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We demonstrate a physical motivation for extending color-dual or Bern-Carrasco-Johansson (BCJ)
double-copy construction to include theories with kinematic numerators that obey the same algebraic
relations as symmetric structure constants, dabc ¼ Tr½fTa; TbgTc�. We verify that UðNcÞ nonlinear sigma
model (NLSM) pions, long known to be color-dual in terms of antisymmetric adjoint factors, fabc, are also
color-dual in the sense of symmetric color structures, dabc, explicitly through six-point scattering. This
reframing of NLSM pion amplitudes complements our compositional construction of dabc color-dual
higher derivative gauge operators. With adjoint and symmetric color-dual kinematics, we can span all four-
point effective photon operators via a double-copy construction using amplitudes from physical theories.
We further comment on a tension between locality and adjoint effective numerators, and the implications
for spanning gravitational effective operators with nonadjoint kinematics.

DOI: 10.1103/PhysRevD.107.065005

I. INTRODUCTION

Probing for footprints of UV physics with the fields
relevant to the available IR scales via effective field theory
(EFT) methods is by now a well oiled machine [1]. Model
building with EFT amounts to enumerating all possible
operators consistent with observable IR symmetries, and
capturing signatures of the UV in a priori independent
Wilson coefficients. In recent years EFTs have been
constructed to describe phenomena among a wide range
of physical scales, from high energy particle physics [2–6],
to classical gravitational binary inspiral [7–10], to cosmo-
logical inflation [11–14], dark energy [15], and large scale
structure [16–18].
One of the primary universal challenges in EFT con-

struction is identifying a minimal basis of operators needed
at a particular mass dimension satisfying the desired
symmetries. A partial solution has been provided via
Hilbert series methods; see, e.g., Refs. [19,20] and refer-
ences therein, to count the requisite operators. Identifying
the actual operators and their scattering predictions requires
more work. For many of the computational problems facing
precision calculations in quantum field theory, on-shell
methods have opened new pathways. Indeed, many sur-
prising properties of EFTs have been clarified [21–27] by

computing directly at the level of scattering amplitudes,
circumventing conventional Feynman rule techniques.
The past few decades have seen on-shell methods applied

to a number of quantum field theories, from the formal to the
phenomenological, leading the modern amplitudes program
to identify perturbative structures of scattering that have led
to remarkable reductions in the computational complexity of
the S-matrix. One such example, first identified in tree-level
gluon amplitudes [28] and later generalized to the multiloop
level [29], is the duality between adjoint color and kinemat-
ics, and the associated double-copy construction of
amplitudes in a wide range of field theories. Double-copy
construction has notably been used to constrain the Wilson
coefficients of higher-derivative operators in gravity theories
[26,30,31]. Indeed, the adjoint duality between color and
kinematics has been generalized [32–35] to admit nonadjoint
color factors that combine with kinematics to build adjoint-
type building blocks in double-copy construction that
obviates the need for ansatze and can climb all the way to
the UV via composition.
Certain desired adjoint-type EFT building blocks, how-

ever, can be confusing when used at low mass-dimension—
suggesting unphysical massless higher-spin exchange [36].
We will show that generalizing the duality between color
and kinematics to include purely symmetric color weights,
beyond traditional adjoint color, can resolve challenges to
physically consistent double-copy construction. Here we
demonstrate the possibilities by considering photonic Uð1Þ
duality preserving higher derivative operators.
To realize the traditional adjoint correspondence between

color and kinematics, one expresses an n-point gauge
theory amplitude as a sum over trivalent (cubic) graphs,
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An ¼
X
g∈Γð3Þ

n

cgng
dg

; ð1Þ

where for any graph in the set, Γð3Þ
n , of unordered n-point

cubic graphs, cg are the color weights, ng are the kinematic
part of the numerator, and dg are the propagators that
encode the local structure of the amplitude. In this form, a
gauge theory is said to be color-dual if a gauge can be
chosen such that the kinematic numerators, ng, obey the
same algebraic constraints as the color factors, cg. As an
explicit example, consider a four-point color factor func-
tionally defined as

cð1; 2; 3; 4Þ ¼ fa1a2efea3a4 ; ð2Þ

where the structure constants can be written in terms of
UðNcÞ group theory generators as fabc ≡ Tr½½Ta; Tb�Tc�.
Such color weights have a variety of symmetry properties
that it inherits from the underlying color algebra, namely
antisymmetry and satisfying the Jacobi identity,

