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We show how background field inhomogeneities modify the nonperturbative structure of the effective
action. The simple Borel poles of the Euler-Heisenberg effective action become branch points, and new
branch points also appear, indicating new nonperturbative effects. This information is resurgently encoded
in the perturbative weak field expansion and becomes physically significant for strongly inhomogeneous
fields. We also show that resurgent extrapolation methods permit the decoding of a surprising amount of
nonperturbative information from a relatively modest amount of perturbative input, enabling accurate
analytic continuations from weak field to strong field, and of a spatially dependent magnetic background to
a time dependent electric background. These extrapolations are far superior to standard Wentzel-Kramers-
Brillouin approximation and locally constant-field approximations.
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I. INTRODUCTION

The one-loop QED effective action encodes the non-
linear and nonperturbative physics of the effective dynam-
ics of the photon field, after integrating out the heavy
electron and positron fields [1,2]. It was first computed for
electrons and positrons in the background of a constant
electromagnetic field by Euler and Heisenberg [3] and
Weisskopf [4], and later formalized for more general
background fields by Schwinger [5,6]. One of its interest-
ing applications is that the imaginary part of the effective
action yields the rate of electron-positron pair production
from the QED vacuum, due to the application of an external
electric field (the “Schwinger effect”). While this effect is
too weak to have been directly observed, related QED
processes approaching this ultrahigh intensity regime are
the subject of current experimental proposals [7–11], and
correspondingly there has been a great deal of recent
theoretical activity concerning strong inhomogeneities
and also higher loops [12–21]. It is difficult to compute
in this high intensity regime, very far from the natural
regimes of perturbation theory or expansions around
constant-field approximations, and beyond the one-loop
approximation (in the fine structure constant). Recently we
applied methods of resurgent asymptotics and resurgent
extrapolation to the QED effective action at two-loop
order for a constant background field, based on the
pioneering work of Ritus [22–24]. We demonstrated that

a remarkable amount of nonperturbative information can
be efficiently decoded from a modest amount of perturbative
information, opening a potential new approach to higher
loop order computations [25]. Here we apply similar ideas
to the one-loop QED effective action in an inhomogeneous
background field. We show that several new nonperturba-
tive effects arise, and these play a crucial role for strongly
inhomogeneous fields. These new effects are missed by the
usual Wentzel-Kramers-Brillouin approximation (WKB)
and locally constant-field approximations.
Since the perturbative weak field expansion of the

effective action is asymptotic, it is naturally described by
a Borel integral representation [3], in which the non-
perturbative physics is characterized by the singularities
of the Borel transform. For the constant-field Euler-
Heisenberg case these Borel singularities are all simple
poles, but we show here that field inhomogeneities change
these poles into branch points, and also introduce new
Borel singularities. These new features become especially
significant as the field becomes more inhomogeneous.
They have the physical consequence that the familiar
exponentially small “instanton” effects in an electric back-
ground field acquire fluctuation series, so the effective
action becomes a nontrivial transseries. These fluctuations
are resurgently encoded in the coefficients of the perturba-
tive expansion, as functions of the inhomogeneity scale.
This is an example of the “Cheshire cat” phenomenon,
whereby resurgence relations may appear hidden in highly
symmetric situations, but can be revealed by small pertur-
bations [26,27]. Finally, we show that resurgent extrapo-
lation is able to produce accurate nonlinear and
nonperturbative information based on a relatively small
amount of perturbative data. In particular, it is far superior
to the commonly used WKB and locally constant-field
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approximations, particularly for strongly inhomogeneous
fields.
We first briefly recall the basics of the Euler-Heisenberg

result, and the WKB and locally constant-field (LCF)
approximations. For a constant magnetic field B, the
one-loop QED effective Lagrangian can be written in
closed form as a Borel integral [3–6]:

LEH

�
eB
m2

�
¼ −

m4

8π

�
eB
πm2

�
2
Z

∞

0

ds
s2

�
cothðπsÞ − 1

πs
−
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3

�

× e−πm
2s=ðeBÞ: ð1Þ

For a constant electric field, of magnitude E, the expression
involves the real (“medianized” principal parts) integral,
plus an exponentially suppressed imaginary part that is
associated with the pair production rate:
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ð2Þ

where P denotes the Cauchy principal part integral.
The perturbative weak magnetic field expansion is

asymptotic [1,3,5,6,28,29]:

LEH

�
eB
m2

�
∼
m4

4π2
X∞
n¼0

ð−1ÞnΓð2nþ2Þζð2nþ4Þ
�

eB
πm2

�
2nþ4

;

eB≪m2; ð3Þ

where ζðsÞ is the Riemann zeta function. For an electric field
the only difference perturbatively is that the coefficients do
not alternate in sign, and correspondingly there is a non-
perturbative imaginary part. This example is analogous to
Dyson’s physical instability argument concerning the
expected divergence of the loop expansion [30] (but here
referring instead to the one-loop weak field expansion).
Beyond the constant-field case, one must generally use

approximations. Common approximation methods include
the locally constant-field approximation (LCFA), the gra-
dient (derivative) expansion, and the semiclassical WKB
approximation. Each of these approximations has certain
advantages and disadvantages. The gradient expansion
develops a systematic expansion about a homogeneous
background field (here, the solvable Euler-Heisenberg case
described above), expanding in powers of the fields and
their derivatives. This is a widely used approximation in
many branches of physics [31–36], in which an energy or
action functional is symbolically expressed as

S½FðxÞ� ¼ Sð0Þ½FðxÞ� þ Sð1Þ½FðxÞ; ∂FðxÞ�
þ Sð2Þ½FðxÞ; ∂2FðxÞ� þ � � � : ð4Þ

The leading term Sð0Þ½FðxÞ� of the gradient expansion is
called the LCFA, in which one neglects all derivative terms
in the Lagrangian density LðxÞ, but replaces the homo-
geneous field F by its inhomogeneous form FðxÞ, and then
integrates over the coordinates of the inhomogeneities in
order to compute the associated action S. For example, for a
static but inhomogeneous magnetic field, B⃗ðx⃗Þ, the LCFA
approximation to the one-loop QED effective action is

SLCFA½B⃗ðx⃗Þ� ¼ T
Z

d3x½LEH½B��B2→B⃗2ðx⃗Þ; ð5Þ

where T is an overall timescale. Writing a localized field as
B⃗ðx⃗Þ ≔ Bf⃗ðx⃗Þ, where B characterizes the uniform value of
jB⃗ðx⃗Þj about which we consider the field to be expanded,
while f⃗ðx⃗Þ describes the inhomogeneity profile, the weak
field expansion of the LCFA effective action is

SLCFA

�
eB⃗ðx⃗Þ
m2

�
∼ T

m4

4π2
X∞
n¼0

ð−1ÞnΓð2nþ 2Þζð2nþ 4Þ

×
�

eB
πm2

�
2nþ4

Z
d3x

�
f⃗2ðx⃗Þ

�
nþ2

: ð6Þ

The spatial integral factors modify the coefficients of the
expansion in powers of the overall strength ð eB

πm2Þ. Thus, the
LCFA (5) and (6) differs from the Euler-Heisenberg result
(1)–(3) because we are considering the action functional
rather than the Lagrangian. The main advantage of the
LCFA is that it is very general and simple to use in
situations where an explicit expression is known for the
constant-field case. The main disadvantage is that it
neglects all gradient terms, so it is expected to become
inaccurate for strongly inhomogeneous fields with large
gradients. This is compounded by the fact that the gradient
expansion is difficult to compute to high orders and the
gradient expansion is also generically divergent, so the
effective action becomes a multiple sum, each of which is
divergent [37]. The gradient expansion also fails to take
into account important quantum interference effects that
occur, for example, when fields change sign [38]. These
shortcomings of the LCFA have been the subject of
considerable recent activity in the context of strong-field
QED processes [39–45]. One of our goals in this current
paper is to propose a new approach to going beyond the
LCFA. We motivate this approach by showing that our new
approach significantly outperforms existing approxima-
tions to the QED effective action in a well-known solvable
inhomogeneous case for which precise comparisons with
an exact answer can be made.
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Another widely used approximation for the QED effec-
tive action is the semiclassical WKB approximation. As in
the LCFA, the WKB approximation assumes some degree
of uniformity of the background field, comparing the
relevant wavelengths to the scales set by the inhomogeneity
scales of the background field. We show in this paper how
these two approximations, the LCFA andWKB, differ from
one another, and we demonstrate that our new approach is
much more precise than either of these approximations
when the background field becomes strongly inhomo-
geneous. In the context of the QED effective action, the
WKB approximation is most commonly applied to the
imaginary part of the effective action in electric fields, in
which case the imaginary part is expressed as an expo-
nential of a classical action (or actions). This is the ultimate
reason for the difference between the LCFA and WKB, as
discussed in detail below. It also means that the WKB
approach can be adapted to incorporate quantum interfer-
ence, by including the effect of different classical solutions,
while quantum interference is much more difficult to
analyze with the LCFA. Significant advantages of WKB
are its simplicity for problems that can be approximated as
being effectively one-dimensional [46–50], and the physi-
cal intuition derived from the semiclassical perspective of
tunneling, and from the expansion of Feynman’s worldline
path integral representation of the effective action in terms
of classical saddle point solutions [51–55]. The main
disadvantage of the WKB approximation is that it is
computationally difficult to implement when the field
inhomogeneities are multidimensional, especially when
the field variations are large.
Our aim here is to propose a new and quite different

approach, similar to that in [25], in which we work with
perturbative information, and then resum it using ideas
from resurgent extrapolation in order to extract the impor-
tant strong-field and nonperturbative physics [56–58].
Since this is a very different method, in this paper we
present a precision test of this idea for inhomogeneous
fields, by applying it to two well-known examples of
inhomogeneous fields for which the effective action is
soluble [59]. This enables accurate comparisons between
the exact answer and the various approximation methods,
even including exponentially small nonperturbative effects.
In the conclusions we comment on the expected appli-
cability of our new approach to more general problems for
which no exact result is known, for which we therefore
cannot make such precise tests.
We take linearly polarized fields, pointing in the z

direction, but with an amplitude that varies only in the x
direction for the spatially inhomogeneous magnetic field
case, or in the t direction for the time dependent electric
field case:

BðxÞ ¼ Bsech2
�
x
λ

�
; ð7aÞ

EðtÞ ¼ Esech2
�
t
τ

�
: ð7bÞ

The effective action can be computed for these fields
because the spectral problem for the corresponding Dirac
operator reduces to a hypergeometric equation. In [59] the
effective action is expressed as an integral over momenta.
In [60,61] these integrals were done, reducing the expres-
sion for the effective action to a single Borel-type integral:
see Eq. (11).
We begin with the magnetic field case, and ask three

main questions:
(1) How does the resurgent transseries structure of the

effective action change due to the field inhomo-
geneity?

(2) Given some finite-order information about the per-
turbative weak magnetic field expansion, can we
extrapolate efficiently to the strong magnetic field
regime, even for very inhomogeneous fields?

(3) Given some finite-order information about the per-
turbative weak magnetic field expansion, can we
analytically continue efficiently to the electric field
regime, even for very inhomogeneous fields?

