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Chern-Simons (CS) gravity is a modified theory of Einstein’s general relativity. The CS theory arises from
the low energy limit of string theory which involves anomaly correction to the Einstein-Hilbert action. The CS
term is given by the product of the Pontryagin density with a scalar field. In this study, we derive a charged
slowly rotating black hole (BH) solution. The main incentives of this BH solution are axisymmetric and
stationary and form distortion of the Kerr-Newman BH solution with a dipole scalar field. Additionally, we
investigate the asymptotic correction of the metric with the inverse seventh power of the radial distance to the
BH solution, This indicates that it will escape any meaningful constraints from weak field experiments. To find
this kind of BH by observations, we investigate the propagation of the photon near the BH and we show that the
difference between the left-rotated polarization and the right-handed one could be observed as stronger than
the case of the Kerr-Newman BH. Finally, we derived the stability condition using the geodesic deviations.
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I. INTRODUCTION

Is Einstein’s theory of general relativity (GR) still
right? The Solar System [1,2] and the binary pulsar
observations [3] have affirmed that GR could be right to
ultraprecision in the weak field domain, where the gravi-
tational field is weak and nondynamical. The new gravi-
tational wave observations detected by the advanced
Laser Interferometer Gravitational Wave Observatory
(LIGO) [4-6] and the advanced Virgo detector [8—10]
have ensured that GR appears to be on a solid base, even in
the rather strong gravity region, where the gravitational
interaction is highly dynamical [11,12].

According to these observations, one might wonder if
additional tests of GR are still urgent. The main motivations
for continuous checking are observational and theoretical.
According to the observation viewpoint, the late-time
acceleration of the Universe as inferred through supernova
[13], the rotation curves of galaxies [14], and different
other observations [15—18] point to anomalies that might
be either solved by mentioning the presence of dark
energy [19] and dark matter [20], otherwise, by amending
GR on large scales [21]. According to a theoretical view-
point, the inherent inconsistency of GR with quantum
mechanics has given rise to the emergence of amendment
theories that try a reconciliation [22,23]. In any case of the
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argumentation, additional testing could supply extra hints
that might help in solving some of these oddities.

The gravitational parity violation as evolved in the
dynamical Chern-Simons (dCS) gravity is the specific modi-
fication of GR that has attracted some interests [24,25]. This
theory amends the Einstein GR by a dynamical (pseudo)
scalar field that couples nonminimally with curvature by the
Pontryagin density. The magnitude of deviation in dCS
theory from GR is ruled by the size of its dimensional
coupling parameter £ Nowadays, dCS gravity theory is
understood as an effective model, which is valid in a region
where the energy scale or curvature is small compared with
some cutoff scale, i.e., when the coupling £ is small. The
reason is the fact that the dCS theory is motivated by
heterotic string theory at four-dimensional compactification
and a low-curvature expansion [26], from effective field
theories of inflation [27], and loop quantum gravity at the
promotion of the Barbero-Immirzi parameter to the field in
the existence of matter [28,29].

The gravitational parity violation in dCS theory appears
in the systems that break parity by the presence of a
preferred axis like the one prescribed by angular momen-
tum in the dynamical system [30-37]. An example is the
isolated spinning BH, whose solutions in the dCS theory
are known up to the fifth order in the slow-rotation
expansion [38-40], and in the near maximum [41,42].
Another example is the spinning planet or star, whose
behaviors in the Solar System have been investigated and
observed for approximate horn. Therefore, we expect that
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any dCS deformation from GR forecasts in the spin
dynamics of the Solar System may be employed to limit
the theory.

The CS theory is classified into the nondynamical type
and the dynamical type. In the dynamical case, the (pseudo)
scalar field evolves in time by following the field equations.
In the nondynamical type, there is no kinetic term for the
scalar field and therefore the variation with respect to the
scalar field gives the constraint that the gravitational
Pontryagin density RR identically vanishes although the
Chern-Simons term gives nontrivial contributions. The two
types present amended equations of motion compared to
general relativity field equations.

In the nondynamical CS model, Alexander and Yunes [33]
have shown that the gravitomagnetic sector of the metric is
amended in the Solar System, yielding a new parametrized
post-Newtonian parameter [31]. Similarly, Smith et al. [32]
have calculated the correction for the spin precession using a
uniform distribution of density objects which uniform rota-
tion and compared their result to the observations using the
Gravity Probe B (GPB) experiment [44] and the LAGEOS
satellites to put a constraint on the nondynamical theory.
Recently, Ali-Haimoud and Chen [45] studied the dynamical
theory and computed the extra correction to the gravitomag-
netic of the metric and put an approximate constraint on the
theory of 510/54 < O(10% km). Moreover, the possibility of
comparable constraints using quantum/Sagnac interferom-
etry has been investigated in [46—48]. Soon, observing
gravitational waves emitted by the rotating BHs will provide
us with an eight-degree improvement in such constraints [49],
once these discoveries are made that are powerful enough to
break degeneracies between the spins of the objects and the
dCS deformation. Rotating black hole solutions in the
(3 4 1)-dimensional Chern-Simons modified gravity theory
are investigated by taking account of perturbation around the
Schwarzschild solution [50]. A detailed study of the BH
solutions in the Chern-Simons gravity has revealed that at
least two different limits of the Kerr BH are solutions to the
modified field equations [51]. In the extended Chern-Simons
modified gravity, an investigation of a rotating BH has been
carried out [52]. A study of the null geodesics corresponding
to a slowly rotating BH in Chern Simons gravity with a small
coupling constant revealed that the photon orbits are separable
as in the Kerr geometry [53]. A study of the null geodesics
corresponding to a slowly rotating BH in Chern Simons
gravity, with a small coupling constant, has shown that the
photon orbits are separable as in the Kerr geometry [54]. Four-
dimensional homogeneous static and rotating black strings,
with and without torsion in the dCS modified gravity, are
presented [55].

Yunes and Pretorius [43] have derived a nontrivial
uncharged black solution in the dCS theory that generates
the parity violation. The purpose of the present study is to
derive a new weakly charged rotating BH solution in the
framework of the dCS gravitational theory.

The construction of this study is as follows: In Sec. II, we
present the main tools of CS-modified gravity. In Sec. III,
we solve the field equations of the dCS gravity for the line
element prescribing a slowly rotating BH which is valid for
small CS coupling constants. In Sec. IV, we consider some
of the related physics to the derived solutions to understand
its physical properties. In Sec. V, we study the motion of the
CS BH presented in this study and derive the conserved
quantities of this BH and its orbital period. In Sec. VI, we
investigate the propagation of the photon near the BH and
we consider the difference of the polarization from that of
the Kerr-Newman BH. In Sec. VII, we conclude the main
results of this study and present possible future work.

