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We investigate dynamical properties of static and spherically symmetric systems in the self-accelerating
branch of the minimal theory of bigravity (MTBG). In the former part, we study the gravitational collapse
of pressureless dust and find special solutions, where, in both the physical and fiducial sectors, the exterior
and interior spacetime geometries are given by the Schwarzschild spacetimes and the Friedmann-Lemaître-
Robertson-Walker universes dominated by pressureless dust, respectively, with specific time slicings. In the
case where the Lagrange multipliers are trivial and have no jump across the matter interfaces in both the
physical and fiducial sectors, the junction conditions across them remain the same as those in general
relativity (GR). For simplicity, we foliate the interior geometry by homogeneous and isotropic spacetimes.
For a spatially flat interior universe, we foliate the exterior geometry by a time-independent flat space,
while for a spatially curved interior universe, we foliate the exterior geometry by a time-independent space
with deficit solid angle. Despite the rather restrictive choice of foliations, we find interesting classes of
exact solutions that represent gravitational collapse in MTBG. In the spatially flat case, under a certain
tuning of the initial condition, we find exact solutions of matter collapse in which the two sectors evolve
independently. In the spatially closed case, once the matter energy densities and the Schwarzschild radii are
tuned between the two sectors, we find exact solutions that correspond to the Oppenheimer-Snyder model
in GR. In the latter part, we study odd-parity perturbations of the Schwarzschild–de Sitter solutions written
in the spatially flat coordinates. For the higher-multipole modes l ≥ 2, we find that, in general, the system
reduces to that of four physical modes, where two of them are dynamical and the remaining two are
shadowy, i.e., satisfying only elliptic equations. In the case where the ratio of the lapse functions between
the physical and fiducial sectors are equal to a constant determined by the parameters of the theory, the
two dynamical modes are decoupled from each other, but sourced by one of the shadowy modes.
Otherwise, the two dynamical modes are coupled to each other and sourced by the two shadowy modes. At
least for the cases of collapse described in this paper, we find that the ratio of the lapse functions is
determined by the properties of the collapse itself. On giving appropriate boundary conditions to the
shadowy modes so as to not strongly backreact/influence the dynamics of the master variables, in the high
frequency and short wavelength limits, we show that the two dynamical modes do not suffer from ghost or
gradient instabilities. For the dipolar mode l ¼ 1, the two copies of the slow-rotation limit of the Kerr–de
Sitter metrics cannot be a solution in the self-accelerating branch, unless the mass and spin of black holes
and effective cosmological constants are tuned to be the same. Therefore, deviation from GR is expected for
rotating black holes in the self-accelerating branch of MTBG.

DOI: 10.1103/PhysRevD.107.064070

I. INTRODUCTION

Modified gravity theories have been proposed from
theoretical and observational points of view [1,2]. While
general relativity (GR) has passed all the experimental
tests so far in the weak-field regime [3], a new window for
testing gravitational theories has opened with the dawn of

gravitational-wave astronomy [4,5]. Massive and bigravity
theories are promising candidates to elucidate the origin of
the present day’s cosmic acceleration. The first model of
massive gravity that is free from the ghost instability was
formulated in the context of the linearized gravity by Fierz
and Pauli [6]. The attempts to extend the Fierz-Pauli theory
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to the nonlinear case have not been successful for a long
time, because of the reintroduction of a ghost degree of
freedom through nonlinear higher-derivative interactions
in the scalar sector, which is known as the Boulware-Deser
(BD) ghost [7]. The first construction of nonlinear massive
gravity theory free from the BD ghost was eventually
provided by de Rham et al. (dRGT) [8]. dRGT massive
gravity was then extended to a bigravity theory by Hassan
and Rosen (HR) [9] by promoting the fiducial metric to be
a dynamical field.1

The minimal theory of massive gravity (MTMG) [13,14]
is a different extension of dRGT massive gravity. In
MTMG, there are two tensorial degrees of freedom
(d.o.f.) as in GR. While the four-dimensional diffeomor-
phism invariance is explicitly broken, as the fiducial metric
is given as a function of the coordinates, the absence of
otherwise problematic scalar and vector d.o.f. makes it easy
for the theory to be consistent with experimental and
observational data. For instance, while MTMG shares
the same homogeneous and isotropic background cosmol-
ogy with dRGT massive gravity, including the existence of
two separate branches, it does not suffer from the insta-
bilities that appear in dRGT massive gravity [15–17],
thanks indeed to the absence of the extra scalar and vector
d.o.f. The cosmological solutions in MTMG are, as in
dRGT, classified into the normal and self-accelerating
branches [18–20]. Any solution in GR with or without
matter written in the spatially flat coordinates has been
shown to be a solution in the self-accelerating branch of
MTMG [21].
Using a construction similar to MTMG, HR bigravity

was then extended to the minimal theory of bigravity
(MTBG) [22], where the four-dimensional diffeomor-
phism invariance is broken down to the three-dimensional
one and time-reparametrization invariance. While, by
construction, MTBG shares the same background cosmo-
logical dynamics with HR bigravity, the number of
propagating d.o.f. are down to four: two tensorial d.o.f.
in the physical sector and the other two in the fiducial
sector. The absence of the extra scalar and vector d.o.f. in
MTBG implies the absence of ghost or gradient instabil-
ities associated with them [23–25]. In the case where the
matter sectors are coupled to the two metrics separately
and independently, cosmology in MTBG has been inves-
tigated in Ref. [22], which showed that in the self-
accelerating branch both background cosmology and
dynamics of the scalar and vector cosmological linear
perturbations behave in the same way as in two copies of
GR. On the other hand, two of the tensor modes acquire a
nonzero mass. In the normal branch, another nontrivial
difference arises in addition to the presence of two massive

tensor modes: deviation in the dynamics for both back-
ground and the scalar sector from GR could be already
observed and possibly lead to nontrivial interesting phe-
nomenology. The absence of extra scalar and vector modes
in MTBG also helps in developing a new production
scenario of spin-2 dark matter based on the transition from
an anisotropic fixed point solution to an isotropic one
within axisymmetric Bianchi type-I universes [26].
MTMG and MTBG are theories with constraints. By

construction, they possess constraints out of which the
unwanted modes can be removed nonlinearly from the
theory. This nice feature is motivated by the fact that
whatever new theory of gravity we introduce should
reproduce the whole range of gravitational phenomenology
we already know. However, the introduction of such
constraints is a nontrivial task. On one hand, the choice
of constraints is not unique. Other MTMGs and/or MTBGs
can, in principle, be introduced, and a priori it is not an
easy task to discriminate one choice of constraints from
another. On the other hand, each set of constraints we pick
up for MTMG, including the one we will study in this
paper, may restrict the space of solutions of the theory in a
different way. While this is to be expected, by the same
nature of a constraint, once more, it is not clear a priori how
to determine which configurations are not allowed to be
solutions of the specific choice of theory.
Despite the fact that this fact by itself would not be

already introducing new and/or unexpected phenomenol-
ogy, there is also another feature shared by these theories:
the presence of shadowy modes [27]. In fact, as we will also
see in this paper, the constraints lead to the presence of
modes that only exist on a spacelike three-dimensional
hypersurface. These modes are present not only in MTMG
and MTBG, but also in other theories: for instance,
Refs. [28,29], which also allow for the existence of
shadowy modes. They all share the property that they
satisfy elliptic equations for which some appropriate
boundary conditions need to be imposed. As a conse-
quence, the very existence of such modes introduces a
preferred frame for the theory, i.e., the frame on which their
equations of motion are manifestly elliptic. This leads to the
consequence that, even for a given GR solution, different
choices of frames may or may not be compatible with the
existence of the shadowy modes; i.e., some slicings of GR
solutions may be allowed as solutions by the theory, but
others may not. This fact leads, for instance, to the absence
of the Birkhoff theorem for these theories. Therefore, it is of
primary importance to try to find all the solutions for a
given symmetry or physical configuration.
Some of these foliation-and-branch specific solutions of

MTBG have already been found. For instance, in a
previous work [30], we have investigated the static and
spherically symmetric solutions in the self-accelerating
and normal branches of MTBG. We have shown that a pair
of Schwarzschild–de Sitter spacetimes with different

1HR bigravity, however, still suffers from the BD ghost, when
matter is coupled to both the physical and fiducial metrics [10,11].
See also [12].
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cosmological constants and black hole masses written in
the spatially flat [Gullstrand-Painlevé (GP)] coordinates is
a solution in the self-accelerating branch of MTBG. In the
case where the two matter sectors are coupled to the two
metrics separately and independently, the self-accelerating
branch also admits static and spherically symmetric copies
of two GR solutions written in the spatially flat coordi-
nates, which include neutron stars with arbitrary equations
of state of matter. In addition to these solutions, we also
find nontrivial solutions that correspond to Schwarzschild–
de Sitter solutions, written in nonstandard coordinates. It
should be added that these solutions have been found by
imposing trivial configurations/profiles for the Lagrangian
multipliers, introduced in the theory so as to impose the
same above-mentioned constraints that define the theory
itself. The same approach will be taken in this paper. It is
not clear what kinds of new solutions are to be expected
once we move away from this simple ansatz for the
Lagrange multipliers.
On the other hand, in the normal branch, while the

spatially flat coordinates of the Schwarzschild–de Sitter
metrics cannot be solutions, those written in the coordinates
with DiDiK ¼ 0, where Di is the covariant derivative
associated with the spatial metric and K is the trace of
the extrinsic curvature tensor on the constant-time hyper-
surfaces, could be solutions, provided that the two metrics
are parallel, showing also for this case a severe fine-tuning of
the possible configurations. An example for such solutions
were given, i.e., the ones with K ¼ constant, which turn out
to be also solutions for the case of a single physical metric, in
the context of the VCDM models that replace the cosmo-
logical constant Λ in the ΛCDM (Λ cold dark matter) model
with a function of an auxiliary field ϕ, VðϕÞ [28,31–33].
As the next step, in this paper we will study the

dynamical processes only in the self-accelerating branch
of MTBG and investigate whether any deviation from the
GR predictions can be observed with the inclusion of time
dependence at the level of the background solutions and
perturbations, respectively.
Our analysis will be composed of two parts. In the

former, we will study spherical gravitational collapse of
pressureless dust in the self-accelerating branch of MTBG.
In the case where the two species of matter are independ-
ently coupled to the two metrics separately and independ-
ently, we will derive special solutions describing spherical
collapse of pressureless dust in both the physical and
fiducial sectors, where the interior regions of the matter
distribution are described by the spatially flat or closed
Friedmann-Lemaître-Robertson-Walker (FLRW) uni-
verses and the exterior geometry is the Schwarzschild
spacetime with specific time slicings. For simplicity, we
foliate the interior geometry by homogeneous and iso-
tropic spacetimes. For a spatially flat interior universe, we
foliate the exterior geometry by a time-independent flat
space, while for a spatially curved interior universe, we

foliate the exterior geometry by a time-independent space
with deficit solid angle. Despite the rather restrictive
choice of foliations, we find interesting classes of exact
solutions that represent gravitational collapse in MTBG.
The spatially flat solutions are obtained under certain
tuning of the initial conditions of the collapse. The
spatially closed case corresponds to an extension of the
Oppenheimer-Snyder model in GR [34–36] to MTBG. We
will show that, in this case, gravitational collapse happens
in the physical and fiducial sectors in the same manner as
in two copies of GR independently, under certain tuning
of the matter energy densities and Schwarzschild radii
between the two sectors. Needless to say, these tunings
reflect the fact that we restrict our considerations to rather
specific choice of time slicings.
In the latter part, we will investigate the odd-parity

perturbations of the Schwarzschild–de Sitter solutions
written in the spatially flat coordinates in the self-accel-
erating branch of MTBG. For the higher-multipolar modes
l ≥ 2, where l represents the angular multipole moment,
we derive the master equations governing the dynamics of
the odd-parity perturbations in both physical and fiducial
sectors in MTBG. We will find that there are four physical
modes, where two of them are dynamical and the remaining
two are shadowy, which obey elliptic equations and are
fixed by the spatial boundary conditions on each step of the
time evolution [27,29]. In the case where the ratio of the
lapse functions in the physical and fiducial sectors is equal
to a constant determined by the free parameters of theory,
the two dynamical modes are decoupled and sourced by one
of the shadowy modes. Otherwise, the two dynamical
modes are coupled to each other and sourced by the two
shadowy modes. In the high frequency and short wave-
length limits, we also verify the modes are not suffering
from ghost or gradient instabilities, provided we can neglect
backreactions from the shadowy modes, by giving appro-
priate boundary conditions to them. For the dipolar mode
l ¼ 1, we will show that the two copies of the slow-rotation
limit of the Kerr–de Sitter metrics, in general, cannot be a
solution in MTBG, unless the mass and spin of the black
holes and the effective cosmological constants in the two
sectors are tuned to be the same. Therefore, deviation
from GR is expected for rotating black holes in the self-
accelerating branch of MTBG. Readers should also refer to
the last paragraph in Sec. IVof [37] for a similar statement in
the context of MTMG.
The structure of this paper is as follows: In Sec. II, we

review the MTBG theory. In Sec. III, we derive the exact
solutions that describe gravitational collapse of pressureless
dust, where the metrics in the interior regions filled with
matter are written in terms of the spatially flat and spatially
closed FLRW universes, respectively. In Sec. IV, we
investigate the odd-parity gravitational perturbations of
the Schwarzschild–de Sitter solutions written in the spa-
tially flat coordinates in the self-accelerating branch of
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MTBG. The last section is devoted to giving a brief
summary and conclusion.

II. THE MINIMAL THEORY OF BIGRAVITY

In this section, we review MTBG following
Refs. [22,30].

A. Metrics

As in HR bigravity, MTBG is composed of two metric
sectors, the physical and fiducial metrics denoted by gμν
and fμν, respectively. Choosing the unitary gauge, the two
metrics gμν and fμν are expressed in the Arnowitt-Deser-
Misner form, respectively, as

gμνdxμdxν ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ;
fμνdxμdxν ¼ −M2dt2 þ ϕijðdxi þMidtÞðdxj þMjdtÞ;

ð1Þ

where t and xi (i ¼ 1, 2, 3) are the temporal and spatial
coordinates, and ðN;Ni; γijÞ and ðM;Mi;ϕijÞ are the sets of
the lapse function, shift vector, and spatial metric on the
constant t hypersurfaces for the metrics gμν and fμν,
respectively. The extrinsic curvature tensors on constant-
time hypersurfaces are defined by

Kij ≔
1

2N
ð∂tγij −DiNj −DjNiÞ; ð2Þ

Φij ≔
1

2M

�
∂tϕij − D̃iMj − D̃jMi

�
; ð3Þ

where Di and D̃i are covariant derivatives associated with
the spatial metrics γij and ϕij, respectively.

