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We compute semiclassical corrections to the energy density of kinks in ϕ4 theory and of solitons in the
sine-Gordon model in (1þ 1) dimensions, using local and covariant renormalization techniques from
quantum field theory in curved spacetimes. For the semiclassical correction to the energy, we recover the
known results. Our analysis highlights a subtlety in the definition of a conserved stress tensor for scalar
field theories in (1þ 1) dimensions.
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I. INTRODUCTION

Kink solutions of the ϕ4 model in (1þ 1) dimensions are
not only relevant for understanding properties of long-chain
polymers, such as polyacetylene [1], but also have a long
history as toy models for solitonic solutions in higher
dimensions [2]. In recent years, they have been reconsid-
ered for example in the context of the Hamiltonian
truncation method [3–6] or Borel resummations [7], in
particular in relation to Chang duality [8].
Soliton solutions of the sine-Gordon model are inti-

mately linked to the integrable structure of the theory, and
there are strong indications that the WKB approximation
for quantum corrections to their mass is exact [9]. These
results pass a number of nontrivial consistency checks [9],
also in connection with the Coleman duality to the massive
Thirring model [10].
Here, we will reinvestigate the “classical” results of [2,9]

for semiclassical corrections to the energy of kinks and
solitons from the point of view of modern local and
covariant renormalization techniques. Specifically, we con-
sider the ϕ4 and the sine-Gordon model in (1þ 1)
dimensions, specified by the potentials
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These have vacuum solutions ϕvac ¼ � mffiffiffiffi
2λ

p and ϕvac ¼
2πn mffiffi

λ
p , respectively, and the parameters were chosen such

that the fluctuations around these vacua have mass m in
both cases.1 A kink solution is a minimal energy stationary
solution for the ϕ4 model that connects these two vacua,
i.e., limz→�∞ ϕkinkðt; zÞ ¼ � mffiffiffiffi

2λ
p , whereas for the sine-

Gordon model we consider solitons, i.e., stationary sol-
utions connecting neighboring vacua. The semiclassical
correction to the energy, or mass, of a kink or soliton can be
computed by expanding the field around the corresponding
solution,

ϕðt; zÞ ¼ ϕkink=solitonðzÞ þ φðt; zÞ; ð2Þ

expanding the action to second order in the perturbation φ
and quantizing it. The result obtained in [2,9], cf. also [11],
for these quantities is

Esemiclass
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� ffiffiffi
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soliton ¼ −
1

π
m: ð3Þ

In order to compute the semiclassical correction, renorm-
alization has to be performed. In [2,9], this is done globally;
the system is first confined to a spatial interval, a formal
(divergent) expression for the total energy is determined,
from which a (also divergent) formal expression for the
vacuum energy is subtracted. One then considers the limit
in which the interval covers the whole real line, so that the
mode sums become integrals (apart from a finite number of
bound states). The result is still logarithmically divergent,
but this divergence is cancelled by the difference of
mass counterterms for the kink/soliton and the vacuum
background.
Apart from the somewhat formal nature of this renorm-

alization procedure (in the subtraction of two divergent
series, one may, by reordering, change the result by an
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1One recovers the conventions of [2] by the replacement
m2 → 2m2 in Vϕ4 .
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arbitrary amount), it has the conceptual disadvantage that it
is not explicitly local. Locality is a guiding principle for
renormalization and crucial for its predictivity; namely, in
the absence of translation invariance (due to the presence of
the kink/soliton), the local energy density can a priori be
subject to arbitrary position dependent finite renormaliza-
tion, unless there are clear principles restricting the
renormalization freedom.
Such principles restricting the renormalization freedom

were developed in the context of quantum field theory on
curved spacetimes [12–14], where the same difficulty is
present. Applying these concepts to the present case, we
find that the calculation of the semiclassical corrections to
the energy density is analytically feasible by elementary
means, so that an infrared regularization by restriction to a
finite interval is not necessary. Upon integration, we
recover the above result for the semiclassical correction
to the energy, if a subtlety in the definition of a conserved
stress tensor for scalar fields in (1þ 1) dimensions (in
nontrivial backgrounds) is taken into account. Hence, we
find consistency of the global approach pursued in [2,9]
and the local approach, which in our opinion is more
fundamental.
The guiding principles for renormalization in curved

spacetime are locality and covariance, i.e., for the renorm-
alization of a nonlinear field monomial such as φ2ðxÞ, only
the local geometric data at x (or rather an infinitesimal
neighborhood thereof) can be used. There are further
constraints, in particular that power counting must be
respected. A renormalization scheme fulfilling these
requirements is Hadamard point-splitting, where the
expectation value in some state jΩi of a Wick square with
derivatives is defined as

hΩj∇αφ∇βφðxÞjΩi
≔ lim

x0→x
∇α∇0

βðhΩjφðxÞφðx0ÞjΩi −Hðx; x0ÞÞ; ð4Þ

where α, β are multi-indices, ∇0 acts on the primed
variables, and Hðx; x0Þ is the Hadamard parametrix, which
is determined by the local geometric data on the geodesic
connecting x to x0. For physically reasonable states, ground
states in particular, the expression in brackets on the rhs is
smooth, so that one can safely take derivatives and the limit
of coinciding points. The remaining renormalization free-
dom is then, for each field ∇αφ∇βφ, finite dimensional and
restricted by power counting. For example, in (3þ 1)
spacetime dimensions, where φ has mass dimension 1,
the finite renormalization ambiguity for φ2ðxÞ amounts to

φ2ðxÞ → φ2ðxÞ þ αRðxÞ þ βμ2ðxÞ; ð5Þ

with RðxÞ the scalar curvature and μ2ðxÞ the (possibly
position-dependent) mass squared (the coefficient of φ2 in
the Lagrangian). In particular, the Hadamard parametrix

Hðx; x0Þ is not unique, but contains a scale parameter in a
logarithmic term, and changing that scale leads to a
redefinition of this form.
It is important to note that once the scale in the para-

metrix and the finite renormalization ambiguities are fixed,
one has fixed a renormalization prescription on all back-
grounds simultaneously, i.e., for all (globally hyperbolic)
spacetimes and all possible μ2ðxÞ. In this way, it is
meaningful to say that two renormalization prescriptions
on different backgrounds are the same (namely, when the
scale in the parametrix and all remaining finite redefinitions
are the same).
Hadamard point-split renormalization is not limited to

quantum field theory on curved spacetimes, but is appli-
cable quite generally to quantum field theory in nontrivial
background fields (it was in fact originally suggested by
Dirac [15] in the context of QED in background electro-
magnetic fields, see also [16] for the historical context). On
a flat background with no further background fields (as in
the region between the plates in a Casimir setup), the
Hadamard parametrix is essentially the vacuum two-point
function, so the prescription (4) coincides with the usual
prescription for the determination of local Casimir energy
densities, see [17,18], for example. In the context of
nontrivial background fields, Hadamard point-split renorm-
alization was for example used to compute the vacuum
polarization and the energy density of fermions or scalars in
a constant electric field in (1þ 1) dimensions [16,19], or
for computing semiclassical corrections to the energy of
rotating strings [20,21], in agreement with results obtained
previously via the Polchinski-Strominger action [22].
We note that there are other methods to compute local

quantities in quantum field theory in the presence of non-
trivial backgrounds [23–26], but in contrast to Hadamard
point-split, these have a limited range of applicability (in
particular they require stationary backgrounds). In fact, the
semiclassical energy density of the kink was already com-
puted in [25] using a “local mode regularization” and in [26]
via dimensional regularization. Apart from confirming this
result in a renormalization schemewhich ismore general, our
approach also provides an alternative perspective on some of
the subtleties in the calculation performed in [25,26].
Furthermore, we discuss in detail the treatment and the
physical consequences of the zeromode, an aspect which did
not receive much attention in [25,26].
In the present setting, when quantizing the perturbations