The following conventions are used throughout the
present study: We use four-dimensional space-times that
have the following signature (—, +, +, +) [56], and square
brackets and parentheses mean antisymmetrization and
symmetrization, respectively, ie., Ty, =5(T,, —T,,)
and T, = (T +T,,). The partial derivatives are ref-
ereed by commas (e.g. dp/0r = d,¢p = ¢ ). The Einstein
summation A,B* = _,3A,B" is applied and geom-
etrized units G = ¢ = 1 are used.

II. CS MODIFIED GRAVITATIONAL THEORY

In this section, we will prescribe the subjects which give
a full construction of the CS-modified gravitational theory
and present some notation [25].

A. ABC of CS gravitational theory

The action of the CS gravitational theory is given as
S=8+8+S8+ S84+ S5, (1)

where S, is the Einstein Hilbert action defined by

1
S = 5 d4 =Y, 2
=3 |, 5V @
S, is the Chern-Simon action given by
S, = %/ d*x\/=gpRR, (3)
14

S;3 is the action of the (pseudo)scalar field ¢ with the
potential U(¢) defined by

o
$,==7 | dxvmla V) Vo) + 200). 4)
S, is the action of the electromagnetic field given by

54_%/d4x1/—gF2 where F? = F,, F*, and
v

F,=A

127 Hov

- Av,y ’ (5)
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and S5 is the action of the matters defined by

Ss :‘/Vd4x\/ —9L mat- (6)

Here V is the bulk region in the space-time manifold.

The following notations are used throughout the whole
of the present study: ¢ and o, are dimensional constants,
K2 = 87G, V,, is the covariant derivative, R is the Ricci
scalar, and g is the determinant of the metric. The term RR
is the Pontryagin density defined by

RR =R’ R /7, (7)

where R¥ 77 is the dual Riemann tensor which is defined by
RH po — ! POTI RH 8
v E € vtn» ( )

where €7 is the four-dimensional Levi-Civita tensor
which is a totally skew-symmetric tensor with €123 = —1.

In this study, the CS scalar field ¢ is a function of the
space-time coordinates that parametrize the deviation from
the Einstein GR. If ¢ = constant, the CS gravitational
theory will be equivalent to the Einstein GR theory because
the Pontryagin density is the total divergence of the CS
topological current K* which is given by

V,Kr = %RR, )

where

2
K* = T, <6pFZT + EFZ§F§”> , (10)

with I, being the Christoffel connection. Equation (9) tells
us that S, can be rewritten in the form [43]

o o

$2=3 / ds,pK* -2 / d*x\/=g(V,@)K*.  (11)
% Vv

Here 0V is the boundary hypersurface of the space-time
manifold and dS, is the infinitesimal area of the hyper-
surface dV. We often neglect the first term in Eq. (11)
because it is irrelevant to the variation in the bulk space-
time manifold when we derive the field equations.

The variations of the action (1) with respect to the metric,
the scalar field, and the electromagnetic field give the
following field equations:

1
R,, +2c%6,C,, = K* (T/u/ - EQ,uI)v (12)

dv -
GID{p:GId_gp_%RR’ (13)
0= 0,(v=gF"), (14)

where R, is the Ricci tensor and 0=V, V¥ is the
D’Alembertian operator. The term C,, is the C-tensor
which is defined by

cw = vpg/’m'(llVT RV, + Vpo Rowp (15)
with

v,=V,p and v, =V, V. (16)

i

As a final point, the total stress-energy tensor is written as

T, =T+ Th + TR, (17)
with T}, being the matter stress-energy tensor (which we
will neglect in the present study), and T},3" and T}, are the
stress-energy tensors of the electromagnetic and scalar
fields figured as

M _ %1 1 2
T;w - E |:gp0vaF;40 - Zg;wF )

T — o [(vﬂqo)(vyw) L (V,0)(V0) - 9 U(0)].

2
(18)

In the realm of the CS gravitational theory, the strong
equivalence principle, i.e., (V*T);* = 0), is verified pro-
vided that the equation of motions of the scalar field ¢,
Eq. (13) is satisfied. This is because if we consider the
derivative of Eq. (12), the first term on the left-hand side
vanishes due to the Bianchi identities, while the second
term is proportional to the Pontryagin density through the
form

T
V0" =~ S 1*RR. (19)

The verification of Eq. (19) yields Eq. (13).

To finish this section, we are going to discuss the
dimensions of the coupling constants used in this study
and the scalar field ¢ and the electromagnetic field A,. By
fixing the dimensions of (¢,0q,¢,A,), the units of the
other constants are also fixed. For example, if the CS
scalar field and the electromagnetic field have the dimen-
sions [p] =[A,] =, then [o] =" and [o)] = 17%,
where [ expresses the dimension of length. The CS scalar
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@ and the electromagnetic field A, is often dimensionless,
which requires [6] = [A,] = I? and &, be dimensionless.'
Another selection is to put ¢ = o, thus putting S,, Ss,
and S, on equal footing and we have [g][A,] =12
We will leave this arbitrariness because the results of
the previous studies are based on the different choices of
the unit.

III. ROTATING CHARGED BH SOLUTION IN
DYNAMICAL CS GRAVITY

Now, we are going to study rotating charged BHs
in the dynamical construction of the modified CS
theory. The study of stationary axisymmetric line ele-
ments in the frame of the CS gravitational theory without
doing any approximation in the calculation will be a
tedious task. Therefore, we will use a pair of approx-
imations. Then, we will proceed to solve the modified CS
equations of motion to second order in perturbation
expansion. In the following, we only consider the case
that the potential U(p) for the scalar field ¢ van-
ishes, U(g) = 0.

A. The process of approximation

Now we will use two approximation processes: a slow-
rotation and small-coupling approximations. The small-
coupling process deals with the modified CS term as a
small distortion of GR, which allows expanding the
metric and the gauge potential A, (up to second order)
as follows:

G = 9,(3) -+ fgffy)( ) + g (@),
A, =AY + Al 4 24P (20)

where g,(,(p and A,(,O) are the background metric and charge
which satisfy the Einstein GR field equations, such as the

Kerr-Newmann metric, while gf,l,) (@), A,(,”, g,f,) (¢), and

Af,z) are the first- and the second-order perturbation coming
from the CS corrections. The parameter & refers to the order
of the small-coupling approximation, which we will
define soon.