The classical background fields in (7a) and (7b) are
characterized by two parameters: an amplitude parameter,
B or E, and a scale parameter, λ or τ. The natural dimension-
less parameter to describe the degree of field inhomogeneity
is the “Keldysh inhomogeneity parameter” [46]:

γ ¼ m
eBλ

or γ ¼ m
eEτ

; ð8Þ

which measures the inhomogeneity scale (λ or τ) in terms of
the classical scale set by the interaction of a magnetic or
electric field with particles of charge-to-mass ratio e=m. See
Fig. 1. The inhomogeneity parameter γ is analogous to a
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FIG. 1. Profiles of the inhomogeneous fields in (7a) and (7b),
for three different values of the inhomogeneity parameter:
γ ¼ 0.1 (blue curve), γ ¼ 1 (orange curve), and γ ¼ 10 (green
curve). Larger γ corresponds to more strongly inhomogeneous
field profiles.
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’t Hooft coupling: we compute in the effective field theory
limit in which the electron mass sets the large scalem2 ≫ B
andm ≫ 1=λ, while the productBλ remains finite. However,
γ could be small (the homogeneous limit) or large (the
inhomogeneous limit).
The effective actions for these two configurations are

related by the simultaneous analytic continuations

B2 ↦ −E2 and λ2 ↦ −τ2; ð9Þ

which can be implemented in such a way that γ remains
unchanged. Our strategy will be to start with the perturba-
tive weak magnetic field expansion, for which the effective
action has no imaginary part, and extrapolate and analyti-
cally continue from there, first from weak to strong
magnetic field and then from weak magnetic field to weak
and strong electric field. To do this we need as accurate as
possible a Borel representation of the divergent weak B
field expansion, including its dependence on γ.
The general form of the perturbative weak B field

expansion for a linearly polarized magnetic field charac-
terized by a single inhomogeneity parameter γ is

SðB;λÞ∼λL2T
m4

3π2
X∞
n¼0

anðγÞ
�

eB
πm2

�
2nþ4

; eB≪m2: ð10Þ

Here L and T denote the spatial and temporal extent of the
homogeneous directions. The coefficients anðγÞ in (10) are
no longer pure numbers [as for the homogeneous field case
in (3)], but depend on the inhomogeneity parameter γ. In
general, one could compute terms of this expansion, for
chosen values of γ, and study the nature of this divergent
weak-field expansion. However, we can test this procedure
more precisely for the fields in (7a) and (7b) because there
exists a closed-form Borel-like integral representation of
the effective action [60,61]:

SðB;λÞ¼ λL2T
m4

3π2

Z
∞

0

ds

eπm
2s=ðeBÞ−1

×

�
dz
ds

�
1−

4z
3
þz2

5 2F1

�
1;1;

7

2
;z

��
−ðs→−sÞ

−
�
8

3
s−2γ

�
1þγ2

4
s2
�

3=2
arcsinh

�
γ

2
s

���
; ð11Þ

where we have defined the convenient variable z as

z ¼ −is −
γ2

4
s2: ð12Þ

The final term in (11) involves the zero field subtraction
and the homogeneous field subtraction, enabling a smooth
comparison at large and small γ. In previous work, this
explicit integral representation has led to detailed analysis
of the Borel summation of the gradient expansion [37] and

also the analytic continuation between the magnetic and
electric background field configurations [62]. Here we
generate the weak field expansion to find explicit expres-
sions for the expansion coefficients anðγÞ:

a0ðγÞ ¼
4π4

525
þ 2π4

75
γ2; ð13aÞ

an>0ðγÞ¼
3

ffiffiffi
π

p
4

ð−1ÞnΓð2nþ4Þζð2nþ4Þ

×

�
Γð2nþ2Þ
Γð2nþ 9

2
Þ 3F2

�
−2−n;−3

2
−n;−7

2
−2n

1−2n;−3−2n

				− γ2
�

−
2ΓðnÞ
Γðnþ 5

2
Þ
�
γ

2

�
2nþ4

�
: ð13bÞ

Note that the 3F2 functions truncate for integer n, so the
coefficients anðγÞ are, in fact, polynomials of degree
(nþ 1) in γ2.

II. LARGE-ORDER BEHAVIOR
AND RESURGENCE

Since our new approach is based on extrapolation
methods developed from resurgent asymptotics [56–58],
we begin by explaining how resurgence manifests itself in
the nonperturbative strong-field physics, and how this is
affected by the inhomogeneity of the background field.
In this section we show how nonperturbative features of
the effective action are encoded in the large-order growth
behavior of the perturbative coefficients anðγÞ in (13a)
and (13b). This is one of the indicators of resurgence
structure, and here we demonstrate that the way it manifests
itself changes quite dramatically when we generalize the
Euler-Heisenberg result (which is for a homogeneous
background field) to an inhomogeneous background field.
We begin by recalling how this resurgence structure
appears in various approximations, and then we turn to
the full picture.

A. Large-order behavior and resurgence in the
Euler-Heisenberg constant-field case

For the Euler-Heisenberg constant background field case
(3), the perturbative coefficients are pure numbers, with
large-order growth being factorial, with an infinite series of
exponential corrections:

aEHn ¼ ð−1ÞnΓð2nþ 2Þζð2nþ 4Þ

¼ ð−1ÞnΓð2nþ 2Þ
X∞
k¼1

1

k2nþ4
: ð14Þ

To understand the physical significance of the sum over
exponential corrections 1

k2nþ4, we can write the Borel trans-
form function in (1) as a partial fraction expansion
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−
1

s2

�
cothðπsÞ − 1

πs
−
πs
3

�
¼ 2

π

X∞
k¼1

1

k2
s

ðs2 þ k2Þ : ð15Þ

Therefore we can write the Euler-Heisenberg effective
Lagrangian (1) directly as a sum

LEH

�
eB
m2

�
¼ 1

4π2
X∞
k¼1

�
eB

kπm2

�
2
Z

∞

0

dse−kπm
2s=ðeBÞ s

s2 þ 1
:

ð16Þ

This form emphasizes the fact that the singularities of the
Borel transform function (15) are essentially identical
simple poles, equally spaced along the imaginary Borel
axis, and can be captured as a sum over just two symmetric
poles at s ¼ �i, as in (16). The expansion variable is the
inverse of the square of the kth “instanton action”:
Ak ¼ kπm2

eB , for k ¼ 1; 2;…. As is well known, after rotating
B2 → −E2, this yields the infinite sum over multi-
instantons for the imaginary part of the effective
Lagrangian in (2). This explains why there is only one
large-order/low-order resurgence relation for the constant-
field Euler-Heisenberg expression, relating the large-order
growth (14) of the perturbative coefficients to the entire
multi-instanton sum. The instanton terms have no fluc-
tuation factors, but nevertheless each instanton term is
indeed encoded in the perturbative series, including its
scaled action Ak ¼ kπm2

eE and its prefactor 1
A2

k
. The reason for

recalling this here is that a similar multi-instanton structure
appears even for inhomogeneous background fields, but
with some interesting additional new features.

B. Large-order behavior and resurgence in the
locally constant-field approximations

A simple approximation method for inhomogeneous
background fields is the LCFA, which is just the integrated
form of the leading order of the gradient expansion;
namely, the Euler-Heisenberg result (1) with the constant
field replaced by its inhomogeneous form, and then
integrated over spacetime (5). For example, for the inho-
mogeneous magnetic and electric fields (7a) and (7b) we
obtain

SLCFAðB; λÞ ¼ λL2T
Z

∞

−∞
dxLEHðBsech2xÞ; ð17Þ

SLCFAðE; τÞ ¼ L3τ

Z
∞

−∞
dtLEHðEsech2tÞ: ð18Þ

In the magnetic case the corresponding weak field
expansion is

SLCFAðB;λÞ∼λL2T
m4

4π3=2

X∞
n¼0

ð−1ÞnΓð2nþ2Þζð2nþ4Þ

×
Γð2nþ4Þ
Γ
�
2nþ 9

2

�
�

eB
πm2

�
2nþ4

; eB≪m2: ð19Þ

This weak B field expansion looks very similar to the
Euler-Heisenberg expansion in (3), but with coefficients
being multiplied by a ratio of Gamma factors coming from
the x integration.1 As discussed in the Introduction, this
difference is a basic property of the LCFA, originating in
the difference between the effective Lagrangian and the
effective action, which is important when the background
field is inhomogeneous. Since we have an exact expression
(7a) for the effective action for the inhomogeneous fields
(7) and (7b), we can quantify precisely how accurate the
LCFA is in this case.
The leading large-order (n → ∞) growth of the LCFA

expansion coefficients in (19) is therefore given by

aLCFAn ¼ ð−1ÞnΓð2nþ 2Þζð2nþ 4ÞΓð2nþ 4Þ
Γð2nþ 9

2
Þ

∼ ð−1ÞnΓ
�
2nþ 3

2

�
ζð2nþ 4Þ

�
1 −

5

4

1

ð2nþ 1
2
Þ

þ 105

32

1

ð2nþ 1
2
Þð2n − 1

2
Þ þ � � �

�
: ð20Þ

This expression deserves several comments:
(i) The overall zeta factor ζð2nþ 4Þ in (20), which

effectively encodes the multi-instanton sum, is the
same as in (14).

(ii) The leading factorial growth rate has changed from
Γð2nþ 2Þ in (14) to Γð2nþ 3

2
Þ in (20). A similar

modification occurs for a general localized field
decaying at infinity, because the spatial integrals in
the LCFA expression (6) generically decrease with
inverse-power-law corrections in n.

(iii) The factorial growth in (20) is now multiplied by an
infinite series of subleading power-law corrections.
There are no such power-law corrections in the
Euler-Heisenberg case (14).

(iv) The coefficients of the subleading corrections in (20)
are rational and grow factorially in magnitude:



1;−

5

4
;
105

32
;−

1575

128
;
121275

2048
;−

2837835

8192
;…

�

¼ 4

3π

ð−1ÞnΓðnþ 1
2
ÞΓðnþ 5

2
Þ

n!
: ð21Þ

1We have used the integral
R∞
−∞ dxðsech2xÞ2nþ4 ¼ffiffiffi

π
p

Γð2nþ 4Þ=Γð2nþ 9=2Þ.

RESURGENCE OF THE EFFECTIVE ACTION IN … PHYS. REV. D 107, 065003 (2023)

065003-5



As an example of a large-order/low-order resurgence
relation, these coefficients appear in the fluctuations
about the instantons in Eq. (22) below.

