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With insight from examples and physical arguments, the Tolman-Ehrenfest criterion of thermal
equilibrium for test fluids in static spacetimes is extended to local thermal equilibrium in conformally
static geometries. The temperature of the conformally rescaled fluid scales with the inverse of the
conformal factor, reproducing the evolution of the cosmic microwave background in Friedmann universes,
the Hawking temperature of the Sultana-Dyer cosmological black hole, and a heuristic argument by Dicke.
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I. INTRODUCTION

Thermal physics in relativity and in curved spacetime is
more intriguing, and notoriously more difficult, than in
nonrelativistic situations, and several results necessarily
have limited validity. An example is the Tolman-Ehrenfest
criterion for the thermal equilibrium of a fluid in a static
spacetime [1–3]. In a coordinate system adapted to the
time symmetry, in which the line element reads1

ds2¼ g00ðxkÞdt2þgijðxkÞdxidxj ði;j;k¼ 1;2;3Þ; ð1:1Þ

the temperature T of a test fluid at rest with respect to the
static observers (i.e., those with four-velocity parallel to the
timelike Killing vector ka) obeys [1–3]

T
ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ T 0; ð1:2Þ

where T 0 is a constant. Equation (1.2) is referred to as the
Tolman-Ehrenfest criterion of thermal equilibrium. It
expresses the fact that, since heat is mass energy, it will
sink in a gravitational field and regions of stronger gravity
will be hotter. As a result, a fluid at rest in a static
gravitational field and in thermal equilibrium has a non-
vanishing temperature gradient, a counterintuitive result.
Klein formulated the analogous condition for the equilib-
rium of particles with respect to diffusion in a static
spacetime by replacing temperature T with chemical
potential μ [5]. Caveats on the standard presentations of
the Tolman-Ehrenfest criterion have been discussed
exhaustively in the recent works [6–8], in particular the
generalization of this law to stationary (but nonstatic)

geometries. The criterion has inspired also a connection
between gravitational fields and thermal transport in
materials: thermal transport, understood as the linear
response of a material to a temperature gradient, was
mimicked by Luttinger as a counterbalancing weak gravi-
tational field restoring thermal equilibrium in the presence
of this gradient [9]. The Tolman-Ehrenfest criterion (1.2) is
applied to neutron stars [10–12]; equilibrium with respect
to simultaneous heat conduction and particle diffusion has
been discussed in [13,14], together with the corresponding
criterion in Weyl-integrable geometries [15].
The Tolman-Ehrenfest criterion can be derived from

Eckart’s generalization of the Fourier law for heat con-
duction, a constitutive relation assumed in Eckart’s first-
order thermodynamics of dissipative fluids [16]. An
imperfect fluid with four-velocity ua is described by the
energy-momentum tensor

Tab ¼ ρuaub þ Phab þ πab þ qaub þ qbua; ð1:3Þ
where ρ is the energy density, P is the isotropic pressure,
πab is the anisotropic stress tensor, qa is the heat flux
density, and hab ≡ gab þ uaub is the Riemannian metric on
the three-space orthogonal to ua. πab and qa are purely
spatial with respect to ua and πab is trace-free:

πabua ¼ πabub ¼ qaua ¼ 0; πaa ¼ 0: ð1:4Þ
Eckart’s theory assumes the three constitutive relations for
this fluid [16],

qa ¼ −Khabð∇bT þ T _ubÞ; ð1:5Þ

P ¼ Pnonviscous þ Pviscous ¼ Pnonviscous − ζΘ; ð1:6Þ

πab ¼ −2ησab; ð1:7Þ
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where T is the temperature, K is the thermal conductivity,
Θ ¼ ∇cuc is the expansion scalar, the shear tensor σab is
the symmetric, trace-free part of hachbd∇duc [17], while ζ
and η are the bulk and shear viscosity coefficients,
respectively. _uc ≡ ac ≡ ub∇buc is the fluid’s four-accel-
eration, which contributes an inertial term to the heat
flux (1.5) [16].
The derivation of the Tolman-Ehrenfest criterion from

Eq. (1.5), which generalizes the usual nonrelativistic
Fourier law of heat conduction, appears in [[18],
Exercise 22.7, p. 567] and, more recently, in Ref. [7].
For the reader’s convenience, we reproduce this derivation
in the Appendix.
We define thermal equilibrium in a static spacetime (and,

later, local thermal equilibrium in time-dependent ones) as
the absence of heat fluxes, qa ¼ 0. It is clear that, if a fluid
is in thermal equilibrium in a certain frame, any observer
moving relatively to it will detect a heat flux (which lies at
the origin of some of the subtleties in generalizing Eq. (1.2)
to stationary geometries [6–8]). To make this observation
quantitative, consider a perfect fluid seen from a non-
comoving frame, in which it appears “tilted.” Denote
(momentarily) with a star quantities associated with the
comoving frame; for example, u�a is the fluid four-velocity.
The stress-energy tensor Tab of the perfect fluid (an
observer-independent object) can be decomposed accord-
ing to this frame as