B. Action and equations of motion

In the unitary gauge, the action of MTBG [22] is then
given by

S ¼ 1

2κ2

Z
d4xðLg½N;Ni; γij;M;Mi;ϕij; λ; λ̄; λi�

þ Lm½N;Ni; γij;M;Mi;ϕij;Ψ�Þ; ð4Þ

where κ2 represents the gravitational constant in the
physical sector, Lg and Lm represent the gravitational
and matter parts of the Lagrangian, respectively, λ, λ̄,
and λi are two scalar and one spatial-vector Lagrange
multipliers, and Ψ represents the matter sector.
The gravitational Lagrangian Lg of MTBG is further

decomposed into the precursor and constraint parts as

Lg ≔ Lpre½N;Ni; γij;M;Mi;ϕij�
þ Lcon½N;Ni; γij;M;Mi;ϕij; λ; λ̄; λi�; ð5Þ

with

Lpre ≔
ffiffiffiffiffiffi
−g

p
R½g� þ α̃2

ffiffiffiffiffiffi
−f

p
R½f� −m2

�
N

ffiffiffi
γ

p
H0 þM

ffiffiffiffi
ϕ

p
H̃0

�
;

Lcon ≔
ffiffiffi
γ

p
α1γðλþ Δγ λ̄Þ þ

ffiffiffiffi
ϕ

p
α1ϕðλ − Δϕλ̄Þ þ ffiffiffi

γ
p

α2γðλþ Δγλ̄Þ2 þ
ffiffiffiffi
ϕ

p
α2ϕðλ − Δϕλ̄Þ2

−m2

� ffiffiffi
γ

p
Ui

kDiλ
k − β

ffiffiffiffi
ϕ

p
Ũk

iD̃iλk
�
; ð6Þ

and

α1γ ≔ −m2Up
qKq

p; α1ϕ ≔ m2Ũp
qΦq

p;

α2γ ≔
m4

4N

�
Up

q −
1

2
Uk

kδ
p
q

�
Uq

p; α2ϕ ≔
m4

4Mα̃2

�
Ũq

p −
1

2
Ũk

kδq
p

�
Ũp

q; ð7Þ

where the constant α̃ represents the ratio of the two
gravitational constants, m is a parameter with dimensions
of mass that can be related with the graviton mass, β is a
constant, and γ ≔ detðγijÞ and ϕ ≔ detðϕijÞ are the deter-
minants of the three-dimensional spatial metrics γij and
ϕij respectively. We also note that Kq

p ¼ γqrKrp and

Φq
p ¼ ϕqrΦrp. Furthermore, H0 and H̃0 are defined by

H0 ≔
P

3
n¼0 c4−nenðKÞ and H̃0 ≔

P
3
n¼0 cnenðK̃Þ with

e0ðKÞ ¼ 1; e1ðKÞ ¼ ½K�; e2ðKÞ ¼ 1

2

�
½K�2 − ½K2�

�
;

e3ðKÞ ¼ detðKÞ; ð8Þ

and similar for enðK̃Þ with Ki
k and K̃k

i characterized by
Ki

kKk
j ¼ γikϕkj and K̃j

kK̃k
i ¼ γjkϕ

ki; Δγ ≔ γijDiDj and
Δϕ ≔ ϕijD̃iD̃j are the Laplacian operators in the physical
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and fiducial sectors, respectively, and the spatial tensors
Ui

j and Ũji are defined by

Ui
j ≔

1

2

X3
n¼1

c4−nðUðnÞij þ γikγjlUðnÞlkÞ;

Ũj
i ≔

1

2

X3
n¼1

cn

�
ŨðnÞji þ ϕikϕjlŨðnÞkl

�
; ð9Þ

with UðnÞik ≔
∂enðKÞ
∂Kk

i
and ŨðnÞki ≔

∂enðK̃Þ
∂K̃k

i
, and cj (j ¼ 0, 1,

2, 3, 4) being dimensionless coupling constants. Although
one of cj (j ¼ 0, 1, 2, 3, 4) may be set to unity by a
redefinition of the mass parameter m, in order to discuss
the various limiting cases of each coefficient, we keep
them as independent parameters.
Variation of the action (4) with respect to N, Ni, γij, M,

Mi, and ϕij provides the equations of motion for the two
metrics, and variation with respect to Ψ provides the
equations of motion for the matter field. On the other
hand, variation with respect to the Lagrange multipliers λ,
λ̄, and λi gives the constraint equationsffiffiffi
γ

p
α1γ þ

ffiffiffiffi
ϕ

p
α1ϕ þ 2

ffiffiffi
γ

p
α2γðλþ Δγ λ̄Þ

þ 2
ffiffiffiffi
ϕ

p
α2ϕðλ − Δϕλ̄Þ ¼ 0; ð10Þffiffiffi

γ
p

Δγα1γ −
ffiffiffiffi
ϕ

p
Δϕα1ϕ þ 2

ffiffiffi
γ

p
Δγ½α2γðλþ Δγ λ̄Þ�

− 2
ffiffiffiffi
ϕ

p
Δϕ½α2ϕðλ − Δϕλ̄Þ� ¼ 0; ð11Þffiffiffi

γ
p

DpUp
q − β

ffiffiffiffi
ϕ

p
D̃pŨq

p ¼ 0: ð12Þ

C. Matter

We also assume that the matter sector Ψ is decomposed
into those in the physical and fiducial sectors Ψg and Ψf

and the matter Lagrangian Lm is given by

Lm½N;Ni; γij;M;Mi;ϕij;Ψ�
¼ Lm;g½N;Ni; γij;Ψg� þ Lm;f½M;Mi;ϕij;Ψf�: ð13Þ

The two matter sectors Lm;g and Lm;f are individually
coupled to the metrics gμν and fμν, respectively, and they
are not directly coupled to each other. In other words, the
two matter sectors can interact only through gravitation.

III. GRAVITATIONAL COLLAPSE
OF PRESSURELESS DUST

In this section, we consider two models of collapsing
matter in the self-accelerating branch of MTBG.We assume
the existence of matter surfaces that move inward in both the
sectors separately, and the spacetime metrics inside the

matter surfaces are described by either spatially flat or
closed FLRWuniverses composed of pressureless dust. The
spatially closed case corresponds to an extension of the
Oppenheimer-Snyder model in GR [34–36] to MTBG.

A. Collapse in the spherically symmetric spacetimes
in the spatially flat coordinates

First, we consider the case in which the spherically
symmetric spacetimes can be expressed in the spatially flat
coordinates

gμνdxμdxν ¼ −dt2 þ ðdrþ Nrðt; rÞdtÞ2 þ r2θabdθadθb;

ð14Þ

fμνdxμdxν ¼ C2
0

�
−b2dt2 þ ðdrþ Nr

ðfÞðt; rÞdtÞ2

þ r2θabdθadθb
�
; ð15Þ

where b > 0 and C0 > 0 are constants, t, r, and θa ¼
ðθ;φÞ are the temporal, radial, and angular coordinates,
respectively, and θab represents the metric of the unit two-
sphere. In vacuum GR with the vanishing cosmological
constant, since Nr

ðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rðfÞ=r

p
, by a redefinition of r̃ ¼ r

b,

C0 → C0=b, and rðfÞ → rðfÞb3 the metric (15) can be
brought to that with b ¼ 1. In MTBG, the constant bC0

measures the ratio of the lapse functions between the
fiducial and physical sectors.
In the spherically symmetric systems, the general ansatz

for the Lagrange multipliers is given by

λ¼ λðt; rÞ; λ̄¼ λ̄ðt; rÞ; λr ¼ λrðt; rÞ; λa ¼ 0: ð16Þ

We assume that in each of the physical and fiducial sectors
the spacetime is divided into the interior and exterior
regions, where the interior regions are filled with pressure-
less dust. The interfaces between the two regions follow the
trajectories on the ðt; rÞ plane

ðt; rÞ ¼ ðTðgÞðτðgÞÞ; RðgÞðτðgÞÞÞ; ðTðfÞðτðfÞÞ; RðfÞðτðfÞÞÞ;
ð17Þ

where τðgÞ and τðfÞ represent the proper times on the
interfaces in the physical and fiducial sectors, and
Tðg;fÞðτðg;fÞÞ < 0 and Rðg;fÞðτðg;fÞ > 0 are smooth functions
of τðg;fÞ representing the temporal and radial positions of
the interfaces in both the sectors, respectively. The four
velocities of the interfaces are, respectively, given by

uμðgÞ ¼
�
_TðgÞ; _RðgÞ;0;0

�
; uμðfÞ ¼

�
_TðfÞ; _RðfÞ;0;0

�
; ð18Þ
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where the dot represents the derivative with respect to the
proper time τðgÞ or τðfÞ in each sector, respectively. Since
matter is collapsing, the interfaces are moving inward in
the radial directions, respectively, _RðgÞ < 0 and _RðfÞ < 0.
The trajectories of the interfaces are timelike gμνu

μ
ðgÞu

ν
ðgÞ ¼

fμνu
μ
ðfÞu

ν
ðfÞ ¼ −1, which can be solved as

_TðgÞ ¼
1

1 − ðNrÞ2
�
Nr _RðgÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðNrÞ2 þ _R2

ðgÞ
q �

; ð19Þ

_TðfÞ ¼
1

C0

�
b2 − ðNr

ðfÞÞ2
�

×

�
C0Nr

ðfÞ _RðfÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2− ðNr

ðfÞÞ2þC2
0b

2 _R2
ðfÞ

q �
: ð20Þ

For the unique definition of the time derivatives (19)
and (20), Nr and Nr

ðfÞ defined in the interior and exterior
regions have to coincide at the interfaces.
The unit normals to the interfaces satisfying the nor-

malization and orthogonality conditions gμνn
μ
ðgÞn

ν
ðgÞ ¼

fμνn
μ
ðfÞn

ν
ðfÞ ¼ 1 and gμνu

μ
ðgÞn

ν
ðgÞ ¼ fμνu

μ
ðfÞn

ν
ðfÞ ¼ 0 point

outward in the radial direction. The induced metrics on
the interfaces are then given by

hijdyidyj ¼ gμνeðgÞμieðgÞνjdyidyj

¼ −dτ2 þ R2
ðgÞθabdθ

adθb; ð21Þ

kijdyidyj ¼ fμνeðfÞμieðfÞνjdyidyj

¼ −dτ2ðfÞ þ C2
0R

2
ðfÞθabdθ

adθb; ð22Þ

where the nonzero components of the projection tensors
are given by eðgÞtτ ¼ _TðgÞ, eðgÞrτ ¼ _RðgÞ, eðgÞab ¼ δab,

eðfÞtτ ¼ _TðfÞ, eðfÞrτ ¼ _RðfÞ, and eðfÞab ¼ δab with the
indices a, b representing the angular directions.
The extrinsic curvature tensors on the interfaces in the

physical and fiducial sectors are given by

K̃ðgÞ
ij ¼ eðgÞμieðgÞνj∇ðgÞ

μ nðgÞν ; K̃ðfÞ
ij ¼ eðfÞμieðfÞνj∇ðfÞ

μ nðfÞν ;

ð23Þ

whose nonzero components are given by

K̃ðgÞ
ττ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðNrÞ2 þ _R2
ðgÞ

q �
−R̈ðgÞ þ

ð1 − ðNrÞ2Þ2NrNr
;r − ðNr _RðgÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

ðgÞ − ðNrÞ2
q

Þ2Nr
;t

ð1 − ðNrÞ2Þ2
�
;

K̃ðgÞ
ab ¼ RðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðNrÞ2 þ _R2

ðgÞ
q

θab;

K̃ðfÞ
ττ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − ðNr
ðfÞÞ2 þ b2C2

0
_R2
ðfÞ

q

×

�
−bC0R̈ðfÞ þ

�
b2 − ðNr

ðfÞÞ2
�

2

Nr
ðfÞN

r
ðfÞ;r − b2ðC0Nr

ðfÞ _RðfÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ b2C2

0
_R2
ðfÞ − ðNr

ðfÞÞ2
q

Þ2Nr
ðfÞ;t

bC0

�
b2 − ðNr

ðfÞÞ2
�

2

�
;

K̃ðfÞ
ab ¼ C0RðfÞ

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ðNr

ðfÞÞ2 þ b2C2
0
_R2
ðfÞ

q
θab: ð24Þ

We consider the background solutions where Lagrange
multipliers are trivial in both the interior and exterior
regions and continuous across the interfaces

λ ¼ λr ¼ 0; λ̄ ¼ λ̄0 ¼ constant: ð25Þ

Since the contributions of the constraints to the metric
equations of motion do not contain second-order deriva-
tives of the metric functions, in the case where the Lagrange
multipliers are trivial and continuous across the interfaces,
the junction conditions in both the physical and fiducial
sectors are identical to those in the two copies of GR.

The first junction conditions correspond to the continuity
of the induced metrics on the interfaces

½hij�≔ hðþÞ
ij − hð−Þij ¼ 0; ½kij�≔ kðþÞ

ij − kð−Þij ¼ 0; ð26Þ

where below (þ) and (−) denote the regions outside and
inside the interfaces, which means the continuity of Nr and
Nr

ðfÞ across the interfaces
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NrðþÞðTðgÞ; RðgÞÞ ¼ Nrð−ÞðTðgÞ; RðgÞÞ;
NrðþÞ

ðfÞ ðTðfÞ; RðfÞÞ ¼ Nrð−Þ
ðfÞ ðTðfÞ; RðfÞÞ: ð27Þ

The second junction conditions are the jump of the extrinsic
curvature tensors across the interfaces

½K̃ðgÞ
ij � ≔ K̃ðgÞðþÞ

ij − K̃ðgÞð−Þ
ij ¼ κ2

�
SðgÞij −

1

2
SðgÞhij

�
;

½K̃ðfÞ
ij � ≔ K̃ðfÞðþÞ

ij − K̃ðfÞð−Þ
ij ¼ κ2

α̃2

�
SðfÞij −

1

2
SðfÞkij

�
; ð28Þ

where SðgÞij and SðfÞij represent the surface energy-momen-
tum tensors of matter localized on the interfaces.