cð1; 2; 3; 4Þ þ cð1; 2; 4; 3Þ ¼ 0; ð3Þ

cð1; 2; 3; 4Þ þ cð1; 3; 4; 2Þ þ cð1; 4; 2; 3Þ ¼ 0: ð4Þ

A theory is said to be color-dual when the kinematic
numerator for any graph shares the same algebraic proper-
ties as the corresponding color factor. For the four-
point color factor above, that amounts to finding a set of
kinematic numerators such that

nð1; 2; 3; 4Þ þ nð1; 2; 4; 3Þ ¼ 0; ð5Þ

nð1; 2; 3; 4Þ þ nð1; 3; 4; 2Þ þ nð1; 4; 2; 3Þ ¼ 0: ð6Þ

Many such theories satisfy this property; for recent reviews
of the topic, see [37–39]. An added feature of this
construction is that since gauge invariance in the amplitude,
An, is encoded in the algebraic relations between the color
factors, replacing the color weights, cg, with color-dual
numerators, ñg, must still yield gauge invariant amplitudes,
albeit for a different theory, of the form

Mn ¼
X
g∈Γð3Þ

n

ñgng
dg

: ð7Þ

This procedure is known as double-copy construction [29],
and theories whose tree-level amplitudes can be described
in such a form are said to be double-copy constructible.
While the first realization of this construction arose from
the study of multiloop amplitudes from N ¼ 8 super-
gravity, many theories, including the effective field theory
of Born-Infeld (BI) photons, have been shown to permit
such a construction [40].

With this in hand, the problem of double-copy con-
struction of local quantum field theory observables in a
wide web of theories is reduced to identifying color-dual
functions of on-shell kinematic variables. Through a simple
adjoint composition rule, previous studies have identified
all higher-derivative scalar and vector (single-trace) numer-
ators that obey adjoint-type kinematic relations at four-
points [32] as well as all such scalar building blocks at
five-points [35]. Using the double-copy, these color-dual
building blocks can efficiently encode a vast landscape of
gauge theory and gravity operators, many of which may be
needed for good UV behavior.
As we discuss in this work, however, the most physically

meaningful double-copy construction may not always
involve the adjoint. For example, consider the four-field
photon operator of the form

ÔðþþþþÞ ¼
Z

d4x½ð∂μFþ
_ααÞð∂μFþ

α _αÞ�2; ð8Þ

where α and _α are spinor indices of the positive-helicity
chiral field strength, defined as

Fþ ¼ 1

2
ðFμν þ iF̃μνÞσμν; ð9Þ

where σμν ¼ 1
2
ðσμσ̄ν − σνσ̄μÞ, and F̃μν ¼ 1

2
ϵμνρσFρσ is the

dual field strength. In [41] it was shown that this operator is
required to cancel the Uð1Þ anomaly in the Born-Infeld
S-matrix through one-loop. While BI theory is itself double-
copy constructible from Yang-Mills and the nonlinear sigma
model (NLSM), this counterterm does not appear to be
constructible from local four-field higher-derivative opera-
tors added to either Yang-Mills or the NLSM. This operator
corresponds to a local four-point photon amplitude,

OðþþþþÞ ¼ σ22T ; ð10Þ

where we introduce the standard permutation invariant all-
plus tensor structure

T ¼ ½12�½34�
h12ih34i ð11Þ

and the scalar permutation invariant σ2 ¼ s2 þ t2 þ u2. The
authors of Ref. [41] demonstrated that there did not exist
local higher-derivative ordered amplitudes that satisfied the
Bern-Carrasco-Johansson (BCJ) ðn − 3Þ! relations which
could double copy to this amplitude.
This paper is organized as follows. As we will explain in

Sec. III, it is possible to build this operator via adjoint
double copy using the vector building blocks of [32,35],
through a somewhat surprising loophole. The required
higher-derivative gauge theory’s four-point amplitude sits
on nontrivial (presumably unphysical) higher-spin particle
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exchange. These channels cancel in the double-copy
construction to land on the local prediction for the
higher-derivative photon exchange.
If all we cared about was constructing a particular

counterterm via the double copy, then this might be fine;
but our priority in looking at this is to develop an under-
standing of when and how double-copy EFT can be built
from physical theories.
This paper is organized as follows. We will show in

Sec. II that generalizing double-copy construction to admit
dabc type color-kinematics duality is key to the generation
of operators of the type Eq. (10) from physically consistent
theories. In Sec. III we provide details about the unphysical
character of particular adjoint representations. We further
show in Sec. IV that a small combination of adjoint and
symmetric operators encode the Uð1Þ anomalous tensor
structures through two-loops in duality invariant electro-
magnetism. In Sec. V, we conclude by discussing the
opportunities for future work and generalizations.