Tab ¼ ρ�u�au�b þ P�h�ab; ð1:8Þ

where h�ab ≡ gab þ u�au�b is the Riemannian three-metric on
the three-space seen by the observers u�a comoving with
the fluid.
The frame of an observer moving with respect to this

fluid (in which the fluid appears to be moving) is
characterized by a different four-velocity ua related to
u�a by [17]

u�a ¼ γðua þ vaÞ; ð1:9Þ

where va is a purely spatial vector according to u�a,
vau�a ¼ 0, with 0 ≤ v2 ≡ vava < 1, and

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð1:10Þ

is the corresponding Lorentz factor. The fluid stress-energy
tensor can be decomposed according to the observers2 ua as

Tab ¼ ρuaub þ Phab þ πab þ qaub þ qbua; ð1:11Þ

where hab ≡ uaub þ gab and [17]

ρ ¼ ρ� þ γ2v2ðρ� þ P�Þ ¼ γ2ðρ� þ v2P�Þ; ð1:12Þ

P ¼ P� þ γ2v2

3
ðρ� þ P�Þ; ð1:13Þ

qa ¼ ð1þ γ2v2Þðρ� þ P�Þva ¼ γ2ðρ� þ P�Þva; ð1:14Þ

πab ¼ γ2ðρ� þ P�Þ
�
vavb −

v2

3
hab

�
: ð1:15Þ

In the frame ua, the fluid cannot be in equilibrium since
qa ≠ 0: indeed, qa ¼ 0 implies vc ¼ 0 and ua ¼ u�a.
A perfect fluid is in thermal equilibrium in its comoving
frame (i.e., q�a ¼ 0), but any other frame moving with
respect to it (v2 > 0) will experience a (purely convective)
heat flux with density qa ≠ 0 given by Eq. (1.14), and there
cannot be thermal equilibrium.
Before proceeding, let us be clear on the motivations of

this work: the most interesting applications of the new
generalized Tolman-Ehrenfest criterion that we present are
about conformally invariant systems (the cosmic micro-
wave background in cosmology, a blackbody gas of
Hawking radiation, or a massless conformally coupled
scalar field). It is possible that useful applications of the
new criterion will be limited to conformally invariant
systems, although this is not, by all means, established.
However, even if this potential limitation turns out to be
real, the generalized Tolman-Ehrenfest criterion of local
thermal equilibrium presented here is very interesting
because (1) it still allows one to discuss interesting (and
varied) physics, and (2) it deepens our understanding of
thermal physics in relativity. The first point will be
elaborated in the following sections. As for the second
point, one should keep in mind that the original Tolman-
Ehrenfest criterion, which has not been applied widely to
theoretical physics and astrophysics, is still a valuable
contribution to the understanding of thermal physics in
relativity. The latter is definitely incomplete, on par with the
understanding of general nonequilibrium thermodynamics.
In this sense, generalizing the Tolman-Ehrenfest criterion
as done here seems valuable for the understanding of local
thermal equilibrium in nonstatic spacetimes.
The rest of this article proceeds as follows. Section II

discusses two examples showing how to generalize the
Tolman-Ehrenfest criterion to conformally static spacetimes.
Section III derives the generalized formula T̃ ¼ T =Ω for
conformally static geometries g̃ab ¼ Ω2gab in two indepen-
dent ways, while Sec. IV discusses an application to
geometries conformal to the Schwarzschild black hole and
Sec. V contains a discussion and the conclusions.

2There is only one stress-energy tensor Tab but it can be
decomposed in infinitely many ways according to the possible
timelike observers ua.
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II. EXAMPLES

In this section we examine examples leading to a way of
generalizing the Tolman-Ehrenfest criterion to conformally
static spacetimes characterized by the metric g̃ab ¼ Ω2gab,
where the conformal factorΩðxαÞ is a regular and nowhere-
vanishing function of the spacetime coordinates.

A. Example 1: Static conformal factor

The first example is almost trivial but points to the way to
proceed in more interesting situations. Assume that the
metric g̃ab is also static; then there is a timelike Killing3

vector k̃a and, in coordinates adapted to this time symmetry,

∂tg̃μν ¼ 0; g̃0i ¼ 0 ði ¼ 1; 2; 3Þ: ð2:1Þ

The conformal factor is static, Ω ¼ ΩðxiÞ; hence ∂tΩ ¼ 0
and

∂tg̃00 ¼ ∂t½Ω2ðxiÞg00ðxiÞ� ¼ 0; g̃0i ¼ Ω2g0i ¼ 0; ð2:2Þ

applying the Tolman-Ehrenfest criterion directly to the
static geometry g̃ab, one obtains

T̃
ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
¼ ΩT̃

ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ const: ð2:3Þ

Since in the geometry gab we have T
ffiffiffiffiffiffiffiffiffiffi−g00

p ¼ const, it
follows that ΩT̃ =T ¼ const. One can redefine the time
coordinate to absorb the constant (or simply note that
Ω ¼ 1 must reproduce the identity), obtaining

T̃ ¼ T
Ω
: ð2:4Þ

As we will see in the following, Eq. (2.4) relates the
temperature between conformally related spacetimes also
in more physically significant situations.