φ around the kink/soliton solution, the nontrivial back-
ground is provided by the position-dependent “mass”

μ2kink=soliton ¼ V 00
ϕ4=sGðϕkink=solitonÞ ð6Þ

occurring in the action for φ. Performing an analysis
according to the above principles, one finds that the only
renormalization ambiguity of the Hamiltonian energy
density ρðxÞ [defined in (10) below] is
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ρðxÞ → ρðxÞ þ αμ2ðxÞ: ð7Þ

As μ2kink=solitonðzÞ converges to m2 as z → �∞, this means
that the renormalization ambiguity can be completely fixed
by requiring that the renormalized semiclassicalHamiltonian
energy density vanishes as z → �∞. Hence, with this
renormalization condition, the framework yields a unique
result for the semiclassical correction of the kink mass.
The values one thus finds do, however, not coincide with

(3). This can be understood as follows. In a covariant
setting, the energy density should be seen as a component
of the stress tensor Tμν. The latter is classically conserved,
∂
μTμν ¼ 0, but this is not guaranteed in the quantum theory
in the Hadamard point-split renormalization scheme (essen-
tially because the parametrix is in general only a solution to
the equation of motion up to smooth terms). For scalar
fields in spacetime dimension greater than 2, one can
achieve conservation of the renormalized stress tensor by a
finite renormalization of ∂μφ∂νφ [13], and similarly also for
Dirac fields in arbitrary dimension [27]. However, this is
not possible for the scalar field in (1þ 1) dimensions. In
that case, one has to slightly deviate from the principles
spelled out in [13,14] and allow for a finite redefinition of
Tμν, independent of the Wick powers that constitute it [28].
As will be explained in detail below, performing such a
redefinition, we obtain semiclassical energy densities con-
sistent with (3).
The article is structured as follows: In the next section,

we discuss perturbations φ around the kink/soliton
solutions and analyze the stress tensor at the semiclassical
order. In particular, we find that the semiclassical
contribution to the stress tensor splits in two terms,

Tsemiclass
00 ¼ ρþ Tð1Þ

00 ðφð1ÞÞ, the first one being the
Hamiltonian energy density ρ of the free field in the
kink/soliton background and the other one arising from
taking the leading order correction to the free field into
account. In Sec. III, we perform the quantization of the
perturbations φ around the kink and soliton solution. In
particular, we discuss in detail the effect of the “collective
coordinates” describing position and momentum of the
kink. In Sec. IV we investigate the local structure of
the divergence of the Hamiltonian energy density ρ, i.e.,
the first term on the rhs of (4). In Sec. V, we show that this
divergence can be removed by a Hadamard point-split
renormalization as in (4). We discuss the remaining
renormalization ambiguity and how to fix it. In Sec. VI,
we compute the expectation value of the further contribu-

tion Tð1Þ
00 ðφð1ÞÞ (corresponding to a tadpole in diagrammatic

language). In Sec. VII we discuss the need for an additional
finite renormalization of the stress tensor, in order to ensure
its conservation. Combining it with the results obtained
previously, we finally obtain the semiclassical contribu-
tion Tsemiclass

00 to the energy density. We conclude with a
summary and an outlook.

II. CLASSICAL SOLUTIONS, THEIR
PERTURBATIONS, AND THE STRESS TENSOR

The kink and the soliton solution of ϕ4 and sine-Gordon
theory can be centered at any position z0, and are given by

ϕz0
kink ¼

mffiffiffiffiffi
2λ

p tanh
mðz − z0Þ

2
;

ϕz0
soliton ¼ 4

mffiffiffi
λ

p arctanðemðz−z0ÞÞ: ð8Þ

These solutions can also be boosted, giving rise to a kink/
soliton travelling at constant velocity. The (nonboosted)
solutions centered at z0 ¼ 0 will be denoted by ϕkink
and ϕsoliton.
We now consider the expansion of the Lagrangian in the

perturbation φ around such a classical solution, cf. (2). To
leading order in φ, we find2 [note that we use signature
(−þ)]

Lð2Þ
kink=soliton ¼ −

1

2
∂μφ∂

μφ −
1

2
μ2kink=solitonφ

2: ð9Þ

This will be the starting point of the semiclassical quan-
tization that we perform in the next section. The corre-
sponding Hamiltonian energy density is

ρkink=soliton ¼
1

2
_φ2 þ 1

2
φ02 þ 1

2
μ2kink=solitonφ

2; ð10Þ

but we already anticipate that this is not the proper quantity
to interpret as the energy density. Instead, we will consider
the stress tensor, and for a consistent evaluation of its
expectation value, we will also have to consider the next
order interaction term, given by

Lð3Þ
kink=soliton ¼ −

1

6
V 000
ϕ4=sGðϕkink=solitonÞφ3; ð11Þ

which, when evaluated for ϕkink=soliton as in (8) can be seen

to be of Oð
ffiffi
λ

p
m Þ. We will also expand the perturbation

φ ¼ φð0Þ þ φð1Þ þ � � �, with the superscript denoting the

order in
ffiffi
λ

p
m . In particular, φð0Þ is the free field subject to the

equation of motion

ð∂μ∂μ − μ2kink=solitonÞφð0Þ ¼ 0 ð12Þ

derived from the free part (9) of the action, while φð1Þ
fulfills

2The term linear in φ is a total derivative, as we expand around
a classical solution.
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ð∂μ∂μ − μ2kink=solitonÞφð1Þ ¼ 1

2
V 000
ϕ4=sGðϕkink=solitonÞðφð0ÞÞ2:

ð13Þ

Quite generally the stress tensor for a minimally
coupled3 scalar field ϕ subject to a potential VðϕÞ is
given by

Tμν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂λϕ∂

λϕþ VðϕÞ
�
: ð14Þ

It can be obtained for example by extending the action in a
minimal coupling scheme to curved spacetimes with
Lorentzian metric gμνðxÞ and then varying the action with
respect to gμνðxÞ (and multiplying by −2ffiffiffiffi−gp ). Expanding the

stress tensor in the perturbation φ, the leading (zeroth)
order is just the classical energy density, for which one
obtains

Tð0Þ
00;kink ¼

1

8

m4

λ
sech4

mðz − z0Þ
2

;

Tð0Þ
00;soliton ¼ 4

m4

λ
sech2mðz − z0Þ: ð15Þ

Integration over z yields the classical energy of the kink/
soliton as

Eclass
kink ¼ m3

3λ
; Eclass

soliton ¼ 8
m3

λ
: ð16Þ

We now notice two important facts. First, the contribu-
tion Tð2Þ

00 of second order in the perturbation φ coincides
with the Hamiltonian energy density (10). Second, for the
conservation of the stress tensor, ∂μTμν ¼ 0, it is crucial to
take the full equations of motion