II. LOCAL COUNTERTERMS WITH
SYMMETRIC COLOR STRUCTURES

It is worthwhile to review explicitly how Born-Infeld
photon amplitudes can be generated using the adjoint
double copy. Since photons are colorless vectors, we
anticipate that their amplitudes can be written as in
Eq. (7). By little group scaling, if one of the kinematic
numerators belongs to a vector theory, the other kinematic
numerator will belong to a scalar theory. The mass
dimension of Born-Infeld forces the kinematic numerators
to have to be order-two in Mandelstam variables. At four-
points, requiring color-kinematics duality uniquely restricts
us to NLSM pions for the scalar theory [42]. Indeed, the
Adler-zero property of NLSM translates to the self-duality
of Born-Infeld amplitudes through double-copy. Explicitly,
Born-Infeld photon amplitudes, ABI, can be constructed
from adjoint double copies as follows:

ABI
4 ¼ AYM

4 ⊗ ANLSM
4 ð12Þ

≡ X
g∈Γð3Þ

nYMg nπg
dg

∝
ðstAYM

ðs;tÞÞðstANLSM
ðs;tÞ Þ

stu
¼ stAYM

ðs;tÞ; ð13Þ

where ⊗ denotes the generalized product of kinematic
numerators between the two amplitudes in the double copy.
The last two lines of Eq. (12) exploit Jacobi and the
antisymmetry of numerators to write the four-point double-
copy amplitude in terms of the s, t channel ordered
amplitudes, Aðs;tÞ, of Yang-Mills and NLSM, and the fact
that ANLSM

ðs;tÞ ∝ u. If we want to describe higher-derivative

adjoint double-copy operators, we can trivially consider
powers of scalar permutation invariants associated with
either numerator (which will disrupt neither Jacobi rela-
tions nor gauge invariance), or consider higher derivative
scalar building blocks, or allow vectors to have higher-
derivative weights. See, e.g., Refs. [32,35] for constructions
along these lines.
At four-points there are only eight distinct vector building

blocks (up to powers of scalar permutation invariants), and
only two distinct scalar building blocks, so the ansatz
required to span any given adjoint-constructible four-point
higher-derivative operator at any mass-dimension over BI is
relatively straightforward. Note that a consequence of the
manipulations demonstrated in Eq. (12) is that should
Eq. (10) be double-copy constructible, then the required
higher-derivative gauge-amplitude is simply

AHD
ðs;tÞ ¼ T

σ22
st

¼ 2T
�
t3

s
þ s3

t
þ σ2 þ st

�
: ð14Þ

This ordered amplitude has higher-spin residues on both s
and t channel poles [36], so it cannot correspond to a local
four-point operator. Amusingly it does satisfy the BCJ
relations and is constructible from the vector building blocks
of [32,35], but these vector building blocks are typically used
with at least one power σ3 ≡ stu to describe local gauge-
theory counterterms.
We appear to have hit a major road block threatening to

derail the double-copy construction of operators such as
Eq. (10) from local theories. However, NLSM has a novel
color-dual property that is obscured by the typical approach
to writing its color weights in terms of adjoint color factors
as we will now describe.
New color basis for NLSM: First, consider the NLSM

Lagrangian up to leading order

LNLSM ¼ 1

2
ð∂ϕÞað∂ϕÞa þ Λ

2
fabefecdð∂ϕÞaϕbϕcð∂ϕÞd

þOðΛ2Þ: ð15Þ

Using the Fierz identity for SUðNcÞ group theory gener-
ators,

ðTaÞijðTaÞkl ¼ δjkδil −
1

Nc
δijδkl; ð16Þ

the structure constants above can be reexpressed in terms of
color traces:

fabefecd ¼ Tr½TaTbTcTd� − Tr½TaTbTdTc�
þ Tr½TaTdTcTb� − Tr½TaTcTdTb�: ð17Þ
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At four-points we can define the following color factors for
the three cubic graphs:

cffs ≡ fa1a2efea3a4 ;

cfft ≡ fa1a4efea3a2 ;

cffu ≡ fa1a3efea2a4 : ð18Þ

The definition of color factors in terms of linearly inde-
pendent color traces can make manifest the algebraic
relations specified in Eq. (3). Exploiting the color Jacobi
relation cfft ¼ cffs − cffu we can rewrite the color-dressed
scattering amplitude in terms of color-ordered amplitudes:

ANLSM
4 ¼ 3Λðcffs uþ cffu sÞ ð19Þ

¼ Λ
�
cffs n

π;ff
s

s
þ cfft n

π;ff
t

t
þ cffu n

π;ff
u

u

�
ð20Þ

¼Λ
�
cffs

�
nπ;ffs

s
þnπ;fft

t

�
þcffu

�
nπ;ffu

u
−
nπ;fft

t

��
ð21Þ

¼ Λ
�
cffs ANLSM

ðs;tÞ þ cffu ANLSM
ðt;uÞ

�
; ð22Þ

where we can dress cubic graphs with adjoint color-dual
numerators

nπ;ffs ¼ sðu − tÞ ¼ t2 − u2 ð23Þ

and the other channels described by functional relabeling:
nπ;fft ¼ nπ;ffs js↔t and nπ;ffu ¼ nπ;ffs js↔u. Of course, we could
also define symmetric color structures in terms of the color
generators by introducing an anticommutator as follows:

dabc ≡ Tr½fTa; TbgTc�: ð24Þ

After imposing the Fierz identity on contractions of dabc,
one can rewrite the adjoint color factors completely in
terms of symmetrized trace structures:

fadefecb ¼ dabedecd − dacedebd þOð1=NcÞ; ð25Þ

where the Oð1=NcÞ terms are multitrace delta functions.
For simplicity, we will drop these SUðNcÞ group theory
factors for the remainder of the paper, and restrict ourselves
to UðNcÞ gauge theories. In this new color basis, after
imposing the equations of motion and dropping boundary
terms, the NLSM Lagrangian can be reexpressed in the
following form:

LNLSM ¼ 1

2
ð∂ϕÞað∂ϕÞa þ 3Λ

4
dabedecdð∂ϕÞað∂ϕÞbϕcϕd

þOðΛ2Þ: ð26Þ

The Feynman rules for this Lagrangian are straightforward
and yield the equivalent color-dressed UðNcÞ NLSM
amplitude:

ANLSM
4 ¼ −3Λðcdds sþ cddt tþ cddu uÞ; ð27Þ

where we have defined the four-point symmetric color
factors as

cdds ¼ da1a2edea3a4 ;

cddt ¼ da1a4edea3a2 ;

cddu ¼ da1a3edea2a4 ; ð28Þ

and the conventions for our Mandelstam invariants are
s ¼ s12, t ¼ s23, and u ¼ −ðsþ tÞ. We can see that the
above formulation of the NLSM amplitude in a symmetric
color basis is equivalent to the perhaps more familiar form
of Eq. (19) by exploiting Eq. (25), cfft ¼ cdds − cddu , and
relabelings.
Both are indeed permutation invariant by construction;

but more importantly, both can be written as a color-dual
sum over manifestly local cubic graphs:

ANLSM ¼
X
g∈Γð3Þ

cddg nπ;ddg

dg
¼

X
g∈Γð3Þ

cffg n
π;ff
g

dg
; ð29Þ

where the color-dual kinematic numerators in the dd color
basis is simply

nπ;dds ¼ s2: ð30Þ

Notice that while the adjoint kinematic numerator depends
on how one chooses to absorb the contact term, the
symmetric numerator, nπ;dds , is invariant under generalized
gauge transformations [28]. This redundancy in the adjoint
numerators is a measure of algebraic relations between the
color factors. At four-point, the symmetric color factors are
linearly independent—a property that does not persist at
higher multiplicity.
We have verified that this feature of NLSM is manifest

through six-point. That is, color-dressed NLSM amplitudes
can be expressed as a sum over all trivalent graph topologies,
weighted by symmetric color factors and kinematic numer-
ators that satisfy the same algebraic identities. This is an
important nontrivial check, since the color factors, and also
the color-dual kinematic numerators, satisfy additional group
theory identities above four-point.
Symmetric vector numerators: Given the structure of

Eq. (27), we find a path toward double-copy photon
operators as in Eq. (10) that are invisible to the double
copy of local adjoint gauge theory counterterms. To do so,
one needs Yang-Mills operators that generate symmetric
vector numerators, i.e., kinematics that are color-dual to
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Eq. (27). One operator that manifests this structure through
four-point is

Lint ¼ cð0;2ÞTr½fFμν; FμνgfFρσ; Fρσg�; ð31Þ

where Fμν ¼ Fa
μνTa are UðNcÞ field strengths. In four

dimensions, the four-point all-plus vector amplitude gen-
erated by this Lagrangian is simply,