B. Example 2: Cosmic microwave background
in FLRW universes

All Friedmann-Lemaître-Robertson-Walker (FLRW)
universes are conformally flat [4], and hence conformally
static. Consider, for simplicity, a spatially flat FLRW
universe with line element

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ
¼ a2ðηÞð−dη2 þ dx2 þ dy2 þ dz2Þ ð2:5Þ

in comoving coordinates ðt; x; y; zÞ, or using the conformal
time η defined by dt ¼ aðηÞdη. Consider a radiation fluid
(the cosmic microwave background) in local thermal

equilibrium4 in an expanding, spatially flat, FLRW uni-
verse. After decoupling from baryons, the cosmic micro-
wave background evolves as a radiation fluid independent
of the other fluids present in the universe. It is well-known
that, to maintain the blackbody distribution and thermal
equilibrium, the temperature of the cosmic microwave
background must scale according to T ∼ 1=a [4], that is,
in accordance with Eq. (2.4):

T ðtÞ ¼ T 0

aðtÞ ; ð2:6Þ

where T 0 ¼ T ðaðt0Þ ¼ 1Þ ¼ T ðt0Þ is constant and the
instant t0 is defined by aðt0Þ ¼ 1. In fact, the Planck
distribution for the spectral energy density of a blackbody is

uðν; T Þ ¼ 8πhν3

c3
1

e
hν

KBT − 1
; ð2:7Þ

where ν is the photon frequency, T the absolute temper-
ature, and h, c, and KB are the Planck constant, speed of
light, and Boltzmann constant, respectively. Since in a
FLRW universe frequencies redshift with the cosmic
expansion according to ν ∼ 1=a (equivalently, the proper
wavelength scales as λa, where λ is the comoving wave-
length), it must be KBT ∼ 1=a, or else the Planck dis-
tribution would be distorted by the cosmic expansion

T ∼
1

a
∼

1

Ω
; ð2:8Þ

where Ω ¼ aðηÞ is the conformal factor of the FLRW line
element (2.5).
This result can be obtained in another way that highlights

formulas useful in the following. Assuming the number of
photons to be conserved (which is true after decoupling),
the first law of thermodynamics for the radiation fluid reads

T dS ¼ dU þ PdV; ð2:9Þ

where U is the internal energy, P is the radiation pressure,
and V is the volume. The entropy density is

s≡ dS
dV

¼ ρþ P
T

; ð2:10Þ

where ρ ¼ dU=dV is the energy density, while the entropy
is (e.g., [20])

3If the conformal factorΩ is not static, there is only a conformal
Killing vector k̃a in the conformally rescaled spacetime [4].

4Of course, a conformal transformation is just a mathematical
operation and does not guarantee local thermal equilibrium,
which must be assumed and depends on the microphysics
(reaction rates must be faster than the Hubble rate to maintain
equilibrium [19]).
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S ¼ 32π5KB

45

�
KBT
hc

�
3

V; ð2:11Þ

implying that

ρþ P ¼ 32π5K4
B

45ðhcÞ3 T
4: ð2:12Þ

For conformal transformations of perfect fluids in FLRW
cosmology, the pressure and energy density transform
as [21]

ρ̃ ¼ Ω−4ρ; P̃ ¼ Ω−4P; ð2:13Þ

and then

ρ̃þ P̃ ¼ Ω−4ðρþ PÞ ¼ Ω4
32π5K4

B

45ðhcÞ3 T
4

¼ 32π5K4
B

45ðhcÞ3 T̃
4; ð2:14Þ

leading again to

T̃ ¼ T
Ω
; ð2:15Þ

where

T ¼
�
45ðhcÞ3
32π5K4

B

�
1=4

ð2:16Þ

and where ρ and P ¼ ρ=3 are constant for blackbody
radiation at rest in Minkowski spacetime.
In other words, one notes that for blackbody radiation

ρ ¼ U
V

¼ AT 4; A ¼ 8π5K4
B

15h3c3
; ð2:17Þ

s ¼ 4ρ

3T
∼ T 3: ð2:18Þ

Then, comparing the expressions of the rescaled energy
density

ρ̃ ¼ AT̃ 4; ð2:19Þ

ρ̃ ¼ Ω−4ρ; ð2:20Þ

one obtains Eq. (2.4) with T ¼ ðρ=AÞ1=4. These calcula-
tions are appropriate to the physics at hand: in Minkowski
spacetime a radiation fluid has T ¼ const, while in FLRW
spacetime

T
ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ T
Ω
Ω

ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ T
ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
Ω

¼ T̃
ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
ð2:21Þ

implies that T̃ ¼ T =Ω. The reasoning works in coordinates
in which g̃ab is explicitly conformally static, that is,
comoving frame and conformal time are needed.

III. TEST FLUIDS IN CONFORMALLY
STATIC SPACETIMES

We now generalize the Tolman-Ehrenfest criterion for
thermal equilibrium to the local thermal equilibrium of
fluids in conformally static spacetimes. That this is possible
is suggested by the previous example of the cosmic
microwave background in FLRW universes. Conformally
static spacetimes are nontrivial because they can be
dynamical (as the FLRW geometry), which is a significant
deviation from the situation of a static fluid at rest in a static
spacetime, to which the Tolman-Ehrenfest criterion has
been confined since its inception [1–3] (only recently a
proper description of stationary spacetimes has been
given [6–8]). We provide two different derivations of the
generalized Tolman-Ehrenfest criterion.

