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We argue that the notion of identical particles is no longer well defined in quantum systems governed by
noncommutative deformations of spacetime symmetries. Such models are characterized by four-momentum
space given by a non-Abelian Lie group. Our analysis is based on the observation that, for states containing
more than one particle, only the total momentum of the system is a well-defined quantum number. Such total
momentum is obtained from the non-Abelian composition of the particles individual momenta which are no
longer uniquely defined. The main upshot of our analysis is that all previous attempts to construct Fock
spaces for these models rested on wrong assumptions and indeed have been unsuccessful. We also show how
the natural braiding of momentum quantum numbers which characterizes the exchange of factors in the
tensor product of states is covariant under relativistic transformations, thus solving a long-standing problem
in the field.
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Indistinguishability of identical particles is, like entangle-
ment, a characterizing feature of quantum systems that has
no counterpart in the classical realm and, in fact, is at the
basis of the radical difference between the statistical
mechanics of quantum systems compared to that of classical
systems.
In relativistic quantum theories the behavior of multi-

particle systems is dictated by the spin-statistics theorem, a
pillar of local quantum field theory, which states that bosons
and fermions are described by a Fock space constructed
from symmetrized and antisymmetrized tensor products of
one-particle states, respectively.
Since unitary representations of spacetime isometries are

at the basis of the spin-statistics connection (see, e.g., [1]
and references therein), it would be natural to contemplate
possible departures from such paradigm when quantum
features of spacetime enter the game. Speculations con-
cerning violations of the spin-statistics theorem in quantum
gravity have appeared in the literature (see, e.g., [2,3])

lacking, however, a specific field theoretic model which
could explicitly realize the envisioned nonstandard behavior
of multiparticle states.
As it turns out departures from the ordinary description of

multiparticle states in terms of elements of bosonic or
fermionic Fock spaces appear to be unavoidable in certain
noncommutative deformations of quantum field theories in
which the usual four-momentum space is replaced by a non-
Abelian Lie group. The particular model we have in mind
here is a quantum field theory based on representations of
the κ-Poincaré algebra Hopf algebra [4–6] which, in the
configuration space formulation, is built on fields on
the noncommutative κ-Minkowski spacetime [7–17] and
in the momentum space formulation is described by fields
on a non-Abelian Lie group that supports a transitive action
of the Lorentz group [18–22] (see [23] and [24] for recent
comprehensive reviews on the subject).
It was pointed out some time ago [25] that for such

theories, as we will briefly review below, a formulation of
multiparticle states in terms of an ordinary Fock space
construction turns out to be problematic. To date, despite
various attempts in the literature (see, e.g., [26–33]), no
consistent, fully satisfactory formulation for multiparticle
sates in κ-deformed quantum field theory has been laid out.
In this paper we propose a new framework for describing
systems of many particles in such theories taking inspira-
tion from the formal analogy between the group-valued
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momenta carried by the deformed one-particle states
and the quantum numbers characterizing non-Abelian
anyons [34]. Our treatment is based on the introduction
of a nontrivial braiding when exchanging the factors of the
tensor product of two one-particle states, an operation that
is covariant under the deformed action of the Lorentz
group on group-valued momenta. Such braiding is for-
mally analogous to the phenomenon of flux metamorpho-
sis for non-Abelian anyons (see, e.g., [34]). The main
upshot of our analysis is that the efforts to find a consistent
construction of (anti)-symmetrized states in κ-deformed
quantum field theory have been unsuccessful so far since
the very notion of identical particle is no longer well
defined when momentum quantum numbers are elements
of a non-Abelian group.
In ordinary Minkowski spacetime quantum field theory

one-particle states are elements of a Hilbert space H
which carries an irreducible representation of the Poincaré
group [35]. For a scalar field such space can be described
by functions of four-momenta restricted to the positive
mass-shell p2 −m2 ¼ 0. In usual textbook treatments a
basis for such space is given in terms of eigenstates of the
translation generators denoted by kets jpi,

Pμjpi ¼ pμjpi; ð1Þ

with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p⃗2 þm2
p

. Indistinguishability of the particle
excitations of the theory requires that, for example, the
state of two (bosonic) particles should be represented by
the symmetrized tensor product

jp1; p2i≡ 1
ffiffiffi

2
p ðjp1i ⊗ jp2i þ jp2i ⊗ jp1iÞ: ð2Þ

Generalizing to n particles their Hilbert space will be given
by the symmetrized space

SnHn ¼ 1
ffiffiffiffiffi

n!
p

X

σ∈Pn

σðH⊗nÞ; ð3Þ

where σ is an element of the permutation group of
n elements Pn and H⊗n is the n-fold tensor product of
n copies of H. The Hilbert space comprising all possible
multiparticle configurations of the theory is given by a
direct sum of these n-particle Hilbert spaces, i.e., the
Fock space

F sðHÞ ¼ ⨁
∞

n¼0

SnHn; ð4Þ

where H0 ¼ C and the subscript “s” stands for “sym-
metrized,” for a fermionic field one applies the same
procedure using antisymmetrized tensor products of one-
particle states.

