disparate definitions of particles in
different kinds of reference frames. As stated by the Unruh
effects, an observer traveling in the Minkowski vacuum

with uniform acceleration sees a thermal spectrum of
particles. Here, two entangled OAM photons are flooded
by a large number of Rindler OAM photons from the view
of an accelerating observer. Because the observer cannot
tell the difference between such particles and the original
entangled ones, detection will be impaired.

VI. HIGH-DIMENSIONAL OAM ENTANGLEMENT
DEGRADATION NEAR A SCHWARZSCHILD

BLACK HOLE

Last, we would like to briefly generalize our result to
spacetime near a Schwarzschild black hole. In the Kruskal
coordinates, i.e.,

T ¼ ½r=ð2MÞ − 1�1=2er=ð4MÞ sinhðt=ð4MÞÞ; ð32Þ

R ¼ ½r=ð2MÞ − 1�1=2er=ð4MÞ coshðt=ð4MÞÞ; ð33Þ

the spacetime diagram for the Schwarzschild metric is
displayed in Fig. 4. Note that the hyperbolas are trajectories

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
 D=3
 D=7
 D=11
 D=15
 D=19

FIG. 2. Purities for different dimensional entanglements.

0 2 4 6 8 10
0

3

6

9
 D=3
 D=7
 D=11
 D=15
 D=19

FIG. 3. Negativities for different dimensional entanglements.

FIG. 4. Spacetime diagram for the Schwarzschild metric in
Kruskal coordinates.
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for orbits with fixed radii. The similarities between
Rindler and Schwarzschild spacetime show that the effec-
tive acceleration for a stationary observer with a fixed radius
r near a Schwarzschild black hole is [26] a ¼ κf−1=2 ¼
½4m ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1=r̄
p �−1, where f ¼ 1–2m=r, κ ¼ 1=ð4mÞ is

the surface gravity, r̄ ¼ r=Rs, and Rs ¼ 2m is the
Schwarzschild radius. This result is valid only when
the Rindler approximation, ðr − RsÞ=Rs ≪ 1, holds. Now
let Rob be the stationary observer with radius r, and Alice
be freely falling into the black hole. They share a high-
dimensional bipartite system whose entanglement will be
computed via the negativity.

The results for various observer radii and black hole
masses are shown in Figs. 5 and 6. The mass of the black
hole in Fig. 5 is set to one solar mass m⊙ ¼ 2.95 × 103 m.
In Fig. 6, The entanglement dimension is set to 11 with
M ¼ 5 and the black hole masses are set to 0.5, 1, and 2
solar masses. First, we see that deterioration occurs only in
a limited region around the black hole horizon. Thus, in the
future, if researchers want to transmit OAM data near a
black hole, they may wish to maintain a reasonable
distance from the horizon. Second, Fig. 6 demonstrates
that the deterioration diminishes rapidly as the mass of the
black hole increases, which is compatible with Hawking
radiation.

VII. CONCLUSION

In this paper, we studied the paraxial quantization of
light in Minkowski and Rindler spacetimes. We determined
the Bogoliubov transformation between them by building
the appropriate mode functions in Minkowski spacetime.
Then, we saw that an empty region for an inertial observer
may become saturated with uncorrelated Rindler OAM
particles as the observer accelerates. We investigated high-
dimensional OAM entanglements in Rindler spacetime
using this finding. We saw that the Rindler OAM particles
have adverse effects on the entanglements, resulting in
decoherence and entanglement deterioration. Additionally,
a higher-dimensional entanglement will be more severely
impacted. Finally, we extended our results to the
Schwarzschild spacetime near the horizon, which bears
some resemblance to Rindler spacetime. The findings
demonstrate that as a stationary observer approaches the
black hole horizon, the OAM entanglements shared by a
free-falling observer are broken. Additionally, as anticipated
by Hawking radiation, a black hole with less mass would
emit more OAM particles, resulting in a greater deterioration
of OAM entanglement.
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FIG. 5. Negativities for different radii of a stationary observer
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the degradation will fade quickly.
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