A. Derivation using perfect fluids

Consider a conformally static metric g̃ab ¼ Ω2gab, where
gab is static, and use coordinates ðt; xiÞ adapted to the time
symmetry, in which ∂gμν=∂t ¼ 0 and g0i ¼ 0. The nor-
malization of the four-velocity in the conformally rescaled
world −1 ¼ ũcũc ¼ Ω2gabũaũb, in conjunction with
gabuaub ¼ −1, gives

ũc ¼ uc

Ω
; ũc ¼ Ωuc: ð3:1Þ

In the comoving frame of the fluid, assumed to coincide
with the frame of the static observers, the components of
the fluid’s four-velocity are uμ ¼ ðu0; 0; 0; 0Þ and the
conformal image of this frame is the comoving frame of
the conformally transformed fluid because

ũμ ¼
�
u0

Ω
; 0; 0; 0

�
: ð3:2Þ

Denoting with g̃ð3Þ the determinant of the spatial three-
metric induced by g̃ab, the three-dimensional volume of a
region of the rescaled three-space is

Ṽ ¼
Z

d3x⃗
ffiffiffiffiffiffiffi
g̃ð3Þ

q
¼

Z
d3x⃗

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω6gð3Þ

q
¼

Z
d3x⃗Ω3

ffiffiffiffiffiffiffi
gð3Þ

q
;

ð3:3Þ

thus, if Ω ¼ ΩðtÞ, then Ṽ ¼ Ω3V, but this is not true
if ΩðxμÞ depends on the spatial coordinates. However,
it is always true that for infinitesimal volumes dṼ ¼ffiffiffiffiffiffiffi
g̃ð3Þ

p
d3x ¼ Ω3

ffiffiffiffiffiffiffi
gð3Þ

p
d3x ¼ Ω3dV. The relations ρ̃ ¼

Ω−4ρ and P̃ ¼ Ω−4P valid for perfect fluids in FLRW
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spacetimes [21] can be generalized to test fluids in any
conformally static spacetime. In fact, equivalent Lagrangian
densities for a perfect fluid are −ρ and P [22–25]. We can
relate these equivalent actions for a perfect fluid to those of
the conformally transformed fluid as follows:

J ≡
Z

d4x
ffiffiffiffiffiffi
−g

p
LðmÞ
ð1Þ ¼ −

Z
d4x

ffiffiffiffiffiffi
−g

p
ρ

¼ −
Z

d4x
ffiffiffiffiffiffi
−g̃

p
ρ̃ ¼

Z
d4x

ffiffiffiffiffiffi
−g̃

p
L̃ðmÞ
ð1Þ ; ð3:4Þ

where ρ̃ ¼ Ω−4ρ and g̃ ¼ Ω8g. Similarly, for the equivalent
perfect fluid Lagrangian,

J ≡
Z

d4x
ffiffiffiffiffiffi
−g

p
LðmÞ
ð2Þ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
P

¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
P̃ ¼

Z
d4x

ffiffiffiffiffiffi
−g̃

p
L̃ðmÞ
ð2Þ ; ð3:5Þ

where P̃ ¼ Ω−4P. The perfect fluid remains a perfect fluid if
we add the information that ũa ¼ Ωua. In fact,

T̃ab ¼ ρ̃ũaũb þ P̃h̃ab ¼ Ω−4ρΩuaΩub þΩ−4PΩ2hab

¼ Ω−2ðρuaub þ PhabÞ ¼ Ω−2Tab∶ ð3:6Þ

the conformal transformation does not generate dissipative
terms in the stress-energy tensor of a test perfect fluid.
However, if Tab sources the Einstein equations, then g̃ab is
not a solution of the Einstein equations with the same source
because these change to

G̃ab ¼ 8πðT̃ab þ TðΩÞ
ab Þ; ð3:7Þ

where

8πTðΩÞ
ab ¼ −

2

Ω
ð∇a∇bΩ − gab□ΩÞ

þ 1

Ω2
ð4∇aΩ∇bΩ − gab∇cΩ∇cΩÞ ð3:8Þ

is generated by Ω and its first and second covariant
derivatives. This fact is immaterial for our discussion, in
which Tab describes a test fluid and the Tolman-Ehrenfest
criterion is purely kinematic [7]; hencewedonotworry about
the field equations.
Let us proceed with our reasoning. For a conformally

static spacetime, the proper three-volume element is
dṼ ¼ Ω3dV ≡Ω3dṼcomoving. For a perfect fluid the
entropy is constant along the fluid lines, which means that
there is no entropy generation (because there is no
dissipation) in the comoving frame, or the entropy remains
constant in time in the comoving frame and, in this frame,
also the entropy density

s̃comoving ≡ dS̃

dṼcomoving
¼ const: ð3:9Þ

Then

s̃comoving ¼
dS̃

dṼcomoving
¼ dS̃

Ω−3dṼ

¼ Ω3s̃ ¼ Ω3

�
ρ̃þ P̃

T̃

�
¼ const: ð3:10Þ

Using the fact just proven that ρ̃ ¼ Ω−4ρ, P̃ ¼ Ω−4P, we
can write

Ω−1
�
ρþ P

T̃

�
¼ const; ð3:11Þ

which implies that

T̃ ¼ const

�
ρþ P
Ω

�
¼ const

T
Ω

�
ρþ P
T

�
: ð3:12Þ

Using now the fact that for the Minkowski space perfect
fluid s ¼ ðρþ PÞ=T is constant, we have T̃ ¼ const T =Ω.
The multiplicative constant is determined by the fact that
Ω ¼ 1 (or more generally, Ω ¼ const) gives the identity,
yielding