As it turns out such bosonic and fermionic Fock spaces
are not the only representations of the Poincaré group which
can be used to describe multiparticle systems. It is indeed
well known that in 2þ 1 spacetime dimensions there exist
anyonic particle excitations [36,37] which are not bosonic
nor fermionic and for which one has to resort to alternative
Hilbert space formulations for the space of states [38].
Much less known, at least until recently [39], is that also
in ordinary quantum field theory in 3þ 1-dimensional
Minkowski spacetime more general multiparticle represen-
tations of the Poincaré group are possible. These occur
when considering asymptotic states for the scattering of
particles carrying electric and magnetic charges (dyons). As
noted by Zwanziger many years ago [40] asymptotic states
for such particles carry an additional angular momentum
quantum number which can be captured by multiparticle
states carrying a pairwise helicity which are not simple
tensor products of their one-particle components [39]. Thus
asymptotic states for such dyons can not be described in
terms of elements of a Fock space.
The noncommutative models we discuss in this paper

provide yet another example of quantum field theories for
which a standard formulation of multiparticle states in
terms of a Fock space fails. We focus here on the quantum
states of particles described by a field theory constructed
from representations of the κ-Poincaré algebra Hopf alge-
bra. The main feature of the model is that particles four-
momenta are described by elements of a Lie group obtained
by exponentiating the Lie algebra

½X0; Xi� ¼ i
κ
Xi; ½Xi; Xj� ¼ 0; i; j ¼ 1;…; 3 ð5Þ

known in the noncommutative field theory literature as the
κ-Minkowski spacetime and in the mathematical literature
as the anð3Þ Lie algebra. The parameter κ, with dimen-
sions of inverse length, is usually taken as a UV scale
identified with the Planck energy. The Lie group obtained
by exponentiating the algebra above is denoted by ANð3Þ
and it can be seen as the momentum space labelling
noncommutative plane waves on the κ-Minkowski space-
time. This curved momentum space, the group manifold of
the ANð3Þ group, has the geometry of (a half of) de Sitter
space (see [23] and [24] for details). The plane wave, or an
element g ∈ ANð3Þ can be parametrized as

g ¼ eipiXi
eip0X0

: ð6Þ

In this parametrization p0, pi are known as bicrossproduct
coordinates on ANð3Þ [8]. The matrix representation of
this group is discussed in detail in the recent paper [41].
One of the characterizing features of the kinematics

associated to such model is the non-Abelian composition
of four-momenta which follows directly from the non-
Abelian nature of the ANð3Þ group. Using the commutation
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relations of the anð3Þ Lie algebra or the explicit matrix form
of the group elements one can write

eipiXi
eip0X0 ¼ eip0X0

eipiep0=κXi
; ð7Þ

from which it follows that

eip
ð1ÞXeip

ð2ÞX ¼ eip
ð1Þ
i Xi

eip
ð1Þ
0
X0

eip
ð2Þ
i Xi

eip
ð2Þ
0
X0

¼ eiðp
ð1Þ
i þpð2Þ

i e
−pð1Þ

0
=κÞXi

eiðp
ð1Þ
0
þpð2Þ

0
ÞX0

≡ eiðpð1Þ⊕pð2ÞÞX; ð8Þ

which determines the non-Abelian addition

pð1Þ ⊕ pð2Þ ¼ ðpð1Þ
0 þ pð2Þ

0 ;pð1Þ þ pð2Þe−p
ð1Þ
0
=κÞ: ð9Þ

The inverse plane wave

ðeipXÞ−1 ¼ ðeipiXi
eip0X0Þ−1 ¼ e−ipiep0=κXi

e−ip0X0 ≡ eið⊖pÞX

ð10Þ

determines the operation

⊖p≡ ð−p0;−p ep0=κÞ; ð11Þ

which by construction ensures that p ⊕ ð⊖ðpÞÞ ¼ 0.
For our purposes it is important to stress that the deformed

addition rule (9) reflects the nontrivial Hopf algebra struc-
ture of κ-Poincaré, namely, the fact that its elements act on
tensor product representations via a generalization of the
Leibniz rule. For the tensor product of two representations
the non-Abelian addition of momenta can be recast in terms
of the nontrivial coproduct for the generators of time and
space translation generators