1. The exterior and interior solutions

For the spatially flat coordinates (14) and (15), the
solutions of the constraint equations (10)–(12) can be
divided into the self-accelerating and normal bran-
ches [30]. We focus on the self-accelerating branch given
by the condition

C2
0c1 þ 2C0c2 þ c3 ¼ 0: ð29Þ

Note that the Schwarzschild solutions written in the
Schwarzschild coordinates cannot describe black hole
solutions in MTBG, as they are singular at the positions
of the event horizon [30].
Outside the interfaces, r > RðgÞ and r > RðfÞ, the metric

solution is described by the Schwarzschild solutions [30]
written in the spatially flat coordinates (14) and (15),

NrðþÞðrÞ ¼
ffiffiffiffiffiffiffi
rðgÞ
r

r
; NrðþÞ

ðfÞ ðrÞ ¼
ffiffiffiffiffiffiffi
rðfÞ
r

r
; ð30Þ

where rðgÞ and rðfÞ represent the Schwarzschild radii in
both the physical and fiducial sectors, respectively, which
exist under the conditions for asymptotically Minkowski
spacetimes

C3
0c1 þ 3C2

0c2 þ 3C0c3 þ c4 ¼ 0; ð31Þ

C3
0c0 þ 3C2

0c1 þ 3C0c2 þ c3 ¼ 0; ð32Þ

together with Eq. (29). Note that the Schwarzschild
solutions exist for an arbitrary b > 0.
Inside the interfaces (r < RðgÞ and r < RðfÞ), we assume

that the metric solution is described by the spatially flat
coordinates (14) and (15) with

Nrð−Þðt; rÞ ¼ −r
a;t
aðtÞ ; Nrð−Þ

ðfÞ ðt; rÞ ¼ −r
a;t
aðtÞ ; ð33Þ

where a;t ≡ da=dt. Introducing the comoving radial coor-
dinates t ¼ tc, r ¼ rcaðtÞ, the interior solutions can be
expressed by the spatially flat FLRW metrics

gμνdxμdxν ¼ −dt2c þ aðtcÞ2ðdr2c þ r2cθabdθadθbÞ; ð34Þ

fμνdxμdxν ¼ C2
0½−b2dt2c þ aðtcÞ2ðdr2c þ r2cθabdθadθbÞ�:

ð35Þ

The fact that for the two metrics the ratio of the two effective
scale factors is a constant C0, satisfying (29), is a conse-
quence of the constraints in MTBG for the self-accelerating
branch. We assume that the spacetimes are filled with
pressureless dust fluids whose energy-momentum tensors
are given by

Tμν
ðgÞ ¼ ρðgÞv

μ
ðgÞv

ν
ðgÞ; Tμν

ðfÞ ¼ ρðfÞv
μ
ðfÞv

ν
ðfÞ; ð36Þ

where ρðgÞ and ρðfÞ represent the matter energy densities that
behave as

ρðgÞ ¼
ρðg;0Þ
aðtÞ3 ; ρðfÞ ¼

ρðf;0Þ
aðtÞ3 ; ð37Þ

with ρðg;0Þ > 0 and ρðf;0Þ > 0 being constants, and the
four velocities of matter vμðgÞ and v

μ
ðfÞ are comoving with the

Hubble flows of the spacetimes2

vμðgÞ ¼
�
1; r

a;t
a
;0;0

�
; vμðfÞ ¼

1

bC0

�
1; r

a;t
a
0;0

�
: ð38Þ

The only nontrivial components of the gravitational equa-
tions in both the sectors of MTBG set the following
constraints:

3a2;t
a2

¼ κ2
ρðg;0Þ
a3

; b2 ¼ α̃2

C2
0

ρðg;0Þ
ρðf;0Þ

: ð39Þ

This implies that the second Friedmann equation effectively
sets the value of b in terms of the matter content on both the
sectors. Furthermore, this result states that the value of b for
the exterior metric, which was seen as a free parameter, is
actually determined by the details of collapsing matter. If
matter is present only in one of the two sectors, the value of
the parameter b is still fixed through the relation (39),
although its value becomes either zero or divergent. We note
that in such a case zero or divergent b is obtained only if the

2In comoving coordinates, along the radial geodesics of matter,
rc is constant. In this case, the normalized four-velocity is given
by vμðgÞ∂μ ¼ ∂tc. For the change of variables between ðtc; rcÞ to
ðt; rÞ one can show that ∂tc ¼ ∂t þ ra;t=a∂r, from which we
obtain the first of Eq. (38). Along the same lines, one finds the
second one of Eq. (38).
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effective cosmological constantsΛðgÞ andΛðfÞ [see Eq. (99)]
are tuned to zero. On the other hand, if ΛðgÞ and ΛðfÞ take
positive values then the value of b is fixed to be a nonzero
finite value even in the case where one or both of the matter
energy densities vanishes [12]. On the other hand, if both
ΛðgÞ andΛðfÞ are exactly zero, then the value of b in the limit
of vanishing energy densities in both sectors depends on the
way how the limit is taken. The solution to the Friedmann
equation is given by

aðtÞ ¼ cðgÞð−tÞ23; ð40Þ

where we have supposed that t < 0 (and a;t < 0) during
collapse, which ends when t ¼ 0, and made the identi-
fication

ρðg;0Þ ¼
4c3ðgÞ
3κ2

: ð41Þ

The solutions for the shift vectors (33) are then given
by [35]

Nrð−Þðt; rÞ ¼ Nrð−Þ
ðfÞ ðt; rÞ ¼

2r
3ð−tÞ : ð42Þ

The first junction condition (26) for (30) and (33)
determines the conditions on the trajectories of the
interfaces

rðgÞ ¼
4R3

ðgÞ
9ð−TðgÞÞ2

; rðfÞ ¼
4R3

ðfÞ
9ð−TðfÞÞ2

; ð43Þ

and relate trajectories of the matter interfaces with the
external Schwarzschild radii. From Eq. (18), the four
velocities of the matter interfaces are given by

uμðgÞ ¼
 
1;−

ffiffiffiffiffiffiffiffi
rðgÞ
RðgÞ

s
; 0; 0

!
;

uμðfÞ ¼
1

bC0

 
1;−

ffiffiffiffiffiffiffiffi
rðfÞ
RðfÞ

s
; 0; 0

!
: ð44Þ

From Eqs. (38), (40), and (43), we find that uμðgÞ ¼ vμðgÞ and
uμðfÞ ¼ vμðfÞ at the interfaces, showing that the interfaces are
comoving with geodesics of pressureless dust in both the
sectors.
This result also shows that _RðgÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðgÞ=RðgÞ

p
, which

implies that collapse starts from infinity with zero velocity.
This seems to imply that we are dealing with a star with an
infinite initial radius. However, we can interpret this result
for a finite-radius star as follows: the model here describes
that collapse has already started before the time ti ≤ tð< 0Þ,
after which we consider the model to be an approximate

description of real stellar collapse. In this case, our
approximate model describes collapse in the time region
ti ≤ t < 0. We should notice that, at the beginning of
collapse, we have the following condition hold true:
_RðgÞðτðgÞ ¼ τðgÞiÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðgÞ=RðgÞðτðgÞiÞ

q
. This corresponds

to collapse that satisfies some particular initial conditions.
This will imply that the description in this section will
qualitatively/approximately describe collapse, which will

have _RðgÞðτðgÞ ¼ τðgÞiÞ ≈ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðgÞ=RðgÞðτðgÞiÞ

q
, at least as long

as we are not too close to the final singularity.
On the other hand, when _RðgÞðτðgÞ ¼ τðgÞiÞ will not be

well approximated by the previous condition, then we
should expect deviations from the description of collapse
in this section. It is not clear what we should expect in the
latter case, especially because the other known solutions
for collapse, as we will see later on, will also be (even
more) fine-tuned. We defer discussion on possible yet-
unknown collapse solutions to the discussion of the
spatially closed case (Sec. III B). Furthermore, an analo-
gous tuned initial condition also holds in the fiducial sector
for _RðfÞðτðfÞ ¼ τðfÞiÞ, see Eq. (44), since C0 is defined by
the parameters in the MTBG theory, whereas b is set by
Eq. (39). Nonetheless, fine-tuned initial conditions for
collapse discussed here do not impose constraints on the
matter content in them. For instance, no fine-tuned con-
dition has to be imposed on masses of black holes in both
the physical and fiducial sectors, namely, rðgÞ ≠ rðfÞ in
general, as will happen, in contrast, for the spatially closed
case. Because of this, we believe these spatially flat
collapse solutions to be less problematic than the spatially
closed one, which will be discussed in Sec. III B.
We can also show that the nontrivial components of the

extrinsic curvature tensors at the interfaces are given by

K̃ðgÞð�Þ
ττ ¼ 0; K̃ðgÞð�Þ

ab ¼ RðgÞθab; K̃ðfÞð�Þ
ττ ¼ 0;

K̃ðfÞð�Þ
ab ¼ C0RðfÞθab; ð45Þ

respectively. Thus, by imposing the continuity of the

extrinsic curvature tensors ½K̃ðgÞ
ττ � ¼ ½K̃ðgÞ

ab � ¼ ½K̃ðfÞ
ττ � ¼

½K̃ðfÞ
ab � ¼ 0, we can ensure that the surface energy-momen-

tum tensors at the interfaces vanish,

SðgÞττ ¼ SðgÞab ¼ SðfÞττ ¼ SðfÞab ¼ 0; ð46Þ

and the exterior Schwarzschild regions (30) and interior
dust-dominated FLRW universes (33) are smoothly joined
across the interfaces [34,36]. In the case where the interior
regions are filled with matter fields with nonvanishing
pressures, the propagation speed of sound waves is non-
vanishing and thus nearby fluid elements do not evolve
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independently. In this case, in order to study the interior
solution, one needs to solve a set of partial differential
equations, instead of ordinary differential equations.
Before closing this subsection, we should mention that

it is straightforward to extend the collapsing solution
discussed in this subsection (and the one in next sub-
section, i.e., the Oppenheimer-Snyder model [34,36]) in
the presence of the nonzero values of the effective
cosmological constants [see Eq. (99)] as in the case of
GR (see, e.g., Refs. [38]), where the exterior spacetimes
are asymptotically de Sitter with the effective cosmologi-
cal constants (99). However, for gravitational collapse of
astrophysical interest, the effect of the effective cosmo-
logical constants would be negligible. Thus, for our
purpose, it is sufficient to focus on the case of the
asymptotically flat exterior solutions.

B. Collapse in the spherically symmetric spacetimes in
the spatially closed coordinates

We consider the spherical collapse model of a pressure-
less dust where the spacetimes inside the matter surfaces
are described by the spatially closed FLRW universes. In
contrast to the spatially flat case, in the spatially closed
case, gravitational collapse starts from a finite distance. We
note that the spatially closed case is an extension of the
Oppenheimer-Snyder model in GR [34] to the case
of MTBG.

1. The exterior solution

In order to discuss gravitational collapse of the spatially
closed matter surfaces in both the physical and fiducial
sectors, we assume that the spacetime metrics in the
exterior regions are described by the Schwarzschild sol-
utions written in the spatially closed coordinates

gðþÞ
μν dxμdxν ¼ −dt2 þ 1

1 − q0;ðgÞ

�
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðgÞ
r

− q0;ðgÞ

r
dt

�
2

þ r2θabdθadθb; ð47Þ

fðþÞ
μν dxμdxν ¼ C2

0

�
−b2dt2 þ 1

1 − q0;ðfÞ

�
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðfÞ
r

−Qq0;ðfÞ

r
dt

�
2

þ r2θabdθadθb
�
; ð48Þ

where q0;ðgÞ and q0;ðfÞ are constants satisfying

−1 < −
rðgÞ
r

< −q0;ðgÞ < 0; ð49Þ

−1 < −
rðfÞ
Qr

< −q0;ðfÞ < 0; ð50Þ

and Q > 0 is also a constant. We also assume that the
Lagrange multipliers are given by Eq. (25).
In the self-accelerating branch, the equations for λ and λ̄

are satisfied if

q0;ðfÞ ¼ q0;ðgÞ; ð51Þ

as well as the condition (29). The constraint equation for λr

is automatically satisfied. The equations of motion for the
metric variables finally reduce to Eqs. (31) and (32), and

q0;ðgÞα̃2ðQ − b2Þ ¼ 0: ð52Þ

Thus, for the spatially closed coordinates q0;ðgÞ ≠ 0, we
obtain

Q ¼ b2: ð53Þ

Summarizing the above, the exterior metrics (47) and (48)
reduce to

gðþÞ
μν dxμdxν ¼ −dt2 þ 1

1 − q0;ðgÞ

�
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðgÞ
r

− q0;ðgÞ

r
dt

�2

þ r2θabdθadθb; ð54Þ

fðþÞ
μν dxμdxν ¼ C2

0

�
−b2dt2 þ 1

1 − q0;ðgÞ

�
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðfÞ
r

− b2q0;ðgÞ

r
dt

�2

þ r2θabdθadθb
�
: ð55Þ

2. The interior solution

We then consider spatially closed FLRWmetrics as the interior solution [35,36], written in comoving coordinates ðtc; rcÞ,
which can be written as

gð−Þμν dxμdxν ¼ −dt2c þ aðtÞ2
�

dr2c
1 − r2c

þ r2cθabdθadθb
�
; ð56Þ
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fð−Þμν dxμdxν ¼ −C2
0b̃ðtÞ2dt2c þ afðtÞ2

�
dr2c

1 − r2c
þ r2cθabdθadθb

�
; ð57Þ

and the time-reparametrization invariance allows us to change variables into tc ¼ t and rc ¼ r
aðtÞ, as to bring the metric in

the form similar to the one of GP coordinates as

gð−Þμν dxμdxν ¼ −dt2 þ 1

1 − r2

aðtÞ2

�
dr − r

_aðtÞ
aðtÞ dt

�
2

þ r2θabdθadθb; ð58Þ

fð−Þμν dxμdxν ¼ C2
0

�
−b̃ðtÞ2dt2 þ 1

1 − r2

aðtÞ2

�
dr − r

_aðtÞ
aðtÞ dt

�
2

þ r2θabdθadθb
�
; ð59Þ

where as for the spatially flat case, in MTBG, for the self-
accelerating branch, the constraints impose that

af ¼ C0a: ð60Þ

In the self-accelerating branch, the constant C0 is uniquely
determined by the parameters of the Lagrangian, as
Eq. (29). In any case, either in comoving coordinates
ðtc; rcÞ or in GP-like coordinates ðt; rÞ, the Friedmann
equations remain the same. In particular, the (constant)
proportionality between the two scale factors leads to the
following result:

Hf ≔
af;t

C0b̃ðtÞaf
¼ a;t

C0b̃ðtÞa
¼ H

C0b̃ðtÞ
or b̃ðtÞ ¼ H

C0Hf
;

ð61Þ

where a a;t ≡ da=dt, etc. If we use the Friedmann
equations of motion for both the metrics, we find

3ð1þ a2;tÞ
a2

¼ κ2
ρðg;0Þ
a3

;
3ðb̃2 þ a2;tÞ

b̃2a2
¼ C2

0κ
2

α̃2
ρðf;0Þ
a3

;

1þ a2;tþ 2aa;tt ¼ 0; b̃3 − 2aa;tb̃;tþ b̃ða2;t þ 2aa;ttÞ ¼ 0;

ð62Þ

so that b̃ðtÞ is, in general, a function of time, which can be
written as

b̃ðtÞ ¼ 1

C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2ρðg;0Þ
a3 − 3

a2

κ2ρðf;0Þ
α̃2a3 − 3

C2
0
a2

vuuut : ð63Þ

Since b̃ ¼ H=ðHfC0Þ, if we want to have a finite
(and nonzero) value of b̃ when H (or Hf) vanishes, one
needs to require that the initial time of the collapse, usually
set at _a ¼ 0, is the same for both the metrics. This initial

starting-from-rest collapse time is then defined as a;t ¼ 0

(or af;t ¼ 0) and a ¼ amax ≠ 0. In this case, we have

κ2ρðg;0Þ − 3amax ¼ 0 ¼ κ2
C2
0ρðf;0Þ
α̃2

− 3amax; ð64Þ

indicating that

ρðf;0Þ ¼
α̃2

C2
0

ρðg;0Þ; ð65Þ

which, in general, corresponds to a fine-tuned value for the
matter densities in the fiducial sector with respect to the one
in the physical sector, as C0 and α̃ are specified by the
parameters of the theory, as already stated above. In this
case, we obtain

b̃ðtÞ ¼ 1

C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2ρðg;0Þ
a3 − 3

a2

κ2ρðf;0Þ
α̃2a3 − 3

C2
0
a2

vuuut ¼ 1: ð66Þ

Thus, the value of b̃ is no longer a function of time but
actually equal to unity. On the other hand, we paid the price
of a problematic fine-tuning condition among matter con-
tents in the different sectors, namely, Eq. (65), where, at least
in the self-accelerating branch, the value α̃=C0 corresponds
to a constant in the theory. In particular, as was happening in
the spatially flat case, matter should be present in both the
sectors.
The exact solution of Eq. (62) is given by the

parametrization

tðηÞ ¼ κ2

6
ρ0;ðgÞðηþ sin ηÞ; aðηÞ ¼ κ2

6
ρ0;ðgÞð1þ cos ηÞ;

b̃ðηÞ ¼
α̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0;ðgÞð1− cos ηÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2

0ρ0;ðfÞ − ρ0;ðgÞα̃2ð1þ cos ηÞ
q ; ð67Þ
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where η corresponds to the conformal time dt ¼ aðηÞdη.
Since the exterior b is constant, the interior b̃ has to be
constant. Imposing Eq. (65), we also obtain b̃ ¼ 1.
This situation is much worse than that in the spatially

flat case, in which we only needed to require that ρðg;0Þ > 0
and ρðf;0Þ > 0. This result of the spatially closed collapse
might merely indicate that a general configuration of
matter in both the sectors will not follow the kind of
unique collapse described in this section. How to avoid this
situation? One possibility, still keeping the spatially closed
picture, would be that, similar to what we have encoun-
tered in the spatially flat collapse, the spatially closed
collapse does not start from a configuration where H and/
or Hf vanish, but collapse has already started some time
before the particular time ti we start describing its
dynamics by means of this model. Then, both H and

Hf do not vanish and are both negative for ti ≤ t. This
possibility is viable, however, it leads, in general, to a time
dependence of the function b̃ðtÞ, which cannot in general
be matched with a stationary configuration for the known
exterior solutions of MTBG. In fact, in MTBG, the
Birkhoff theorem does not hold in general and, at least
in principle, we are bound to look for all the possible
spherically symmetric solutions allowed by the theory.
Therefore, there could be still unknown, in general time-
dependent solutions that could accommodate a matching
with the b̃ðtÞ imposed by Eq. (66).
In any case, in this section, we will only discuss b̃ðtÞ ¼ 1

and describe what this fine-tuned configuration leads to.
Hence, on using the GP-like coordinates described already
for the spatially flat case, we can consider the form of the
two interior metrics given as follows:

gð−Þμν dxμdxν ¼ −dt2 þ 1

1 − r2

aðtÞ2

�
dr − r

_aðtÞ
aðtÞ dt

�
2

þ r2θabdθadθb; ð68Þ

fð−Þμν dxμdxν ¼ C2
0

�
−dt2 þ 1

1 − r2

afðtÞ2

�
dr − r

_afðtÞ
afðtÞ

dt

�
2

þ r2θabdθadθb
�
: ð69Þ

With the background equation (62), the interior metrics (68) and (69) reduce to

gð−Þμν dxμdxν ¼ −dt2 þ 1

1 − r2

aðtÞ2

�
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2

3

ρ0;ðgÞ
a3

r2 −
r2

aðtÞ2

s
dt

�2

þ r2θabdθadθb; ð70Þ

fð−Þμν dxμdxν ¼ C2
0

�
−dt2 þ 1

1 − r2

aðtÞ2

�
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
0κ

2

3α̃2
ρ0;ðfÞ
a3

r2 −
r2

aðtÞ2

s
dt

�2

þ r2θabdθadθb
�
: ð71Þ

3. Matching conditions at the interfaces

Matching of the temporal component of the exterior metric (55) and interior metric (71) at the matter interfaces yields

b ¼ b̃ ¼ 1: ð72Þ

We consider the exterior metrics as in

gðþÞ
μν dxμdxν ¼ −dt2 þ 1

1 − q0;ðgÞ
ðdrþ ξdtÞ2 þ r2θabdθadθb; ð73Þ

fðþÞ
μν dxμdxν ¼ C2

0

�
−dt2 þ 1

1 − q0;ðgÞ
ðdrþ ξ2dtÞ2 þ r2θabdθadθb

�
; ð74Þ

where we have also defined Nr ¼ ξ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðgÞ
r − q0;ðgÞ

q
and Nr

ðfÞ ¼ ξ2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðfÞ
r − q0;ðgÞ

q
. This ansatz satisfies the MTBG

equations of motion for the vanishing effective cosmological constants in both the sectors that we have neglected in these
physical collapse scenarios. Let us now consider the four velocities for both the sectors, at the interface, as given by

uμðgÞ ¼ ð _TðgÞ; _RðgÞ; 0; 0Þ; uμðfÞ ¼ ð _TðfÞ; _RðfÞ; 0; 0Þ; ð75Þ
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where a dot, in this subsection, represents a derivative with respect to the proper times τðgÞ (or τðfÞ), e.g.,
_RðgÞðτðgÞÞ ¼ RðgÞ;τ ¼ dRðgÞ=dτðgÞ. Their normalization conditions, gμνu

μ
ðgÞu

ν
ðgÞ ¼ −1 and fμνu

μ
ðfÞu

ν
ðfÞ ¼ −1, give

_TðgÞ ¼
ξ _RðgÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q0;ðgÞÞð _R2

ðgÞ − ξ2 þ 1 − q0;ðgÞÞ
q

1 − ξ2 − q0;ðgÞ
> 0; ð76Þ

_TðfÞ ¼
ξ2 _RðfÞC0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − q0;ðgÞÞ

�
C2
0
_R2
ðfÞ − ξ22 þ 1 − q0;ðgÞ

�s
�
1 − ξ22 − q0;ðgÞ

�
C0

> 0; ð77Þ

whereas we consider _RðgÞ < 0, _RðfÞ < 0. We will make use
of these equations later on again.
Next we define the normal to the interface as

nðgÞμ dxμ ∝ ðdr − RðgÞ;tdtÞ, which is normalized to
gμνn

μ
ðgÞn

ν
ðgÞ ¼ 1, and the interface equation is described

by r−RðgÞðtÞ¼0. Because of RðgÞ;t¼dRðgÞ=dt¼ _RðgÞ= _TðgÞ,

one can see that nðgÞμ uμðgÞ ¼ 0 on the interface. Along the

same lines, we can introduce nðfÞμ dxμ ∝ ðdr − RðfÞ;tdtÞ,
which is now normalized to fμνn

μ
ðfÞn

ν
ðfÞ ¼ 1, and the

relative interface equation is r − RðfÞðtÞ ¼ 0. In this case,

we have that RðfÞ;t ¼ dRðfÞ=dt ¼ _RðfÞ= _TðfÞ.
For the physical metric, we define the projection

tensors to the interface as eμðgÞτ∂μ ¼ _TðgÞ∂t þ _RðgÞ∂r and

eμðgÞa∂μ ¼ ∂a, satisfying nðgÞμ eμðgÞi ¼ 0, (i ¼ τ, a), and calcu-

late hðgÞμν ¼gμν−nðgÞμ nðgÞν , together with KðgÞ
μν ¼hðgÞμ

αhðgÞν
βnðgÞα;β.

Finally, we can build hðgÞab ¼ eμðgÞae
ν
ðgÞbh

ðgÞ
μν j

t¼TðgÞ;r¼RðgÞ
and

KðgÞ
ab ¼ eμðgÞae

ν
ðgÞbK

ðgÞ
μν j

t¼TðgÞ;r¼RðgÞ
. At the interface, the non-

trivial components to consider for the matching conditions
are the following ones:

hðgÞττ ¼ −1; hðgÞab ¼ R2
ðgÞθab; ð78Þ

KðgÞ
ττ ¼ KðRðgÞ; _RðgÞ; R̈ðgÞÞ;

KðgÞ
ab ¼ RðgÞθab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
ðgÞ − ξ2 þ 1 − q0;ðgÞ

q
; ð79Þ

where in the expression of K, the values of _TðgÞ and T̈ðgÞ,
present because K depends also on RðgÞ;tt and RðgÞ;t, have
been replaced by using Eq. (76).
For the fiducial metric, we can follow an analogous

path, namely, defining the projectors eμðfÞτ∂μ ¼ _TðfÞ∂t
þ _RðfÞ∂r and eμðfÞa∂μ ¼ ∂a, satisfying nðfÞμ eμðfÞi ¼0,

(i¼ τ, a). After calculating the expressions for hðfÞμν ¼
fμν − nðfÞμ nðfÞν , and KðfÞ

μν ¼hðfÞμ
αhðfÞν

βnðfÞα;β, one can

build hðfÞab ¼eμðfÞae
ν
ðfÞbh

ðfÞ
μν j

t¼TðfÞ;r¼RðfÞ
and KðfÞ

ab ¼
eμðfÞae

ν
ðfÞbK

ðfÞ
μν jt¼TðfÞ;r¼RðfÞ

, evaluating them on the interface.

Then we find

hðfÞττ ¼ −1; hðfÞab ¼ C2
0R

2
ðfÞθab; ð80Þ

KðfÞ
ττ ¼ KfðRðfÞ; _RðfÞ; R̈ðfÞÞ;

KðfÞ
ab ¼ C0RðfÞθab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
0
_R2
ðfÞ − ξ22 þ 1 − q0;ðgÞ

q
: ð81Þ

Notice that, at this point, we have still to set the junction
conditions to match the interior/exterior solutions.
In fact, as for the internal metrics, we have

gð−Þμν dxμdxν ¼−dt2þ 1

1− r2

a2

�
dr− r

a;t
a
dt

�
2

þ r2θabdθadθb;

ð82Þ

fð−Þμν dxμdxν ¼ C2
0

�
−dt2 þ 1

1 − r2

a2

�
dr − r

a;t
a
dt

�
2

þ r2θabdθadθb
�
; ð83Þ

where a;t ¼ da=dt. These expressions describe the case of
a pair of spatially closed FLRW universes. For the case of
b ¼ 1, as we have seen above, ρðg;0Þ and ρðf;0Þ are propor-
tional to each other, so that the two Friedmann equations
are equivalent to each other, giving effectively only one
single constraint, which can be written as Eq. (62). For
these metrics, the four velocities of matter are given by3

3To see this, we can perform a coordinate change as tc ¼ t and
rc ¼ r=a, that is, dtc ¼ dt and drc ¼ dr=a − rða;t=a2Þdt. Then
in comoving coordinates vμðgÞ∂μ ¼ ∂tc . However, we can see that
∂tc ¼ ∂t þ ra;t=a∂r (and ∂rc ¼ a∂r), giving the result in Eq. (84).
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vμðgÞ∂μ ¼ ∂t þ r
a;t
a
∂r; ð84Þ

vμðfÞ∂μ ¼
1

C0

�
∂t þ r

a;t
a
∂r

�
: ð85Þ

We also define the normalized normal vector as

nðgÞμ ∝ ðdr − rc0a;tdtÞ, whereas nðfÞμ ∝ ðdr − rc0fa;tdtÞ.
Then vμðgÞn

ðgÞ
μ ¼ 0 on the interface defined by r ¼ rc0a,

where matter is moving on constant comoving coordinate
rc, and similarly by r ¼ rc0fa in the fiducial sector.
Choosing eμðgÞτ∂μ ¼ ∂t þ r a;t

a ∂r and eμðgÞa∂μ ¼ ∂a, we can

define hðgÞab and KðgÞ
ab as was done for the exterior metrics.