T̃ ¼ T
Ω
: ð3:13Þ

As is well-known (e.g., [21]), in general the stress-
energy tensor of the conformally transformed fluid is not
covariantly conserved but satisfies

∇̃bT̃ab ¼ −
T̃∇aΩ
Ω3

ð3:14Þ

and is conserved only for a conformally invariant fluid with
T ¼ T̃ ¼ 0 (this is the case for the radiation fluid in FLRW
universes just considered).

B. Derivation from Eckart’s law of heat conduction

In the conformally static geometry g̃ab ¼ Ω2gab,
Eckart’s law for heat conduction in a dissipative fluid
reads [16]

q̃a ¼ −K̃h̃abð∇̃bT̃ þ T̃ ãbÞ: ð3:15Þ

If the generalized Tolman-Ehrenfest criterion T̃ ¼ T =Ω
holds in the conformally rescaled frame, one should be able
to derive it directly from Eckart’s law (1.5) written in this
frame, which we do here. Essentially, we use again the
definition of local thermal equilibrium q̃a ¼ 0, and the
temperature T is not required to be time independent.
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Indeed, even if uc∇cT ¼ 0 in the static spacetime, in the
rescaled world

ũc∇̃cT̃ ¼ ub

Ω
∇b

�
T
Ω

�
¼ ub∇bT

Ω2
−
T ub∇bΩ

Ω3
¼ −

T _Ω
Ω3

≠ 0

ð3:16Þ

unless the conformal factor Ω is time independent, which
would bring us back to the rather trivial example 1 of
Sec. II A.
Recall that, to derive the Tolman-Ehrenfest law in a static

spacetime, one uses the Buchdahl identity [26] ac ¼
∇c ln

ffiffiffiffiffiffiffiffiffiffi−g00
p

(the Appendix). While, in general, it is not

true that ãc ¼ ∇̃c ln
ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
, the relation

h̃abãb ¼ h̃ab∇̃b ln
ffiffiffiffiffiffiffiffiffiffi
−g̃00

p ð3:17Þ

is valid and is all that is needed. This condition differs from
the previous one if the four-acceleration has a component
parallel to the four-velocity. Instances in which a four-force
is parallel to the four-velocity of a particle and causes an
effective acceleration with the same direction comprise
particles with variable mass [27,28] (including rockets and
solar sails [29–31]), interacting dark energy [32–37],
timelike geodesic curves mapped to the Einstein frame
of scalar-tensor or dilaton gravity [21,38–41], the world-
lines of fluid elements in FLRW cosmology as seen by
comoving observers when the cosmic fluid is not a
dust [42], and nonaffinely parametrized geodesics [17].
The reason why a four-acceleration is not parallel to the
corresponding four-velocity is simply because, in these
situations, the proper time fails to be an affine parameter
along the particle trajectory and does not contradict
standard tenets of special relativity [42].
To prove Eq. (3.17), first compute

ãa ≡ ũb∇̃bũa ¼
ub

Ω
∇̃bðΩuaÞ ¼

�
ub∇bΩ

Ω

�
ua þ ub∇̃bua ¼

_Ω
Ω
ua þ ubð∂bua − Γ̃c

abucÞ

¼
_Ω
Ω
ua þ ub

�
∂bua − Γc

abuc −
1

Ω
ðδcb∂aΩþ δca∂bΩ − gab∂cΩÞ

�
uc

¼
_Ω
Ω
ua þ ub∇bua −

1

Ω
ucuc∂aΩ ¼

_Ω
Ω
ua þ aa þ

∇aΩ
Ω

¼ aa þ
1

Ω
ðuaub∇bΩþ gab∇bΩÞ≡ aa þ hab

∇bΩ
Ω

; ð3:18Þ

where we used [4,21]

Γ̃c
ab ¼ Γc

ab þ
1

Ω
ðδcb∂aΩþ δca∂bΩ − gab∂cΩÞ: ð3:19Þ

The four-acceleration ãc is still orthogonal to the four-
velocity ũc:

g̃abãaũb ¼ Ω−1ãaua ¼ Ω−1
�
aa þ hab

∇bΩ
Ω

�
ua

¼ Ω−1abub ¼ 0: ð3:20Þ

We now compute

h̃abãb ¼ Ω2hab

�
ab þ hbc

∇cΩ
Ω

�

¼ Ω2habð∇b ln
ffiffiffiffiffiffiffiffiffiffi
−g00

p þ∇b lnΩÞ
¼ Ω2hab∇b ln ðΩ ffiffiffiffiffiffiffiffiffiffi

−g00
p Þ

¼ Ω2hab∇b ln
ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
¼ h̃ab∇̃b ln

ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
; ð3:21Þ

which completes the proof5 of Eq. (3.17). One then has

q̃a ¼ −K̃h̃abð∇̃bT̃ þ T̃ ãbÞ
¼ −K̃h̃abT̃

�
∇̃b ln T̃ þ ∇̃b ln

ffiffiffiffiffiffiffiffiffiffi
−g̃00

p �

¼ −K̃h̃abT̃ ∇̃b ln
�
T̃

ffiffiffiffiffiffiffiffiffiffi
−g̃00

p �
; ð3:22Þ

and thermal equilibrium q̃a ¼ 0 implies that
∇̃b ln ðT̃ ffiffiffiffiffiffiffiffiffiffi