For the inhomogeneous electric field in (7b) the pertur-
bative expansion is the same as for the inhomogeneous

magnetic field in (20), but the coefficients do not alternate
in sign. The imaginary part of the effective action in the
LCFA can be computed from the imaginary part of the
Euler-Heisenberg result (2), yielding a simple expression in
terms of a confluent hypergeometric function Uða; b; xÞ:

½ImSðE; τÞ�LCFA ¼ L3τ
m4

8π

X∞
k¼1

�
eE

kπm2

�
2
Z

∞

−∞
dtsech4ðtÞ exp

�
−
kπm2

eE
cosh2t

�

¼ L3τ
m4

8π1=2

X∞
k¼1

�
eE

kπm2

�
2

U

�
1

2
;−1;

kπm2

eE

�
e−kπm

2=ðeEÞ

∼ L3τ
m4

8π1=2

X∞
k¼1

�
eE

kπm2

�
5=2

e−kπm
2=ðeEÞ

�
1 −

5

4

�
eE

kπm2

�
þ 105

32

�
eE

kπm2

�
2

þ � � �
�
: ð22Þ

The final expression in (22) should be compared with the
imaginary part of the Euler-Heisenberg result (2). The LCFA
changes quite dramatically the structure of the imaginary part
of the effective action. In the constant-field Euler-Heisenberg
result (2) the instanton sum (the sum over k) is a sum of pure
exponential factors, with no fluctuation terms. However, in
the LCFAwe see that each instanton term is multiplied by an
asymptotic series of fluctuations. Furthermore, note that the
fluctuation series for each instanton sector (labeled by the
integer k) is identical when expressed in terms of the kth
instanton action kπm2

eE . In addition,we recognize the expansion
coefficients of the fluctuation series in (22) from the sub-
leading corrections of the large-order growth of the pertur-
bative series coefficients for the magnetic field case in (20).
This is a typical large-order/low-order resurgence rela-
tion [63–68] relating the fluctuations about different saddle
point sectors: the perturbative expansion coefficients encode
all the information about the fluctuations about each of the
infinite tower of multi-instanton saddles. This manifestation
of resurgence is absent in the constant-field limit, because the
associated fluctuation series truncate, but it is present when
the inhomogeneity parameter becomes nonzero, even in the
locally constant-field approximation.
Another interesting way to probe this structure is to

compute the Borel representation in the LCFA. For the
magnetic case, applying the LCFA directly to the Borel
integral (1) yields

SLCFAðB; λÞ ¼ −λL2T
m4

8π1=2

�
eB
πm2

�
2

×
Z

∞

0

ds
s2

�
cothðπsÞ − 1

πs
−
πs
3

�

×U

�
1

2
;−1;

πm2s
eB

�
e−πm

2s=ðeBÞ: ð23Þ

This expression (23) reproduces the LCFA weak magnetic
field expansion (19), and the analytic continuation from
magnetic to electric generates the full nonperturbative

imaginary part in the LCFA (22). The hypergeometric
factor has no singularities in the finite plane,2 so we see that
the Borel singularities in the LCFA are exactly the same as
for the Euler-Heisenberg case [recall the Borel representa-
tion (1)]. However, now the residues at these poles are not
simply exponentials, as in the Euler-Heisenberg case (1),
but give Bessel function terms, whose weak-field expan-
sions produce exponentials multiplied by an asymptotic
expansion, as in (22).
In Fig. 2 we plot the leading (k ¼ 1) contribution to

the LCFA expression (22) for the imaginary part of the
effective action (green dotted curves), compared to the
exact result (11) (blue solid curves), for a small inhomo-
geneity parameter (γ ¼ 0.1, left) and for a large inhomo-
geneity parameter (γ ¼ 10, right). As expected, the
agreement of the LCFA approximation with the exact
result is better for smaller γ. Figure 2 also shows the
corresponding WKB approximations (orange dashed
curves), as discussed in the next subsection.

C. Large-order behavior and resurgence
in the WKB approximation

The WKB approximation can be used to compute the
leading imaginary part of the effective action in the presence
of the inhomogeneous electric field (7b) [47–49]. This
generalizes to QED the original treatment of atomic
ionization by Keldysh [46]. For this particular field one
finds [6,49]

½ImSðE; τÞ�WKB ∼ L3τ
m4

8π1=2

�
eE
πm2

�
5=2

ð1þ γ2Þ5=4

× exp

�
−
πm2

eE
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ 1

�
: ð24Þ

2Note that this hypergeometric U function reduces to a combi-
nation of modified Bessel K functions: 3

ffiffi
π

p
2
e−sUð1

2
;−1; sÞ ¼

e−s=2ðs2K0ðs2Þ − sðs − 1ÞK1ðs2ÞÞ, which has an infinite radius of
convergence.
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Several comments are in order concerning the comparison
with the constant-field case and with the LCFA:

(i) The exponent now has a γ dependent factor,
2ffiffiffiffiffiffiffiffi

1þγ2
p

þ1
, unlike either the Euler-Heisenberg result

in (2) or the LCFA result in (22).
(ii) The prefactor power E5=2 of the electric field differs

from Euler-Heisenberg, but is the same as in the
LCFA (22).

(iii) The WKB expression (24) has a γ dependent
prefactor, ð1þ γ2Þ5=4, which is, of course, absent
for the constant-field case, and is also absent for
the LCFA.

(iv) By construction, the standard WKB approximation
(24) only yields the leading exponential term and
does not sum over all multi-instantons, whereas both
the Euler-Heisenberg (2) and the LCFA (22) ex-
pressions do sum over all multi-instantons.3

(v) Note that in the limit γ → 0 the WKB exponent in
(24) reduces smoothly to the exponent πm

2

eE appearing
in the Euler-Heisenberg result (2), but the prefactor
does not reduce to the prefactor of the Euler-
Heisenberg result (2). This is a well-known feature
of the WKB approximation [48,49], due to the fact
that the prefactor arises from considering fluctua-
tions about a particular (γ-dependent) semiclassical
configuration, after which the γ → 0 limit is taken.
This affects the precision of the WKB approxima-
tion, as illustrated in Fig. 2.

In Fig. 2 we plot the WKB approximation (24) (orange
dashed curves), compared to the exact result (11) (blue
solid curves) and the leading LCFA result (green dotted
curves), for a small inhomogeneity parameter (γ ¼ 0.1,

left) and for a large inhomogeneity parameter (γ ¼ 10,
right). The WKB approximation is only good at weak field,
with the discrepancy becoming more significant at larger γ;
i.e., for fields that are more inhomogeneous.
The relation of the WKB approximation to resurgence

can be understood by looking at the leading large-order
growth of the γ dependent exact expansion coefficients
in (13b). Straightforward ratio tests with only the first
20 coefficients reveal that the leading large-order behavior,
as a function of γ, is

anþ1ðγÞ
anðγÞ

ð−1Þ
ð2nþ 3

2
Þð2nþ 1

2
Þ ∼

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1

2

�2

; n→ ∞:

ð25Þ

Therefore, the radius of convergence of the associated
Borel transform is given by 2=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1Þ, which

matches the γ-dependent factor in the exponent of the
WKB approximation (24). A more refined ratio-test analy-
sis, combined with Richardson acceleration [69], shows
that the leading large-order factorial growth rate is

anðγÞ ∼ ð−1Þn 3
ffiffiffi
π

p
4

ð1þ γ2Þ5=4
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ 1

2

�2nþ3=2

× Γ
�
2nþ 3

2

�
; n → ∞: ð26Þ

These ratio tests are shown in Fig. 3. Note that in the γ → 0
limit the leading large-order behavior of the WKB coef-
ficients in (26) does not reduce to the leading large-order
growth (14) of the Euler-Heisenberg coefficients, again
because the WKB approximation involves fluctuations
about a semiclassical configuration.
The WKB approximation for the inhomogeneous mag-

netic background field is obtained by replacing the exact
expansion coefficients anðγÞ in (10) by their leading

0.10 1 10 100 1000 104

10�26

10�16

10�6

104

0.10 1 10 100 1000 104

10�15

10�10

10�5

1

105

FIG. 2. The exact imaginary part of the effective action in (11) after analytically continuing to the electric field background (7b) (blue
solid curves) compared with the locally constant-field approximation (22) (green dotted curves) and the standard WKB approximation
(24) (orange dashed curves), for both (left) small γ and (right) large γ. The LCFA is only accurate at small γ, while the WKB
approximation is only accurate at weak fields. These plots should also be compared with our resurgent extrapolations in Fig. 9.

3This could be incorporated in the worldline instanton for-
malism, by summing over multiple windings of the periodic
orbits [51–54], but is not part of the conventional WKB
approximation.
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behavior in (26). Writing an integral representation for the
gamma function factor, this yields

SWKBðB;λÞ∼ λL2T
m4

4π3=2

�
eB
πm2

�
5=2

ð1þ γ2Þ5=4

×
Z

∞

0

dsexp

�
−
πm2s
eB

2ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1

� ffiffiffi
s

p
s2 þ 1

:

ð27Þ

The WKB prefactor ð1þ γ2Þ5=4 and exponent factor
2=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1Þ can both be seen directly in the leading

large-order growth (26). The result (27) should be com-
pared with the magnetic LCFA expression in (17), in which
neither of these correction factors appear, but which does
incorporate the multi-instanton sum via the factor in (15),
as well as the subleading power-law corrections in (20) via
the hypergeometric U factor. The geometric sum factor in

(27) arises from the original perturbative sum. In Fig. 4 we
plot the exact effective action (11) (blue solid curves) and
compare it with the magneticWKB expression (27) (orange
dotted curves), as well as the LCFA expression for a
magnetic background (23) (green dotted curves), for both a
small (γ ¼ 0.1, left) and a large (γ ¼ 10, right) inhomo-
geneity parameter. In the next section we show how these
approximations can be generalized to include all power-law
and exponential corrections, yielding the full all-orders
transseries structure of the exact effective action (11).

III. TRANSSERIES STRUCTURE FROM BOREL
ANALYSIS OF THE EXACT EFFECTIVE ACTION

To probe in greater detail the resurgent properties of the
QED effective action in an inhomogeneous background
field, we turn to a Borel analysis of the exact effective
action in (11). We first note that the Bose-like factor
in (11) may be expanded as a geometric series, yielding a

0.1 100 105

10�6

0.1

104

0.1 100 105

10�8

10�5

0.01

10

104

FIG. 4. The exact effective action in (11) (blue solid curves) compared with the WKB approximation for the magnetic field
configuration (27) (orange dashed curves) and the locally constant-field approximation (23) (green dotted curves) for both (left) small γ
and (right) large γ. Both approximations are only accurate at small γ. Note the differences in structure and accuracy between this WKB
approximation and the standard approximation for the electric field case in Fig. 2, obtained by analytic continuation from (27). These
plots should also be compared with our resurgent extrapolations in Fig. 8.
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1.0

1.1

1.2

1.3

1.4

5 10 15 20

0.80

0.85

0.90

0.95

1.00

FIG. 3. (Left) the left-hand side of (25) at γ ¼ 0.1 for the first 20 coefficients (blue circles) and with a fourth-order Richardson (orange

squares). The Richardson of the sequence converges rapidly to ðð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1Þ=2Þ2 ≈ 1.00499. (Right) the ratio of anðγÞ to its large-

order growth on the right-hand side of (26), at γ ¼ 0.1, for the first 20 coefficients (blue circles) and with a fourth-order Richardson
(orange squares), which converges rapidly to 1.
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geometric sum over multi-instanton terms, each of which is
identical, up to rescaling. In the language of the worldline
representation, these are the multiple windings of the
same classical solution [53,54]. This means that we can
effectively regard the remaining factor of the integrand
as a (modified) Borel transform function [recall z defined
in (12)]4:

Bðs; γÞ ¼ dz
ds

�
1−

4z
3
þ z2

5 2F1

�
1;1;

7

2
; z

��
− ðs→ −sÞ

−
�
8

3
s− 2γ

�
1þ γ2

4
s2
�

3=2
arcsinh

�
γ

2
s

��
: ð28Þ

The singularities of this Borel transform encode the non-
perturbative physics of this problem.