□φ − μ2kink=solitonφ −
X∞
k¼3

1

ðk − 1Þ!V
ðkÞðϕkink=solitonÞφk−1 ¼ 0

ð17Þ

for the perturbation into account, not just the free equations
of motion derived from the free action (9). In particular,
recalling the expansion φ ¼ φð0Þ þ φð1Þ þ � � � in the cou-

pling
ffiffi
λ

p
m , one finds at Oðð

ffiffi
λ

p
m Þ0Þ, using (13),

∂
μðTð1Þ

μν ðφð1ÞÞþTð2Þ
μν ðφð0ÞÞÞ¼ ∂νφ

ð0Þð∂μ∂μ−μ2kink=solitonÞφð0Þ:

ð18Þ

The rhs. vanishes on shell, cf. (12), establishing conserva-
tion of the tensor in brackets on the left hand side. We refer
to it in the following as the semiclassical contribution to the
stress tensor,4

Tsemiclass
μν ¼ Tð1Þ

μν ðφð1ÞÞ þ Tð2Þ
μν ðφð0ÞÞ; ð19Þ

and interpret its μ, ν ¼ 0 component as the proper semi-
classical energy density (in contrast to the Hamiltonian

energy density ρ ¼ Tð2Þ
00 ðφð0ÞÞ of the free Lagrangian Lð2Þ).

We will thus have to compute the expectation values of ρ
and

Tð1Þ
00 ðφð1ÞÞ ¼ ϕ0

kink=solitonφ
0ð1Þ þ V0ðϕkink=solitonÞφð1Þ

¼ ðϕ0
kink=solitonφ

ð1ÞÞ0: ð20Þ

To obtain the second equality in (20), we have used that
ϕkink=soliton is a time-independent solution to the classical
equations of motion. In particular, this equation shows that

the contribution of Tð1Þ
00 ðφð1ÞÞ to the semiclassical energy

density is a total derivative and does thus not contribute to
the semiclassical correction of the energy. Hence, it could
be ignored if our only aim was the calculation of the latter.
However, as we can see from (18), the inclusion of

Tð1Þ
00 ðφð1ÞÞ is crucial to obtain a conserved stress tensor,

even at the classical level. Furthermore, for time-dependent
classical background solutions (such as a breather), it has to
be included to ensure the conservation of the total energy.
Finally, we note that the expectation value of the first

order correction φð1Þ corresponds precisely to the quantum
correction of the classical kink/soliton solution ϕkink=soliton

first considered in [29], and denoted by ϕ1 there. In

particular, our term Tð1Þ
00 ðφð1ÞÞ corresponds to the contri-

bution Δϵðϕ1Þ to the semiclassical energy density computed
in [25,26].

III. QUANTIZATION OF THE PERTURBATIONS

We now want to quantize the perturbations φ, for the
moment at the semiclassical level, i.e., with respect to the
free Lagrangian (9). In the terminology of the previous
section, we are thus considering φð0Þ. For concreteness, we
first consider in detail the perturbations around the kink
solution, and later state the corresponding results for the
perturbations around the soliton.

3In the last section, we will briefly comment on the mod-
ifications occurring for nonminimal coupling to the scalar
curvature.

4One can easily see that the two terms are not only of the same
order in

ffiffi
λ

p
m , but also of the same order in ℏ: As shown below, see

(41), φð1Þ is of second order in the free field φð0Þ, and as Tð1Þ
μν ðφð1ÞÞ

is of first order in φð1Þ, it is of second order in φð0Þ, and hence of
OðℏÞ, just like Tð2Þ

μν ðφð0ÞÞ. [The tilded fields present in (41) are
obtained from the “untilded” ones by omitting zero modes, a
procedure explained and justified in detail below.]
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In order to quantize the perturbations φð0Þ, one considers
mode solution φð0Þðt; zÞ ¼ φðzÞe−iωt to the equation of
motion (12), i.e.,

−φ00 þ μ2kinkφ ¼ ω2φ: ð21Þ

This has the form of a one-dimensional Schrödinger
equation with potential μ2kink. As is well known (see
[11], for example), this is solvable, with two bound states
for ω0 ¼ 0 and ω2

1 ¼ 3
4
m2 and a continuous spectrum

above the asymptotic value m2 of μ2, i.e., with ω2
k ¼

k2 þm2 for k ∈ R. Concretely, these are given by (we
choose z0 ¼ 0 for simplicity)

φ0ðzÞ ¼ −
m2ffiffiffiffiffi
8λ

p sech2
mz
2

; ð22Þ

φ1ðzÞ ¼
�
3m
4

�1
2

sech
mz
2

tanh
mz
2

; ð23Þ

φkðzÞ ¼
1ffiffiffiffiffiffi
2π

p
1
2
m2 − k2 − 3

4
m2sech2 mz

2
− 3

2
ikm tanhmz

2
1
2
m2 − k2 − 3

2
ikm

eikz:

ð24Þ

The modes φ1 and φk are normalized according to the usual
L2 norm, so in particular, hφk;φk0 i ¼ δðk − k0Þ. The bound
state φ1 corresponds to an oscillation mode of the steepness
of the kink. The zero mode φ0 is due to the broken
translation symmetry (and can thus be seen as a Goldstone
mode) and corresponds to an infinitesimal shift of z0. We
have chosen its normalization such that φ0 ¼ ∂

∂z0
ϕz0
kink ¼

− ∂

∂zϕkink. It forms a symplectic pair with the linearly
growing mode tφ0ðzÞ which arises from differentiating a
boosted kink solution ϕkink with respect to the boost
rapidity (and evaluating at vanishing boost rapidity).
Hence, these two modes do not behave as usual oscillator
modes, but rather as position and momentum of a particle.
Using these modes, the “free” field, i.e., the perturbation φ
at lowest order, is given by

φð0Þðt; zÞ ¼ φ0ðzÞðẑþ p̂t=Eclass
kink Þ

þ 1ffiffiffiffiffiffiffiffi
2ω1

p ðφ1ðt; zÞâþ φ1ðt; zÞâ†Þ

þ
Z

∞

−∞

dkffiffiffiffiffiffiffiffi
2ωk

p ðφkðt; zÞâk þ φkðt; zÞâ†kÞ: ð25Þ

This fulfills the canonical equal-time commutation rela-
tions if and only if ẑ and p̂ fulfill canonical commutation
relations of position and momentum, while â, âk are
annihilation operators, i.e.,

½ẑ; p̂� ¼ i; ½â; â†� ¼ 1; ½âk; â†k0 � ¼ δðk − k0Þ: ð26Þ

The operators ẑ; p̂ are known as “collective coordinates”
representing the kink position and momentum, see [[11]
Sec. 2.3], [[30] Chap. 8], and references given there. They
act as usual position and momentum operator on the Hilbert
space L2ðRÞ, representing the wave function ψðzÞ of the
kink. As there is no normalizable ground state for these
modes, it is a priori unclear how to treat them appropriately
in the calculation of semiclassical corrections. To find the
correct treatment (and also to justify the interpretation as
kink position and momentum), we consider the interacting
field φI , which is related to the free field by

φIðt; zÞ ¼ U†ðtÞφð0Þðt; zÞUðtÞ ð27Þ

with the evolution operator given in terms of the interaction
Hamiltonian as

UðtÞ ¼ T̂ exp

�
−i

Z
t

−∞
HIðt0Þdt0

�
; ð28Þ

with T̂ denoting time ordering. From this expression one
can extract the first order correction to the free field which
leads to