Then we find

hðgÞττ ¼ −1; hðgÞab ¼ r2c0a
2θab; ð86Þ

KðgÞ
ττ ¼ 0; KðgÞ

ab ¼ rc0aθab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2c0

q
: ð87Þ

We then discuss the junction conditions for the physical
metric first. In this case, we first find, from the hðgÞab
expressions in Eqs. (78) and (86), that RðgÞ ¼ rc0a. Then

the components of KðgÞ
ab given in Eqs. (79) and (87) lead to

_R2
ðgÞ − ξðRðgÞÞ2 − q0;ðgÞ þ r2c0 ¼ 0 or

_RðgÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðRðgÞÞ2 þ q0;ðgÞ − r2c0

q
: ð88Þ

Using this relation, we find that KðgÞ
ττ ¼ K ¼ 0 also for the

exterior solution.
Since we want uμðgÞ to coincide at the interface with vμðgÞ,

then, from their zeroth component, we need to set _TðgÞ ¼ 1.
Using this last condition, together with the expression for
_RðgÞ given in Eq. (88) into Eq. (76), we find that the
condition q0;ðgÞ ¼ r2c0 needs to be imposed. Furthermore,
we have

da
dt

¼ a;t ¼
1

rc0
RðgÞ;t ¼

1

rc0

_RðgÞ
_TðgÞ

¼ 1

rc0
_RðgÞ; ð89Þ

which, once inserted into the Friedmann equation, together
with the expression for _RðgÞ given in Eq. (88), makes
the Friedmann equation impose that ðρðg;0Þr3c0 −
3M2

PrðgÞÞ=R3
ðgÞ ¼ 0 and sets the value of rc0 in terms of

the other parameters. Furthermore, we can also see that, on
the interface, vrðgÞ ¼ RðgÞ

a;t
a ¼ RðgÞ;t ¼ _RðgÞ ¼ urðgÞ, which

holds true since _TðgÞ ¼ 1.
Let us now focus on the fiducial sector. For the fiducial

metric, we choose eμðfÞτ∂μ ¼ C−1
0 ½∂t þ r a;t

a ∂r� and eμðfÞa∂μ ¼
∂a as the projection tensors. On using the expression

for nμðfÞ, we can define hðfÞab and KðfÞ
ab as done for the

exterior metrics. The results of these calculations can be
written as

hðfÞττ ¼ −1; hðfÞab ¼ C2
0r

2
c0fa

2θab; ð90Þ

KðfÞ
ττ ¼ 0; KðfÞ

ab ¼ C0rc0faθab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2c0f

q
; ð91Þ

which, on using the junction conditions for hðfÞab and KðfÞ
ab ,

lead to

RðfÞ ¼ rc0fa; ð92Þ

_RðfÞ ¼ −C−1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2ðRðfÞÞ2 þ q0;ðgÞ − r2c0f

q
: ð93Þ

This relation, once inserted into Eq. (81), givesKðfÞ
ττ ¼ 0 for

the exterior metric.
Following exactly the same procedure taken with

the physical metric, namely, by setting uμðfÞ to coincide
with vμðfÞ at the interface,

4 we need to set _TðfÞ ¼ C−1
0 , which,

in turn, leads to q0;ðgÞ ¼ r2c0f from Eqs. (77) and (93).
Then, on using the result that r2c0 ¼ q0;ðgÞ ¼ r2c0f, we can see
that 3rðgÞ ¼ κ2ρðg;0Þr3c0 ¼ κ2ρðg;0Þr3c0f ¼ 3rðfÞ from the
Friedmann equation given in Eq. (62). Then we are bound
to conclude that rðfÞ ¼ rðgÞ. Therefore, the fine-tuned
interior matter content leads to fine-tuned values for the
Schwarzschild radii for the exterior metrics.

C. Absence of cusps of the constant-time hypersurfaces

Before closing this section, we check the continuity of
the normal vectors to the t ¼ constant hypersurfaces across
the matter interfaces in both the spatially flat and closed
cases and in both the physical and fiducial sectors, i.e., the
continuity of the derivatives of the Stückelberg fields along
the normals across the matter interfaces. Because of the
absence of the four-dimensional diffeomorphism invari-
ance, in general, different time slicings would provide
different solutions, and hence this condition is not obvious
and has to be checked for each solution. If this condition
fails to be satisfied, cusps would be formed on the
interfaces, which would give rise to extra boundary con-
tributions to the evolution of the metric and matter fields. In
our cases, the nontrivial components of the normals to a
t ¼ constant hypersurface

mðgÞ
μ dxμ ¼ −dt; mðfÞ

μ dxμ ¼ −C0bdt; ð94Þ

4As for the r component, we have urðfÞ ¼ _RðfÞ, whereas

vrðfÞ ¼ r
C0

a;t
a j

t¼TðfÞ;r¼RðfÞ
¼ RðfÞ;t

C0
¼ _RðfÞ

C0
_Tf
¼ _RðfÞ, so that all the com-

ponents of uμðfÞ ¼ vμðfÞ coincide on the interface.
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where b ¼ 1 for the spatially closed case. We then find that
at the matter interfaces

nðgÞα mα
ðgÞjðTðgÞ;RðgÞÞ ¼ 0; nðfÞα mα

ðfÞjðTðfÞ;RðfÞÞ ¼ 0;

eαðgÞτm
ðgÞ
α jðTðgÞ;RðgÞÞ ¼ −1; eαðfÞτm

ðfÞ
α jðTðfÞ;RðfÞÞ ¼ −1;

eαðgÞam
ðgÞ
α jðTðgÞ;RðgÞÞ ¼ 0; eαðfÞam

ðfÞ
α jðTðfÞ;RðfÞÞ ¼ 0: ð95Þ

Hence, the normals to the t ¼ constant hypersurfaces are
continuous across the matter interfaces in both the sectors.
This implies that there is no cusp formation in the t ¼
constant hypersurfaces at the matter interfaces.
In summary, the results in this section suggest that, in the

self-accelerating branch of MTBG with matter composed of
two independent species (13), gravitational collapse pro-
ceeds as that in the two copies of GR. Thus, in order to
observe the deviation from the case of two copies of GR, we
should investigate the linear perturbations about the spheri-
cally symmetric solutions. In the next section, we will study
the odd-parity perturbations of the Schwarzschild–de Sitter

solutions written in the spatially flat coordinates in the self-
accelerating branch of MTBG.

IV. ODD-PARITY PERTURBATIONS
OF SCHWARZSCHILD–DE SITTER SOLUTIONS

IN MTBG

In this section, we investigate the linear perturbations of
the Schwarzschild–de Sitter solutions written in the
spatially flat coordinates in the self-accelerating branch
of MTBG. The linear perturbations in the static and
spherically symmetric black holes are decomposed into
the odd- and even-parity sectors. In this paper, we focus on
the odd-parity sector of the perturbations.

A. Odd-parity black hole perturbations in the spatially
flat coordinates

The perturbed physical and fiducial metrics in the odd-
parity sectors about the Schwarzschild–de Sitter solutions
written in the spatially flat coordinates are, respectively,
given by

gμνdxμdxν ¼ −dt2 þ ðdrþ NrðrÞdtÞ2 þ r2θabdθadθb

þ 2
X
l;m

ðr2Htðt; rÞdtþ rHrðt; rÞðdrþ NrðrÞdtÞÞEa
b
∂bYlmðθcÞdθa

þ r2
X
l;m

H3ðt; rÞEðace∇bÞe∇cYlmðθcÞdθadθb; ð96Þ

fμνdxμdxν ¼ C2
0

�
−b2dt2 þ

�
drþ Nr

ðfÞðrÞdt
�

2

þ r2θabdθadθb

þ 2
X
l;m

�
r2Ktðt; rÞdtþ rKrðt; rÞðdrþ Nr

ðfÞðrÞdtÞ
�
Ea

b
∂bYlmðθcÞdθa

þ r2
X
l;m

K3ðt; rÞEðace∇bÞe∇cYlmðθcÞdθadθb
�
; ð97Þ

where NrðrÞ and Nr
ðfÞðrÞ are given by

NrðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðgÞr2

3
þ rðgÞ

r

s
;

Nr
ðfÞðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2C2

0b
2ΛðfÞ
3

þ rðfÞ
r

s
; ð98Þ

b > 0 is a constant, YlmðθcÞ are spherical harmonics with
the angular multipole and magnetic moments with
−l ≤ m ≤ l, respectively, e∇a represents the covariant
derivative with respect to the unit two-sphere with the
metric θab, and Eab represents the totally antisymmetric
tensor on the two-sphere satisfying e∇aEab ¼ 0. ΛðgÞ and

ΛðfÞ are the effective cosmological constants defined as
ΛðgÞ ¼ 3H2

ðgÞ and ΛðfÞ ¼ 3H2
ðfÞ on a cosmological de Sitter

expansion with Hubble parameters HðgÞ for the physical
metric and HðfÞ for the fiducial one, whose values can be
rewritten as

ΛðgÞ ¼
m2ðc4 − 2C3

0c1 − 3C2
0c2Þ

2
;

ΛðfÞ ¼
ðC2

0c0 þ 2C0c1 þ c2Þm2

2C2
0α̃

2
: ð99Þ

For the existence of the background Schwarzschild–de
Sitter solutions written in the spatially flat coordinates in
the self-accelerating branch, the constants c0, c1, c2, c3, and
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c4 satisfy Eq. (29), provided that we add to the right-hand
side of Eq. (31) the quantity 2ΛðgÞ=m2 and the quantity
2C3

0
ΛðfÞα̃2

m2 to the right-hand side of Eq. (32). This procedure
gives the values written in Eq. (99). In the rest, with use of
Eqs. (29) and (99), the constants c0, c3, and c4 are related to
the other coupling constants ðc1; c2Þ and the constant C0.
We also assume that C0c1 þ c2 ≠ 0 and βC0 ≠ 1. As noted
in Sec. III A, the constant C0b measures the ratio of the
lapse functions between the fiducial and physical sectors.
As we will see, in the case of b ¼ 1 the odd-parity
perturbations in the two sectors effectively become mass-
less and decoupled.
The perturbed three-dimensional metrics in the odd-

parity sector are, respectively, given by

γijdyidyj ¼ dr2 þ r2θabdθadθb

þ 2r
X
l;m

Hrðt; rÞEa
b
∂bYlmðθcÞdrdθa

þ r2
X
l;m

H3ðt; rÞEðace∇bÞe∇cYlmðθcÞdθadθb;

ð100Þ

ϕijdyidyj ¼ C2
0

�
dr2 þ r2θabdθadθb

þ 2r
X
l;m

Krðt; rÞEa
b
∂bYlmðθcÞdrdθa

þ r2
X
l;m

K3ðt; rÞEðace∇bÞe∇cYlmðθcÞdθadθb
�
:

ð101Þ

The odd-parity perturbation of the Lagrange multipliers is
given by

λ ¼ 0; λ̄ ¼ 0; λr ¼ 0;

λa ¼
X
l;m

Λðt; rÞEab
∂bYlmðθcÞ: ð102Þ

Note that in the odd-parity sector the l ¼ 0mode is absent.
We first focus on the l ≥ 2 modes and then the dipolar
modes l ¼ 1 separately. For the dipolar mode l ¼ 1, the
H3 and K3 perturbations are not present automatically.

B. The higher-multipole modes l ≥ 2

First, we focus on the modes l ≥ 2. Under the joint
foliation-preserving spatial gauge transformation

t → t; xi → xi þ ξiðt; xiÞ; ð103Þ

which for the odd-parity perturbations are explicitly
given by

ξr ¼ 0; ξa ¼
X
l;m

Ξðt; rÞEab
∂bYlmðθcÞ; ð104Þ

the metric perturbations are transformed as

δ̄Ht¼− _ΞþNrΞ0; δ̄Hr¼−rΞ0; δ̄H3 ¼−2Ξ;

δ̄Kt¼− _ΞþNr
ðfÞΞ

0; δ̄Kr¼−rΞ0; δ̄K3¼−2Ξ; ð105Þ

where in this section dots and primes represent the
derivatives with respect to t and r, respectively. Thus,
the combinations of

Hr − Kr; H3 − K3; ð106Þ

are gauge invariant. For the convenience, we introduce the
gauge-invariant variables H̄t, H̄r K̄t, K̄r, and K̄3 by

Ht ¼ H̄t þ
1

2
ð _H3 − NrH0

3Þ;

Hr ¼ H̄r þ
1

2
rH0

3;

Kt ¼ K̄t þ
1

2
ð _K3 − Nr

ðfÞK
0
3Þ;

Kr ¼ K̄r þ
1

2
rK0

3;

K3 ¼ K̄3 þH3: ð107Þ

The perturbation of the Lagrange multiplier is gauge
invariant by itself.
Because of the degeneracy among the different m modes

in the spherically symmetric backgrounds, we may use the
Legendre polynomials Plðcos θÞ instead of the spherical
harmonics YlmðθcÞ. Expanding the MTBG action (4) on
the Schwarzschild–de Sitter backgrounds written in the
spatially flat coordinates with the algebraic conditions (29)
and (99) up to the second order of the perturbations and
integrating over the angular directions θa, we obtain the
second-order action of the odd-parity perturbations besides
the l ¼ 1 mode,

δð2ÞS¼
X
l≠1

lðlþ 1Þ
2lþ 1

Z
dtdrLl½Ht;Hr;H3;Kt;Kr;K3;Λ�:

ð108Þ

Note that at the level of the linearized perturbations there is
no mixing between different l modes, and so we minimize
the second-order action for each l mode. With use of
Eq. (107), the second-order action (108) can be rewritten in
terms of the gauge-invariant variables as
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δð2ÞS¼
X
l≠1

lðlþ 1Þ
2lþ 1

Z
dtdrLl½H̄t; H̄r; K̄t; K̄r; K̄3;H3;Λ�:

ð109Þ

Varying Eq. (109) under the algebraic conditions (29)
and (99), we obtain the equations of motion for the
gauge-invariant quantities H̄t, H̄r, K̄t, K̄r, K̄3, and Λ,
as Eqs. (A1)–(A6), respectively. We note that Eqs. (A1)–
(A6) are not singular at the event horizons r ¼ rðgÞ and

r ¼ rðfÞ, and the limit to the de Sitter metrics rðgÞ → 0

and rðfÞ → 0 can be taken smoothly. The remaining
mode H3 corresponds to the gauge mode and hence
the equation of motion for H3 becomes trivial.
Thus, without any loss of generality, we may set
H3 ¼ 0, and in Eq. (109) Ll½H̄t;H̄r;K̄t;K̄r;K̄3;H3;Λ�→
Ll½H̄t;H̄r;K̄t;K̄r;K̄3;Λ�.
In order to derive the master equations for the odd-parity

perturbations, we introduce the new variables χh and χk and
define the new second-order action [39]5 by

δð2ÞS0 ¼ δð2ÞS −
X
l≠1

lðlþ 1Þ
2lþ 1

Z
dtdr

�
−A1ðrÞ

�
_̄Hr þ A2ðrÞH̄0

r þ A3ðrÞH̄0
t þ A4ðrÞH̄r −

χh
r

�
2

þ B1ðrÞ
�
_̄Kr þ B2ðrÞK̄0

r þ B3ðrÞK̄0
t þ B4ðrÞK̄r −

χk
r

�
2
�

¼
X
l≠1

lðlþ 1Þ
2lþ 1

Z
dtdr

�
Ll½H̄t; H̄r; K̄t; K̄r; K̄3;Λ� − A1ðrÞ

�
_̄Hr þ A2ðrÞH̄0

r þ A3ðrÞH̄0
t þ A4ðrÞH̄r −

χh
r

�
2

− B1ðrÞ
�
_̄Kr þ B2ðrÞK̄0

r þ B3ðrÞK̄0
t þ B4ðrÞK̄r −

χk
r

�
2
�
: ð110Þ

Varying the new second-order action δð2ÞS0, Eq. (110), with respect to χh and χk, we obtain