On the other hand, the slow-rotation approximation
allows one to reexpand the background and the & pertur-
bations in powers of the Kerr-Newmann rotation parameter
agn- Therefore, the background metric and the metric
perturbation yield the following form:

" this study, we use the geometrical units with G = ¢ =1,
and thus, the action has the units of /2. Therefore, if natural units
are used where 7 = ¢ = 1, then the action will be dimensionless
and therefore if [p] =[A,] =1 then [o] ==[A,]I”* and

[o)] = 1772

0
g;(u/) = 7’]/(41/ + €h/u/

Eg) = ehiw") + Eehyy”
2 = Ehp” + Eehly
A = 00 AN 4 2420
A — £A0D | geall) | ge2a D)
§2A,(42> _ §2A,(40’2) + §2€A(1 2) + §2€2AL2,2)’ (1)

+ €2h
1 5e2h,,; b,
Ve,

where the parameter e stands for the order of the slow-
rotation expansion, which we will also define soon. We

must remind ourselves that the notation A" labels for
terms of O(n, m), which stands for a term of O(¢") and

O(&™). As an example, in Eq. (21), 11,(3’0) and r],(,o'o) are the

background metric when the rotation parameter vanishes,

ie., axn = 0, while A(y”, hZ%, AN and AP are first-
and second-order perturbations of the background metric
and charge in the spin parameter.

Combining both approximation processes, we obtain a
bivariate expansion in terms of two independent parameters
£ and €, which yields the second perturbation order of the

metric and the electromagnetic field in the following forms:

0 +€2h +<§2

Dy €2A §2A
(22)

+ gh;w
04 §A

) e éh,w
Dy §A

I 7]/(41/ +€h/4u
A, =AY el

The first-order expressions refer to expressions of O(1,0)
or O(0,1), while second-order terms refers to O(2,0),
0(0,2), or O(1,1).

In this study, the slow-rotation process is the expansion of
the Kerr-Newmann parameter, agy, and therefore its dimen-
sionless expansion parameter ¢ should be ¢ = agyn/M.

B. The slowly rotating charged BH solution

The slowly rotating expansion of the background metric can
be formulated using the Hartle-Thorne approximation [62,63],
where the line element can be parametrized as follows:

1
ds = ~h[1 + hy(r.0)ldr* + 1 + ha(r. O)]dr?

+ r2[1 + h3(r, 0)]d6?
+ r2sin? O[1 + hy(r,0)][dgp — w(r,0)d1]?, (23)

where h is definedas h = 1 — % + ‘j—i which is given by the
Reissner-Nordstrom  solution, with M being the mass
of the charged BH and ¢ being the electric charge in
the absence of the CS expression. In Eq. (23), we use the
Boyer-Lindquist coordinates, i.e., (¢, 7,0, ¢) and the pertur-
bations of the metric are i, (r, 0), hy(r, ), h3(r, 0), hy(r,0),
and w(r, ).
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The metric (23) is rewritten similar to the one presented
in [62,63]; however, the metric perturbations should be
expanded in a series in both £ and e. By the second order
expansion, we have

structure of Eq. (23). Also, we assume that when the rotation
parameter of Kerr-Newman vanishes, i.e., agy — 0, we get
Reissner-Nordstrom space-time as a solution, which ensures
that all terms of O(0, m) vanish. Therefore, the CS expres-
sion should be linear in the Kerr-Newmann spin parameter

hy(r,0) = €h§l’0> + gh( + €2h (20) agy. Using the slow-rotation limit of the Kerr-Newman
(10 e ) metric in GR, the metric and charge perturbations propor-
ha(r,0) = ehy” '+ 6‘5}’ 'te hy tional to £° in the first order are given by
hy(r,0) = eh"” 4 een() + 230,
(1,0) _ p(1,0) _ ,(1,0) _ ,(1.0) _
hy(r,0) = hz(l +€§h +€2h20 hy™" =hy"" =hy" =hy =0,
w(r,0) = e + efwMV) + 2020 (24) (o) _ [2Mr — glaxx (10) _ gsin® Qagy
A o= AT =, (25)
Equations (24) have no expressions of O(0, 0) because those
terms are already involved in the Reissner-Nordstrom  and in the second order,
|
2 2 2
20) _ axn-(2Mr - ¢°) 2Mr—gq° . 2,0) _ AKN 1
h(1 ) D — cos29—i—7r2 sin? @ |, hg ) = > 00520—5 .
2 2 IMr — o>
h(32’0) aKl; cos? 9, hf’o) = aKZN (l + r2 9 gin? 0), AS”’ = —qaliN , 0?0 =0, (26)
r r r r

whose expressions coincide with those in the Kerr
solution when g =0 [43]. All the fields are expanded
by small-coupling and slow-rotation approximation
parameters, including the CS field. To derive the lead-
ing-order corrections for ¢, we must yield to the evolution
equation (13). From Eq. (13), we obtain &’¢ ~ (6,/6)RR,
where the Pontryagin density is equal to zero up to order
in agyn/M. Thus, the first order behavior of the CS scalar
field must be ¢ ~ (0,/0)(axn/M), which is proportional
to e. Additionally, the assumption that the Reissner-
Nordstrom metric is the unique charged solution with
vanishing angular momentum, we should have ¢(**) = 0
for all s. The analysis given in [43] to derive a detorsion to
the Kerr solution in the dCS construction did not take into
account the effect of the charge. On the other hand, in
the present study, we expand the analysis presented
in [43] to take into account the effect of the charge. By
employing Eq. (13) to Eq. (23) and by using Eq. (24), we
obtain

(27)
|

¢ = e (r,0) + &gV (r. 0) + 9*0(r.0).
2VH

]’ ’r—M VH
9(0) = 5L <—% cosé’) + ¢4l (—5,c059>,

S S

f/)(r)_clHHZ 5

](r—M—I—\/_) 2+c2HH

[

Now we are going to apply the process described above to
solve the above-modified field equations, by stressing the
evolution equation of the dCS scalar. Up to the order O(1,0),
we obtain the evolution equation in the following form:

10 , 2 (10 M I (10  cotd (10
he.r; —Q.r 1-—— —- —
@, + r(ﬂ, < }"> + }"2 §0’99 + r2 (ﬂ’g
246M(Mr — q*)(3Mr — 2¢?) cos 0 agy
- - ; BN ()
oL r M

The solution of partial differential equation (28) is a linear

composition of the homogeneous and the particular solution:
P10 = qo( 0 + gal(pan> The variables of the homogeneous

solution for the equation can be separated,

(10)

PHom (l’, 9)

= @(r)p(0).
Equation (29) shows that the partial differential equation

becomes a set of ordinary differential equations for ¢(r) and
¢(60), whose solutions take the following forms:

|-

(29)

S 81 2\/ :|
s M—-r+VH)?, M>gq,
22 v ) 1

(30)
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where H = M? — ¢?, and H(---) are generalized hyper-
geometric functions,’ L(-) is the Legendre polynomial of
the first kind,’ L,() is the Legendre polynomial of the
second kind* cj, i =1,...,4 are constants of integration,
and the constants s and s, are defined by

s=1-+/1-4cs, s =14+/1—4cs, (31)

where c¢5 is the constant of integration that arises through
the separation of variables.