φð1Þðt; zÞ ¼ −i
Z

t

−∞
½φð0Þðt; zÞ; H1ðt0Þ�dt0: ð29Þ

Here H1ðtÞ is the order
ffiffi
λ

p
m part of the interaction

Hamiltonian, which is given by, cf. (11),

H1ðtÞ ¼
1

6

Z
V 000
ϕ4ðϕkinkðzÞÞ

�
φð0Þðt; zÞ

�
3

dz: ð30Þ

Using the fact that by the canonical equal-time commuta-
tion relations, we have that

�
φð0ÞðxÞ;φð0Þðx0Þ

�
¼ iðGretðx; x0Þ −Gadvðx; x0ÞÞ; ð31Þ

withGret=adv retarded/advanced propagators for ∂μ∂μ−μ2kink.
Hence, as the integration in (29) is restricted to t ≥ t0, we
can rewrite it as

φð1Þðt; zÞ ¼ 1

2

Z
Gretðx; x0ÞV 000

ϕ4ðϕkinkðx0ÞÞðφð0Þðx0ÞÞ2d2x0:

ð32Þ

We now write

φð0Þ ¼ −ϕ0
kinkZ þ φ̃ð0Þ; ð33Þ

with
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Z ¼ ẑþ p̂t=Eclass
kink ; ð34Þ

φ̃ð0Þ ¼ 1ffiffiffiffiffiffiffiffi
2ω1

p ðφ1ðt; zÞâþ φ1ðt; zÞâ†Þ

þ
Z

∞

−∞

dkffiffiffiffiffiffiffiffi
2ωk

p ðφkðt; zÞâk þ φkðt; zÞâ†kÞ; ð35Þ

i.e., φ̃ð0Þ is the free field up to the contributions from the
zero mode. Using this expansion and5

ð∂μ∂μ − μ2kinkÞϕ00
kink ¼ V 000

ϕ4ðϕkinkÞðϕ0
kinkÞ2; ð36Þ

ð∂μ∂μ − μ2kinkÞðφ̃ð0ÞÞ0 ¼ V 000
ϕ4ðϕkinkÞϕ0

kinkφ̃
ð0Þ; ð37Þ

one finds that

φð1Þðt; zÞ ¼ 1

2
ϕ00
kinkðzÞZ2 − ðφ̃ð0ÞÞ0ðt; zÞZ

þ 1

2

Z
Gretðx; x0ÞV 000

ϕ4ðϕkinkðx0ÞÞðφ̃ð0Þðx0ÞÞ2d2x0

þOð _ZÞ: ð38Þ
The correction terms involving _Z, i.e., the momentum p̂,
originate from the integration by parts which is necessary to
get the linearized wave operator ∂μ∂μ − μ2kink acting on Gret

in (32). The supplementary terms omitted here implement
relativistic corrections. As we will anyway be interested in
states with negligible kinetic energy, these are irrelevant for
our purposes. Combining our result with lower-order terms,
we thus have

ϕkink þ φð0Þ þ φð1Þ

¼
�
ϕkink − ϕ0

kinkZ þ 1

2
ϕ00
kinkZ

2

�
þ ðφ̃ð0Þ − ðφ̃ð0ÞÞ0ZÞ

þ 1

2

Z
Gretðx; x0ÞV 000

ϕ4ðϕkinkðx0ÞÞðφ̃ð0Þðx0ÞÞ2d2x0 þOð _ZÞ:

ð39Þ
This looks like a Taylor expansion in Z, and indeed one can
show [31] that upon including all orders in Z one obtains

ϕðt; zÞ ¼ ϕkinkðt; z − ZÞ þ φ̃ð0Þðt; z − ZÞ þ φ̃ð1Þðt; z − ZÞ
þOð _Z;

ffiffiffi
λ

p
Þ ð40Þ

with

φ̃ð1Þðt; zÞ ¼ 1

2

Z
Gretðx; x0ÞV000

ϕ4ðϕkinkðx0ÞÞðφ̃ð0Þðx0ÞÞ2d2x0:

ð41Þ
We thus see that ẑ, p̂ indeed play the role of collective
coordinates describing the position and momentum of the

kink, as they implement a shift in theposition andmomentum
of the classical kink, as well as of the perturbations around it.
The contributions of order _Z implement relativistic correc-
tions. Such a connection between the perturbative and the
relativistic expansion has already been noted in [32], where it
was also argued that including _Z to all orders precisely
implements relativistic dispersion relations, at least as far as
the total energy is concerned.
Let us now consider the contribution of the first term on the

rhs of (40) to the expectation value of the stress tensor
component T00. As it only depends on the collective coor-
dinates ẑ, p̂, we only need to evaluate it in a state ψ ∈ L2ðRÞ,
i.e., a wave function for the position of the kink. We obtain

hψ jT00;Coll:Coor:ðz; tÞjψi
¼ hψ jTð0Þ

00;kinkðz−ZÞjψi

þ 1

2ðEclass
kink Þ2

hψ jðfp̂;ϕ0
kinkðz−ZÞgsymÞ2jψi: ð42Þ

In the first term on the rhs, we have the classical contribution
(15) to theenergydensity,withz − z0 replacedby z − Z. In the
second term on the rhs, an operator-ordering symmetrization
has to be performed (for example by expanding ϕ0

kink as a
power series and fully symmetrize p̂ in each termwith allZ’s).
If, for simplicity, we restrict to t ¼ 0, and recalling that ẑ

acts as multiplication operator on the wave function ψðzÞ,
we see that the first term on the rhs of (42) is simply the
convolution of the classical energy density with the
probability density jψðzÞj2. This convolution does obvi-
ously not affect the total energy. At other times t, one
convolutes with jψ tðzÞj2 instead, where ψ t is obtained from
ψ by acting with the time-evolution operator corresponding
to the free Hamiltonian 1

2Eclass
kink

p̂2.

As for the second term on the rhs of (42), it contains a
factor p̂2, so this term is a contribution due to the kinetic
energy of the kink. Choosing a wave function ψðzÞ which is
sufficiently broad, this contribution can be made arbitrarily
small, and should thus be neglected in the evaluation of the
energy density in a ground state.6 For general wave functions
ψðzÞ the contribution of this term to the expectation value of
the total energy is 1

2Eclass
kink

hψ jp̂2jψi, as expected for the kinetic

5The first equation follows from ϕkink being a static solution to
the equation of motion, and the second equation is valid for all
solutions to the linearized equation of motion, so in particular φ̃ð0Þ.