_̄Hr þ A2ðrÞH̄0
r þ A3ðrÞH̄0

t þ A4ðrÞH̄r −
χh
r
¼ 0; ð111Þ

_̄Kr þ B2ðrÞK̄0
r þ B3ðrÞK̄0

t þ B4ðrÞK̄r −
χk
r
¼ 0: ð112Þ

Solving Eqs. (111) and (112) in terms of χh and χk and then substituting them back into Eq. (110), the new second-order
action (110) reduces to the original one (109).
Varying the new second-order action δð2ÞS0, Eq. (110), with respect to H̄t, H̄r, K̄t, K̄r, we obtain the equations of motion

for them. Requiring that the derivatives of H̄t, H̄r, K̄t, K̄r vanish in their equations, so that H̄t, H̄r, K̄t, K̄r become auxiliary
variables of the second-order action (110), we determine the coefficients in Eq. (110),

A1ðrÞ ¼ r2; A2ðrÞ ¼ −Nr; A3ðrÞ ¼ −r; A4ðrÞ ¼
3

2r
Nr −

ΛðgÞr
2Nr ;

B1ðrÞ ¼
α̃2C2

0

b
r2; B2ðrÞ ¼ −Nr

ðfÞ; B3ðrÞ ¼ −r; B4ðrÞ ¼
3

2r
Nr

ðfÞ −
ΛðfÞC2

0b
2r

2Nr
ðfÞ

: ð113Þ

The equations of motion for H̄t, H̄r, K̄t, and K̄r then relate them to the variables χh and χk as

5We follow here the same method used in the context of the fðR;GÞ theories (G being the Gauss-Bonnet scalar). Even though the
method in this paper is equivalent to the one in [39], the results will differ. In particular, in the fðR;GÞ theories, the odd-mode master
variable was sufficient in order to entirely describe the dynamics of all the odd-mode fields. In MTBG, we will see that this is not the
case. In fact, we will see that the shadowy modes cannot be, in general, integrated out in terms of the introduced master variables and that
the same shadowy modes will act as sources for the dynamics of the same master variables. This feature might be shared also by other
theories that introduce shadowy modes, a phenomenon that could be worthy of further investigation.
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H̄t ¼ −
rχ0h þ 2χh

ðlþ 2Þðl − 1Þr ;

H̄r ¼
1

2½ð1 − bÞC2
0ðC0c1 þ c2Þm2r2 − 2ðlþ 2Þðl − 1Þ�

× ½C0ðC0c1 þ c2Þm2r2fð1 − bÞC0ðrK̄0
3 þ 2K̄rÞ þ 2rð1 − C0βÞΛ0g − 4ðNrð2χh þ rχ0hÞ − r_χhÞ�;

K̄t ¼ −
rχ0k þ 2χk

ðlþ 2Þðl − 1Þr ;

K̄r ¼
1

2bC0½ð1 − bÞðC0c1 þ c2Þm2r2 − 2ðlþ 2Þðl − 1Þbα̃2�

×

�
bðC0c1 þ c2Þm2r2fðð1 − bÞC0ð−rK̄0

3 þ 2H̄rÞ − 2rð1 − C0βÞΛ0Þg − 4C0α̃
2

�
Nr

ðfÞð2χk þ rχ0kÞ − r_χk

��
: ð114Þ

Since in the above expression (114) H̄r and K̄r are coupled,
we still need to solve for each of them, although we omit to
show them explicitly. χh and χk can be interpreted as the
master variables for the odd-parity perturbations for l ≥ 2.
Substituting Eq. (113) into Eqs. (111) and (112), we obtain

χh−
�
3

2
Nr−

r2ΛðgÞ
2Nr

�
H̄rþrðNrH̄0

rþrH̄0
t− _̄HrÞ¼0; ð115Þ

χk −
�
3

2
Nr

ðfÞ −
C2
0b

2r2ΛðfÞ
2Nr

ðfÞ

�
K̄r

þ rðNr
ðfÞK̄

0
r þ rK̄0

t − _̄KrÞ ¼ 0; ð116Þ

and moreover substituting Eq. (114) into Eqs. (115)
and (116), we obtain the master equations for χh and χk.

Varying the action (110) with Eq. (113) with respect to Λ
and K3 leads to the equations of motion for Λ and K̄3,
which are given by

r2Λ00 þ 4rΛ0 − ðlþ 2Þðl − 1ÞΛ ¼ 0; ð117Þ

r2K̄00
3 þ 4rK̄0

3 − ðlþ 2Þðl − 1ÞK̄3

¼ −2r
�
ðK̄0

r − H̄0
rÞ þ

3

r
ðK̄r − H̄rÞ

�
; ð118Þ

which are also obtained by combining Eqs. (A5) and (A6).
Eliminating H̄r and K̄r in Eq. (118) with Eq. (114), the
equation (118) reduces to the form

r2K̄00
3 þ

�
4r −

2r3ðα̃2C2
0bþ 1Þm2ðb − 1ÞðC0c1 þ c2Þ

ðC2
0α̃

2bþ 1Þr2ðC0c1 þ c2Þðb − 1Þm2 þ 2bðl2 þ l − 2Þα̃2
�
K̄0

3

−
�
ðlþ 2Þðl − 1Þ þm2r2ðb − 1Þðα̃2bC2

0 þ 1ÞðC0c1 þ c2Þ
2α̃2b

�
K̄3

¼ F ½_χ0h; χ00h; _χh; χ0h; χh; _χ0k; χ00k; _χk; χ0k; χk;Λ00;Λ0;Λ�; ð119Þ

where F represents a linear combination of the variables
shown in the arguments, which is not explicitly written.
Since Eqs. (117) and (119) are elliptic equations, Λ and K̄3

are fixed under the given spatial boundary conditions.
Thus, Λ and K̄3 correspond to the shadowy modes [27,29].
In Eq. (117), Λ is not coupled to the other variables and can
be solved as

Λ ¼ g1ðtÞr−2−l þ g2ðtÞr−1þl; ð120Þ

where g1ðtÞ and g2ðtÞ are integration constants. For in-
stance, requiring the regularity at the spatial infinity r → ∞
for the l ≥ 2 modes, we may impose g2ðtÞ ¼ 0. In the rest,
however, we leave g1ðtÞ and g2ðtÞ as the general functions
of the time t.

1. The case of b = 1

In the case of b ¼ 1, the substitution of Eq. (114) into
Eqs. (115) and (116) yields the master equations
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χ̈h − 2Nr _χ0h þ ½ðNrÞ2 − 1�χ00h −
ΛðgÞr2 þ 3ðNrÞ2

2rNr _χh þ
ΛðgÞr2 þ ðNrÞ2 − 2

r
χ0h þ

2ΛðgÞr2 − 4ðNrÞ2 þ l2 þ l

r2
χh

¼ ðC0c1 þ c2Þm2rð1 − βC0ÞC0f½ΛðgÞr2 þ 3ðNrÞ2�Λ0 þ 2rNrðΛ00Nr − _Λ0Þg
4Nr ; ð121Þ

χ̈k − 2Nr
ðfÞ _χ

0
k þ ½ðNr

ðfÞÞ2 − 1�χ00k −
C2
0ΛðfÞr2 þ 3ðNr

ðfÞÞ2
2rNr

ðfÞ
_χk þ

C2
0ΛðfÞr2 þ ðNr

ðfÞÞ2 − 2

r
χ0k þ

2C2
0ΛðfÞr2 − 4ðNr

ðfÞÞ2 þ l2 þ l

r2
χk

¼ −
m2ðC0c1 þ c2Þð1− βC0Þr

�
Λ0C2

0ΛðfÞr2 þ 2ðNr
ðfÞÞ2rΛ00 þ 3Λ0ðNr

ðfÞÞ2 − 2Nr
ðfÞr _Λ

0
�

4Nr
ðfÞC0α̃

2
: ð122Þ

The left-hand sides of Eqs. (121) and (122) correspond to the operators for the master equations in the two copies of GR. In
our case, Eqs. (121) and (122), together with Eqs. (117) and (119), form a closed system. In Eqs. (121) and (122), the two
dynamical modes χh and χk are decoupled and sourced by the shadowy mode Λ. From Eqs. (121) and (122), we find that in
both the sectors the odd-parity perturbations propagate with the speed of light.
With the explicit form of the solution for Λ, Eq. (120), the equations for the odd-parity perturbations reduce to

χ̈h − 2Nr _χ0h þ ½ðNrÞ2 − 1�χ00h −
ΛðgÞr2 þ 3ðNrÞ2

2rNr _χh þ
ΛðgÞr2 þ ðNrÞ2 − 2

r
χ0h þ

2ΛðgÞr2 − 4ðNrÞ2 þ l2 þ l

r2
χh

¼ m2ðC0c1 þ c2Þð1 − βC0ÞC0r
2Nr

�
g1

�
lþ 3

2

�
ðNrÞ2ðlþ 2Þr−l−3 þ _g1Nrðlþ 2Þr−l−2 − ΛðgÞg1ðlþ 2Þr−l−1

2

þ ðl − 1Þ
�
g2ðNrÞ2

�
l −

1

2

�
rl−2 þ ΛðgÞg2rl

2
− rl−1 _g2Nr

��
; ð123Þ

χ̈k − 2Nr
ðfÞ _χ

0
k þ ½ðNr

ðfÞÞ2 − 1�χ00k −
C2
0ΛðfÞr2 þ 3ðNr

ðfÞÞ2
2rNr

ðfÞ
_χk þ

C2
0ΛðfÞr2 þ ðNr

ðfÞÞ2 − 2

r
χ0k þ

2C2
0ΛðfÞr2 − 4ðNr

ðfÞÞ2 þ l2 þ l

r2
χk

¼ −
m2ðC0c1 þ c2Þð1− βC0Þr

2Nr
ðfÞC0α̃

2

�
ðNr

ðfÞÞ2
�
lþ 3

2

�
ðlþ 2Þg1r−l−3 þ _g1Nr

ðfÞðlþ 2Þr−l−2 −C2
0ΛðfÞg1ðlþ 2Þr−l−1

2

þ ðl− 1Þ
�
g2ðNr

ðfÞÞ2
�
l−

1

2

�
rl−2 þC2

0ΛðfÞg2rl

2
− rl−1 _g2Nr

ðfÞ

��
: ð124Þ

2. The case of b ≠ 1

In the case of b ≠ 1, after eliminating H̄t, H̄r, K̄t, and K̄r in Eqs. (115) and (116) with Eq. (114) and combining them
appropriately, we obtain the master equations where the kinetic terms are diagonalized. Although the master equations are
too long to be shown explicitly, their general structure is given by

χ̈h þM1ðrÞχh þM2ðrÞχk þ L1ðrÞ_χ0h þ L2ðrÞχ00h þ L3ðrÞ_χh þ L4ðrÞχ0h þ P1ðrÞ_χ0k þ P2ðrÞχ00k þ P3ðrÞ_χk þ P4ðrÞχ0k
¼ Q1ðrÞ _̄K0

3 þQ2ðrÞK̄00
3 þQ3ðrÞK̄0

3 þ S1ðrÞ _Λ0 þ S2ðrÞΛ00 þ S3ðrÞΛ0; ð125Þ

χ̈k þ M̃1ðrÞχk þ M̃2ðrÞχh þ L̃1ðrÞ_χ0k þ L̃2ðrÞχ00k þ L̃3ðrÞ_χk þ L̃4ðrÞχ0k þ P̃1ðrÞ_χ0h þ P̃2ðrÞχ00h þ P̃3ðrÞ_χh þ P̃4ðrÞχ0h
¼ Q̃1ðrÞ _̄K0

3 þ Q̃2ðrÞK̄00
3 þ Q̃3ðrÞK̄0

3 þ S̃1ðrÞ _Λ0 þ S̃2ðrÞΛ00 þ S̃3ðrÞΛ0; ð126Þ

where the background-dependent coefficients M1;2ðrÞ, L1;2;3;4ðrÞ, P1;2;3;4ðrÞ, Q1;2;3ðrÞ, S1;2;3ðrÞ, M̃1;2ðrÞ, L̃1;2;3;4ðrÞ,
P̃1;2;3;4ðrÞ, Q̃1;2;3ðrÞ, S̃1;2;3ðrÞ are the pure functions of r. In the limit of b → 1, M2ðrÞ, P1;2;3;4ðrÞ, Q1;2;3ðrÞ, M̃2ðrÞ,
P̃1;2;3;4ðrÞ, and Q̃1;2;3ðrÞ vanish, and Eqs. (125) and (126) reduce to Eqs. (121) and (122), respectively.
On the other hand, in the general case of b ≠ 1 the above coefficients do not vanish, and the two dynamical modes χh and χk

are coupled to each other, respectively. Equations (125) and (126), together with Eqs. (117) and (119), form the closed system.
While the two modes χh and χk are dynamical, the remaining ones K̄3 and Λ are shadowy. From Eqs. (121) and (122), the
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dynamical χh and χk are coupled and sourced by the
shadowy modes Λ and K̄3. From Eqs. (125) and (126),
we define the mass matrix by

M ¼
�
M1ðrÞ M2ðrÞ
M̃2ðrÞ M̃1ðrÞ

�
: ð127Þ

In the large distance limit r ≫ maxðrðgÞ; rðfÞÞ and assuming
astrophysical scales, i.e., neglecting the cosmological con-
stants terms, we find

M1ðrÞ ¼ M1;0 þO
�
1

r

�
; M2ðrÞ ¼ −M1;0 þO

�
1

r

�
;

M̃1ðrÞ ¼ M̃1;0 þO
�
1

r

�
; M̃2ðrÞ ¼ −M̃1;0 þO

�
1

r

�
;

ð128Þ

where

M1;0 ≔
m2C2

0ðC0c1 þ c2Þðb − 1Þlðlþ 1Þ
2ðlþ 2Þðl − 1Þ ;

M̃1;0 ≔
m2ðC0c1 þ c2Þbðb − 1Þlðlþ 1Þ

2ðlþ 2Þðl − 1Þα̃2 : ð129Þ

This squared mass is of order of m2 ∼H2
0 for cosmological

implementation of this MTBG. Only for astrophysical
purposes we can neglect its contribution to the dynamics
of the fields.
So far, we have considered the parameter b as a free

parameter, as it is not fixed by any background equation of
motion for the spatially flat coordinates. However, as we
have seen in Sec. III, the collapse fixes the value of b at
least for the cases we have found a solution. Indeed, in the
spatially closed case, b was set to unity, whereas for the
spatially flat case, b was determined by the amount of
matter energy densities in the physical and fiducial sectors.
However, we do not know all the collapse solutions, and
therefore there could be other possibilities for both the
interior and exterior metrics. In particular, as we have
already discussed in the spatially closed collapsing case, a
time dependence on b might appear that could determine a
deviation from a stationary configuration for the exterior
metric too.
Furthermore, we might wonder what boundary condi-

tions we should impose on the shadowy modes. We believe
that these topics have a nontrivial answer, mostly because it
may depend on the system we consider. In fact, we know
that the theory possesses shadowy modes, and as such, we
should expect that the behavior of the solution to depend on
the boundary conditions which we fix on them. These
boundary conditions might differ depending on the envi-
ronment of the solution itself. For instance, if we were to
consider a typical astrophysical system, before reaching

cosmological scales, we would encounter the inhomogene-
ities induced by the matter distribution, such as the baryonic
matter contribution coming from the galaxy and then the
dark matter halo distribution. Therefore, in this case, we
would need to match the astrophysical scale solution with
an environment filled with matter. On top of that, we would
need to fix boundary conditions for the shadowy modes at
these same scales.
Instead, if we were to describe an approximately spheri-

cally symmetric large cluster of galaxies, then it would
make sense to choose cosmological boundary conditions to
impose not only for the shadowy modes but also for the
value of b. Because of these possibilities, we will leave the
parameter b as a free parameter.