We study the solution of ¢'") in detail to understand the
physics in the constants of integration that appear in it. For
this purpose, we will consider the behavior of the solution
when r > M and obtain

(1,0)

Mr — q2
272

ol

Mgr_ Q2 S1:| r-

s} 4o, [1 +—3

o(r)~c, [1 +
(32)

Moreover, we require the scalar field ¢ to have a real value,
then the constants s and s; must be real, s, s; € R, which
requires c5 < 1/4 as we find in (31). Moreover, if we also
require the scalar field ¢ to have finite total energy, then ¢
must decrease to a constant asymptotically faster than 1/r,

|

1,0
Ppon (1, 0) =

which tells us that s > 2 and s; > 2. The first constraint
cannot be satisfied when c¢5 < 1/4; therefore we find
¢y =0, and the second constraint yields ¢5 < 0. Thus,
the constraints coming from the requirement of the finite
total energy tell us that ¢ cannot be proportional to In(h).
By summarizing the above discussion, we obtain

gog(’)?g = const.

(33)

We should note that the expression in (30) diverges at the
horizon, where r — M + \/ﬁ vanishes. The above argu-
ments about the boundary conditions, however, tell us that
the homogeneous solution must be a constant as shown in
Eq. (33), and therefore the homogeneous solution does not
show the singularity anywhere. As we will see soon in (34)
and (42), the expressions of the particular part of the
solutions do not include the factor r — M + +/H even in the
integrands and therefore the scalar field ¢ is also regular at
the horizon.

Although we have the homogenous solution of Eq. (28),

we need a particular solution (pE,la'r(t)) to find the full inhomo-
geneous solution. The particular solution is given by

GIH

(Ve =yt (1) ) [ OO S 200 |

7

_ 48eoagn {\/ﬁ(r—M) / (Mr—q*)(3Mr — 2q2)[(r—M)tanh‘l(%) + \/E] I

r

(34)

r

Equation (34) which describes the particular solution gives the following form when the charge g vanishes,:

(1,0)

Ppart (r79)|q:0: 5

Mo, r

The generalized hypergeometric function H([n;, n,, ...

[oe]

H(nd,z) =) = =77
;H?:l PS(d;, k) k!

,d,] and PS(n, k) is the Pochhammer symbol, PS(n, k) = [[}Zj (n +j). H(---)’s in (30)

where n = [ny,n,,....n,), d = [dy,d,, ...
correspond to p =2 and g = 1.
The Legendre polynomial of the first kind is defined by

,np},[dl,dz,...

ot (ag | [ BRI gy e (M) - M M2 ).

.d,],z) is generally defined by

i1 PS(n;, k) z*

L(b.z) = H([—b,b+ 1. [1],%(1 —z)).

“The Legendre polynomial of the second kind is defined by

Ly(b,z) =

VA4 DR+ 5.5+ 5. 5+ b 3)
2Z1+br(% '

b)2?
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The asymptotic form of Eq. (35) gives Eq. (35) in [43],
which is derived for slowly uncharged rotating solution in
dCS theory.

Because we have succeeded to the present the solution of
the dCS scalar field, we try to derive dCS corrections for the
metric perturbations. We stress that the stress-energy tensor
(18) of the dCS scalar field appears in the modified
field equations (12) up to O(2,1), and thus we neglect
the contributions in the metric perturbation. In such a case,

equations involving A, ("D, A, py (WD and h, (WD),
which comes from the components (z,¢), (r,r), (r,0),
(6,0), and (¢, ¢) components. The second set which comes
from the modified Einstein equations yields one differential
equation for @), which is the (¢,¢) component of the
modified Finstein equations.

The first type does not depend on the dCS field, ¢, and
therefore they are not changed from the equations in GR.
Therefore, we only consider the second set, (7, ¢) compo-

the modified Einstein equations are divided into two types:
The first one constitutes a closed system of the differential
|

nent, which gives

5761262 (Mr —g*)(3Mr —2¢*)[VH — (M — r)tanh™" (A=1)] M-
M{hr]hrZ/ - VEZ gr 4 {H]hrztanh‘l< r>

r7H30'1 r \/ﬁ
/ Mr—g*)(3Mr —2g*)(M -
—([q2 —|—2M2]r2—6Mq2r—|—3q4) M? _qz}/( r—q°)(3 ”7 q°)( r) dr}
r
= r*hw,,(r,0) + wyy(r,0) + drho,(r,0) + 3wy(r,0) cot 0, (36)

where H, = (¢*> +2M?*)r — 3Mq*. When ¢ = 0, Eq. (36) gives the following form:

15> agnh
o) + 3cot0w)) + arhe) + 2holl) & TN 602 0(352 4 8Mr + 18M2), (37)
’ ’ vr
which coincides with the form derived in [43] in the case of the uncharged BH. Again, the general solution is a linear
combination of a homogeneous solution and a particular solution. The particular solution is given by

o) = _%ZIZN;Z/% [/ {rzhHl / (Mr —g*)[(M - r)tanh‘lrg”\’/‘ﬁ’) — VH|(3Mr = 24%) .
~ i, [tanh—l (M\/—ﬁr> U 20 S = qzwﬁ]
" / (Mr—¢*)(M —7r)(3Mr —24%) dr}dr} . .

The asymptotic form of Eq. (38) has the following form:

o)

2o’ ax M (42M* + 175M? ¢ + 35¢* — 80M3r — 40¢°Mr)  9x*c*axM ( H3> (39)
_ - , -3,

356, H%%r8 " 350,H3%7

where H, = 40M (2M? — ¢*) and H3 = 42M* + 175M>¢* + 35¢". Equation (39) is different from the one derived in [43]
when g = 0. The reason why Eq. (39) is different from the one derived in [43] when ¢ = 0 comes from the terms including
tanh~! (%) The homogeneous solution of Eq. (38) is a sum of generalized hypergeometric functions, whose argument is

r/(2M) and has some separation constant cs. Although certain values of such constant make the solution purely real, the
solution diverges at the spatial infinity. The other values of constant cs make the solution infinite or complex. The
aforementioned discussion forces us to choose the integration constants, which are the coefficients of the hypergeometric
functions, to vanish. Therefore, Eq. (38) gives the full solution.