6The consideration of a “broad” wave function can also be
motivated as follows: Introducing a spatial cutoff, the zero mode
turns into amodewith a small finite frequency (which converges to
0 as the cutoff is moved to infinity). Mathematically, the amplitude
of such amode is described by a harmonic oscillator and the ground
state in a Schrödinger representation (for the mode amplitude) is a
Gaussian wave function. In the limit where the spatial cutoff is
moved to infinity, thewidth of theGaussian diverges (the limit thus
does not define a normalizablewave function). Thewave functions
ψðzÞ that we are considering are precisely such “broad” wave
functions for which the variance of p̂ (and thus the kinetic
contribution to the energy density) can be neglected.
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energy. Analogous considerations apply to the other con-
tributions to the energy density, i.e., those involving also the
second and third term on the rhs of (40).
Hence, up to a contribution from the kinetic energy,

which can be made arbitrarily small, the effect of the
collective coordinates is to smear (convolute) the classical
energy density and its semiclassical correction (computed
with the “tilded” fields) with the probability density jψðzÞj2
for the position of the kink. As there is no preferred choice
(ground state) for the wave function ψðzÞ, and we do not
intend to introduce an ad hoc choice, this is as much as can
be said about the influence of the collective coordinates. We
will thus continue with the evaluation of the semiclassical

corrections due to the “tilded” perturbations, i.e., Tð0Þ
00 ðφ̃ð0ÞÞ

and Tð1Þ
00 ðφ̃ð1ÞÞ. The basic ingredient for the computation of

their contribution to the semiclassical energy density is the
two-point function of φ̃ð0Þ in the ground state jΩkinki which
is defined to be the state annihilated by â, âk,

hΩkinkjφ̃ð0ÞðxÞφ̃ð0Þðx0ÞjΩkinki

¼ 1

2ω1

φ1ðzÞφ1ðz0Þe−iω1ðt−t0Þ

þ
Z

∞

−∞

dk
2ωk

φkðzÞφkðz0Þe−iωkðt−t0Þ: ð43Þ

IV. EVALUATING Tð2Þ
00 ðφ̃ð0ÞÞ

As discussed above, cf. (19), there are two contributions
to the semiclassical energy density, the Hamiltonian energy
density Tð2Þ

00 ðφ̃ð0ÞÞ ¼ ρ corresponding to the free action, and

Tð1Þ
00 ðφ̃ð1ÞÞ. We now focus on the first (the second one will

be treated in Sec. VI). A naive evaluation of the expectation

value of Tð2Þ
00 ðφ̃ð0ÞÞ will be divergent. In order to prepare for

the Hadamard point-split renormalization to be performed
in the next section, we regularize it by a point-split, i.e., in
the products of fields occurring in (10), we evaluate the first
field at x ¼ ðt; zÞ and the second one at x0 ¼ ðtþ τ; zÞ.
Such a point-split in the time direction is typically advanta-
geous in static backgrounds. The relevant expression
is thus

ρpsðz; τÞ ¼ 1

2
ð∂t∂t0 þ ∂z∂z0 þ μ2ðzÞÞhΩjφ̃ð0ÞðxÞφ̃ð0Þðx0ÞjΩi:

ð44Þ

A straightforward calculation gives7 (we introduced an iε
prescription to ensure convergence)

ρpskinkðz; τÞ ¼
ffiffiffi
3

p

32
m2

�
10sech6

mz
2

− 17sech4
mz
2

þ 8sech2
mz
2

�
eiω1τ

þ
Z

∞

−∞

dk
8π

eiωkðτþiεÞ

ω3
kð4k2 þm2Þ

�
2ω4

kð4k2 þm2Þ − 3

2
m2ω2

kð4k2 þ 5m2Þsech2 mz
2

þ 9

4
m4ð3k2 þ 5m2Þsech4mz

2
−
45

8
m6sech6

mz
2

�
: ð45Þ

The first summand comes from the ω1 mode. In that term,
the coinciding point limit τ → 0 can be taken. Integration of
this term over z then gives the contribution 1

2
ω1 to the

semiclassical energy, consistent with the expectation for a
single oscillator mode. To treat the integral term in (45), we
first perform a change of variables to write it as

Z
∞

m
Iðω; zÞeiωðτþiεÞdω; ð46Þ

with Iðω; zÞ a polynomial in sech2 mz
2
with functions of ω as

coefficients. We perform an asymptotic expansion of
Iðω; zÞ for large ω, yielding

Iðω; zÞ ¼ 1

2π
ωþ μ2kinkðzÞ

4π

1

ω
þ Rðω; zÞ; ð47Þ

where the remainder Rðω; zÞ is of Oðω−3Þ. We also used
that

μ2kinkðzÞ ¼ m2

�
1 −

3

2
sech2

mz
2

�
: ð48Þ

We now write the integral (46) as

Z
∞

m
Rðω; zÞeiωðτþiεÞdω

þ
Z

∞

m

�
1

2π
ωþ μ2kinkðzÞ

4π

1

ω

�
eiωðτþiεÞdω: ð49Þ

7These and all the other calculations relevant for the kink
background are performed in a MATHEMATICA notebook that is
associated to the arXiv submission as an ancillary file.
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The integrand of the first term is absolutely convergent, so
we may take the coinciding point limit τ → 0 directly inside
the integral, which can then be performed analytically. To
deal with the second term, we note that

Z
∞

m
ωeiωðτþiεÞdω ¼ −1

ðτ þ iεÞ2 −
m2

2
þOðτÞ; ð50Þ

Z
∞

m

1

ω
eiωðτþiεÞdω ¼ −

1

2
log½−m2ðτ þ iεÞ2� − γ þOðτÞ;

ð51Þ

with γ the Euler-Mascheroni constant. In this way, we have
completely determined the divergence in the coinciding
point limit, including the finite term. Combining all the
contributions, we find

ρpskinkðz; τÞ ¼ −
1

2πðτ þ iεÞ2 −
1

8π
μ2kinkðzÞðlog½−m2ðτ þ iεÞ2� þ 2γ þ 1 − log 4Þ

þ
� ffiffiffi

3
p

12
−

3

16π

�
m2sech2

mz
2

−
�
17

ffiffiffi
3

p

96
þ 3

8π

�
m2sech4

mz
2

þ
�
5

ffiffiffi
3

p

48
þ 15

32π

�
m2sech6

mz
2

þOðτÞ: ð52Þ

Here, we have written the terms which are finite in the
coinciding point limit τ → 0 and vanish as z → �∞ in the
last line. In the first line, we find a leading quadratic
divergence, which is z independent, and a logarithmic
divergence, which is proportional to the position-dependent
“mass” μ2kinkðzÞ. As we will see, this is no coincidence, but
reflects the Hadamard property of the ground state, i.e., that
the singularities of the two-point function are captured by
the Hadamard parametrix.
For the evaluation of the second contribution to the

semiclassical energy density, Tð1Þ
00 ðφ̃ð1ÞÞ, we will need also

the (renormalized) expectation value of ðφ̃ð0ÞÞ2ðxÞ. In a
point-split prescription, this amounts to computing the two-
point function, i.e., we consider

φ2;psðz; τÞ ¼ hΩjφ̃ð0ÞðxÞφ̃ð0Þðx0ÞjΩi; ð53Þ

where again x ¼ ðt; zÞ and x0 ¼ ðtþ τ; zÞ. Proceeding as
before, one obtains

φ2;ps
kinkðz; τÞ ¼ −

1

4π
ðlog½−m2ðτ þ iεÞ2� þ 2γ − log 4Þ

þ
ffiffiffi
3

p

12
sech2

mz
2

−
�
3

8π
þ

ffiffiffi
3

p

12

�
sech4

mz
2

þOðτÞ: ð54Þ

Let us now briefly state the corresponding expressions
for the perturbations around the soliton. We note that

μ2soliton ¼ m2ð1 − 2sech2mzÞ; ð55Þ

so the differential equation for the modes is very similar to
the one for the kink perturbations, for which we had (48). In
contrast to the kink, there is now only the zero mode (due to
translational symmetry) as a bound state. The normalized
continuum modes are given by

φkðzÞ ¼
1ffiffiffiffiffiffi
2π

p ik −m tanh mz
ik −m

eikz; ð56Þ

again with frequency ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. As for the pertur-

bations around the kink, the zero mode gives rise to
collective coordinates, which are treated in complete
analogy to the above. Following the same steps as for
the perturbations around the kink, one obtains