△ðPiÞ ¼ Pi ⊗ 1þ e−
P0
κ ⊗ Pi;

△ðP0Þ ¼ P0 ⊗ 1þ 1 ⊗ P0: ð12Þ

This observation brings us directly to the core of our
problem. As in ordinary quantum field theory one-particle
states in the κ-deformed context will carry a representation
of the κ-Poincaré algebra. We will denote such states with
kets jgi labeled by elements of the group g ∈ ANð3Þ. The
action of the translation generators Pμ on such states is

Pμjgi ¼ pμðgÞjgi; ð13Þ

where pμðgÞ are the bicrossproduct coordinates associated
to the group element g (see [41] for a discussion of the
action of the other elements of the κ-Poincaré algebra on
such states). Let us consider a two-particle state

jgi ⊗ jhi: ð14Þ

The total four-momentum carried by such state is given by
the product of two group elements gh and, once a para-
metrization of the group is chosen, it leads to a non-Abelian
composition rule like (9). Such total four-momentum is
also the eigenvalue of the translation generators acting on
the tensor product via a deformed Lebniz rule (12), indeed
for the bicrospproduct generators Pμ we have that

△ðPμÞðjgi ⊗ jhiÞ ¼ pμðghÞðjgi ⊗ jhiÞ; ð15Þ

with pμðghÞ the coordinates of the group element gh.
As recalled above when working with indistinguishable

particles in ordinary quantum field theory the tensor product
of two one-particle states has to be symmetrized or anti-
symmetrized if one is dealing with bosons or fermions,
respectively. Applying a naive symmetrization to the state
above would lead to the two-particle state

1
ffiffiffi

2
p ðjgi ⊗ jhi þ jhi ⊗ jgiÞ; ð16Þ

which is not an eigenstate of translation generators since the
two states jgi ⊗ jhi and jhi ⊗ jgi have different total
momenta pμðghÞ and pμðhgÞ, respectively. In other words
such state does not have a well-defined total momentum.
One could opt to give up the requirement of having a well-
defined total momentum (as done, for example, in [42]) but
the naive symmetrization (16) is problematic per se since it
contradicts the very assumption of indistinguishability.
Indeed if two particles are indistinguishable, swapping
the factors in the tensor product describing their state
should lead to another state which is indistinguishable from
the original one, i.e., with the same quantum numbers.
Clearly this is not the case when working with group-valued
momenta since the momentum carried by the two-particle
state jgi ⊗ jhi is different from the momentum carried by
the state jhi ⊗ jgi.
We now make a key observation. Let us notice that if

a swapping of the factors in the tensor product of two
one-particle states is accompanied by a change in the four-
momentum

jgi ⊗ jhi → jghg−1i ⊗ jgi; ð17Þ

such state has the same momentum as the original state
jgi ⊗ jhi. This phenomenon is not new and indeed in
lower-dimensional physics it occurs for non-Abelian any-
ons and it is called “flux metamorphosis” see, e.g., [34]. In
fact the flux quantum number carried by non-Abelian
anyons is a Lie group element like the momentum quantum
number of the noncommutative particles we are consider-
ing. From this point of view the braiding (17) is a natural
choice given this formal mathematical analogy. Now,
requiring that the two particles be identical would naively
lead to consider the symmetrized state
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jgi ⊗ jhi þ jghg−1i ⊗ jgi ð18Þ

with a well-defined total momentum gh. However, it is
evident that we could swap particles in the state (17) once
more to obtain a different state,

jðghÞgðghÞ−1i ⊗ jghg−1i; ð19Þ

with the same total momentum gh, and so on, if one keeps
exchanging the particles. This renders the choice of
symmetrized state (18) completely arbitrary since any
state obtained from any number of swappings of the tensor
product factors could be superimposed to jgi ⊗ jhi leading
to a state with the same total momentum. We conclude that
all possible tensor product states obtained from the
“braided” swapping of factors in the tensor product of
one-particle states are legitimate representatives of a two-
particle state. The analogy with non-Abelian anyons
suggests that only the total momentum of the system is
a well-defined quantum number and the notion of identical
particles is not well defined. Indeed at the mathematical
level the four-momentum of such particles is an element of
a non-Abelian Lie group like the flux quantum number
carried by non-Abelian anyons. These considerations
suggest that a Fock space description for quantum particles
in κ-Poincaré might not be possible.
Let us stress that the formal analogy between particles