The full gravitomagnetic metric perturbation in the linear order with respect to ¢ and ¢ yields

o _2Mrag—q*  ST6ak’? / 1 / h, /(Mr—qz)[(M —r)tanh™ (=) — VH](3Mr - 247) 0
rt PH?he, ) r* r’
_ 2 2.2 2.2 _ 2 _ 2 _ 9,2
(M=) NSV [ 0= P =AM 2) N,
VH r*hH r
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whose asymptotic form is given by

2Mragn — ¢*  9x*caxnM H,
- H,——). (41
r * 350, H3/%¢7 L (41)

w =

Equation (40) constitutes the first charged slow-rotating BH
solution in dCS modified gravity. Note that the perturbation
is highly suppressed in the far field limit and decreases as
r~7, which suggests that its significance can only be
observed in the strong field regime. Now let us discuss
|

2,3 _2
g0(1‘1):13824aKNK a (HH4(r—M)/(Mr q )H4{/_

6

ﬂZ H4 r

r

the solution (40) with/without the charge g. When g = 0 the
solution decreases as r~° [43] and when g # 0 the solution
decreases asymptotically as #~’. This means that the solution
with g decreases faster than the one without gq.

We can verify that the approximated solution given by
(40) is self-consistent by calculating the next order cor-
rection to ¢. Such correction consists of 2% and (")),
which can be calculated by solving the evolution
equation to the next order. Carrying out such calculations,
we find

{lezh\/g / (4 =Mr)H,(3Mr=2¢?)

7!

—/<M_ NMr=g)(Mr=2q) |, (Hl rhy/Htanh™! <E> +H(2M? + ¢] —6qu2+3q4)>] dr}dr

VH

7

+/(M—r)5]6\/[r—q2){/$[lezh\/ﬁ/(qz—Mr)H57(3Mr—2q2)dr+/(r—M)(Mr—q2)(3Mr—2q2)dr

VH

r r

x (H1 r*h/Htanh™! <M _ r) +H(2M? + ¢?|r* —=6Mrq* + 3q4)>] dr}dr) , (42)

where H, = [(r — M) tanh‘l(%) +VH| and Hs = [(r — M) tanh~! (M=r) —

asymptotic form:

P11 n — 1205aM cos 0 {tanh‘l (M -r

To H3r VvH

Equation (43) yields the general behavior of ¢! pre-
sented in [43] when g = 0. Equation (43) is & times
smaller than @), therefore presenting the small-cou-
pling approximation self-consistent. To use this improved
@ solution in the modified field equation, we then find a
correction to the metric proportional of order %, which
we neglect in this study. It is important to stress that to
obtain the Reissner-Nordstrom BH in the static limit, it is
enough to have a constant CS scalar. Indeed, a constant
CS scalar is less restrictive and would allow the topo-
logical Pontryagin density in the action which, in turn, is
necessary to set (anti-)self-dual configurations as a ground

NP \/17] Equation (42) yields the following

) [r—M] - \/17} (2M? + ¢*)(63r[M?* + ¢°] — 8M[7q* + 9r2]).  (43)

IV. PROPERTIES OF THE DERIVED BH
SOLUTION

In the following subsections, we will discuss some
physical properties of the solution derived in the previous
section.

A. Line element

Gathering the above data, the line element of the slowly
rotating BH can be written up to O(agy?) as

ds* = —g,dt* + g,,dr* + goed?” + gypdp® — 2g,ydtdep,

state [64]. (44)
|
48¢cayy (Mr = ¢*)(3Mr = 2¢7)|(r — M)tanh™" (*=) + V/H]
(p(l'°>—7{\/ﬁ(r—M)/ r7 ek dr
+ <\/H (r — M)tanh™! <M\/_ﬁr> - H) / Grm” - Sq””; 240 - 1) dr}, (45)

with
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h aKNZ(zM” - 512)

Gy = T cos20,
’
(2Mr—-g®)agx . ,, S5T6axnk’c” [ 1 N (Mr—q*)[(M - r)tanh‘l(%) - VH|(3Mr-2¢°)
gt¢:——zsm Q_W = r hHl 7 dr
r r’H>*ho, r r

— PhH, {tanhq(f‘f/-_r) _((q2+2M2)r2—3612[Mr—q2})\/ﬁ}/(Mr—qz)(M—r)(3Mr—2q2)dr}dr] ar.
H

r*hH !
1 2 1
gy =—+ KN (00529 — —> ,
r h
2

oo — 7”2 + AgN COSzg,

2Mr —g?
Gpp = r7sin*0 + agn*sin’0 <1 + #sin@) ,
r

4. gsin®fayy

A= (46)

r

Equation (46) is correct in the orders of O(2,0), O(1, 1), and O(0,2). We stress that the terms including ¢ and o, in g, of
Eq. (46) cannot be removed by any coordinate transformation. We also note that the perturbed parts of the metric are regular

at the horizon, where r — M + +/H vanishes. Therefore as long as we treat the model perturbatively, the scalar invariants are

regular at the horizon.

When r is large i.e., r — oo, the Pontryagin density R,,Wﬂi?””aﬂ behaves as

Ry g R 5 —

576eaxnM? cos 0 N 960eagnMq? cos O 384cayng* cos§  432ec’axnM>(2M? + ¢*) cos O

7! r8

Equation (47) shows the corrections coming from the CS
term to the order under consideration in the present study.
The Pontryagin density RR, which is proportional to Clg,
and its deviation from that in the Kerr-Newman can be
calculated by using (42). Also, Eq. (47) shows the correction
of the CS scalar field starts in the invariant Rwaﬁii"”“ﬂ from
O(r—}l) and the lower orders appearing in this invariant are
due to the contribution coming from the slowly rotating
Kerr-Newman BH. Also, Eq. (47) tells us that the cross term
of the line element (44) cannot vanish or be gauged away by
any coordinate transformation. This is because if the cross
termin (44) vanishes, axy = 0 and in that case, the CS scalar
field given by Eq. (35) also vanishes and the CS theory
reduces to GR of the Einstein theory.

The metric in Eq. (46) involves a true singularity at
r=0. This can be investigated by calculating the
Kretchmann invariant R,,,,R*??, the squared of Ricci
tensor R, R*, and the Ricci scalar R, which ensures the
divergence at r = 0. Moreover, Eq. (47) shows also that the
Pontryagin density and the CS scalar field diverge at » = 0.