ρpssoliton ¼
−1

2πðτ þ iεÞ2 −
1

8π
μ2solitonðzÞðlog½−m2ðτ þ iεÞ2�

þ 2γ þ 1 − log 4Þ

−
3

4π
m2sech2mzþ 3

4π
m2sech4mzþOðτÞ; ð57Þ

φ2;ps
soliton ¼ −

1

4π
ðlog½−m2ðτ þ iεÞ2� þ 2γ − log 4Þ

−
1

2π
sech2mzþOðτÞ: ð58Þ

V. HADAMARD POINT-SPLIT
RENORMALIZATION

According to the Hadamard point-split description (4),
we have to subtract from the point-split Hamiltonian energy
densities just computed the corresponding expression
derived from the Hadamard parametrix. In (1þ 1) dimen-
sions, the Hadamard parametrix is of the form (for an
overview, see [33], for example)

Hðx; x0Þ ¼ −
1

4π
Vðx; x0Þ log σ þ iεðt − t0Þ

Λ2
ð59Þ

with Λ a length scale, whose choice will amount to a choice
of renormalization condition, σðx; x0Þ being 1

2
times the

squared geodesic distance of x and x0, i.e., on Minkowski
space, σ ¼ 1

2
ððz − z0Þ2 − ðt − t0Þ2Þ and Vðx; x0Þ a smooth
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function which can be expanded in terms of Hadamard
coefficients Vkðx; x0Þ (Lorentzian analogs of heat kernel
coefficients) as

Vðx; x0Þ ¼
X∞
k¼0

Vkðx; x0Þσkðx; x0Þ: ð60Þ

The Hadamard coefficients are determined uniquely by the
geometric data occurring in the wave equation governing
the dynamics of the field. V0 is the square root of the van
Vleck determinant, i.e., V0 ¼ 1 on Minkowski space. For
our purposes, i.e., the evaluation of (4), we further only
need the coinciding point limit of V1, which is V1ðx; xÞ ¼
1
2
μ2ðxÞ [all other contributions are at least of third order in

x0 − x and are thus not relevant for the coinciding point
limit performed in (4)]. Performing the necessary deriva-
tives and again evaluating at a point-split in time direction,
x0 ¼ ðtþ τ; zÞ, one straightforwardly finds

1

2
ð∂t∂t0 þ ∂z∂z0 þμ2ðzÞÞHðx;x0Þ

¼−
1

2πðτþ iεÞ2−
1

8π
μ2ðzÞ

�
log

−ðτþ iεÞ2
2Λ2

þ 1

�
þOðτÞ;

ð61Þ

Hðx; x0Þ ¼ −
1

4π
log

−ðτ þ iεÞ2
2Λ2

þOðτÞ: ð62Þ

We see that the divergences of (52) and (54) (and also (57)
and (58) in the soliton background) in the coinciding point
limit are canceled by this subtraction. One thus obtains
locally finite expectation values of the renormalized
Hamiltonian energy density ρ and ðφ̃ð0ÞÞ2. Furthermore,
we can fix the scale Λ by requiring that the Hamiltonian
energy density ρ vanishes as z → �∞, i.e., by setting
Λ ¼ ffiffiffi

2
p ðeγmÞ−1. Obviously, with the same value, also the

renormalized expectation value of ðφ̃ð0ÞÞ2ðzÞ vanishes as
z → �∞. In particular, for the expansion around a classical
vacuum solution, one finds, for this value of Λ, vanishing
expectation values both of the Hamiltonian energy density
ρ and of ðφ̃ð0ÞÞ2. In this sense, in the vacuum background,
our renormalization condition effectively coincides with
normal ordering of the free Hamiltonian.
As discussed in the Introduction, even after a Hadamard

point-split renormalization, there is in principle some
further, but highly constrained renormalization freedom.
In (1þ 1) dimensions, and in the absence of curvature, it
consists in redefinitions

φ2 → φ2 þ α; ð63Þ

∂μφ∂νφ → ∂μφ∂νφþ βgμνμ2; ð64Þ

with α; β ∈ R, as a constant and the “mass” squared are the
only local geometric quantities (occurring in the free
action) of mass dimension 0 and 2, respectively. While
(64) does not affect the Hamiltonian energy density ρ,
cf. (10) [and obviously also the not Wick square φ2], the
redefinition (63) amounts to adding α

2
μ2ðzÞ to the

Hamiltonian energy density ρ. But this is tantamount to
the same modification of Λ in the subtraction terms (61)
and (62). Hence, the requirement of vanishing energy
density at z → �∞ fixes completely the renormalization
ambiguity for that quantity. Subtracting (61) and (62) from
(52) and (54), we obtain for the expectation values of the
renormalized ρ and ðφ̃ð0ÞÞ2 in the kink background

ρsemiclass
kink ðzÞ ¼

� ffiffiffi
3

p

12
−

3

16π

�
m2sech2

mz
2

−
�
17

ffiffiffi
3

p

96
þ 3

8π

�
m2sech4

mz
2

þ
�
5

ffiffiffi
3

p

48
þ 15

32π

�
m2sech6

mz
2

; ð65Þ

φ2;semiclass
kink ðzÞ¼

ffiffiffi
3

p

12
sech2

mz
2
−
�
3

8π
þ

ffiffiffi
3

p

12

�
sech4

mz
2
: ð66Þ

Similarly, in the soliton background, one obtains, from (57)
and (58),

ρsemiclass
soliton ðzÞ ¼ −

3

4π
m2sech2mzþ 3

4π
m2sech4mz; ð67Þ

φ2;semiclass
soliton ðzÞ ¼ −

1

2π
sech2mz: ð68Þ

VI. EVALUATING Tð1Þ
00 ðφ̃ð1ÞÞ

While in the previous sections, we calculated the
Hamiltonian energy density ρ ¼ Tð2Þ

00 ðφ̃ð0ÞÞ, we now turn

to the evaluation of Tð1Þ
00 ðφ̃ð1ÞÞ which, as seen in (20), is

linear in φ̃ð1Þ. We recall the explicit expression (41) for the
latter. For its expectation value, we thus obtain

hΩkinkjφ̃ð1Þðt; zÞjΩkinki ¼
1

2

Z
Gretðx; x0ÞV 000

ϕ4ðϕkinkðz0ÞÞ

× φ2;semiclass
kink ðz0Þd2x0; ð69Þ

where we substituted the renormalized value for the
expectation value φ2;semiclass

kink ðz0Þ, which is time independent.
The retarded propagator Gret can be expressed in terms of
the modes as
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Gretðx; x0Þ ¼ Θðt − t0Þ
�
φ0ðzÞφ0ðz0Þ

t0 − t
Eclass

þ Im

�
1

ω1

φ1ðzÞφ1ðz0Þe−iω1ðt−t0Þ

þ
Z

dk
1

ωk
φkðzÞφkðz0Þe−iωkðt−t0Þ

��
; ð70Þ

with Θ the step function. As both φ0ðz0Þ and φ2;semiclass
kink ðz0Þ

are even functions of z0, while V 000
ϕ4ðϕkinkðz0ÞÞ is odd, the

first term on the rhs does not contribute to (69). In the
remaining terms, the integration over t0 can be performed
(with the imposition of a suitable iε prescription). An
analogous expression (without the term involving φ1) holds
in the soliton background. In both cases the remaining
integrals (over k and z0) can be performed analytically, and
one obtains, for the expectation value of φ̃ð1Þ,