C. Conditions for the absence of ghost
and gradient instabilities

In this subsection, we are going to study the conditions
for the absence of the ghost and gradient instabilities for the
odd modes. After eliminating H̄t, H̄r, K̄t, and K̄r with
Eq. (114), the second-order action (110) can be rewritten as
the functional of the two dynamical modes χh, χk and two
shadowy modes K̄3, Λ. The shadowy modes cannot be
integrated out, in general, and they source the dynamical
fields χh and χk. So, in the following, we will also assume
that the shadowy modes Λ and K̄3 will not be given
boundary conditions as to drastically change the dynamics
of the equations of motion for χh and χk. On neglecting a
possible strong backreaction of the shadowy modes on χh;k
assuming appropriate boundary conditions are imposed, we
can find the kinetic matrix for χh;k.
The no-ghost conditions can be obtained by imposing the

positivity of the eigenvalues of the kinetic matrix,6 which is
constituted by the coefficients of the _χ2h, _χ

2
k, and _χh _χk terms

in the reduced second-order action. In the following, wewill
also consider the case of the large ω − kr − l case, so as to
assume that time and r derivatives give large contributions
as well as l ≫ 1, e.g., rjχ0hj ≫ jχhj, etc. When evaluated in
the high-l regime, the off-diagonal components of the
kinetic matrix are suppressed by 1=l2, and the no-ghost
conditions in this regime are given by

C2
0α̃

2r2

4b3
> 0;

r2

4
> 0; ð130Þ

which are both trivially satisfied.

6To study the sign of the eigenvalues, it is sufficient to
diagonalize the symmetric kinetic matrix via a simple congruence
diagonalization method using a unitriangular matrix (see, e.g.,
Ref. [40]), which corresponds to make a field redefinition, with
determinant equal to unity, for the perturbation variables. Then,
the positivity conditions on the sign of eigenvalues are equivalent
to imposing the diagonal elements to be positive.
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As for the speed of propagation, we can consider the
leading contribution in the equations of motion for χh and
χk, once more, on neglecting backreactions from the
shadowy modes and assuming m ≃H0. In this case, the
equations of motion simplify to

χ̈h − 2Nr _χ0h þ ½ðNrÞ2 − 1�χ00h þ
lðlþ 1Þ

r2
χh ≃ 0; ð131Þ

χ̈k−2Nr
ðfÞ _χ

0
kþ½ðNr

ðfÞÞ2−b2�χ00kþ
b2lðlþ1Þ

r2
χk≃0: ð132Þ

The first case is simple, as it reduces to the leading
contributions for a massless scalar propagating in the
physical metric and the speed of propagation is evidently
c2s;g ¼ 1. As for the second equation, in order to make the
analysis simpler, one can perform a coordinate transfor-
mation, namely,

dt ¼ dτ; dr ¼ Nr
ðfÞðdρ − dτÞ; ð133Þ

for which r ¼ r½ρ − τ�. This leads to a metric in the
so-called Lemaître coordinates as in

ds2f ¼ C2
0½−b2dτ2 þ ðNr

ðfÞÞ2dρ2 þ r½ρ − τ�2θabdθadθb�:
ð134Þ

After little algebra, one finds

∂

∂t
¼ ∂

∂τ
þ ∂

∂ρ
;

∂

∂r
¼ 1

Nr
ðfÞ

∂

∂ρ
; ð135Þ

where we have used the conditions holding for a coordinate
basis, dtð∂tÞ ¼ 1, dtð∂rÞ ¼ 0, etc. In this case, Eq. (132)
reduces to

∂
2χk
∂τ2

−
b2

ðNr
ðfÞÞ2

∂
2χk
∂ρ2

þ b2lðlþ 1Þ
r2

χk ≃ 0: ð136Þ

If we were assuming the mode traveling on the
spacetime of the metric ds2f¼−dτ2þðNr

ðfÞÞ2dρ2þ
r½ρ−τ�2θabdθadθb, then the speed of both the radial
and angular propagations is c2f ¼ b2, the proper radial
distance being ðNr

ðfÞÞdρ [41], which does not lead to any

new condition to impose.

D. The dipolar modes

1. The general solution

For the dipolar mode l ¼ 1, K3 and H3 automatically
vanish. Then, the second-order action is a functional of Ht,
Hr, Kt, and Kr together with Λ. However, the method
employed in Sec. IV B can be implemented.

The second-order action for the l ¼ 1 mode is given by

δð2ÞSl¼1 ¼
2

3

Z
dtdrL1½Ht;Hr; Kt; Kr;Λ�: ð137Þ

As in Sec. IV B, we introduce the new variables χh and χk,

δð2ÞS0l¼1 ¼
2

3

Z
dtdr

�
L1½Ht;Hr;Kt;Kr;Λ�−A1ðrÞ

×

�
_Hr þ A2ðrÞH0

r þ A3ðrÞH0
t þA4ðrÞHr −

χh
r

�
2

−B1ðrÞ
�
_Kr þB2ðrÞK0

r þB3ðrÞK0
t

þB4ðrÞKr −
χk
r

�
2
�
: ð138Þ

Varying the new second-order action δð2ÞS0l¼1 with respect
to χh and χk, we obtain

_Hr þ A2ðrÞH0
r þ A3ðrÞH0

t þ A4ðrÞHr −
χh
r
¼ 0; ð139Þ

_Kr þ B2ðrÞK0
r þ B3ðrÞK0

t þ B4ðrÞKr −
χk
r
¼ 0: ð140Þ

Varying δð2ÞS0l¼1 with respect to Ht, Hr, Kt, Kr, we obtain
the equations of motion for them. Requiring that the
derivatives of Ht, Hr, Kt, Kr vanish in their equations,
the coefficients in Eq. (138) are given by Eq. (113).
In the case of b ≠ 1 as well as C0c1 þ c2 ≠ 0, we can

integrate outHr using its own algebraic equation of motion,
as in

Hr ¼
rðβC0 − 1ÞΛ0

C0ðb − 1Þ þ Kr þ
ð2Nrχ0h − 2_χhÞrþ 4Nrχh
r2C2

0ðb − 1ÞðC0c1 þ c2Þm2
:

ð141Þ

After inserting this expression into Eq. (138), we have that
Ht, Kt, and Kr are all Lagrange multipliers that enter only
linearly as to set constraints on the other fields. In any case,
we can now find all the relevant equations of motion and try
to solve them. In particular, the constraint for Ht reads

rχ0h þ 2χh ¼ 0; χh ¼
FhðtÞ
r2

; ð142Þ

whereas the constraint for Kt can be written and solved as

rχ0k þ 2χk ¼ 0; χk ¼
FkðtÞ
r2

: ð143Þ

Using these solutions, the constraint for the field Kr reads
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C2
0α̃

2 _Fk þ b _Fh ¼ 0; where Fk ¼ Fk0 −
bFh

C2
0α̃

2
: ð144Þ

On using these solutions in the equation of motion for Λ,
we find

r2Λ00 þ 4rΛ0 ¼ 0; Λ ¼ g2ðtÞ þ
g1ðtÞ
r3

: ð145Þ

We can evaluate the following gauge-invariant combina-
tions for the l ¼ 1 mode:

Gr ≔ Hr − Kr; ð146Þ

Gt ≔ Ht − Kt þ
Nr

r
Hr −

Nr
ðfÞ
r

Kr; ð147Þ

Gh ≔ H0
t −

_Hr

r
þ
�
NrHr

r

�0
; ð148Þ

Gk ≔ K0
t −

_Kr

r
þ
�Nr

ðfÞKr

r

�0
: ð149Þ

From Eqs. (141)–(143), we obtain

Gr ¼
3ð1 − βC0Þg1
C0ðb − 1Þr3 −

2 _Fh

r3C2
0ðb − 1ÞðC0c1 þ c2Þm2

: ð150Þ

Considering a linear combination of the equations of
motion for χh and χk, we find

G0
t ¼

Fk0

r4
−
ðα̃2C2

0 þ bÞFh

α̃2r4C2
0

þ 3ð1 − βC0Þ_g1
C0r4ðb − 1Þ

−
2F̈h

C2
0r

4m2ðC0c1 þ c2Þðb − 1Þ ; ð151Þ

which can be easily integrated. Finally, the equation of
motion for χk gives

Gk ¼
bFh

r4C2
0α̃

2
−
Fk0

r4
: ð152Þ

We can also find

Gh ¼ −
Fh

r4
: ð153Þ

2. The slow-rotation limit of the Kerr–de Sitter solution

By introducing a function of time k0ðtÞ by

Gr ¼ −
k0ðtÞ
r3

; ð154Þ

with Eq. (150), g1ðtÞ can be eliminated as

g1ðtÞ ¼
ðb − 1ÞC2

0ðC0c1 þ c2Þm2k0ðtÞ − 2 _FhðtÞ
3C0ðC0c1 þ c2ÞðC0β − 1Þm2

: ð155Þ

As the solution for the physical sector, we consider the
slow-rotation limit of the Kerr–de Sitter solution

Ht ¼ −
1

1 − ðNrÞ2
�
ω0 þ

2JðgÞ0
r3

�
;

Hr ¼
rNr

1 − ðNrÞ2
�
ω0 þ

2JðgÞ0
r3

�
; ð156Þ

where ω0 and JðgÞ0 are constants, which satisfies
Hr þ rNrHt ¼ 0. This solution describing the slow-rotation
limit of the Kerr–de Sitter solution has been found as
follows. First, we consider the limit for small rotations in
Boyer-Lindquist coordinates for the Kerr–de Sitter metric,
which reduces to the Schwarzschild–de Sitter contribution
written in the Schwarzschild coordinates plus a term of
the form ds2 ∋ −2aðNrÞ2ð1 − z2Þdtsdφs, where a is the
spin angular momentum per unit mass, z ≔ cos θ, and ts is
the time of the Schwarzschild coordinates. Since we
want the metric in the GP coordinates, we make the
coordinate transformation dts ¼ dtþ F0drwithF0 ¼ −Nr=
ð1 − ðNrÞ2Þ together with a time-dependent shift in the
angular variable, as in φs ¼ φþ ω0t, describing a refer-
ence system rotating uniformly, not due to gravitational
effects. These transformations lead to a metric that can be
expanded in terms of both ω0 and a. At lowest order, we
find the Schwarzschild–de Sitter metric written in GP
coordinates, as expected. At linear level, we find two
contributions that can be written as a contribution to the
shift, gtφ ¼ ðω0r2 − aðNrÞ2Þð1 − z2Þ, and an element
grφ ¼ aξ3ð1 − z2Þ=ð1 − ðNrÞ2Þ. In turn, matching these
elements to the perturbation variables for the dipolar

modes in the physical sector gives the modes H̃t ¼
ð−ω0ðNrÞ2þω0Þr3þ2JðgÞ0

ððNrÞ2−1Þr3 and H̃r ¼ − 2JðgÞ0Nr

r2ððNrÞ2−1Þ, where we have

replaced the spin angular momentum per unit mass a with
−2JðgÞ0=rðgÞ. On performing an r-dependent gauge trans-

formation defined by Ξ0ðrÞ ¼ Nrω0

ðNrÞ2−1, we find the fields7 in

the form given in Eq. (156).