A. New Borel singularities of the effective action

From the hypergeometric function term in Bðs; γÞ we
deduce branch point singularities when z ¼ 1:

z ¼ 1 ⇒ �s1 ¼ � 2iffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1

;

�s2 ¼ ∓ 2iffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
− 1

: ð29Þ

There is also a complex conjugate pair of branch points
from the subtraction term:

�s3 ¼ � 2i
γ
: ð30Þ

After analytic continuation to the electric field case, these
branch point singularities induce nonperturbative imagi-
nary contributions whose exponential parts are

exp

�
−
πm2

eE
2ffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ 1

�
; exp

�
−
πm2

eE
2ffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

− 1

�
;

exp

�
−
πm2

eE
2

γ

�
ð31Þ

for s1, s2, and s3, respectively. The first of these factors is
recognized as the exponential factor in the standard WKB
approximation (24), and which appears in the leading large-
order growth (26). The other two exponential factors in (31)
are novel saddle contributions whose origin can be under-
stood using resurgent asymptotics, as explained below. In
the constant-field limit, γ → 0, the contribution of the s1
branch point reduces to the well-known Euler-Heisenberg
constant-field exponential factor expð− πm2

eE Þ. On the other
hand, the contribution of each of the new branch points s2
and s3 vanishes exponentially in the constant-field limit,
γ → 0. However, as the inhomogeneity parameter γ
increases these new branch points become more and more
physically relevant. The hierarchy of the singularities is
determined by the fact that

js1j < js3j < js2j for all γ ð32Þ

as shown in the left plot of Fig. 5. The right plot in Fig. 5
shows the hierarchy of the three nonperturbative factors in
(31), as functions of eE

m2, for a chosen value of γ ¼ 1.

B. Darboux’s theorem and the large-order growth
of the perturbative coefficients

By Darboux’s theorem [71], the singularities of the Borel
transform determine the large-order growth behavior of
the coefficients of its expansion about s ¼ 0, and hence
they determine the large-order behavior of the expansion
coefficients of the weak magnetic field expansion of the
effective action. These coefficients depend on γ, so we are
in the situation of “parametric resurgent asymptotics.”

2 4 6 8 10

0.5

1.0

1.5

2.0

1 10 100 1000

10�11

10�8

10�5

0.01

FIG. 5. The left plot shows the modulus of the Borel singularity locations, s1 (blue solid curves), s2 (green dotted curves), and s3
(orange dashed curves) in (29) and (30), as a function of the inhomogeneity parameter γ. For all γ we see that js1j is the dominant
singularity, then js3j, and then js2j. See (32). The right plot shows the corresponding instanton factors in (31), for γ ¼ 1, with the same
color scheme as in the left-hand plot.

4See also [70].
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We can write this expansion about s ¼ 0 in terms of the
perturbative coefficients anðγÞ in (13a) and (13b) as

Bðs; γÞ ¼
X∞
n¼0

anðγÞ
Γð2nþ 4Þζð2nþ 4Þ s

2nþ3: ð33Þ

Simple ratio tests (recall Fig. 3) confirm the expectation
that the radius of convergence is equal to js1j. Using the
transformation properties of hypergeometric functions, we
can express the exact Borel transform Bðs; γÞ in (28) in a
form that makes all its singularities completely explicit, not
just the leading one:

Bðs; γÞ ¼
��

1 −
s
s1

�
3=2

�
1 −

s
s2

�
3=2

ξðs; γÞ þ ψðs; γÞ
�

− ðs → −sÞ þ
�
1 −

s
s3

�
3=2

�
1þ s

s3

�
3=2

ζðs; γÞ

−
8

3
s: ð34Þ

Here we have defined

ξðs; γÞ ¼ π
d

ffiffiffi
z

p
ds

; ð35Þ

ζðs; γÞ ¼ 2γarcsinh

�
γ

2
s

�
; ð36Þ

ψðs; γÞ ¼ −2
d

ffiffiffi
z

p
ds

ð1 − zÞ3=2 arcsin ffiffiffiffiffiffiffiffiffiffi
1 − z

p
; ð37Þ

where we recall (12) that z is a simple quadratic function of
s: zðsÞ ¼ −is − γ2s2=4. Given this result it is straightfor-
ward to expand about each of the singularities:

�
1 −

s
s1

�
3=2

�
1 −

s
s2

�
3=2

ξðs; γÞ ≔
�
1 −

s
s1

�
3=2X∞

n¼0

bð1Þn ðγÞðs − s1Þn

¼
�
1 −

s
s1

�
3=2

bð1Þ0 ðγÞ
�
1þ i

ð1 − 3
4
γ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p ðs − s1Þ −

3

2

ð1þ 1
4
γ2Þ2

ð1þ γ2Þ ðs − s1Þ2 þ � � �
�
; ð38Þ

�
1 −

s
s1

�
3=2

�
1 −

s
s2

�
3=2

ξðs; γÞ ≔
�
1 −

s
s2

�
3=2 X∞

n¼0

bð2Þn ðγÞðs − s2Þn

¼
�
1 −

s
s2

�
3=2

bð2Þ0 ðγÞ
�
1 − i

ð1 − 3
4
γ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p ðs − s2Þ −

3

2

ð1þ 1
4
γ2Þ2

ð1þ γ2Þ ðs − s2Þ2 þ � � �
�
; ð39Þ

�
1 −

s
s3

�
3=2

�
1þ s

s3

�
3=2

ζðs; γÞ ≔
�
1 −

s
s3

�
3=2 X∞

n¼0

bð3Þn ðγÞðs − s3Þn þ analytic

¼
�
1 −

s
s3

�
3=2

bð3Þ0 ðγÞ
�
1 −

3i
4
γðs − s3Þ −

3

32
γ2ðs − s3Þ2 þ � � �

�
þ analytic ð40Þ

with

bð1Þ0 ðγÞ ¼ −
iπ
2
js1j3=2ð1þ γ2Þ5=4; ð41Þ

bð2Þ0 ðγÞ ¼ iπ
2
js2j3=2ð1þ γ2Þ5=4; ð42Þ

bð3Þ0 ðγÞ ¼ iπjs3j3=2γ5=2: ð43Þ

These expansions uniquely define three sets of expan-
sion coefficients, bð1Þn ðγÞ, bð2Þn ðγÞ, and bð3Þn ðγÞ, which
describe the local behavior of the Borel transform in the

neighborhood of the associated Borel singularity, s1, s2, or
s3, respectively. These coefficients can be generated recur-
sively or written as explicit sums. We note that

bð1Þn ðγÞ
bð1Þ0 ðγÞ

¼ ð−1Þn b
ð2Þ
n ðγÞ

bð2Þ0 ðγÞ
for all n: ð44Þ

Furthermore, we note that the bð3Þn ðγÞ coefficients match the

coefficients of the leading large γ terms in bð1Þn ðγÞ:

1

γn
bð3Þn ðγÞ
bð3Þ0 ðγÞ

¼ lim
γ→∞

�
1

γn
bð1Þn ðγÞ
bð1Þ0 ðγÞ

�
: ð45Þ
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Darboux’s theorem predicts that the large-order growth of the coefficients of the expansion of the Borel transform about
s ¼ 0 can be expressed in terms of the expansion coefficients about the function’s singularities. The leading growth comes
from the pair of leading singularities at �s1:

anðγÞ
Γð2nþ 4Þ ∼

3
ffiffiffi
π

p
4

ð−1Þn Γð2nþ 3
2
Þ

Γð2nþ 4Þ
ð1þ γ2Þ5=4
js1j2nþ3=2 ζð2nþ 4Þ

×

�
1 −

5

4

ð1 − 3
4
γ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p js1j

ð2nþ 1
2
Þ þ

105

32

ð1þ 1
4
γ2Þ2

ð1þ γ2Þ
js1j2

ð2nþ 1
2
Þð2n − 1

2
Þ þ…

�
; n → ∞: ð46Þ

This result explains the leading behavior in (26), including
the overall Stokes constant. Furthermore, it generalizes the
leading expression (26) by including the γ-dependent
subleading power-law corrections, in which we recognize

the appearance of the bð1Þn ðγÞ functions, coming from the
expansion (38) of the modified Borel transform function
Bðs; γÞ near the leading singularities at �s1. Including the
expansions (39) and (40) near the leading subleading
singularities at �s2 and �s3, we deduce the complete
all-orders large-order growth of the weak-field expansion
coefficients anðγÞ:

anðγÞ∼2ζð2nþ4Þ
X∞
l¼0

ð−1ÞlΓð2nþ
3
2
−lÞ

Γð−3
2
−lÞ

×

�
bð1Þl ðγÞ
s2nþ3−l
1

þ bð2Þl ðγÞ
s2nþ3−l
2

þ bð3Þl ðγÞ
s2nþ3−l
3

�
; n→∞: ð47Þ

The pair of singularities at�s1 is always dominant, because
of the hierarchy (32), but for γ ≳ 1 the subleading singu-
larities begin to contribute significantly. In Fig. 6 this large-
order behavior is confirmed numerically. We generate the
first 100 coefficients in the expansion of Bðs; γÞ around
s ¼ 0, and plot the ratio of these exact coefficients to the

l ¼ 0 terms of the large-order prediction in (47); (i) using
just the dominant contribution involving s1 (blue points);
(ii) using the first two dominant contributions involving s1
and s3 (orange points); and (iii) using all three dominant
contributions involving s1, s3, and s2 (green points). As
expected, for a small value γ ¼ 1 the leading singularity at
s1 dominates (note that for γ ¼ 1 we have js1j ≈ 0.828,
js3j ¼ 2, and js2j ≈ 4.828). On the other hand, for a large
value γ ¼ 10 the inclusion of all three singularities gives a
much more accurate result (note that for γ ¼ 10 we have
js1j ≈ 0.181, js3j ≈ 0.2, and js2j ≈ 0.221).
This is a partial explanation for the disagreement at large

γ between the LCFA or the WKB approximation and the
exact effective action. Recall Figs. 2 and 4. Neither of these
approximations includes any effect of the new higher Borel
singularities at �s2 and �s3, and these become important
for more inhomogeneous fields (large γ). We will see below
that this discrepancy can be resolved using resurgent
extrapolation methods.

C. Resurgence for inhomogeneous background fields

Resurgence suggests that generically there are explicit
relations between the large-order growth of the perturbative
coefficients of an asymptotic expansion and the low-order

20 40 60 80 100

0.999999

0.999999

1.000000

1.000000

20 40 60 80 100

0.9985

0.9990

0.9995

1.0000

1.0005

1.0010

1.0015

FIG. 6. The ratio of the first 100 coefficients in the expansion of Bðs; γÞ about s ¼ 0, expressed in terms of anðγÞ, to the leading
(k ¼ 0) terms in the large-order growth predicted in (47). We display separately the contribution from just s1 (blue circles), the sum of
the contributions from s1 and s3 (orange squares), and the sum of the contributions from all three singularities (green diamonds), for both
(left) γ ¼ 1 and (right) γ ¼ 10. At large γ, the subleading singularities make significant contributions and must be included for an
accurate representation of the Borel transform function Bðs; γÞ.
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coefficients of the fluctuations about neighboring non-
perturbative saddle points [63–68]. Here we explore this
expectation for the QED effective action with an inhomo-
geneous electric field. The nonperturbative saddle points
are defined by the singularities of the Borel transform, so
the expansion of the Borel transform in the neighborhood
of its singularities leads to expressions for the fluctuations
about instanton terms in the imaginary part of the effective
action.