with group-valued momenta and non-Abelian anyons we
invoked for our analysis is not completely new. Indeed in
2þ 1 spacetime dimensions it has been known since the
1990s (see, e.g., [43] and references therein) that the
momentum space of particles coupled to gravity (which
in this case is a topological theory and it does not admit
propagating degrees of freedom) is given by the non-
Abelian group SLð2;RÞ. The fact that such Lie group
momentum space is associated to a Hopf algebra defor-
mation of the three-dimensional Poincaré group was
noticed in [44] and explored in detail in [45]. These works
also pointed out the anyonlike features appearing in the
study of the scattering of these topologically gravitating
particles and the possibility of a braiding of the momentum
quantum numbers like in (17) when two particles are
exchanged. In [46] we proposed a description of multi-
particle states for a quantum field theory of particles with
SLð2;RÞ momentum space and associated deformed sym-
metries making use of such braiding.
A crucial issue one has to address when considering the

nontrivial braiding we just introduced is that of its Lorentz
covariance. In the case of the κ-Poincaré algebra the action
of the Lorentz group on the ANð3Þ momentum space is
more subtle than the 2þ 1-dimensional case mentioned
above [41]. Such action is, in fact, determined by the
Iwasawa decomposition of the Lie group SOð4; 1Þ as
follows. Let us focus on the Iwasawa decomposition

SOð4; 1Þ ¼ SOð3; 1ÞANð3Þ. A given element G of the
group SOð4; 1Þ can be decomposed as

SOð4; 1Þ ∋ G ¼ Λg ∈ SOð3; 1ÞANð3Þ; ð20Þ

where Λ ∈ SOð3; 1Þ and g ∈ ANð3Þ. We can also wright
the “right” Iwasawa decomposition of the same element

G ¼ Λg ¼ g0Λ0
g ∈ ANð3ÞSOð3; 1Þ; ð21Þ

and thus define the Lorentz transformed ANð3Þ momen-
tum as

g0 ¼ ΛgΛ0−1
g ; ð22Þ

so that given Lorentz transformation Λ and the ANð3Þ
group element g we can uniquely construct its Lorentz
transformation g0 and the compensating transformation
Λ0
g. When written in infinitesimal form this action repro-

duces the commutator between the generators of the
Lorentz group and the ones of spacetime translations
for any given choice of coordinates on ANð3Þ, i.e., for any
basis of the κ-Poincaré algebra (see [41] for details).
Consider now an ANð3Þ group element being a product

gh. According to the construction presented above, its
Lorentz transformation under the action of the Lorentz
group element is defined to be

ðghÞ0 ¼ ΛghΛ0−1
gh : ð23Þ

It turns out that, contrary to the 2þ 1 dimensional case
ðghÞ0 ≠ g0h0; instead,

ðghÞ0 ¼ ΛgΛ0−1
g Λ0

ghΛ0−1
gh ¼ g0Λ0

ghΛ0−1
gh : ð24Þ

It can be further shown [41] that when the Lorentz
transformation is a pure rotation, Λ ¼ R the compensating
transformation is R0

g ¼ R, reflecting the triviality of the
rotation coproduct in κ-Poincaré algebra. In this case (24)
reduces to the adjoint action

ðghÞ0 ¼ RgR−1 RhR−1 ¼ g0h0: ð25Þ

As shown in [41] the coproduct of Lorentz transforma-
tion on a two-particle state can be derived from the relation
(24). It follows that the action of Lorentz transformation Λ
on a two-particle state takes the form

jgi ⊗ jhi → Λ⊳jgi ⊗ jhi ¼ jg0i ⊗ jΛg hΛ0−1
gh i ð26Þ

and (24) secures the covariance under Lorentz transforma-
tions,

ΔPμðΛ⊳jgi ⊗ jhiÞ ¼ pμððghÞ0ÞðΛ⊳jgi ⊗ jhiÞ; ð27Þ
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meaning that the total momentum of the Lorentz trans-
formed state is the Lorentz transformation of total
momentum.
Since the group elements g and h in (26) are arbitrary, it

can be immediately generalized to the swapped state (17)