−g̃00
p Þ is parallel to ũb. Then T̃

ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
must

depend only on time,

T̃
ffiffiffiffiffiffiffiffiffiffi
−g̃00

p
¼ fðtÞ; ð3:23Þ

where fðtÞ is an integration function, or

5Contrary to the proof of the analogous relation for static
spacetimes (the Appendix), the Killing equation has not been
used. Indeed, the conformally rescaled world, in general, has no
timelike Killing vector, but only a conformal Killing vector [4].
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T̃ ¼ fðtÞ
Ω ffiffiffiffiffiffiffiffiffiffi−g00
p ¼ fðtÞT

Ω
�
T

ffiffiffiffiffiffiffiffiffiffi−g00
p � ¼ const

fðtÞT
Ω

: ð3:24Þ

The product const × fðtÞ is fixed by the fact that, if Ω≡ 1,
the conformal transformation must reduce to the identity
with T̃ ¼ T and const × fðtÞ ¼ 1. We are left with
Eq. (3.13) again.

IV. CONFORMALLY SCHWARZSCHILD
GEOMETRIES

It is interesting to compare the generalized Tolman-
Ehrenfest criterion (2.4) with spacetimes designed inten-
tionally to be conformal to the (exterior) Schwarzschild
black hole geometry

ds2ð0Þ ¼ −
�
1 −

2m
r

�
dt2 þ dr2

1 − 2m=r
þ r2dΩ2

ð2Þ; ð4:1Þ

where dΩ2
ð2Þ ≡ dϑ2 þ sin2 ϑdφ2 is the line element on the

unit two-sphere and the parameter m is the (constant) black
hole mass.
The first such spacetime described here is the Sultana-

Dyer solution of the Einstein equations, which is a Petrov
type D, time-dependent, and spherically symmetric space-
time sourced by two noninteracting fluids, a null dust and
an ordinary (timelike) dust [43]. It is interpreted as
describing a black hole embedded in a spatially flat
FLRW universe.
Since we need a test fluid at rest in the static seed

spacetime to apply the criterion (2.4), we consider the
region around the Schwarzschild event horizon, in which
Hawking radiation creates a static blackbody radiation fluid
at the Hawking temperature T ¼ 1

8πm (in geometrized
units). The Tolman-Ehrenfest criterion clearly fails at
horizons since, for the Schwarzschild black hole it would
give T ¼ T 0

1−2m=r, which diverges as r → 2mþ. However,
the cause is not that the criterion is inherently bad but it is
restricted to static coordinates, and the latter fail at the
Schwarschild event horizon. Hawking radiation is a quan-
tum phenomenon and the proper calculation of the
Hawking temperature requires quantum field theory in
curved space, including a careful consideration of the
vacuum state. Once this is done and the temperature
appearing in the Tolman-Ehrenfest criterion is cured
producing the Hawking result T ¼ 1

8πm, one can consider
the Schwarzschild geometry as a seed for constructing the
Sultana-Dyer spacetime by a conformal transformation.
The Sultana-Dyer line element is [43]

ds2 ¼ a2ðη; rÞ
�
−
�
1 −

2m
r

�
dη2 þ dr2

1 − 2m=r
þ r2dΩ2

ð2Þ

�

¼ a2ðη; rÞds2ð0Þ; ð4:2Þ

where

aðη; rÞ ¼
�
ηþ 2m ln

				 r
2m

− 1

				
�

2

: ð4:3Þ

Ifm ¼ 0, the line element reduces to the FLRWone written
in conformal time. The coordinate change

τðη; rÞ ¼ ηþ 2m ln

				 r
2m

− 1

				 ð4:4Þ

turns the line element into the original Sultana-Dyer
form [43]

ds2¼a2ðτÞ
�
−dτ2þdr2þr2dΩ2

ð2Þ−
2m
r
ðdτþdrÞ2

�
; ð4:5Þ

with aðτÞ ¼ τ2 [43]. The Tolman criterion applied to the
Sultana-Dyer geometry yields the temperature