hΩkinkjφ̃ð1ÞðzÞjΩkinki¼
ffiffiffiffiffi
2λ

p

2m

�� ffiffiffi
3

p

6
þ 3

8π

�
tanh

mz
2
−

ffiffiffi
3

p

8
mz

�

×sech2
mz
2
; ð71Þ

hΩsolitonjφ̃ð1ÞðzÞjΩsolitoni ¼
ffiffiffi
λ

p

8πm
tanh mz sechmz: ð72Þ

With these expressions one obtains for the expectation

value of Tð1Þ
00 ðφ̃ð1ÞÞðzÞ at the relevant order, by using (20),

hΩkinkjTð1Þ
00 ðφ̃ð1ÞÞðzÞjΩkinki

¼ −
�
11

ffiffiffi
3

p

96
þ 3

8π

�
m2sech4

mz
2

þ
�
5

ffiffiffi
3

p

48
þ 15

32π

�
m2sech6

mz
2

þ
ffiffiffi
3

p

16
m3z tanh

mz
2

sech4
mz
2

; ð73Þ

hΩsolitonjTð1Þ
00 ðφ̃ð1ÞÞðzÞjΩsolitoni ¼ −

1

2π
m2sech2mz

þ 3

4π
m2sech4mz: ð74Þ

Our result for the kink coincides with the contribution
Δϵðϕ1Þ to the semiclassical energy density computed in
[25,26]. Furthermore, our result (71) for the expectation
value of φ̃ð1Þ for the soliton coincides with the result for ϕ1

computed in [26] (the semiclassical energy density of the
soliton was not computed there).

VII. THE SEMICLASSICAL ENERGY DENSITIES

As discussed in Sec. II, the proper quantity to describe
semiclassical corrections to the energy density is

Tsemiclass
00 ¼ Tð1Þ

00 ðφ̃ð1ÞÞ þ Tð2Þ
00 ðφ̃ð0ÞÞ, and we have computed

the renormalized expectation values of both terms in the
previous sections. However, it turns out that the renormal-
ized expectation value of the rhs of (18) does not vanish in
the situation we are considering. Hence, we still need to
introduce a correction term in order to ensure a vanishing
divergence of the renormalized stress tensor.
For the rhs of (18) in the quantum theory, using Hadamard

point split renormalization, one finds [28] (we do not have to
take an expectation value, as this is a c-number)

∂νφ̃
ð0Þð∂μ∂μ − μ2Þφ̃ð0Þ ¼ − lim

x0→x
ð∂μ∂μ − μ2Þ∂0νHðx; x0Þ

¼ 1

4π
∂νV1ðx; xÞ; ð75Þ

where on the rhs the derivative acts on both variables. As
V1ðx; xÞ ¼ 1

2
μ2ðxÞ is not constant in the cases discussedhere,

our condition for the conservation of energy is violated. From
(13), one straightforwardly finds that

∂
μTð1Þ

μν ðφ̃ð1ÞÞ ¼ 1

2
∂νμ

2ðφ̃ð0ÞÞ2: ð76Þ

It follows that the redefinitions (63), (64) of ðφ̃ð0ÞÞ2 and
∂μφ̃

ð0Þ
∂νφ̃

ð0Þ leave the lhs of (18) invariant, so these can not be
used to achieve a conserved stress tensor. This is a special
property of scalar field theory in (1þ 1) dimensions, not
present in higher dimensions [13] or for Dirac fields [27]. A
way out, proposed in [28], is to directly modify the stress

tensor as Tð2Þ
μν ðxÞ → Tð2Þ

μν ðxÞ − 1
4π gμνV1ðx; xÞ. As μ2ðzÞ does

not vanish as z → ∞, we modify this slightly by subtracting
the asymptotic value at ∞, i.e., we instead consider

Tð2Þ
μν ðxÞ → Tð2Þ

μν ðxÞ − 1

8π
gμνðμ2ðzÞ −m2Þ: ð77Þ

This can also be interpreted as considering the difference
of the modified T’s in the kink/soliton and the vacuum
background. A generalization of this modification to the
nonperturbative sine-Gordon theory was independently pro-
posed in [34].
Combining (65) and (67) with (73) and (74) and the

redefinition (77), we finally obtain the semiclassical energy
densities

Tsemiclass
00;kink ðzÞ ¼

� ffiffiffi
3

p

12
−

3

8π

�
m2sech2

mz
2

−
�
28

ffiffiffi
3

p

96
þ 3

4π

�
m2sech4

mz
2

þ
�
5

ffiffiffi
3

p

24
þ 15

16π

�
m2sech6

mz
2

þ
ffiffiffi
3

p

16
m3z tanh

mz
2

sech4
mz
2

; ð78Þ
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Tsemiclass
00;solitonðzÞ ¼ −

3

2π
m2sech2mzþ 3

2π
m2sech4mz: ð79Þ

These are plotted in Fig. 1, together with the corresponding
classical energy densities. Upon integration of (78), (79)
over z, one finds the semiclassical correction (3) to the
energy computed in [2,9]. However, had we omitted the
correction term (77) to ensure conservation of the stress
tensor, we would have obtained different results.
It is noteworthy that the first term in (78) dominates at

sufficiently large distances over the classical contribution
(15), due to the lower power of sech mz

2
. In view of quantum

energy inequalities [35] forbidding negative energy den-
sities for arbitrarily large times, it is thus reassuring that the

coefficient
ffiffi
3

p
12

− 3
8π ≃ 0.025 is positive (albeit quite small, so

that the longer range of the semiclassical correction is not
perceptible in Fig. 1).
Our result (78) for the kink was previously obtained in

[25], using “local mode regularization.” In that procedure, a
correction term, termed “anomaly” is involved. In a dimen-
sional regularization approach [26], it occurs as an ϵ=ϵ term
(and would be missing in a naive momentum cutoff
regularization). This “anomaly” term precisely corresponds
to our redefinition (77), see also the concluding discussion

in [25]. With that correction, our result for Tð2Þ
00 ðφ̃ð0ÞÞ for the

kink coincides with the “local Casimir density” ϵCas þ
ΔϵCas computed in [25].
We are not aware of published results for the semi-

classical energy density of the soliton in the sine-Gordon
model. However, in [29] a result for the supersymmetric
sine-Gordon model is given, which is qualitatively of the
same form as (79), i.e., a linear combination of sech2mz
and sech4mz. Furthermore, as already mentioned, the
expectation value of φ̃ð1Þ in the sine-Gordon model was
computed in [26], consistently with our result (72).
We remark that in [36] the energy density in a similar

model was computed numerically. There, a massive free
scalar field coupled to a background sine-Gordon field was

considered. The latter was taken to be a kink-antikink
scattering solution, but at early times the two kinks can be
considered as isolated, and thus the situation is comparable
to ours [the Lagrangian considered is essentially (9) with an
additional mass term]. In that situation, the contribution

Tð1Þ
00 ðφ̃ð1ÞÞ is absent, so only the Hamiltonian energy density

needs to be considered. The plots shown in [36] seem to
qualitatively differ from our result for the latter, but whether
this is due to the presence of a supplementary mass term
or due to a different renormalization scheme [the modifi-
cation (77), which was crucial for consistency with the
global results, was apparently not implemented] is pres-
ently unclear.
We also note that in [37], the similar (but more consid-

erably demanding) problem of computing semiclassical
energy densities for the Nielsen-Olesen vortex was tackled.
However, apparently the requirement of conservation of the
stress tensor was not implemented, as neither the contri-
bution Tð1Þ

00 ðφ̃ð1ÞÞ needed at the classical level, nor the finite
renormalization necessary to ensure conservation of the
stress tensor at the quantum level seem to have been taken
into account.