The location of the event horizon can be found by
solving the equation g;,g4s — gt2¢ = 0, which yields

rH,KN:rKN:M+\/M2—dKN2—CI2- (48)

1
ro L)

(47)

9 o (M2 = g2)3/2 1

Moreover, the location of the ergosphere can also be
derived by solving the equation g, = 0 for r,

Tergo = Tergo, KN (49)

with the ergosphere of the Kerr-Newmann solution given by
FergokN = M + \/M?* — agx? cos® @ — ¢ Equation (49)
tells us that the radius of the ergosphere is not changed
from that in the Kerr-Newmann solution.

The choice of the homogeneous integration constants
depends on how to choose the definition of the mass M and
the reduced spin angular momentum aygy. Therefore, a
natural choice is to define such quantities so that they
coincide with those measured by an observer at » — oo and
we obtain the metric displayed in (46). With these defi-
nitions, the angular velocity and area of the event horizon
are changed from those in the Kerr-Newmann solution as
follows. The new solution given by Eq. (46) amended the
dragging of the inertial frame of the rotation of the BH. This
can be calculated by the angular velocity w, for the zero-
angular-momentum observer, which is defined by

1 (50)
e

which yields
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2MCIKN

dr

Wy = —
r PH?ho, r

576K agn o> / 1 { / {rz i / (Mr - ¢*)[(M — r)tanh™ (1) — VH|(3Mr - 2¢°)

7!

7

2, [tanh_l <M\/—_r> (@ +2M*)? = 3¢* [ Mr - qz])\/ﬁ} / (Mr—¢*)(M = r)(3Mr - 24%) dr}dr] r
H

r*hH

Now we are in a position to discuss the conserved charges
of the above solution. We use the following transformation
to transform the metric (46) to the Cartesian coordinates via
the following standard transformation [38]:

a2
x = r(l +—KI;) cos ¢ sin 6,
2r

a2
y= r(l —|—2—I;I;) sin ¢ sin 0,
7 =rcosf. (52)

We also define f_zﬂ,, by the difference between g, in (46) and
the flat metric 7,,,

h/w = Guw — Nuw- (53)

We should note that BW needs not to be small everywhere
but we require that at infinity, away from the black hole, it
goes to vanish because we are considering the asymptoti-
cally flat space-time as a solution. A detailed discussion on
how one can use Eq. (53) to derive the mass formula for the
CS-modified GR in the asymptotically flat space-time can
be found in [57]. Here we list the mass formula of Chern-
Simons-modified GR as in [57]:

1
E =
167G

R U I
# as( Q@+ 0rE -500@). (54
S2 2 2

where
01 (@)= V=REV I ~E Ve + BT EV

T, T, 4 BT B+ V'E),
Q//Cl‘l (E) = UﬁgpegﬂiﬂgL/)ﬂ + UcéuegyiﬂgLﬂ/} + U(rgueaﬂyﬁgLi/i’

(55)

and the integration is performed on a two-dimensional
spacial sphere S? with a l_arge enough radius. In Eq. (55), h

is the trace of h*, ie., h = g, h**, G-, is the linearized
form of the Einstein tensor,

79;41/ (i }_l +vpvailp6)v (56)

r

(51)

and V¥ is the covariant derivative with respect to the
background. Because we are considering the flat back-
ground (53), we find that the covariant derivatives reduce to
the partial derivatives, V¥ = ¢*. In Eq. (55), v, is defined in
Eq. (16). Now let us apply the formula of energy given by
Eq. (54) to the BH (46). For the energy, & is the timelike
Killing vector defined as & = (—1,0,0,0). An explicit
computation of the mass of this metric using the for-
mula (54) is straightforward. 2 vanishes’ so the Qp(Z)
term does not contribute. Moreover, the Qc(€) term
vanishes for various reasons (such as symmetry and
because GH ) vanishes for this Einstein space at infinity).
From the first part, we obtain £ = M at infinity up to order
agn- Therefore there are no corrections from the CS term.

Now we are ready to write down the formula that enables
us to calculate the angular momentum of the Chern-
Simons-modified GR for asymptotically flat space and
generalizes Eq. (54). This formula takes the following form
(for more details, see [57]):

Qo(fﬂ)zﬁézd&[fo(djh/—ah/j)—i-&fdjhof—fjahof

+(;1€ijk§ng0k:| ) (57)

Equation (57) for & = (1,0,0,0) gives Q°(&) = E and
the formula (57) coincides with the usual ADM one. As
Eq. (57) shows, the effect of the CS term, which appears in
the last term, does not contribute.

In the case of the angular momentum, we consider the
caseof & = (0,0,0, 1) and Q°(&;) = J. The first three terms
in the integrand of (57) are identical to those in the Einstein
gravity. Because Eq. (46) tells us that the corrections coming
from the CS term decrease rapidly compared with the terms
appearing in the Kerr geometry in the Einstein gravity, they
do not contribute to the angular momentum. For the last term
e'k&,GL0, . which appears due to the existence of the CS
term, the  direction is perpendicular to the two-dimensional
surface S? and therefore the i direction corresponds to the

5 =y e .
Here E# is defined as
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radial (r) direction. On the other hand, & ; 1s a unit vector
corresponding to the z direction. This tells us that the k
direction corresponds to the ¢ direction and therefore only
G~ contributes to Q°(&,). Because Eq. (46) tells us that the
metric does not depend on the time ¢ nor angular ¢, all the
terms except the first term —%Ei_zw in the expression (56)
corresponding to G“,, vanish trivially. Equation (46) also
tells us that h,, is O(r™') and therefore Oh,y; ~ O(r2).
Because the area of the two-dimensional surface $? is O(r?),
the last term in (57) for Q°(&;) = J does not contribute to J
in the limit that the radius of S? goes to infinity. Therefore
there is no correction from the CS term to the angular
momentum and we obtain

J = aKNM, (58)

which is identical to the angular momentum in the standard
Kerr(-Newman) black hole. Equation (58) shows that the
effect of the CS scalar field on the calculation of the angular
momentum vanishes up to agy.

Now we are going to discuss the Hawking temperature of
the BH solution given by Eq. (46). The Hawking temper-
ature 7T is generally defined by the surface gravity « so that

Equation (60) does not differ from the Reissner-Nordstrom
solution up to O(agy).