7It should be noted that the combination Ht þ NrHr=r for an
r-dependent gauge transformation becomes a gauge-invariant
quantity; as such, it is also equal to H̃t þ NrH̃r=r ¼ −ω0 − 2J

r3 .
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The constant JðgÞ0 is then linked to the angular momen-
tum in the slow-rotation limit of a Kerr–de Sitter black hole.
With Eq. (154), the solution for Kr is then

Kr ¼
�
ω0 þ

2JðgÞ0
r3

�
rNr

1 − ðNrÞ2 þ
k0ðtÞ
r3

: ð157Þ

The equation of motion for χh provides

Fh ¼ −6JðgÞ0: ð158Þ

The equation of motion for χk can then be solved as

Kt ¼ −
2JðfÞ0
r3

−
NrNr

ðfÞ
1 − ðNrÞ2

�
ω0 þ

2JðgÞ0
r3

�
−

1

r3

�
1

r
Nr

ðfÞk0ðtÞ þ
_k0ðtÞ
3

�
− k3ðtÞ; ð159Þ

where the constant JðfÞ0 is introduced by fixing

Fk0 ¼ −
6

C2
0α̃

2
ðbJðgÞ0 þ C2

0α̃
2JðfÞ0Þ; ð160Þ

and k3ðtÞ is an integration constant. In the limit of r → ∞,
the perturbed metrics behave as

gta → −ω0r2 −
2JðgÞ0
r

; gra → −

ffiffiffiffiffiffiffiffi
3

ΛðgÞ

s
ω0r; ð161Þ

fta → −k3ðtÞr2 −
1

r

�
2JðfÞ0 þ

k00ðtÞ
3

�
;

fra → −

ffiffiffiffiffiffiffiffi
3

ΛðgÞ

s
ω0r: ð162Þ

For the above solution, the gauge-invariant quantities
(146)–(149) reduce to

Gr ¼ −
k0
r3

;

Gt ¼
6ðJðfÞ0 − JðgÞ0Þ þ k00ðtÞ

3r3
− ðω0 − k3ðtÞÞ;

Gh ¼
6JðgÞ0
r4

; Gk ¼
6JðfÞ0
r4

: ð163Þ

The leading terms ω0 and k3ðtÞ are fixed by the boundary
conditions at the spatial infinity. Then, the constants JðgÞ0
and JðfÞ0 correspond to the angular momenta in the
physical and fiducial sectors. Thus, the general solution
for the l ¼ 1 mode in the fiducial sector deviates from the
slow-rotation approximation of the Kerr–de Sitter metric.
Instead, in the case where the fiducial metric is given by the
slow-rotation limit of the Kerr–de Sitter metric, the general

solution in the physical sector deviates from the slow-
rotation limit of the Kerr–de Sitter metric.
By setting k0 ¼ 0, then Gr ¼ 0, we obtain

Kt ¼ Ht þ
2

r3

�
1 − NrNr

ðfÞ
1 − ðNrÞ2 JðgÞ0 − JðfÞ0

�
þ
�
1 − NrNr

ðfÞ
1 − ðNrÞ2 ω0 − k3ðtÞ

�
: ð164Þ

In the special case where Nr
ðfÞ ¼ Nr and JðfÞ0 ¼ JðgÞ0,

Kt ¼ Ht þ ðω0 − k3ðtÞÞ; ð165Þ

which coincide up to the difference between ω0 and k3ðtÞ
fixed by the boundary conditions at the spatial infinity.
Namely, in this case, we obtain the identical Kerr–de Sitter
metrics in the slow-rotation limit in both the sectors.

V. CONCLUSIONS

As a continuation of our previous work [30], we have
studied the dynamical processes of spherically symmetric
systems in MTBG. In particular, we have focused on
gravitational collapse of pressureless dust and odd-parity
perturbations of static and spherically symmetric
Schwarzschild–de Sitter black holes. Throughout the
paper, we have focused on the self-accelerating branch
satisfying the condition (29).
In Sec. III, we have found the exact solutions describing

gravitational collapse of pressureless dust, where the interior
spacetime geometries are written with the spatially flat and
closed FLRW universes, respectively, and the exterior
vacuum solutions are described by the Schwarzschild
solutions with specific time slicings. For simplicity, we
foliated the interior geometry by homogeneous and iso-
tropic spacetimes. For a spatially flat interior universe, we
foliated the exterior geometry by a time-independent
spatially flat space, while for a spatially curved interior
universe, we foliated the exterior geometry by a time-
independent spacetime with deficit solid angle. Despite the
rather restrictive choice of foliations, we have successfully
found interesting classes of exact solutions that represent
gravitational collapse in MTBG.
While in the spatially flat case the matter surfaces start to

collapse from the spatial infinities with zero initial veloc-
ities or from finite distances with nonzero initial velocities,
in the spatially closed case they started from finite radii
with vanishing initial velocities. The spatially closed case
corresponds to an extension of the Oppenheimer-Snyder
model to the case of MTBG. Since the Lagrange multipliers
are trivial and continuous across the interfaces of the
collapsing matter in both the physical and fiducial sectors,
the junction conditions across them remain the same as
those in the two copies of GR.
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In the spatially flat case, under the above-mentioned
tuning of the initial conditions of the collapse, we have
obtained solutions in which gravitational collapse in the
physical and fiducial sectors proceed independently and
the gravitational radii in the two sectors may be different.
On the other hand, in the spatially closed case, under
certain tuning of the matter energy densities and
Schwarzschild radii between the two sectors, we have
found exact solutions of gravitational collapse. Needless to
say, these tunings reflect the fact that we restrict our
considerations to a rather specific choice of time slicings. It
is expected that relaxing the restriction on the choice of
time slicings, e.g., to those with time-dependent spatial
metrics, should allow for more general solutions.
Furthermore, since in general the Birkhoff theorem does
not hold in MTBG, yet-unknown non-Schwarzschild
exterior solutions may be found and then even wider
classes of global solutions representing gravitational col-
lapse may be constructed. It is also worthwhile studying
spherically symmetric inhomogeneous dust collapse, i.e.,
analog of the Lemaître-Tolman-Bondi model [42–44], in
the context of MTBG and investigating the homogeneous
limit. Moreover, it would be also important to investigate
deviations from the spherical GR metric solutions in the
weak-field limit and relate them to the parametrized post-
Newtonian (PPN) parameters (see, e.g., Ref. [3]). Since the
absence of the Birkhoff theorem is due to the presence
of the effective energy-momentum tensor arising from
the variation of the interaction and constraint terms of
the Lagrangian (5) and (6), in the weak-field limit the
deviation from the GR solution would be proportional to
m2, which may give rise to a new bound on the graviton
mass parameter m with the Solar System experiments. We
leave the explicit PPN formulation for future work.
In Sec. IV, we studied odd-parity perturbations of the

Schwarzschild–de Sitter black holes in the self-accelerating
branch of MTBG. As the background solutions, we
considered the Schwarzschild–de Sitter solutions written
in the spatially flat coordinates. In the equations of motion
for the odd-parity perturbations, there were the contribu-
tions of the interaction terms and the Lagrange multipliers
in addition to those from the two copies of the Einstein-
Hilbert terms. We distinguished the dipolar mode with the
angular multipole moment l ¼ 1 and the higher-multipolar
modes l ≥ 2. In order to discuss the odd-parity perturba-
tions with l ≥ 2, we introduced the master variables. For
the modes l ≥ 2, the system of the odd-parity perturbations
in the self-accelerating branch is composed of the two
dynamical modes and the two shadowy modes. The
dynamical modes correspond to the two master variables
of the metric perturbations, while the shadowy modes
correspond to the gauge-invariant perturbation of the
Lagrange multiplier and one of the two metric perturbations
in the angular directions. We note that the other odd-parity
metric perturbation in the angular directions is a gauge

mode and can be set to be zero. The equation of motion for
one of the two shadowy modes can be easily integrated as it
is not coupled to the other modes, and the other shadowy
mode is sourced by the two dynamical modes and the first
shadowy mode. The two dynamical modes are also coupled
to each other and sourced by the shadowy modes.
In the case where the ratio of the lapse functions between

the physical and fiducial sectors is equal to C0, which is a
constant determined by the parameters of the theory, the two
dynamical modes are decoupled. Since they are still sourced
by one of the shadowy modes, their behavior is different
from that in the two copies of GR and depends on the
boundary conditions of the shadowy mode. In the case
where the ratio of the lapse functions between the physical
and fiducial sectors differs from C0, the two dynamical
modes are coupled to each other and sourced by both the
shadowy modes. In the high frequency and short wave-
length limits, we showed that the perturbations do not suffer
from ghost or gradient instabilities. On the other hand, in the
dipolar sector of l ¼ 1, we found that the two copies of the
slow-rotation limit of the Kerr–de Sitter metrics, in general,
are not a solution in the self-accelerating branch of MTBG,
unless the masses and angular momenta of black holes and
the effective cosmological constants are tuned to be the
same in both the sectors. Therefore, deviation from GR is
expected for rotating black holes in the self-accelerating
branch of MTBG. Readers should also refer to the last
paragraph in Sec. IV of [37] for a similar statement in the
context of MTMG.
The analysis of the even-parity black hole perturbations

in the self-accelerating branch will be left for future work.
The analysis of the same issues in the normal branch, i.e.,
gravitational collapse and black hole perturbations, will
also be left for future work. We expect that the spacetime
dynamics in the normal branch would differ from that in the
case of the two copies of GR at both the background and
perturbation levels. We hope to come back to these issues in
a future publication.
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APPENDIX: EQUATIONS OF MOTION FOR THE ODD-PARITY PERTURBATIONS
IN THE SPATIALLY FLAT COORDINATES IN MTBG

We show the equations of motion for the odd-parity perturbations about the Schwarzschild–de Sitter solutions written in
the spatially flat coordinates in the self-accelerating branch of MTBG.

1. The l ≥ 2 modes

The equations of motion for the gauge invariants H̄t, H̄r, K̄t, K̄r, and K̄3 in the odd-parity perturbations for the l ≥ 2
modes are given by

0 ¼ _̄H
0
r − NrðrÞH̄00

r − rH̄t
00 þ 3

r
_̄Hr −

2

r
ðNrðrÞ þ rNr0ðrÞÞH̄0

r − 4H̄0
t þ

1

r
ðl − 1Þðlþ 2ÞH̄t

þ
�
2NrðrÞ
r2

−
2Nr0ðrÞ

r
− Nr00ðrÞ

�
H̄r; ðA1Þ

0 ¼ ̈H̄r − 2NrðrÞ _̄H0
r þ ðNrðrÞÞ2H̄00

r − r _̄H
0
t þ rNrðrÞH̄00

t −
�
Nr0ðrÞ þ 2

r
NrðrÞ

�
_̄Hr þ

2NrðrÞ
r

ðNrðrÞ

þ rNr0ðrÞÞH̄0
r þ 4NrðrÞH̄0

t þ
�ðlþ 2Þðl − 1Þ

r2
þ ð2C3

0c1 þ 3C2
0c2 − c4Þm2 þ NrðrÞ

�
Nr00ðrÞ þ 6

r
Nr0ðrÞ

��
H̄r

þm2C2
0ðb − 1ÞðC0c1 þ c2Þ

2

�
H̄r − K̄r −

r
2
K̄0

3

�
þm2C0ðC0c1 þ c2Þð1 − βC0Þ

2
rΛ0; ðA2Þ

0 ¼ _̄K
0
r − Nr

ðfÞðrÞK̄00
r − rK̄t

00 þ 3

r
_̄Kr −

2

r
ðNr

ðfÞðrÞ þ rNr
ðfÞ

0ðrÞÞK̄0
r − 4K̄0

t þ
1

r
ðl − 1Þðlþ 2ÞK̄t

þ
�
2Nr

ðfÞðrÞ
r2

−
2Nr

ðfÞ
0ðrÞ

r
− Nr

ðfÞ
00ðrÞ

�
K̄r; ðA3Þ

0 ¼ ̈K̄r − 2Nr
ðfÞðrÞ _̄K

0
r þ ðNr

ðfÞðrÞÞ2K̄00
r − r _̄K

0
t þ rNr

ðfÞðrÞK̄00
t −
�
2Nr

ðfÞðrÞ
r

þ Nr
ðfÞ

0ðrÞ
�
_̄Kr

þ
2Nr

ðfÞ
r

�
Nr

ðfÞðrÞ þ rNr
ðfÞ

0ðrÞ
�
K̄0

r þ 4Nr
ðfÞðrÞK̄0

t

þ
�
b2ðlþ 2Þðl − 1Þ

r2
− b2

ðc0C2
0 þ 2C0c1 þ c2Þm2

α̃2
þ Nr

ðfÞðrÞ
�
Nr

ðfÞ
00ðrÞ þ 6

r
Nr

ðfÞ
0ðrÞ
��

K̄r

−
m2bðb − 1ÞðC0c1 þ c2Þ

2α̃2

�
H̄r − K̄r −

1

2
rK̄0

3

�
−
m2bðc1C0 þ c2Þð1 − βC0Þ

2C0α̃
2

rΛ0; ðA4Þ

0 ¼ m2½ð1 − bÞC0ðr2K̄00
3 þ 4rK̄0

3 − ðlþ 2Þðl − 1ÞK̄3 þ 2rðK̄0
r − H̄0

rÞ þ 6ðK̄r − H̄rÞÞ
þ2ð1 − C0βÞðr2Λ00 þ 4rΛ0 − ðlþ 2Þðl − 1ÞΛÞ�; ðA5Þ

0 ¼ m2½r2K̄00
3 þ 4rK̄0

3 − ðlþ 2Þðl − 1ÞK̄3 þ 2rðK̄0
r − H̄0

rÞ þ 6ðK̄r − H̄rÞ�: ðA6Þ
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2. The dipolar mode

The equations of motion for the odd-parity perturbations for the dipolar l ¼ 1 mode are given by

0 ¼ _H0
r − NrðrÞH00

r − rH00
t þ

3

r
_Hr −

2

r
ðNrðrÞ þ rNr0ðrÞÞH0

r − 4H0
t þ
�
2NrðrÞ
r2

−
2Nr0ðrÞ

r
− Nr00ðrÞ

�
Hr; ðA7Þ

0 ¼ Ḧr − 2NrðrÞ _H0
r þ ðNrðrÞÞ2H00

r − r _H0
t þ rNrðrÞH00

t −
�
Nr0ðrÞ þ 2

r
NrðrÞ

�
_Hr

þ 2NrðrÞ
r

ðNrðrÞ þ rNr0ðrÞÞH0
r þ 4NrðrÞH0

t

þ
�
ð2C3

0c1 þ 3C2
0c2 − c4Þm2 þ NrðrÞ

�
Nr00ðrÞ þ 6

r
Nr0ðrÞ

��
Hr

þm2C2
0ðb − 1ÞðC0c1 þ c2Þ

2
ðHr − KrÞ þ

m2C0ðC0c1 þ c2Þð1 − βC0Þ
2

rΛ0; ðA8Þ

0 ¼ _̄K
0
r − Nr

ðfÞðrÞK00
r − rK00

t þ
3

r
_Kr −

2

r

�
Nr

ðfÞðrÞ þ rNr
ðfÞ0ðrÞ

�
K0

r − 4K0
t þ
�
2Nr

ðfÞðrÞ
r2

−
2Nr

ðfÞ
0ðrÞ

r
− Nr

ðfÞ
00ðrÞ

�
Kr; ðA9Þ

0 ¼ K̈r − 2Nr
ðfÞðrÞ _K0

r þ ðNr
ðfÞðrÞÞ2K00

r − r _K0
t þ rNr

ðfÞðrÞK00
t −
�
2Nr

ðfÞðrÞ
r

þ Nr
ðfÞ

0ðrÞ
�
_Kr

þ
2Nr

ðfÞ
r

�
Nr

ðfÞðrÞ þ rNr
ðfÞ

0ðrÞ
�
K0

r þ 4Nr
ðfÞðrÞK0

t

þ
�
−b2

ðc0C2
0 þ 2C0c1 þ c2Þm2

α̃2
þ Nr
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