Add;2
ðþþþþÞ ¼ cð0;2ÞT ðcdds s2 þ cddt t2 þ cddu u2Þ: ð32Þ

First we recognize this can be written in a symmetric color-
dual form as

Add;2
ðþþþþÞ ¼ cð0;2Þ

X
g∈Γð3Þ

4

cddg nddg
dg

ð33Þ

with

ndds ¼ T s3 ð34Þ

and the other channel numerators following the standard
relabeling. In Sec. IV we will show that this particular
color-dual numerator is a four-dimensional projection of
a more general D-dimensional spanning set of symmetric
vector numerators.
One should note that, in similar spirit to the scalar

kinematics for NLSM, these individual symmetric numer-
ators are independently gauge invariant. This is in contrast to
typical adjoint-vector numerators at four-points. The adjoint
redundancy is a result of algebraic relations between adjoint
color weights where the four-point cddg color weights are
independent. Replacing the color factors with the NLSM
symmetric numerators of Eq. (30) yields a symmetric
double-copy construction of precisely the matrix element
Eq. (10) generated by the counterterm in Eq. (8).
For higher orders in mass dimension, one can employ a

constructive composition rule similar to the adjoint higher-
derivative color-dual numerators described in [32,35].
Given two symmetric numerators, jddg and kddg , the product
maintains their symmetry properties and thus generates a
new symmetric numerator:

ndds ¼ ðjdd d kddÞs ¼ jdds kdds : ð35Þ

For scalar kinematics there are linear and quadratic building
blocks,

ndd;1s ¼ s; ndd;2s ¼ tu; ð36Þ

which can be repeatedly composed with the vector nddg
of Eq. (34) to achieve arbitrarily high mass-dimension
symmetric numerators. Indeed, we recover the symmetric

color-dual pion numerator, nπ;dds , by composing two factors
of the linear building block,

nπ;dds ≡ ðndd;1 d ndd;1Þs ¼ s2: ð37Þ

III. DETAILS ON A NONLOCAL
ADJOINT DOUBLE COPY

Considering the algebraic color relation in Eq. (25), all of
the symmetric kinematic numerators above could be
expressed in terms of adjoint-type numerators. Using the
simple casting rule

nffs ¼ nddt − nddu ; ð38Þ

we find candidate adjoint-type numerators:

nvec;ffs ∝ t½14�2½23�2 − u½13�2½24�2: ð39Þ

Note that since

T ¼ ½12�½34�
h12ih34i ¼

ð½12�½34�Þ2
s2

ð40Þ

¼ ð½14�½23�Þ2
t2

¼ ð½13�½24�Þ2
u2

; ð41Þ

the adjoint numerator can be expressed as follows:

nvec;ffs ¼ T ðt3 − u3Þ: ð42Þ

This is a perfectly fine adjoint color-dual numerator,
manifestly antisymmetric around u ↔ t, as well as man-
ifestly consistent with ns ¼ nt þ nu. Let us consider the
ordered amplitude, Aðs;tÞ, generated by these numerators:

Avec;ff
ðs;tÞ ¼ nvec;ffs

s
þ nvec;fft

t
ð43Þ

¼ 2T
�
t3

s
þ s3

t
þ σ2 þ st

�
ð44Þ

¼ T
σ22
st

: ð45Þ

We see that we have recovered exactly the ordered
amplitude we discovered in Eq. (14). This is the type of
ordered amplitude required to build our counterterm
amplitude of Eq. (10) via the double copy with NLSM
in the adjoint sense.
Note this is a fine amplitude in every sense other than

having a factorization channel at such a high mass
dimension. This is not in an adjoint sense a local four-
field counterterm. Indeed, considering the argument of
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Ref. [36], the residue of the s-channel pole suggests that
there is a spin-3 mode crossing the cut. However, it is
happily a local counterterm when expressed in terms of
symmetric dabc color factors with its own double copy with
NLSM to the desired photonic counterterm.
When composing numerators for general theories, local-

ity is important. But for double-copies with NLSM, which
has an infinite sequence of pole canceling contact terms,
badly nonlocal behavior can be hidden by the pion contacts.
This example reveals an interesting interplay between
adjoint kinematics and locality. Since adjoint kinematic
factors possess greater redundancy than their symmetric
counterparts, due to satisfying additional Jacobi relations,
reducing a symmetric color basis to an adjoint one can
evidently lead to spurious poles. The available linear
relations between amplitudes sets the efficiency of color-
dual compression; the same goes for symmetric kinematic
building blocks.