V. GEODESIC PRECESSION IN THE SLOWLY
ROTATING CHARGED BLACK HOLE IN
DYNAMICAL CHERN-SIMONS MODIFIED
GRAVITY

In [74,75], the timelike geodesics of the slowly rotating
black hole in dynamical Chern-Simons modified gravity
were considered. Sopuerta et al. [75] investigated the
timelike geodesic equations for the massive particles and
discovered that in Chern-Simons modified gravity, the
location of the innermost stable circular orbit and the three
physical fundamental frequencies associated with the
particle’s time 7 are modified. However, the geodesic
precession of orbits around Chern-Simons black holes is
only shown numerically for a few examples in Ref. [75],
with no analytic expression for this physical quantity. Now
let us start using the condition 6 = z/2, which puts the
orbits on the equatorial plane. In such cases, timelike
geodesics can be found to take the form

Ul — dt B Eg‘/)‘l" - L.gl(/)

_ 76 =8 = 29 (61)
T = «/(2z) and we now obtain [76-79], dr gt2¢ + Gudps
W (raxn)
T =—— 59 E L
H.KN 4” ( ) qu _ @ _ zgt¢ + 9u , (62)
AT Gy + 9upp
Using Eq. (46) in Eq. (59), we obtain the Hawking
temperature as dr\ 2 )
(E) + Ve (r) = E°, (63)
run — ¢
Tyxn = ZKN73 up to O(agn).  (60) ) . )
7V H KN with the effective potential
|
1 E?[g,.(¢?) + - +2ELg, + L?
Vo)=L (1 L Elonlgy gngqsi) 9o9) i gn>’ (64)
rr gt¢ + gtlg(/)(/)

with E and L being the specific energy and angular momentum of particles moving in the orbits, respectively. The effective
potential V(r) must obey for a stable circular orbit in the equatorial plane the following equation:

Vesr(r) = E2,
By solving the above equations, one obtains

9ir + gt(/;Q

dV 5 (r)

Te=o. (65)

27aKN

E

— \/g” n 29,¢Q - g¢¢§22 - 5§Kﬂr3(r2 —2Mr + q2 _ r4£22)3/2(M2 _ qz)s/z

X (25—7Kf(q2 - M*)prr(2MQer’ — Qeq?r*)\/M? — ¢*
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40 20 5 25
+€MQ3(,¥2 |:}"<—M3—|——Mq2> _I_M4 +_q4+€M2q2:|>

21 21 6

n (1 —Q2¢*)r* — r9Q2 + 2MQ* P +2(2M? + ¢*)r* — 4¢*rM + q* — 4M 73]

(r —=2Mr + ¢* — r4Q2)3/2r
54

—9ip + Gpp

9

L

= \/gtt N 29[{/)9 _ g¢¢Q2 N 57'7(7"2 —Mr+ q2 _ r492)3/2(M2 _ 612)3/2ﬂ1<§

10 QZ 2.4 M 3 2 4
X |:ﬁl€f(q2 —Mz)ﬂ<M€§22r5 _8idr 2(] r_are (%—&-Mz)erz — Mreq? —I—%) N/ M? — ¢?

2 r2

2 2

40 20
21 21

25
6 6

5 4
+Ma2€<Mr+ re L ——) K—M3 +—Mq2>r+M4 +i+—M2q2”aKN

r°QQ—r — r’+Qq°r
69 893 2MQ 5 Q 2.4
(r* =2Mr + g% — r*Q?)3r

’

dp G-t \/ (gt(/),r)z + i1, 9p¢.r

€AxN

dt g¢¢,r
108

- (M2 = @) per'®

[((MZ _ q2)3/2ﬂ1<§r7 _ 180{2q4>M

2

Mr—
—?Msoc2 —36M*a’r — 90M3a?q* — 18M*a*¢*r — ¢*(—¢* + M2)3/2ﬂ1<§r6} + 7:2 el , (66)

with Q being the angular velocity of the particle moving in the orbits.
Using Eq. (66), one obtains Kepler’s third law in the slowly rotating black-hole spacetime in the dynamical Chern-

Simons modified gravity

R4MCIKN

T? = 4n° { K

+
(Va" + MRS =R'@ + ¢*)*  35(\/q" + M = R'¢* + )’ 1H**(¢* + MR’ — R*¢?)
x (TOR 6 H*?q* — 54H36%k*q* — 54H36°k>MR® + 54H;36°k*R*¢* 4 T0R 6 H3/>M

—70R%6H*/*¢* + 45k>6*H,Rq* + 45k*6*H,RM — 45K°6>H,R ¢ — 54\/q4 + MR’ — R*¢*q*H;6°k?

+45R\/ g* + MR’ — R*q*q*<*c*H, + T0R’ \/ "+ MR — R*¢*¢*6, HY/?) + O(agn?) } (67)

where R represents the orbital radius and T = § represents
the orbital period. The subsequent term in the right-hand
side of Eq. (67) is the correction by the agy and the Chern-
Simons term. The correction term disappears as a ap-
proaches zero. This is sensible because as agy approaches
zero the metric (44) coincides with one of the Schwarzs-
child black holes in general relativity. Since the black hole
rotates slowly, the first-order terms in agyn dominate the
correction. As a result, when the black hole rotates in the
same direction as the particle, i.e., axy > 0, the orbital
period T decreases with the Chern-Simons coupling
parameter £ However, when the black hole rotates in the
opposite direction as the particle, i.e., axy < 0, the orbital
period 7 tends to increase with the Chern-Simons coupling
parameter &.

|
A. Stability of the BH given by Eq. (46) through the use
of geodesic deviation

The trajectory of a test particle in the BH space-time is
prescribed by the geodesic equations of the following form:

d?x” a ) dx*dx*
0=—+ — s 68
d12+{/,w}d7 dr (68)

where 7 is the affine parameter along the geodesic. The
equation of geodesic deviation has the form [73]

d?e” a ) dx*def a dx* dx*
0=—5+2 —_— — 7, 69
d12+ {/w}dr dr+{m/}pd¢ dr (69)
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with ¢’ being the deviation 4-vector. Applying (68) and
(69) into (46), we obtain the geodesic equations in the
following form:

2t 2 ! m do dr
0= Zz—Fe{M agn — K2qu + 3Ata)] (f;f) {1 élr} 0=_, — =0, —=0, (71)

1 dr\?  [dg\> 420 A
:—h/ —_— —_ e g —_— =
0=3r(r) <d1> r(m) 0. 0=0r =42

(70) we obtain the geodesic deviation in the following form:

Using the circular orbit

0 ! 2 ! 2 2
0= Jz_€+h dr de! +e [MaKN _KNT r3Atw] (Zﬂdi—h—gdi) + {6[A,r2(3a)+ ro') —i—mrﬂ (@)

dr* ' hdrdr 2r dr dt  rdrdr 2 dr
aKquh" d[ 2 1
- — e
2 dr ’

aKquh/

— {2r3h’(o + @' — Magh' + h"Magxr + ER' o +
,

Pl dpde dt de® A\ 2 dt
S LT 4 onn L Dot ) (22N 2 e 4 02 1
0 dr? dr de dr dv { [t r ]<d1> [ ]<dr> }g ’
d’e? d¢ d’e>  2d¢de'
— 2 T L 72
0 d12+(dr> 0 d12+rdr dr’ (72)

where the functions 7 =1 — 24 Z—; and w is defined by the second term g,, of Eq. (46) via (23).