T ¼ T 0

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m=r

p ; ð4:6Þ

which, as usual, diverges at the event horizon where the
static coordinates fail, and needs to be regularized. This has
been done by Saida, Harada, and Maeda [44], who studied
the Hawking radiation of a massless, conformally coupled
scalar field ϕ in this geometry and computed the renor-
malized stress-energy tensor hTab½ϕ�i taking into account
the conformal anomaly and particle creation. The calcu-
lation, analogous to Hawking’s calculation in the fixed
Schwarschild geometry with constant mass m (that is,
neglecting backreaction), is feasible only in an adiabatic
approximation in which the black hole mass evolves very
slowly, which is necessary to guarantee thermal equilib-
rium. (This condition is analogous to the condition that
reaction rates exceed the Hubble expansion rate in a FLRW
universe to maintain local thermal equilibrium.) The
generalized Tolman-Ehrenfest criterion (2.4) then predicts
that the temperature of the Sultana-Dyer black hole is
T ¼ T 0=Ω ¼ T 0=a, where T 0 is the Hawking temper-
ature. The calculation of [44] produces the result

T ¼ 1

8πma
þ � � � ; ð4:7Þ

where the corrections omitted are negligible in the adiabatic
approximation of a slowly evolving black hole [44].
An independent calculation using the method of chiral

anomaly confirms the temperature (4.7) of the Sultana-Dyer
black hole [45,46], which is supported also by previous
heuristic dimensional reasoning [47]. The generalized
Tolman-Ehrenfest criterion makes a definite prediction
about the temperature of cosmological black holes con-
formal to Schwarzschild, and the conformal transformation
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is a popular technique to generate exact solutions of general
relativity [48] and of alternative theories of gravity [49].

V. CONCLUSIONS

The applicability of the Tolman-Ehrenfest criterion (1.2)
for the thermal equilibrium of a fluid is quite restricted. It
requires a static spacetime and a fluid at rest with respect to
the static observers of the latter, who have four-velocity
parallel to the timelike Killing vector. Extending the
Tolman-Ehrenfest criterion to more general geometries is,
therefore, not an insignificant task. Here we have presented
its generalization to conformally static spacetimes with
metric g̃ab ¼ Ω2gab, where gab is static and the test fluid
of temperature T is at rest in the frame associated with the
static observers of gab. Then, assuming local thermal
equilibrium, the generalization of the Tolman-Ehrenfest
criterion is T̃ ¼ T =Ω. The most obvious application of
this generalized criterion is to the cosmic microwave back-
ground in FLRW universes, which reproduces the well-
known scaling of its blackbody temperature T ∼ 1=a.
The temperature scaling T̃ ¼ T =Ω found is compatible

with Dicke’s heuristic argument on the scaling of physi-
cal quantities under conformal transformations [38]
(cf. Ref. [47]) and is confirmed by precise calcula-
tions [45,46] in the particular case of the Sultana-Dyer black
hole, as discussed in the previous section. With this argu-
ment, physical quantities themselves do not carry physical
meaning, which is instead attributed to the ratios of physical
quantities to their units, the only outcome of measurements.
Usually the units are taken to be constant in spacetime, but a
conformal rescaling amounts to a rescaling of physical units
that depends on the spacetime point: lengths and times scale
as Ω, masses scale as 1=Ω, and derived quantities scale
accordingly to their dimensions [38]. Then, sinceKBT is an
energy, or a mass, and KB remains constant, T should scale
as1=Ω, which iswhatwe found.Dicke’s argument, however,
is rather heuristic and is known to become imprecise in the
conformal transformation from Jordan to Einstein frame in
scalar-tensor gravity.Onemust be precise in the discussion of
what kind of fluid is considered, according to which
observers, the definition of local thermal equilibrium, and
the vanishing of qa and q̃a. It is interesting, however, that our
finding agrees with Dicke’s heuristic reasoning.
Already the generalization of the Tolman-Ehrenfest

criterion to stationary, but nonstatic, spacetimes requires
much care [6–8]. The extension of our generalization to
conformally stationary spacetimes is problematic because,
under conformal transformations, the nonunique timelike
Killing vector of the stationary spacetime gab does not map
into another timelike Killing vector of g̃ab, but only into a
conformal Killing vector [4]. In any case, the problems
encountered in stationary but nonstatic spacetimes [6–8]
are not going to be cured in conformally stationary ones.
The most interesting applications of the generalized

Tolman-Ehrenfest criterion (2.4) uncovered here (the

cosmic microwave background in FLRW universes and
the Hawking temperature of the Sultana-Dyer black hole)
are about conformally invariant systems (a blackbody gas
of Hawking radiation or a massless conformally coupled
scalar field, which is conformally invariant [4]). We suspect
that the most useful applications of this criterion will
involve conformally invariant systems, but other applica-
tions are not excluded at this stage. Even with this potential
restriction, however, it appears that interesting physics can
be tackled with the new criterion (2.4). Indeed, the
phenomena discussed here are already quite varied, ranging
from cosmology to time-dependent black holes. In any
case, even the original Tolman-Ehrenfest criterion of
thermal equilibrium now reported in textbooks [18] has
not found widespread applications to theoretical physics
and astrophysics, but it has intellectual value in itself as a
contribution to the understanding of thermal physics in
relativity, which is still fairly incomplete (as is the under-
standing of nonequilibrium thermodynamics in general),
and its generalization to nonstatic situations appears to be
valuable.
Finally, in our derivation we used the fact that the fluid is

a test fluid. Although the original Tolman-Ehrenfest tem-
perature gradient is a kinematic effect, relating solutions of
the Einstein equations (or of the field equations of alter-
native theories of gravity) through conformal transforma-
tions spoils the reasoning of Sec. III (an exception is the
radiation fluid which, due to its conformal invariance and
the fact that photons are massless, is conserved after the
conformal transformation). Further generalization of the
Tolman-Ehrenfest criterion beyond conformally static
spacetimes and test fluids seems difficult to achieve.
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APPENDIX: DERIVATION OF THE
TOLMAN-EHRENFEST CRITERION