We now translate the results from Darboux’s theorem
into resurgence relations in the physical, complex field
strength plane, including all “k-instanton” contributions
from a given singularity. Different ways of expressing the
large-order growth of the perturbative coefficients lead to
different representations of the effective action, highlight-
ing different aspects of the resurgent structure.
Consider first the contribution of the leading Borel

singularity, s1, to the large-order growth in (47):

SðB; λÞ ∼ λL2T
m4

3π2
X∞
n¼0

�
2ζð2nþ 4Þ

X∞
l¼0

ð−1Þl Γð2nþ 3
2
− lÞ

Γð− 3
2
− lÞ

bð1Þl ðγÞ
s2nþ3−l
1

��
eB
πm2

�
2nþ4

; eB ≪ m2: ð48Þ

Using an integral representation for Γð2nþ 3
2
− lÞ, we obtain

SðB; λÞ ∼ λL2T
2m4

3π2

�
eB
πm2

�
4 i
js1j3

X∞
l¼0

ð−ijs1jÞl
bð1Þl ðγÞ

Γð− 3
2
− lÞ

Z
∞

0

dse−ss1=2−l
X∞
n¼0

ð−1Þnζð2nþ 4Þ
�

eBs
πm2js1j

�
2n
: ð49Þ

After rescaling the Borel variable s, we recognize the sum inside the integral as the Borel transform of the Euler-Heisenberg
effective Lagrangian:

SðB; λÞ ∼ −λL2T
m4

8π1=2

�
eB
πm2

�
5=2

ð1þ γ2Þ5=4
Z

∞

0

ds
s2

exp

�
−
πm2s
eB

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1

�

×

�
cothðπsÞ − 1

πs
−
πs
3

�
1ffiffiffi
s

p
�
1 −

5

4

ð1 − 3
4
γ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

�
eB

πm2s

�
þ 105

32

ð1þ 1
4
γ2Þ2

ð1þ γ2Þ þ � � �
�
: ð50Þ

Different limits of this expression lead to the LCF approximation (23) or to the WKB approximation (27). Setting γ ¼ 0 we
arrive at

SLCFAðB; λÞ ∼ −λL2T
m4

8π1=2

�
eB
πm2

�
5=2

Z
∞

0

ds
s2

e−πm
2s=ðeBÞ

�
cothðπsÞ − 1

πs
−
πs
3

�

×
1ffiffiffi
s

p
�
1 −

5

4

�
eB

πm2s

�
þ 105

32

�
eB

πm2s

�
2

−
1575

128

�
eB
πm2s

�
3

þ � � �
�
; ð51Þ

which agrees precisely with the LCFA expression (23).
Furthermore, after analytic continuation to the background
electric field, summing over the residues from all the multi-
instanton Borel poles leads to the LCFA expression (22) for
the imaginary part of the effective action.
The magnetic WKB approximation (27) arises from a

different limit of (50): we keep the γ dependence, but take

just the leading singularity of the 1
s2 ðcothðπsÞ − 1

πs −
πs
3
Þ

factor, as in (15), and we take only the leading (n ¼ 0)
fluctuation factor. This produces exactly the magnetic
WKB approximation obtained above in (27). When ana-
lytically continued to the electric field, the residue at the
pole leads to the WKB expression (24) for the imaginary
part of the effective action.
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Having seen how this works for the contribution from the leading singularity in the large-order growth (47), it is
straightforward to include the effect of the other two Borel singularities:

SðB; λÞ ∼ −λL2T
m4

8π1=2

�
eB
πm2

�
5=2

ð1þ γ2Þ5=4
Z

∞

0

ds
s2

�
cothðπsÞ − 1

πs
−
πs
3

�

×

�
exp

�
−
πm2s
eB

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1

�
1ffiffiffi
s

p
X∞
n¼0

ð−iÞn
Γ
�
− 3

2

�

Γ
�
− 3

2
− n

�bð1Þn ðγÞ
bð1Þ0 ðγÞ

�
eB

πm2s

�
n

− 2 exp

�
−
πm2s
eB

2

γ

��
γ2

1þ γ2

�
5=4 1ffiffiffi

s
p

X∞
n¼0

ð−iÞn
Γ
�
− 3

2

�

Γ
�
− 3

2
− n

�bð3Þn ðγÞ
bð3Þ0 ðγÞ

�
eB

πm2s

�
n

þ exp
�
−
πm2s
eB

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
− 1

�
1ffiffiffi
s

p
X∞
n¼0

in
Γ
�
− 3

2

�

Γ
�
− 3

2
− n

�bð2Þn ðγÞ
bð2Þ0 ðγÞ

�
eB
πm2s

�
n
�
: ð52Þ

This representation (52) for the exact effective
action is equivalent to (11), but has certain physical
advantages:

(i) Equation (52) makes more explicit the relationship
to the Euler-Heisenberg effective action, by the
inclusion of the factor 1

s2 ðcothðπsÞ − 1
πs −

πs
3
Þ, which

is the Euler-Heisenberg Borel transform function
in (1).

(ii) It also makes clear the effect of the three funda-
mental Borel singularities (29) and (30), whose
magnitudes appear in the exponents.

(iii) The sums over n generate the asymptotic series of
fluctuations about each singularity.

(iv) Upon analytic continuation to the electric field case, the
imaginarypart isgivenbyhalf the sumof the residuesof
the poles from the Euler-Heisenberg Borel transform

ImSðE; τÞ ∼ L3τ
m4

8π1=2

�
eE
πm2

�
5=2

ð1þ γ2Þ5=4
X∞
k¼1

1

k5=2

�
e−kπm

2js1j=ðeEÞ
X∞
n¼0

ð−iÞn Γð− 3
2
Þ

Γð− 3
2
− nÞ

bð1Þn ðγÞ
bð1Þ0 ðγÞ

�
eE

kπm2

�
n

− 2

�
γ2

1þ γ2

�
5=4

e−kπm
2js3j=ðeEÞ

X∞
n¼0

ð−iÞn Γð− 3
2
Þ

Γð− 3
2
− nÞ

bð3Þn ðγÞ
bð3Þ0 ðγÞ

�
eE

kπm2

�
n

þ e−kπm
2js2j=ðeEÞ

X∞
n¼0

in
Γð− 3

2
Þ

Γð− 3
2
− nÞ

bð2Þn ðγÞ
bð2Þ0 ðγÞ

�
eE

kπm2

�
n
�
: ð53Þ

Since the repeated instanton contributions are identical up to a rescaling, the instanton sums can be written exactly in terms
of polylogarithms

ImSðE; τÞ ∼ L3τ
m4

8π1=2
ð1þ γ2Þ5=4

X∞
n¼0

ð−iÞn Γð− 3
2
Þ

Γð− 3
2
− nÞ

�
eE
πm2

�
nþ5=2

�
bð1Þn ðγÞ
bð1Þ0 ðγÞ

Linþ5=2ðe−πm2js1j=ðeEÞÞ

− 2

�
γ2

1þ γ2

�
5=4 bð3Þn ðγÞ

bð3Þ0 ðγÞ
Linþ5=2ðe−πm2js3j=ðeEÞÞ þ ð−1Þn b

ð2Þ
n ðγÞ

bð2Þ0 ðγÞ
Linþ5=2ðe−πm2js3j=ðeEÞÞ

�
: ð54Þ
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This is the exact multi-instanton expression for the imagi-
nary part of the effective action for the electric field
background (7b), including the effect of all three indepen-
dent Borel singularities s1, s2, and s3. This result demon-
strates that the coefficients in the perturbative sector encode
all the information about all the nonperturbative physics of
the effective action.
In Appendix A we show that this structure may be

extracted from the expansion coefficients themselves, not
just from the exact integral representation (11) of the
effective action. Another interesting representation of the
effective action in terms of incomplete gamma functions is
derived in Appendix B.

IV. RESURGENT EXTRAPOLATION OF THE
EFFECTIVE ACTION WITH INHOMOGENEOUS

BACKGROUND FIELDS

Having shown that the perturbative sector encodes a
wealth of resurgent nonperturbative information, as a
function of the inhomogeneity parameter γ, we now turn
to a more general approach that does not rely on knowledge
of the explicit Borel transform function (28), but just on
knowledge of a finite number of the perturbative weak
magnetic field expansion coefficients anðγÞ in (13) and
(13b). We ask how much nonperturbative information can
be decoded from a finite number of terms in the perturba-
tive sector. An important practical consequence of resur-
gence is that it suggests improved methods of extrapolation
from one parametric regime to another. This is ultimately
based on the idea that for a resurgent function the
expansions about different parametric regimes are not
independent of one another, and one can develop extrapo-
lation methods that take advantage of this structure. The
surprising effectiveness of this approach in the constant-
field Euler-Heisenberg case at both one-loop [72] and two-
loop [25], where the Borel singularities are poles and
branch points, respectively, motivates our analysis of the
inhomogeneous background field problem, where further
new Borel structure emerges. The more precisely the
analytic structure of the Borel transform is understood,
the more precisely the effective action can be analytically
continued from one parametric region to another, in terms
of the physical parameters. The basic analytic tools are
simple to implement: Padé approximants and conformal
and uniformizing maps [56–58].
In principle, the method described in this section does

not rely on the fact that the background field has the special
property that the spectral information is soluble, except that
this property provides more precise access to concrete
comparisons. We anticipate that these methods should
apply to more general inhomogeneous background fields,
provided a modest number of perturbative coefficients can
be computed for a given background field.
In practical terms the technical problem is the

following:

Given a finite number of terms of an asymptotic weak-
field expansion, where the coefficients depend also on
inhomogeneity parameters (in our concrete example, this is
the dependence on the inhomogeneity parameter γ), how
much information can we extract about the singularity
structure of the associated Borel transform, and hence
information about the associated nonperturbative physics?
Consider an N-term truncated weak magnetic field

perturbative expansion of the effective action for an
inhomogeneous magnetic field:

SNðB; λÞ∼ λL2T
m4

3π2
XN−1

n¼0

anðγÞ
�

eB
πm2

�
2nþ4

; eB≪ m2:

ð55Þ

Recall that from a small (approximately 20) finite
number of terms we can deduce numerically the leading
large-order growth (26), which we write more compactly as

anðγÞ ∼ ð−1Þn 3
ffiffiffi
π

p
4

ð1þ γ2Þ5=4 Γð2nþ 3
2
Þ

js1j2nþ3=2 ; ð56Þ

where we recall (29) that s1ðγÞ ¼ 2i=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1Þ. The

important pieces of information here are the following:
(i) the power law 1=js1j2nþ3=2, which determines the
location of the leading Borel singularity; (ii) the gamma
function offset 3

2
which is associated with the nature of the

leading Borel singularity; and (iii) the overall Stokes
constant, which determines the strength of the leading
Borel singularity.
Since the weak-field expansion of the effective action

is asymptotic, of the generic “factorial over power” form
common in many physics applications [73,74], it is more
accurate to extrapolate in the Borel plane than in the
physical domain [56]. Therefore we need to determine as
accurately as possible the singularity structure in the Borel
plane. This makes sense physically, because this Borel
singularity structure represents the relevant nonperturbative
physics. Padé approximants are powerful, and easy to
implement, tools to extract singularity information from
finite-order expansions, and also to extrapolate beyond the
radius of convergence [69,75].
However, there are further considerations that imply that

it is better to apply conformal map methods before using
Padé approximants. The numerical tests in the previous
section suggest that the leading Borel singularities are
branch points, rather than pole singularities. Furthermore,
the physics of the problem, and our exact knowledge of the
Euler-Heisenberg effective action for the constant back-
ground field, suggest that we should expect integer multi-
ples of the leading Borel singularities (“multi-instantons,”
and possibly also other independent higher singularities).
These last two items mean that we should not make Padé
approximants directly in the Borel plane, but we should
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first use a suitable conformal map, and then apply Padé
approximants inside the conformal disk. This Padé-
conformal-Borel procedure can be shown to be signifi-
cantly more accurate because it resolves more accurately
the effect of the leading Borel singularities (which is the
dominant effect), and furthermore because it includes more
accurately the effect of Borel singularities beyond the
leading ones [56–58].
Given these considerations, we define the following

truncated Borel transform function:

BNðs; γÞ ¼
XN−1

n¼0

anðγÞ
ð2nþ 1Þ! ðjs1jsÞ

2nþ2: ð57Þ

We have normalized the Borel variable by the magnitude
js1j of the leading singularities, which places the leading
Borel singularities at s ¼ �i. The extrapolated approxi-
mate effective action is then obtained by the inverse Borel
transform:

SNðB;λÞ¼ λL2T
m4

3π2

�
eB
πm2

�
2
Z

∞

0

ds
s
e−πm

2js1js=ðeBÞBNðs;γÞ:

ð58Þ

Our particular choice of Borel transform (57) and its
associated inverse Borel transform integral (58) is made
in order to simplify the numerical analysis of the expected
strong B field behavior. We chose to isolate a factor of s−1

from the Borel transform in the Borel integral (58).
Correspondingly, we chose the power of s in our Borel
function (57) to be (2nþ 2), rather than (2nþ 1). Here we
have used the well-known arbitrariness of choosing a

suitable factorial factor to divide by when defining the
Borel transform. The reason for doing this is that on
physical grounds we know that in the strong-field limit,
eB ≫ m2, the effective action has logarithmic behavior
S ∼ B2 lnðBÞ [4,6,22,23]. The large B limit of the effective
action is determined by the large s behavior of the Borel
transform. Therefore, S ∼ B2 lnðBÞ behavior can be
achieved most easily by the Borel integral (58) with a
factor of s−1 separated out, and with BNðs; γÞ ∼ constant
as s → ∞.
The truncated Borel transform in (57) is just a poly-

nomial, so we need some method to explore the singularity
structure of the function that it is trying to approximate as
the order N becomes large. Padé [69,75] is a remarkably
efficient, and extremely simple, way to do this (although
with low resolution). We use Padé approximation to
represent the Borel transform as a ratio of polynomials5

PN
N ½BN �ðs; γÞ ¼

PNðs; γÞ
QNðs; γÞ

¼ BNðs; γÞ þOðs2Nþ1Þ: ð59Þ

We primarily work with the diagonal ½N;N� Padé approx-
imant, but it is also useful to consider other near-diagonal
Padé approximants to help with identifying spurious poles.
The poles of the Padé denominator QNðs; γÞ provide
approximate information about the singularities of the
actual Borel transform function. See Fig. 7. We observe
Padé poles accumulating into branch cuts at branch point
locations �i, in agreement with what we know from the
exact analytic structure of the exact Borel transform

�0.10 �0.05 0.05 0.10

�3

�2

�1

1

2

3

�0.10 �0.05 0.05 0.10

�3

�2

�1

1

2

3

FIG. 7. The Padé poles of the finite-order Padé-Borel transform (59) for (left) N ¼ 15 and (right) N ¼ 30. The Padé poles are
attempting to form a pair of conjugate branch cuts starting at �i, in agreement with our exact knowledge of the Borel transform.

5Note that the highest power of s in (57) is s2N .
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function studied in Sec. III, and with the ratio tests of the
previous subsection.
However, Fig. 7 does not reveal anything about the other

higher Borel singularities, at s2 or s3 in (29) and (30), or
about multi-instanton integer repetitions of s1, s2, and s3.
This is because Padé represents a branch cut emanating
from the leading singularity as a line of poles (and
interlaced zeros) that accumulate to the branch point
location.6 This means that genuine collinear singularities
are hidden among these poles accumulating to the leading
singularity. The conformal map provides a simple reso-
lution of this shortcoming of Padé, because it separates
these higher singularities so that they can be resolved. As
a bonus, in the process it also provides higher resolution
near the branch points and branch cuts. Therefore, a better
strategy is to make a suitable conformal map beforemaking
the Padé approximation. This generic improvement in the
precision of the extrapolated Borel transform, especially
near branch points and cuts, results in a significantly more
accurate extrapolation in terms of the physical variable.
Based on the Padé pole structure in Fig. 7 for the direct

Padé-Borel approximant in (59), it is natural to choose the
following 2-cut conformal map which maps the doubly cut
Borel s plane into the unit disk in the conformal w plane:

s ¼ 2w
1 − w2

↔ w ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
þ 1

: ð60Þ

This map takes s ¼ 0 to w ¼ 0, and s ¼ �i to w ¼ �i, and
maps the sides of the cuts to portions of the unit circle,
jwj ¼ 1, the boundary of the unit disk. The strategy of the
Padé-conformal-Borel approximation is simple:
(1) Reexpand BNð 2w

1−w2 ; γÞ to the same order 2N (this is
optimal [57]).

(2) Make a Padé approximant in the w variable of the
resulting expansion.

(3) Map back to the original Borel plane with the
inverse map.

In equations this reads

BNðw; γÞ ¼
XN−1

n¼0

anðγÞ
Γð2nþ 2Þ

�
js1j

2w
1 − w2

�
2nþ2

⟶
re−expand

CBNðw; γÞ ≔
X2N
n¼0

αnðγÞwn; ð61Þ

PN
N ½CBN �ðw; γÞ ≔

PNðw; γÞ
QNðw; γÞ

¼
X2N
n¼0

αnðγÞwn þOðw2Nþ1Þ:

ð62Þ

We will see below that we obtain remarkably accurate
numerical extrapolations and analytic continuations with as
few as 15 input terms. In Appendix C we illustrate in detail
how and why the conformal-Padé-Borel method resolves
higher collinear Borel singularities, which ordinary Padé-
Borel cannot do.
The final step is to apply the inverse conformal map

in (60) in order to return to the Borel plane

PN
N ½CBN �ðs; γÞ ≔ PN

N ½CBN �
�
w ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

þ 1
; γ

�
: ð63Þ

Therefore, the final expression for our extrapolated “Padé-
conformal-Borel” approximation to the effective action is

CS½SN �ðB; λÞ ¼ λL2T
m4

3π2

�
eB
πm2

�
2
Z

∞

0

ds
s
e−πm

2js1js=ðeBÞ

× PN
N ½CBN �ðs; γÞ: ð64Þ

Plots of this summation are shown in Fig. 8 for N ¼ 15, in
which we obtain a high precision extrapolation over 10
orders of magnitude for both γ small and large. We compare
also with the logarithmic large B behavior of the exact
Borel integral (11) (here A is the Glaisher-Kinkelin
constant):

SðB; λÞ ∼ λL2T
m4

3π2
·
1

3

�
eB
m2

�
2
�
ln

�
eB
m2

�
þ lnð2γÞ

− 12 lnAþ 2

3

�
; eB ≫ m2: ð65Þ

As a technical comment, we note that the logarithmic
strong-field behavior in (65) arises from the following large
s behavior of the exact Borel transform function in (28):

Bðs; γÞ ∼ 2s lnðγsÞ − 2

3
s; s → þ∞: ð66Þ

This Bðs; γÞ ∼ s ln s behavior can be converted to the
simpler Bðs; γÞ ∼ s−1 behavior by integrating-by-parts
twice.7 This then matches our chosen form of the Borel
transform and integral in (57) and (58). In general, the
choice of extracting a factor of s−1 from the Borel transform
in (57) and (58) is because it is numerically easier to
extrapolate from a small s Taylor series to a large s power-
law behavior than to extrapolate from a small s Taylor
series to a large s logarithmic behavior. This is analogous to
considerations of subtractions in dispersion relations and
makes our subsequent combination of conformal maps and

6There is a physical interpretation of Padé approximants in
terms of two-dimensional electrostatics [58,76,77]. This also
explains why conformal maps are so useful, as they are a natural
way to analyze two-dimensional electrostatics problems.

7This double integration-by-parts has an additional benefit of
converting the 1=ðeπm2s=ðeBÞ − 1Þ factor in the integral represen-
tation (11) into a factor Li2ðe−πm2s=ðeBÞÞ, which directly encodes
the multi-instanton sum.
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Padé approximants numerically consistent with the
expected logarithmic strong-field behavior of the effective
action.
We can also analytically continue from a magnetic field

background to an electric background, and define a lateral
Borel sum

CSθ½SN �ðE; τÞ ¼ −L3τ
m4

3π2

�
eE
πm2

�
2
Z

∞eiθ

0

ds
s
e−πm

2js1js=ðeEÞ

× PN
N ½CBN �ð−is; γÞ: ð67Þ

The imaginary part of the effective action is then given by

ImCS½SN �ðE; τÞ ¼
1

2
ðCS0þ½SN �ðE; τÞ − CS0− ½SN �ðE; τÞÞ:

ð68Þ

The result is shown in Fig. 9 for N ¼ 15 (with
0� ¼ �0.01). These extrapolations provide high precision
across 6 orders of magnitude and are a significant improve-
ment over both the LCF approximation and the WKB
approximation: compare with Fig. 2. We emphasize that
the extrapolations and analytic continuations in Figs. 8
and 9 used only a modest number (N ¼ 15) of perturbative
coefficients.

V. CONCLUSIONS AND OUTLOOK

We have shown that the one-loop QED effective action in
an inhomogeneous background field has a resurgent asymp-
totic weak-field expansion which encodes a wealth of
nonperturbative information. TheBorel singularity structure
differs from that of the familiar Euler-Heisenberg constant
background field case in two important ways: (i) there are

0.1 100 105

10�6

0.1

104

0.1 100 105

10�8

10�5

0.01

10

104

FIG. 8. The exact effective action (11) (blue curves) compared to truncating the weak magnetic field expansion at N ¼ 15 terms (55)
(orange curves), the leading strong-field behavior (65) (green curves), and the Padé-Conformal-Borel approximation (64) using N ¼ 15
perturbative coefficients (translucent blue band) at both (left) small γ and (right) large γ. The Padé-Conformal-Borel summation provides
a high accuracy extrapolation from the weak-field to strong-field regime across 10 orders of magnitude, and for both small and large
inhomogeneity parameters γ. Contrast with the failure of both the LCF and WKB approximations for large inhomogeneity, as in Fig. 4.
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FIG. 9. The exact imaginary part of the effective action in (11) after analytically continuing to the electric field background (7b) (blue solid
curves) compared with the standardWKB approximation (24) (orange dashed curves), the locally constant-field approximation (22) (green
dotted curves), and the lateral Padé-conformal-Borel approximation usingN ¼ 15 perturbative coefficients (68) (translucent blue band) at
both (left) small γ and (right) large γ. The lateral summation was taken at 0� ¼ �0.01. The Padé-conformal-Borel summation provides a
high accuracy extrapolation from theweakmagnetic field regime to the electric field regime across 6 orders ofmagnitude and across a range
of γ. Contrast with the failure of both the LCF and WKB approximations for large inhomogeneity, as in Fig. 2.
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two new types ofBorel singularitieswhose effect vanishes in
the constant-field limit but which become significant for
strongly inhomogeneous fields; and (ii) the Borel singular-
ities are branch points rather than poles, and have asymptotic
fluctuation series multiplying the various instanton sectors,
with these fluctuations being resurgently related to the
perturbative expansion coefficients. Analogous statements
apply to the gradient expansion itself, as can be seen by
rescaling the double expansion to express it as a sum
over derivatives, with coefficients that are functions of the
inhomogeneity parameter γ.
We also demonstrate that with a relatively modest

amount of perturbative information one can reconstruct
detailed nonperturbative information, extrapolating accu-
rately from the weak magnetic field regime to the strong
magnetic field regime, and also analytically continuing
from the weak magnetic field regime to the electric field
regime, recovering the exponentially small imaginary part
associated with vacuum pair production. This motivates a
potential new approach to these problems with more
general inhomogeneities and at higher-loop order, where
exact integral representations of the effective action are not
known, but from which perturbative expansions may
nevertheless be feasible. Our results show that such a
perturbative expansion may encode relevant nonperturba-
tive information even in the strongly inhomogeneous
regime. Surprisingly, at one-loop order we observed that
this resurgent extrapolation approach is significantly more
accurate than the locally constant-field approximation and
the WKB approximation, especially when the background
field is strongly inhomogeneous.
We conclude with some general comments about how we

anticipate this new approach could be applied to more
general situations, beyond these one-dimensional exam-
ples, such as for fields with multidimensional inhomoge-
neities. The resurgent properties of the QED effective
action discussed in Secs. II and III should apply in general
because it is a basic feature of Borel-Laplace integrals for
asymptotic expansions of the canonical factorially diver-
gent form, which is characteristic of physical perturbative
expansions [74]. But in the absence of an explicit expres-
sion for the effective action, and therefore of the associated
Borel transform function, it is expected to be more difficult
to demonstrate to such dramatically high precision all the
fine details of the resurgence relations as we were able to
achieve here for these soluble examples. However, the
extrapolation method introduced in Sec. IV does not rely
on any explicit use of detailed resurgent properties, so it
could in principle be applied to a quite general situation.
Consider, for example, a background magnetic field char-
acterized by a strength parameter B, and depending on a set
of other parameters λj which characterize the inhomoge-
neities of the field. These can be rescaled to a set of Keldysh
parameters γj, and the weak-field expansion of the effective
action has the general form [compare with (10)]