VIII. DISCUSSIONS AND OUTLOOK

Several remarks on our results and perspectives on future
research are in order:

(i) Situations in which the renormalized energy density
can be computed analytically in nontrivial back-
grounds are quite rare, so our results provide useful
examples for the application of the local and
covariant renormalization technique in physically
relevant settings.

(ii) We used conventions such that m is the mass
corresponding to classical fluctuations around the
vacuum ϕvac. In the quantum theory, the mass of the
associated particle is subject to self-energy correc-
tions. With the renormalization conditions used
here (where the tadpole vanishes in the vacuum

FIG. 1. Comparison of the classical energy densities (15) (in blue) and the semiclassical corrections (78) and (79) (in red). Note that
both have been scaled by the appropriate powers of λ and m−2. Furthermore, Tclass

00;soliton has been further scaled by a factor 1
30
for better

readability.
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background), only the ϕ3 “setting sun” graph con-
tributes to the self-energy at the one-loop level, and
one obtains, for the ϕ4 model, the physical mass

m̄ ¼ mð1 −
ffiffi
3

p
4

λ
m2 þOð λ

m2ÞÞ [38] (the sine-Gordon
model does not have a ϕ3 term, so it is not subject
to such a modification). Using a correspondingly
adjusted coupling constant λ̄ ¼ m̄2

m2 λ it is natural to
express the results for the energy density in terms of
these quantities, see [25].

(iii) By introducing a nonminimal coupling −ξRϕ2 to the
scalar curvature in the Lagrangian, the stress tensor
is modified as

Tμν → Tμν þ ξðημν∂λ∂λ − ∂μ∂νÞϕ2 ð80Þ

at the classical level. The divergence of the supple-
mentary term vanishes identically, so that the redefi-
nition (77) needed to ensure conservation at the
quantum level is notmodified. For the classical energy

density, this amounts toTð0Þ
00 → Tð0Þ

00 − ξ∂2zϕ
2
kink, while

for the semiclassical correction, we have

hΩkinkjTð2Þ
00 ðφ̃ð0ÞÞjΩkinki → hΩkinkjTð2Þ

00 ðφ̃ð0ÞÞjΩkinki
− ξ∂2zφ

2;semiclass
kink ; ð81Þ

hΩkinkjTð1Þ
00 ðφ̃ð1ÞÞjΩkinki

→ hΩkinkjTð1Þ
00 ðφ̃ð1ÞÞjΩkinki

− 2ξ∂2zðhΩkinkjφ̃ð1ÞjΩkinkiϕkinkÞ; ð82Þ

see also the discussion in Sec. III B of [26]. In
particular, neither the classical energy nor its semi-
classical correction is affected. Note however, that
with a nonminimal coupling, the semiclassical energy
density of the soliton would no longer be symmetric
under z → −z, which is related to the fact that a
nonminimal coupling breaks the shift symmetry
ϕ → ϕþ 2π mffiffi

λ
p of the sine-Gordon model.

(iv) It is instructive to consider the situation in which,
instead of requiring the Hamiltonian energy density
ρkink to vanish as z → �∞, we allow for a finite limit
ρ∞, i.e., we choose a value of Λ ≠

ffiffiffi
2

p ðeγmÞ−1. The
corresponding ρkink is obtained by adding μ2ðzÞ

m2 ρ∞ to
(65). Using the same renormalization condition, i.e.,
the same value of Λ in (59), also for the expansion
around the vacuum, the corresponding energy
density is then constant, ρvac ¼ ρ∞ (we are thus
investigating the effect of deviating from the re-
normalization prescription amounting to normal
ordering in the vacuum background). The shift
in the renormalization condition then amounts

to Tð2Þ
00;kink → Tð2Þ

00;kink þ ρ∞
m2 ðμ2 −m2Þ, so that the

semiclassical correction to the energy is modified as8

Esemiclass
kink → Esemiclass

kink − 6
ρ∞
m

: ð83Þ

At first sight, it seems counterintuitive that the
semiclassical correction to the kink mass should
depend on a renormalization condition which fixes
the vacuum energy density. However, the result
makes perfect sense if one takes into account that
the redefinition (finite renormalization) (63), which
gives rise to a nonzero ρ∞ ¼ 1

2
m2α has to be

accompanied by the redefinition φ4 → φ4 þ 6αφ2,
as a consequence of the “expansion” (or “field
independence”) axiom for the definition of renor-
malized Wick and time-ordered products [12].9

Hence, such a redefinition amounts to a finite mass
renormalization m2 → m2 − 6λα in the original La-
grangian (1). But implementing such a shift of the
mass in the classical contribution to the energy, one
finds, with (16), that

−6λα
∂

∂m2
Eclass
kink ¼ −3mα; ð84Þ

which exactly coincides with the supplementary term
on the rhs of (83).One can easily convince oneself that
this is not a coincidence.10We thus arrive at a coherent
picture where deviations from the “normal ordering”
renormalization prescription in the vacuum back-
ground are tantamount to a change of the mass m2

in the original Lagrangian.
(v) As explained in the Introduction, we think that a

global renormalization, as perfomed in [2,9] to arrive
at (3), is not entirely satisfactory from a conceptual
point of view. It would thus be nice to derive the
calculational rules used in [2,9] from the locally
covariant renormalization framework, which is, in
our view, more fundamental. However, we presently
do not see that this is possible.

(vi) A crucial step in our calculations was the redefini-
tion (77) of the stress tensor. The problem with such
a direct redefinition is that it is in general not clear
whether the conservation of the stress tensor can be

8Recall that Tð1Þ
00 does not contribute to the energy, as it is a

total derivative, cf. (20).
9This requirement states that renormalization should commute

with functional differentiation with respect to φ. It can be seen as
the analog of the possibility to integrate by parts in the path
integral approach.

10The variation of Eclass
kink with respect to m2 is only due the

variation of the parameter m2 in the Hamiltonian, i.e., the
variation of the classical kink solution does not contribute, as
it extremizes the energy.

ALBERTI MARTIN, SCHLESIER, and ZAHN PHYS. REV. D 107, 065002 (2023)

065002-12



upheld at higher orders in the interactions, in
contrast to the situation in which a conserved stress
tensor is achieved by redefining the Wick powers as
in (63) and (64) [13]. It was recently shown [34] that
for the case of the sine-Gordon model, a conserved
stress tensor can be achieved also in the (non-
perturbatively) interacting theory, by a modification
which reduces to (77) in the semiclassical limit. It
would be important to see whether a similar result
also holds for ϕ4 theory.

(vii) As already mentioned, the direct redefinition (77) of
the stress tensor is not necessary in higher dimen-
sions, or for Dirac fields. It would thus be interesting
to increase the number of dimensions, i.e., consider a
string in (2þ 1) or a domain wall in (3þ 1)
dimensions, or to investigate fermions in the kink

background, and to again compare with results
obtained in dimensional regularization [26] (for
higher dimensions) or “local mode regularization”
[25] (for fermions), or with results for the super-
symmetric case [29,39] (which include fermions).
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