IV. SPANNING PHOTONIC EFFECTIVE
COUNTERTERMS

To emphasize the utility of these symmetric double-copy
constructible operators, consider resolving Uð1Þ anomalies
at consecutive loop orders in Born-Infeld theory. The
classical effective Lagrangian for this theory is

α02LBI ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðα0Þ2

2
ðFμνFμνÞ − ðα0Þ4

16
ðFμνF̃μνÞ2

r
:

ð46Þ

Born-Infeld theory belongs to a class of duality invariant
theories, classified by a tree-level Uð1Þ conservation
among the on-shell helicity states. Theories with this
symmetry give rise to anomalous matrix elements at
one-loop order that do not conserve the Uð1Þ chiral charge
[41]. A fascinating application of the above double-copy
construction would be to apply the above class of operators
to resolve the duality anomaly. Indeed, it is straightforward
to line up the loop-level results of [41] with the operators
presented above. Novel results begin at two-loops—a
calculation that is now within reach.
Using the above operator prediction constructions, we

can span all four-point higher-derivative photon operators
with scalar permutation invariants, a single adjoint vector
building block, and two symmetric-type building blocks.
The requisite adjoint vector building block is labeled as

nvec;F
3

in [32]. These generate the gauge-theory amplitude
with a single insertion of an F3 three-point vertex. All other
effective photon operators can be constructed via the
symmetric double copy we describe in Sec. II. For this
construction, the two symmetric vector building blocks are
of the form

nvec;dd;1s ¼ f12f34; nvec;dd;2s ¼ f1324; ð47Þ

where fijkl ¼ tr½FiFjFkFl� and fij ¼ 1
2
tr½FiFj� are gauge

invariant objects constructed from linearized field
strengths, Fμν

i ¼ kμi ϵ
ν
i − kνi ϵ

μ
i , that respect the symmetry

of the color-dual vector numerators, nvec;dds . Since the
constructive composition rule does not spoil the gauge
invariance of four-point symmetric numerators, Eq. (35)
can be used to span the remaining higher-derivative vector
building blocks to all orders in mass dimension.
This gives us an extremely general higher-derivative

color-dual amplitude:

AvecþHD
4 ¼

X
g∈Γð3Þ

X
x;y

�
aF

3

ðx;yÞσ
x
3σ

y
2

nvec;F
3

g cffg
dg

þ aF
2F2

ðx;yÞ ðndd;1g Þxðndd;2g Þy n
vec;dd;1
g cddg

dg

þ aF
4

ðx;yÞðndd;1g Þxðndd;2g Þy n
vec;dd;2
g cddg

dg

�
: ð48Þ

By performing a numerator level double copy in both the
adjoint and the symmetric color factors, the most general
four-point photon amplitude (essentially that generated
from the Euler-Heisenberg Lagrangian) can be stated
concisely as

Mphoton
4 ¼ AvecþHD

4 jcffg →nπ;ffg

cddg →ndd;1g
; ð49Þ

where ndd;1g is the linear scalar building block of Eq. (36),
and thus has the affect of adding a propagator factor to the
numerator since ndd;1g ≡ dg. We have confirmed that this
reproduces without redundancy all possible four-point
photon operators through Oðk50Þ in mass dimension.
Since the Uð1Þ anomaly is a four-dimensional on-shell

symmetry, first it is necessary to see how this spanning
set of photon effective operators projects down to four-
dimensional helicity states. In the symmetric double-copy
sector, the nonvanishing helicity configurations contribut-
ing to nvec;dd;1s are

tr½Fþ
i F

þ
j � ¼ −½ij�2; ð50Þ

tr½F−
i F

−
j � ¼ −hiji2; ð51Þ

and similarly those for nvec;dd;2s are simply

tr½Fþ
i F

þ
j F

þ
k F

þ
l � ¼ −

1

2
sijsjkT ; ð52Þ

tr½F−
i F

−
j F

þ
k F

þ
l � ¼

1

4
hiji2½kl�2; ð53Þ

tr½F−
i F

þ
j F

−
k F

þ
l � ¼

1

4
hiki2½jl�2; ð54Þ
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tr½F−
i F

−
j F

−
k F

−
l � ¼ −

1

2

sijsjk
T

: ð55Þ

All other nonvanishing configurations can be constructed
via cyclicity of the trace. To get a sense for how known
four-dimensional tensor structures can be recovered from
our symmetric vector building blocks, we provide the
example of the t8F4 operator, written succinctly with our
normalization as