SðB; λjÞ ∼ fðλjÞ
m4

3π2
X∞
n¼0

anðγjÞ
�

eB
πm2

�
2nþ4

: ð69Þ

Our extrapolation and analytic continuation method can be
applied for a given choice of the inhomogeneity parameters
γj, provided one is able to compute some reasonable
number of the expansion coefficients anðγjÞ for this choice
of parameters. For the purposes of the extrapolation the
coefficients anðγjÞ could be computed numerically rather
than in closed form. Clearly an important consideration is
how many terms are required. One of the big surprises in
the case studied here is that the required number is actually
quite small, with only 10–15 terms required to give an
extrapolation and analytic continuation that is significantly
more accurate than the LCFA and the WKB approximation.
The actual extrapolation itself is simple to implement so it
could in principle be done for different γj in order to
study the effect of different kinds of inhomogeneities.
The practical requirement therefore is a numerically accu-
rate perturbative method, which can generate a sufficient
number of coefficients. Investigation of more general cases
is in progress.
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APPENDIX A: RESURGENCE OF THE
GRADIENT EXPANSION TO ALL ORDERS

In this appendix we show that the full nonperturbative
structure may alternatively be reconstructed directly from
the perturbative expansion (10), rather than from the exact
large-order behavior in (47). Since the inhomogeneous
background magnetic field (7a) depends on two parame-
ters, B and λ, it is natural to expand the exact effective
action as a double expansion in powers of the weak-field B
and in powers of 1

λ
8:

SðB; λÞ ∼ −λL2T
m4

8π3=2

X∞
j¼0

�
1

mλ

�
2jX∞

n¼0

cðjÞn

�
eB
πm2

�
2nþ2

:

ðA1Þ

The LCFA expansion (19) corresponds to the leading order,
j ¼ 0, of the gradient expansion (for which we recall that
the n ¼ 0 term is excluded). Re-summing this expression
to all orders in j reproduces the weak-field expansion (3).

8Because of symmetry, it is, in fact, an expansion in powers of
B2 and in powers of 1=λ2.
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The expansion coefficients cðjÞn can be derived from (11)
and are expressed in terms of gamma functions and
Bernoulli numbers [6,37]:

cðjÞn ¼ Γð2nþ jþ 2ÞΓð2nþ jÞð2πÞ2nþ2B2nþ2jþ2

Γðjþ 1ÞΓð2nþ 3ÞΓð2nþ jþ 5
2
Þ : ðA2Þ

Note that these coefficients are factorially divergent as
n → ∞ for fixed j, and also as j → ∞ for fixed n: both the
weak-field expansion and the gradient expansion are
asymptotic series.
The locally constant-field approximation analyzed in

Sec. III is the leading order of the gradient expansion: the
order with no derivatives at all. As we saw, this LCFA
expansion is indeed asymptotic, and the large-order growth
of the expansion coefficients encodes information about the
fluctuations about each instanton sector: recall (20)–(22).
The same argument extends to an arbitrary order j of the
gradient expansion. The leading large-order growth of the
expansion coefficients is

cðjÞn ∼
�
ð−1Þj 2

ð2πÞ2jΓðjþ 1Þ
�
ð−1ÞnΓ

�
2nþ 3j −

1

2

�

× ζð2nþ 2jþ 2Þ; n → ∞; j fixed: ðA3Þ

Given this leading large-order growth, we can sum all
orders j of the gradient expansion, and a standard Borel
dispersion relation yields the imaginary part of the Borel
sum for the corresponding electric field configuration [6]

ImSðE; τÞ ∼ L3τ
m4

8π1=2

�
eE
πm2

�
5=2X∞

k¼1

1

k5=2
e−kπm

2=ðeEÞ

×
X∞
j¼0

1

j!

�
kπm2

eE
γ2

4

�
j

ðA4Þ

∼ L3τ
m4

8π1=2

�
eE
πm2

�
5=2 X∞

k¼1

1

k5=2

× exp
�
−
kπm2

eE

�
1 −

γ2

4

��
: ðA5Þ

The γ dependence in the exponent corresponds to the
leading small γ expansion of the WKB exponent in (24):

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1

¼ 1 −
γ2

4
þ � � � : ðA6Þ

This argument can be extended to include the subleading
power-law corrections to the large-order growth in (A3):

cðjÞn ∼
�
ð−1Þj 2

ð2πÞ2jΓðjþ 1Þ
�
ð−1ÞnΓ

�
2nþ 3j−

1

2

�

× ζð2nþ 2jþ 2Þ
X∞
l¼0

dðjÞlQ
l−1
p¼0ð2nþ 3j− 3

2
−pÞ : ðA7Þ

The first three coefficients dðjÞl are listed in Table I. The
imaginary part of the analytically continued Borel sum now
reads

ImSðE;τÞ¼L3τ
m4

8π1=2

�
eE
πm2

�
5=2X∞

k¼1

1

k5=2
e−kπm

2=ðeEÞ

×
X∞
j¼0

1

j!

�
kπm2

eE
γ2

4

�
jX∞
n¼0

�
eE

kπm2

�
n
dðjÞn : ðA8Þ

To simplify this, we convert the polynomials dðjÞn into
the form of a sum of falling factorials ðjÞn ¼
jðj − 1Þðj − 2Þ � � � ðj − nþ 1Þ, listed in the right half of
Table I. Using the identity

X∞
j¼0

ðjÞn
j!

xj ¼ xnex; n ∈ Z≥0; ðA9Þ

and denoting the numerical coefficient of the lth-order

falling factorial in the nth term dðjÞn as dn;l, we can write

X∞
n¼0

�
eE

kπm2

�
nX∞
j¼0

1

j!

�
kπm2

eE
γ2

4

�
j
dðjÞn

¼
X∞
n¼0

�
eE

kπm2

�
nX∞
j¼0

1

j!

�
kπm2

eE
γ2

4

�
jX2n
l¼0

dn;lðjÞl ðA10Þ

¼
X∞
n¼0

X2n
l¼0

dn;l

�
eE

kπm2

�
n X∞

j¼0

ðjÞl
j!

�
kπm2

eE
γ2

4

�
j

ðA11Þ

¼
X∞
n¼0

X2n
l¼0

dn;l

�
eE

kπm2

�
n−l

�
γ2

4

�
l
exp

�
kπm2

eE
γ2

4

�
: ðA12Þ

This simplifies the imaginary part to

TABLE I. The first three coefficients dðjÞn appearing in the large-

order growth of the coefficients cðjÞk in (A7), expressed as a
polynomial and as a falling factorial.

n dðjÞn (polynomial) dðjÞn (falling factorial)

0 1 1
1 −2j2 þ 7j − 5

4
−2ðjÞ2 þ 5ðjÞ1 − 5

4
ðjÞ0

2 2j4−17j3þ42j2−27jþ105
32

2ðjÞ4−5ðjÞ3þ5ðjÞ2þ105
32
ðjÞ0
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ImSðE; τÞ ¼ L3τ
m4

8π1=2

�
eE
πm2

�
5=2X∞

k¼1

1

k5=2
exp

�
−
kπm2

eE

�
1 −

γ2

4

��X∞
n¼0

X2n
l¼0

dn;l

�
eE

kπm2

�
n−l

�
γ2

4

�
l
: ðA13Þ

To simplify this further, we need knowledge of the exact prefactor and exponent, which follows from the WKB
approximation. Introducing these factors into the Borel summation, the fluctuation series reorganizes into

ImSðE; τÞ ¼ L3τ
m4

8π1=2

�
eE
πm2

�
5=2

ð1þ γ2Þ5=4
X∞
k¼1

1

k5=2
exp

�
−
kπm2

eE
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ 1

�X∞
n¼0

X∞
l¼0

d̃n;l

�
eE

kπm2

�
n
�
γ2

4

�
l

¼ L3τ
m4

8π1=2

�
eE
πm2

�
5=2

ð1þ γ2Þ5=4
X∞
k¼1

1

k5=2
exp

�
−
kπm2

eE
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ 1

�

×

�
1þ

�
eE

kπm2

��
−
5

4
þ 25γ2

16
−
15γ4

16
þ 95γ6

128
−
325γ8

512
þ � � �

�

þ
�

eE
kπm2

�
2
�
105

32
−
105γ2

64
þ 945γ4

512
−
945γ6

512
þ 394065γ8

262144
þ � � �

�
þ � � �

�
: ðA14Þ

The series in γ2 which multiply the fluctuation powers of ð eE
πm2Þ can be recognized as the small γ expansions of simple

functions proportional to the bð1Þn ðγÞ functions in (38):

ImSðE; τÞ ¼ L3τ
m4

8π1=2

�
eE
πm2

�
5=2

ð1þ γ2Þ5=4
X∞
k¼1

1

k5=2
exp

�
−
kπm2

eE
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ 1

�

×

�
1 −

5

4

�
eE

kπm2

� ð1 − 3
4
γ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p þ 105

32

�
eE

kπm2

�
2 ð1þ 1

4
γ2Þ2

ð1þ γ2Þ þ � � �
�
: ðA15Þ

This reproduces all k-instanton sectors of the leading singularity in (53) for all γ.