FROM ECKART’S LAW (1.5)

Here we derive the Tolman-Ehrenfest criterion from
Eckart’s generalization of the Fourier law for heat con-
duction in imperfect fluids [16], using modern notation. We
follow Ref. [7] step-by-step.
Consider a static test fluid at rest in a static spacetime and

let gμν be the metric components in coordinates adapted to
the time symmetry. The timelike Killing vector ka satisfies
the Killing equation

∇ðakbÞ ¼
1

2
ð∇akb þ∇bkaÞ ¼ 0 ðA1Þ
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and has components kμ ¼ ð1; 0; 0; 0Þ in these coordinates,
while g00 ¼ kckc.
The first step consists of a relation, due to Buchdahl [26],

between the four-acceleration of a test particle at rest with
respect to the static observers and g00,

ac ≡ _uc ≡ ub∇buc ¼ ∇c lnð ffiffiffiffiffiffiffiffiffiffi
−g00

p Þ: ðA2Þ

To prove this relation, note that a fluid element has
normalized four-velocity

ua ¼ kaffiffiffiffiffiffiffiffiffiffiffiffiffi
−kbkb

p ðA3Þ

and four-acceleration

dub
dτ

≡ uc∇cub ¼ uc∇c

�
kbffiffiffiffiffiffiffiffiffiffiffiffiffi
−kdkd

p
�

¼ uc
� ∇ckbffiffiffiffiffiffiffiffiffiffiffiffiffi

−kdkd
p þ kb

�
−1
2

1

ð−kdkdÞ3=2
�
∇cð−kdkdÞ

�

¼ uc
� ∇ckbffiffiffiffiffiffiffiffiffiffiffiffiffi

−kdkd
p −

kb∇cð−kdkdÞ
2ð−kdkdÞ3=2

�
ðA4Þ

(where τ is the proper time along the fluid lines). The
second term in the last line vanishes since ka∇aðkbkbÞ ¼ 0
because

ka∇aðkbkbÞ ¼ ka∇aðgbckbkcÞ
¼ kagbcðkc∇akb þ kb∇akcÞ
¼ kakcð∇akcÞ þ kakcð∇akcÞ
¼ 2kakc∇akc

¼ 2kakc∇ðakcÞ ¼ 0;

where, in the second to last step, we used the fact that since
kakb is symmetric only the symmetric part of ∇akb
contributes, while the last step follows from the Killing
equation. Then the fluid’s four-acceleration is

ab ¼
uc∇ckbffiffiffiffiffiffiffiffiffiffiffiffiffi
−kdkd

p ¼ kcffiffiffiffiffiffiffiffiffiffiffiffiffi
−kdkd

p ∇ckbffiffiffiffiffiffiffiffiffiffiffiffiffi
−kdkd

p

¼ kc∇ckb
−kdkd

¼ −kc∇bkc
−kdkd

; ðA5Þ

where we used again the Killing equation (A1). Since
∇bðkckcÞ ¼ 2kc∇bkc,

kc∇bkc ¼
1

2
∇bðkckcÞ ðA6Þ

and the above identity yields

ab ¼
∇cð−kdkdÞ
−2kdkd

¼ ∇b ln ð−kdkdÞ
2

¼ ∇b ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
−kdkd

q �
:

ðA7Þ
In the adapted coordinates kaka ¼ g00, and hence

ab ¼ ∇b ln
ffiffiffiffiffiffiffiffiffiffi
−g00

p
: ðA8Þ

Eckart’s generalization of the Fourier law for heat con-
duction in dissipative fluids is then used to complete the
derivation. The Tolman-Ehrenfest criterion refers to perfect
fluids, described by the simpler stress-energy tensor

Tab ¼ ρuaub þ Phab; ðA9Þ
but in Eckart’s first-order thermodynamics an imperfect fluid
at rest coincides with that of a perfect fluid because the
imperfect fluid dissipative quantities are assumed to be linear
in the gradient of the four-velocity [cf. Eqs. (1.5)–(1.7) [16]].
For a fluid at rest in a static spacetime, Θ and σab vanish

and qa ¼ 0 in thermal equilibrium; hence the stress-energy
tensor (1.3) takes the perfect fluid form (A9). The temper-
ature of such a fluid is time-independent,

dT
dτ

≡ ua∇aT ¼ 0; ðA10Þ

and then

hab∇bT ≡ ðuaub þ gabÞ∇bT ¼ ∇aT : ðA11Þ

By definition there is no heat flow in thermal equilibrium,
qa ¼ 0, and Eckart’s law (1.5) gives

∇aT þ T ∇aðln
ffiffiffiffiffiffiffiffiffiffi
−g00

p Þ ¼ 0;

∇a ln T þ∇a ln
ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ const;

and finally

T
ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ const: ðA12Þ
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