1

2
t8F4 ¼ f1234 − f12f34 þ cycð2; 3; 4Þ: ð56Þ

For completeness, we also provide the four-dimensional
nonvanishing helicity amplitudes of YMþ F3 studied in
[31,43] that can be constructed exclusively from an adjoint
double copy:

st AF3ð1þ2þ3þ4þÞ ¼ −2stu T ; ð57Þ

st AF3ð1þ2þ3þ4−Þ ¼ ½12�2½23�2½31�2
T

: ð58Þ

Now we are prepared to describe how the symmetric
kinematic factors can account for the anomalous matrix
elements at loop level. By little group scaling and mass
dimension alone, we know the algebraic part of the one-
loop integral must be of the form

Aðþþþ−Þ
1−loop ¼ OðϵÞ; ð59Þ

AðþþþþÞ
1−loop ¼ T cþð0;2Þσ

2
2 þOðϵÞ; ð60Þ

and likewise the two-loop algebraic part can be expressed as

Aðþþþ−Þ
2−loop ¼ ð½12�½23�½31�Þ2

T
c−ð1;0Þσ3 þOðϵÞ; ð61Þ

AðþþþþÞ
2−loop ¼ T ðcþð2;0Þσ23 þ cþð0;3Þσ

3
2Þ þOðϵÞ: ð62Þ

Matching the Wilson coefficients in the above expression to
our D-dimensional expansion in Eq. (49), we find

cþð0;2Þ ¼
1

8

�
aF

2F2

ð2;0Þ − aF
4

ð0;1Þ

�
;

cþð0;3Þ ¼
1

16

�
aF

2F2

ð4;0Þ þ aF
4

ð0;2Þ

�
;

cþð2;0Þ ¼
1

4

�
3aF

2F2

ð4;0Þ þ 3aF
2F2

ð2;1Þ þ 3aF
2F2

ð0;2Þ

− 6aF
4

ð4;0Þ − 6aF
4

ð2;1Þ − 6aF
4

ð0;2Þ − 8aF
3

ð1;0Þ

�
;

c−ð1;0Þ ¼ aF
3

ð1;0Þ: ð63Þ

We have learned on very general grounds that there is more
than enough freedom to cancel the anomalous contributions
through two-loops via double-copy constructed operators.
Of course, in future studies of the mechanics of quantum
duality conservation it will be important to determine the
actual values of cðx;yÞ for Born-Infeld, among other classi-
cally Uð1Þ conserving theories.
Observing the redundancy of parameter contributions, it

is natural to wonder if one could similarly consider a
reduced subset of operators rather than the full set of what
is allowed via symmetric and adjoint double copy as
described in Eq. (49). For example, one could instead
choose to replace the symmetric color factors, cddg , with
NLSM symmetric numerators, where nπ;dds ¼ s2. This
choice constitutes a Born-Infeld-like double copy between
our higher derivative vector amplitude, AvecþHD

4 , and
NLSM amplitudes,ANLSM

4 . We can describe this numerator

level double copy, where cff=ddg → nπ;ff=ddg , as a generalized
product ⊗ between theories,

MBIþHD
4 ¼ AvecþHD

4 ⊗ ANLSM
4 : ð64Þ

One can see that MBIþHD
4 misses some of the available

local operators in Eq. (49). However, the freedom of
Eqs. (61)–(63), even under a shift of available aðx;yÞ
coefficients, suggests that the Born-Infeld operator con-
struction alone should still be sufficient to cancel the
anomalous matrix elements through two-loops, a fact that
is easy enough to verify explicitly.
Before concluding, it is worth noting that each of the

two-loop matrix elements in Eqs. (61) and (62) are
interesting in their own right. The all-plus counterterms
have the potential to further probe tensor structures that can
only be encoded locally with a nonadjoint symmetric
double copy (parametrized by the Wilson coefficient
cþð0;3Þ). Meanwhile, the second term in the all-plus counter-

term and the one-minus contribution, is intriguing for other
reasons. This represents yet another opportunity for color-
dual F3 to be required for taming the Uð1Þ anomaly in a
duality invariant theory [44,45]. Recent studies [46,47]
have shown that double-copy consistent theories of
YMþ F3 require an infinite tower of four-point contacts.
Whether these contacts are needed for anomaly cancella-
tion at higher-loop order remains an open question. In the
case of Born-Infeld theory, the first potential appearance of
one of these additional contacts required by double-copy
consistency would occur at three-loop.