APPENDIX B: INCOMPLETE GAMMA
FUNCTION REPRESENTATION
OF THE EFFECTIVE ACTION

Using Darboux’s theorem, we were able to use the large-
order growth of the perturbative coefficients in the weak-
field expansion for the effective action in (49). Using the
form of the coefficients as they were derived, in particular
including the zeta function in the sum, we obtained a Borel
representation (52) which was written in terms of the Euler-
Heisenberg Borel transform (15). This allowed us to easily
make contact with the LCFA and WKB approximations,
analytically continue to the electric field background (7b),
and understand how the presence of an inhomogeneity
modifies the constant-field results.
The one-loop effective actions can also be usefully

expressed in terms of incomplete gamma functions using
the integral representation

exx−aΓða; xÞ ¼ 1

Γð1 − aÞ
Z

∞

0

dse−ss−a
1

xþ s
: ðB1Þ

For the Euler-Heisenberg effective Lagrangian, in particu-
lar the partial fraction expansion (15) of the Borel trans-
form, this leads to [78]

LEH

�
eB
m2

�
¼ m4

8π2

�
eB
πm2

�
2X∞
k¼1

1

k2

×

�
exp

�
i
kπm2

eB

�
Γ
�
0;eiπ=2

kπm2

eB

�

þ exp

�
−i

kπm2

eB

�
Γ
�
0;e−iπ=2

kπm2

eB

��
: ðB2Þ

In this representation, the imaginary part of the effective
Lagrangian is given by the discontinuity across the cut of
the incomplete gamma functions

e−iπaΓða; eiπxÞ − eiπaΓða; e−iπxÞ ¼ −
2πi

Γð1 − aÞ : ðB3Þ

This requires two separate analytic continuations,
B ↦ e�iπ=2E, to reach either side of the branch cuts, with
the difference precisely agreeing with the imaginary part
of (2).
The effective action in the LCFA can also be expressed in

terms of incomplete gamma functions, starting from (19)
and using (20)
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SLCFAðB; λÞ ¼ λL2T
m4

8π3=2

�
eB
πm2

�
5=2X∞

k¼1

1

k5=2
X∞
n¼0

4

3π
ð−1Þn Γðnþ 1

2
ÞΓðnþ 5

2
Þ

n!
Γ
�
3

2
− n

��
eB

kπm2

�
n

×

�
ðeiπ=2Þ3=2−n exp

�
i
kπm2

eB

�
Γ
�
n −

1

2
; eiπ=2

kπm2

eB

�

þ ðe−iπ=2Þ3=2−n exp
�
−i

kπm2

eB

�
Γ
�
n −

1

2
; e−iπ=2

kπm2

eB

��
: ðB4Þ

We can obtain a similar representation for the full effective action by starting from (49) and expressing the factor ζð2nþ 4Þ
as a sum. The effective action then becomes

SðB; λÞ ∼ λL2T
2m4

3π2

�
eB
πm2

�
4 i
js1j3

X∞
k¼1

1

k4
X∞
l¼0

ð−ijs1jÞl
bð1Þl ðγÞ

Γð− 3
2
− lÞ

Z
∞

0

dse−ss1=2−l
X∞
n¼0

ð−1Þn
�

eBs
kπm2js1j

�
2n

ðB5Þ

in which the perturbative sum is now simply a geometric series

SðB; λÞ ∼ λL2T
2m4

3π2

�
eB
πm2

�
4 i
js1j3

X∞
k¼1

1

k4
X∞
l¼0

ð−ijs1jÞl
bð1Þl ðγÞ

Γð− 3
2
− lÞ

Z
∞

0

dse−ss1=2−l
1

1þ ðeBs=ðkπm2js1jÞÞ2
: ðB6Þ

Using the integral representation of the incomplete gamma function given above, we can write the effective action as a sum
of incomplete gamma functions (relabeling l → n)

SðB; λÞ ∼ −λL2T
m4

3π2

�
eB
πm2

�
5=2 1

js1j3=2
X∞
k¼1

1

k5=2
X∞
n¼0

ð−iÞn Γð3
2
− nÞ

Γð− 3
2
− nÞ b

ð1Þ
n ðγÞ

�
eB

kπm2

�
n

×

�
ðeiπ=2Þ1=2−n exp

�
i
kπm2js1j

eB

�
Γ
�
n −

1

2
; eiπ=2

kπm2js1j
eB

�

− ðe−iπ=2Þ1=2−n exp
�
−i

kπm2js1j
eB

�
Γ
�
n −

1

2
; e−iπ=2

kπm2js1j
eB

��
: ðB7Þ

Normalizing the first coefficient in the sum

SðB; λÞ ∼ λL2T
m4

8π3=2

�
eB
πm2

�
5=2

ð1þ γ2Þ5=4
X∞
k¼1

1

k5=2
X∞
n¼0

ð−iÞn Γð− 3
2
Þ

Γð− 3
2
− nÞ

bð1Þn ðγÞ
bð1Þ0 ðγÞ

�
eB

kπm2

�
n

× Γ
�
3

2
− n

��
ðeiπ=2Þ3=2−n exp

�
i
kπm2js1j

eB

�
Γ
�
n −

1

2
; eiπ=2

kπm2js1j
eB

�

þ ðe−iπ=2Þ3=2−n exp
�
−i

kπm2js1j
eB

�
Γ
�
n −

1

2
; e−iπ=2

kπm2js1j
eB

��
; ðB8Þ

we see the same fluctuation structure as in (52). Compared to the Euler-Heisenberg effective Lagrangian, at each order in the
(instanton) “k” sum there is now an infinite sum of incomplete gamma functions, reflecting the appearance of fluctuations
about the singularities. The analytic continuation of this representation to the electric field background requires more care
compared to the residue calculation discussed earlier, as the imaginary part arises from the discontinuities across the branch
cuts of the incomplete gamma functions. In addition, we must rotate B and λ in such a way as to keep γ real and positive. If
we consider the continuations B → e�iπ=2E and λ → e∓iπ=2τ,
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Sðe�iπ=2E; e∓iπ=2τÞ ∼ L3τ
m4

8π3=2
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eE
πm2
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eE

�

− e�iπðn−1=2Þ exp
�
−
kπm2js1j

eE

�
Γ
�
n −

1

2
; e∓iπ kπm

2js1j
eE

��
; ðB9Þ

then the difference takes the form

Sðe−iπ=2E; eiπ=2τÞ − Sðeiπ=2E; e−iπ=2τÞ ¼ −L3τ
m4

8π3=2

�
eE
πm2

�
5=2

ð1þ γ2Þ5=4
X∞
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1

k5=2
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Þ
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1

2
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��
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ðB10Þ

Using the discontinuity across the cut of the incomplete gamma function, we immediately obtain the leading imaginary part
of the effective action

ImSðE; τÞ ≔ 1

2
ℑ½Sðe−iπ=2E; eiπ=2τÞ − Sðeiπ=2E; e−iπ=2τÞ�

∼ L3τ
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n
: ðB11Þ

In terms of polylogarithms, we can write

ImSðE;τÞ∼L3τ
m4
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�
5=2

ð1þ γ2Þ5=4
�
Li5=2ðe−πm2js1j=ðeEÞÞ−5

4

ð1− 3
4
γ2Þffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

�
eE
πm2

�
Li7=2ðe−πm2js1j=ðeEÞÞþ � � �

�
; ðB12Þ

which reduces to the LCFA (22) as γ → 0. This can now be extended to include the contributions from s2 and s3
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which exactly agrees with the result derived in (53). The corresponding representation in terms of polylogarithms is given
in (54).
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APPENDIX C: RESOLVING HIGHER BOREL
SINGULARITIES USING CONFORMAL

MAPS AND PADÉ

A particular advantage of the Padé-conformal-Borel
method is that it resolves subleading singularities by
separating them into the accumulation points of Padé poles
on the unit circle in terms of the conformal variable w
defined in (60). The accumulating poles are outside the unit
disk, since the function should be analytic inside the disk.9

This is shown in Fig. 10. Using the inverse map, we can
identify the location of these singularities in the Borel
s plane.
The left-hand plot in Fig. 10 is for a small value of the

inhomogeneity parameter γ ¼ 0.1. We therefore expect
[recall the hierarchy of singularities in (32)] that the
dominant nonperturbative effects will be due to s1 and
its multi-instanton repetitions, rather than the subleading
Borel singularities at s3 or s2. Indeed, for γ ¼ 0.1 we have
the following hierarchy (recall that all the singularities have
been normalized by dividing by js1ðγÞj):

�
s1ðγÞ
js1ðγÞj

�
γ¼0.1

¼ �i ⇒ w ¼ �i;

�
2s1ðγÞ
js1ðγÞj

�
γ¼0.1

¼ �2i ⇒ w ¼
ffiffiffi
3

p

2
� 1

2
i;

�
3s1ðγÞ
js1ðγÞj

�
γ¼0.1

¼ �3i ⇒ w ¼ 2
ffiffiffi
2

p

3
� 1

3
i;

�
4s1ðγÞ
js1ðγÞj

�
γ¼0.1

¼ �4i ⇒ w ¼
ffiffiffiffiffi
15

p

4
� 1

4
i:

..

. ðC1Þ
The leading singularity at �s1ðγÞ=js1ðγÞj ¼ �i maps to
w ¼ �i, and is clearly seen. Since the leading s1 singularity
is of square-root type, the conformal map (60) turns it into a
pole in terms of w, so it appears as an isolated pole in the w
plane. Due to the hierarchy (C1) the first three dominant
singularities (those with the smallest magnitude in the s
plane, or closest on the unit circle to �i in the w plane) are
�ks1ðγÞ=js1ðγÞj for k ¼ 1, 2, 3, 4. These are indicated by
the orange arrows. For this small value of γ ¼ 0.1 the s3ðγÞ
and s2ðγÞ singularities are too distant to be resolved.
On the other hand, the right-hand plot in Fig. 10 is for a

larger value of the inhomogeneity parameter γ ¼ 10. Now
the dominance hierarchy is very different:�
s1ðγÞ
js1ðγÞj

�
γ¼10

¼�i⇒w¼�i;

�
s3ðγÞ
js1ðγÞj

�
γ¼10

¼�1.10499i⇒w¼ 0.425438� 0.904988i;
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FIG. 10. The Padé poles of the conformally mapped Borel transform in the w plane with N ¼ 100 and for (left) γ ¼ 0.1 and (right)
γ ¼ 10. At small γ, the first four dominant singularities are the multi-instanton contributions of�s1,�2s1;�3s1;�4s1 (orange arrows).
Beyond these cannot be cleanly resolved. At large γ, after �s1 (orange arrow) the first subleading singularities are �s3 (green arrow),
followed by �s2 (violet arrow). Then we see the contribution of �2s1 (orange arrow), �2s3 (green arrow), and �2s2 (violet arrow).

9Note that the appearance of some poles inside the unit disk
occurs for two reasons: first, there is a finite number of terms in
our expansion, so that higher singularities (closer to w ¼ �1
which represent the point at infinity in the Borel s plane) are
resolved imperfectly; and also because the chosen conformal
map was only based on the two leading Borel singularities, rather
than a full uniformizing map that incorporates the (usually
unknown) full singularity structure of the Borel transform
function.
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�
s2ðγÞ
js1ðγÞj

�
γ¼10

¼�1.22100i⇒ w¼ 0.57379� 0.819002i;

�
2s1ðγÞ
js1ðγÞj

�
γ¼10

¼�2i⇒ w¼
ffiffiffi
3

p

2
� 1

2
i;

�
2s3ðγÞ
js1ðγÞj

�
γ¼10

¼�2.20998i⇒ w¼ 0.891768� 0.452494i;

�
2s2ðγÞ
js1ðγÞj

�
γ¼10

¼�2.44199i⇒ w¼ 0.91231� 0.409501i:

..

. ðC2Þ

In this case, the leading singularity at s1ðγÞ=js1ðγÞj ¼ �i is
again clearly seen at w ¼ �i, but the next dominant
singularities are s3ðγÞ=js1ðγÞj and then s2ðγÞ=js1ðγÞj.
Only after these two contributions do we see the first
multiple of s1. So the next Borel singularities are
2s1ðγÞ=js1ðγÞj, 2s3ðγÞ=js1ðγÞj, and then 2s2ðγÞ=js1ðγÞj.
And so on. This confirms that as γ increases, the relative
dominance between the subleading exponential contribu-
tions changes, with s3ðγÞ and s2ðγÞ becoming more
dominant for larger γ (i.e., for more inhomogeneous fields).
Recall Fig. 5.
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