jghg−1i ⊗ jgi → Λ⊳jghg−1i ⊗ jgi
¼ jðghg−1Þ0Λ0−1

ghg−1i ⊗ jΛ−1g0Λ0
gΛ0−1

gh i ð28Þ

and from (27) we have

ΔPμðΛ⊳jghg−1i ⊗ jgiÞ ¼ pμððghÞ0ÞðΛ⊳jghg−1i ⊗ jgiÞ;
ð29Þ

verifying the consistency of our framework and the
covariance of the braiding.
It is useful at this point to comment on the issue of

covariance of the nontrivial braiding of momentum quantum
numbers under particle exchange. Indeed the unsuccessful
search (see [25–33]) for such a braiding was one of the main
obstacles encountered in the attempts of formulating a
consistent Fock space for κ-deformed fields. So what makes
the braiding introduced in this note so different from the
ones previously explored in the literature allowing to
circumvent such covariance problem? To answer this
question let us write the labels in the state jghg−1i ⊗ jgi
explicitly in terms of bicrossproduct coordinates ðp0;pÞ on
ANð3Þ (6). In particular, if ðp; p0Þ is the momentum
associated with jgi and ðq0;qÞ is the momentum associated
with jhi the state jghg−1i will carry spatial momentum p ⊕
q ⊕ ð⊖pÞ and thus

jghg−1i ⊗ jgi≡ jðq0;pð1 − e−q0=κÞ þ e−p0=κqÞi
⊗ jðp0;pÞi; ð30Þ

so the braiding involves non-Abelian sum and difference of
the momenta. The issues with the other types of braiding
appeared in the literature essentially boil down to the fact
that all these works were looking for a braiding which could
be expressed in terms of the action of a deformed flip
operator constructed from the elements of (extensions of)
the κ-Poincaré algebra rather than working with the action
of the momentum space group on itself.
To be more specific let us look, for example, at the

braiding proposed in [31] given by

jpi ⊗ jqi → je−p0=κqi ⊗ jeq0=κpi: ð31Þ

This braiding was chosen because it provides a represen-
tation of the symmetric group on the space of tensor
products of one particle states and because it can be written
in terms of an operator

F ¼ e
1
κP0⊗Pj

∂

∂Pj ; ð32Þ

reminiscent of the twist operator governing the deformation
of the Poincaré algebra [47] associated with the canonical
noncommutative spacetime [48] ½xμ; xν� ¼ iθμν. Such defor-
mation known as θ-Poincaré is a so-called quasitriangular
Hopf algebra and the twist operator can be used to construct
a braided representation of the symmetric group. The quasi-
triangular structure ensures the full compatibility between
the “twisted statistics” and the action of θ-Poincaré sym-
metry generators (see [49] for more details for quantum
fields covariant under the θ-Poincaré algebra and their
deformed statistics). Returning to the κ-deformed context
it is easy to see that, besides the many desirable properties,
the braiding (31) is not covariant under the action of the
κ-Poinacré algebra. This problem can be traced back to the
fact the twistlike operator (32) does not commute with
the co-product of the generator of boosts as discussed in
detail in [31]. Alternative approaches requiring covariance
of the braiding from the outset have also been attempted.
Most notably [29] one can try to construct a covariant
braiding making use of the classical r matrix of κ-Poincaré
(see [50]) r≡ iðNj ⊗ Pj − Pj ⊗ NjÞ, where Nj are gen-
erators of boosts, to define a twist map. It turns out that such
construction can be carried out smoothly at leading order in
the inverse deformation parameter 1=κ. But that is the most
one can do. Indeed as proved in [30] a twist operator
constructed from the κ-Poincaré classical r matrix valid
at all orders in 1=κ would not be compatible with the
κ-Poincaré algebra.
As our considerations above show these approaches

failed in one way or another because the very notion of
symmetrized multiparticle states loses meaning when
momentum quantum numbers are element of a non-
Abelian Lie group.
It is interesting to notice the similarity between the

description of κ-deformed multiparticle states and that for
particles carrying both electric and magnetic charges as
discussed in [39]. In the latter case the need to go beyond the
description of states in terms of symmetrized tensor
products can be traced back to the presence of an additional
quantum number for systems with more than one particle:
the pairwise helicity [39]. In our case the additional
information carried by multiparticle states is encoded in
the order in which momenta are combined [51]. This
additional degree of freedom is formally equivalent to the
pairwise helicity appearing in the scattering of electric and
magnetic charges (see also [40]). Such analogy between
quite different settings (in one of the nontrivial structures are
due to the presence of a long-range interaction, i.e., an IR
effect, in the other to a UV deformation of the kinematics) is
quite fascinating and surely worth being further understood.
We leave this task to future studies.
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