V. DISCUSSION

In summary, we have shown that we can span the space
of four-point photon effective operators using a local-
double-copy construction. To do so, in Sec. II we expressed
NLSM amplitudes in a color-dual basis of symmetric color
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factors, dabc. In this form, we found that NLSM amplitudes
are color-dual in terms of both adjoint and nonadjoint local
numerators. In Sec. III we clarify how certain adjoint-type
numerators without sufficient higher-derivative support
will correspond to amplitudes in theories with high-spin
massless particle exchange. This motivated the study of
gauge theory operators with parallel symmetric structure,
for the purpose of using them in a double-copy construction
involving amplitudes in physical theories.
We emphasize the utility of these constructions by

sketching an interesting application of these novel color-
dual operators in Sec. IV to identify anomaly canceling
matrix elements required to preserve the Uð1Þ duality in a
quantum Born-Infeld theory. To span all photonic operators,
we only need a gauge theory YMþ F3 adjoint structure and
a pair of symmetric color-dual building blocks, fijfkl and
fijkl, along with composition with scalar kinematics. While
wehave chosen to focus onphotonoperators in this paper, the
potential for future studies is nontrivial.
Gravity counterterms: As noted in Sec. III, these sym-

metric vector building blocks can also be encoded as non-
local numerators that obey adjoint kinematics, as long as the
spurious poles are canceled in the double copy. However, if
we were to double copy the adjoint vector numerator in
Eq. (39) with itself, one would obtain a gravity amplitude
with intermediate higher-spin modes [36]:

Off
GR ¼

X
g∈Γð3Þ

nvec;ffg nvec;ffg

dg
¼ ðT σ22Þ2

stu
: ð65Þ

This is clearly an unphysical operator. Alternativelywe could
perform the double copy with the physical symmetric
numerators, nvec;ddg , which were used to construct the non-
local adjoint numerator of Eq. (39), nvec;ffs ¼ nvec;ddt − nvec;ddu

used above. This would yield the following gravitational
contact:

Odd
GR ¼

X
g∈Γð3Þ

nvec;ddg nvec;ddg

dg
¼ T 2σ3σ2: ð66Þ

With our spanning set of symmetric vector building blocks,
in conjunction with those identified in [32] for adjoint
kinematics, constructing all physical four-graviton effective
operators via a double copy of local operators is now
within reach.
Mixing dabc and fabc: As is clear from the candidate

Lagrangian in Eq. (31) that gives rise to amplitudes specified
by symmetric color-dual numerators of Eq. (39), higher
multiplicity amplitudes will start mixing dabc and fabc

structure constants. Combinations of these color factors
obey additional Jacobi identities of the form

fa1a2edea3a4 þ fa1a3edea4a2 þ fa1a4edea2a3 ¼ 0: ð67Þ

These relations follow from Fierz contractions of fabc and
dabc in terms of color traces. In the context of eventual
composition to adjoint building blocks, color-dual kinematic
building blocks obeying these relations have been explored at
five-points in [35]. Higher-multiplicity and loop-level struc-
ture must necessarily account for these additional algebraic
constraints for relevant theories to remain color-dual.
Mapping the kinematic space that obeys these constraints
at higher multiplicity is important future work.
Double-copy consistency: Once nonadjoint kinematic

building blocks are found at higher multiplicity, under-
standing how they are constrained by factorization will be
a critical next step. Recently it was shown [46] that many of
theWilson coefficients associated with the adjoint four-point
contacts of [32] are constrained if one demands consistent
five-point factorization to aYMþ F3 three-point vertex, and
likewise in [47] for NLSMþ YM theory. This so-called
double-copy consistency between the tree-level amplitudes
of a color-dual theory could have interesting implications for
the double-copy constructed counterterms necessary for BI
anomaly cancellation in this paper.
New amplitude relations? It is enticing to consider what

this might mean for further color-dual compression in the
landscape of gauge theory amplitudes. For gauge theories
that permit adjoint ðfabcÞn−2 relations between their n-point
kinematic weights, the space of local amplitudes reduces
from ðn − 2Þ! to ðn − 3Þ! building blocks. If amplitudes can
be equivalently constructed in nonadjoint color-dual forms,
then the added kinematic relations could in principle lead to
presently unknown amplitude-level redundancy. It is worth
noting that for gauge theories with symmetric color-dual
numerators at four-points, the algebraic constraint in
Eq. (67) first becomes relevant at five-points, where the
size of the BCJ basis is two—inviting a search for addi-
tional redundancy.
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