The third equation of (72) represents a simple harmonic motion, which ensures that the motion in the plane 6 =7 is
stable. Assume the solutions of the remaining equations of (72) to be

80 = kleiw1¢,

e = k,e’?,  and

& = kyel™?, (73)

where k|, k,, and k; are constants. Substituting (73) into (72), we obtain

0= h’{Zwr WK r—2h — \/_€{<§r4a) + agn <Mr - %cf))rh” —[(F7E=&r)a - Ert (P +2)o

_a% (2¢* = 512> = 2Mr + 8’ M)W — (26r° e’ — 2Er*w — agn(8Mr — qu))hr] h}
= (W"h+ (P = A2 + r(Sh = &, 2)' = 61 + 20?h)
1
X [eh’ﬁ(fr“a) + agn <Mr ~5 q2>> + rPoVh'r - 211} r. (74)

By solving Eq. (74), we can derive the form of @, but it is
rather tedious. By using the condition @; > 0, we can
establish the stability condition for the space-times (46)
[56,80,81]. This condition is drawn in Fig. 1 for different
values of the parameters which characterize the space-
time (46).

VI. POLARIZATION OF PHOTON NEAR BH

We like to consider the possibility to find the BH
obtained in this paper by any observation. In this section,
we investigate the propagation of the photon near the BH in

(46) and we focus on the difference in polarization from
that of the Kerr-Newman BH.

In the general background given by g, ©

=¢guw and
A”:A/SO), we may consider the propagation of photon

a, which is defined by a, = A, — A,(,O) by solving the field
equation,

1
3 {1/ =) (O (O _
g(o)au{ gV g g (0,0, — 0,a,)}.  (75)

As in (46), we assume
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FIG. 1. Schematic plots of the @ with respect to the radial coordinate r of the BH solutions Eqgs. (46) using different values of aky;, €,
and o4. (a) The plot of @ with respect to the radial coordinate r. Here we assume the numerical values of M, o, 61, ¢, and € as 0.1, 0.1,
0.1, ¢ = 0.001, 0.1. (b) The plot of w with respect to the radial coordinate r. Here we assume the numerical values of M, o, 61, ¢, and

agn as 0.1,0.1,0.1, g = 0.001, 1. (c) The plot of @ with respect to the radial coordinate r. Here we assume the numerical values of M, o
€, q, and agy as 0.1, 0.1, 0.1, ¢ = 0.001, 1.

1
o) = —h(r) + Ehy(r.0), ¢ =ehy(r.0)., g = ot h,(r.0), gV =12 + Ehyy(r.0),
gg)qz r2sin?0 + €?hy, (1, 6), other components = 0, (76)
which gives
O = _ 1 2 —r2sin?0h,(r,6) + hyy(r,0)*
h(r) h(r)?r?sin’0 '
hyy(r,0) 1 hey(r,0)
() — 1P\ (0)rr _ 0 (g _ ~ _ 2700\"
g eh(r)rzsinza’ g (r> e ( ) rr(r ) g 2 € e ’
1 h(r)h¢¢(r, 9) —|—h,¢(r, 0)2
P Ereeeris €2 H()(Ps0) , other components = 0. (77)
Here we have used
9 = g)” = —h(r)Psin0 + €(rPsin60h, (1, 6) — h(r)hy,(r.0) — hiy(r.6))
1 LU SN0 0) = h(r)iyy(r.6) = hiy(r0)* -
g g<(ﬁ¢ 954;) h(r)r*sin?@ (h(r)r?sin®@)?

When we choose the a, = 0 gauge condition, Eq. (75) has the following forms:

0= g( )t¢g( )tta a, I { /_ g rr tta ar} 4+—09 { _g(O)g(O)GGg(O)ttataa} +g(0)¢¢g(0)tta¢ata¢’ (79)
g(o N/ = ( )

0= g(O)ttg(O)rrat2ar 4 g(0)1¢g(0)rrat(a¢ar _ ara¢) 4 g(0)¢tg(0)rra¢atar

1

R 00{ \/ =90 g 0% g0 (9pa, — Orae)} + g 09240076, (d9ya, — 9,a,), (80)
-9
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0= g(O) © )995 ag + ¢l01 g0 (a¢a9 — 89a¢) + g0t ( )960(,50 ag + —F— {Fg rr g(0)00 (0,a9 — 0pa, )}
+ g 099 g0%0,(94ay — dpay). (81)
0 = gO1g0#92q, + g0 GOG34, + {F 4O gOM(3,.a, — 0,a, )}
+ ﬁ%{ mg<0>99g(0>¢¢(aga¢ - a¢a9)}. (82)

We consider a small region and the case where the wavelength is small enough compared with the region.
Then the background metric g,, = g,(w) and the background vector field A, = A( ) can be regarded to be adiabatically
constant in the region. Under the assumptions, Egs. (79), (80), (81), and (82) in the a, = 0 gauge condition have the
following forms:

0= g(O)tt,zﬁ'g(())ttalZaq5 + g(O)rrg(O)ttaratar 4 g(O)Hﬁg(O)Naﬂalae -+ g(0)¢¢g(0)zra(/)0[a{/)’ (83)

0 = gOgl0rg2q, + g0 g9, (9,a, — d,a4) + gV g7 9,0,a,
+ g 09509y (dya, — d,a) + gO?¢ 079, (dya, — 0,a,). (84)
0= g(o)ng(o)aeatzae 4 g(O)t¢g(0)GGat(a¢a9 _ 69a¢)
+ g(o)¢tg(0)€60¢a,ag + g(o)"g(o)%@,(drag - 0961,) + g(o)¢¢g(0)990¢(0¢ag —_ 09a¢), (85)
O — g(0>ng<0>¢¢at2a¢ _|_ g(0)¢tg(0)¢¢a¢aza¢ + g(0>rrg(0)¢¢ar(ara¢ —_ a¢ar) + g(o)geg(o)¢¢ae(aea¢ —_ 64509). (86)

Because g,, = gf,(,),) can be regarded as being constant, we may assume

A” _ Cﬂe—iwt-ﬁ—ip,r-&-ipgé’—&-imqﬁ’ (87)
with constants C,, @, p,, pg and an integer m. Then Egs. (83)—~(86) become algebraic equations,

0= g9%?C, — ¢ pwC, — §9%pyrCy — g marC,, (88)

0= gYa?C, - g w(mC, — p,Cy) = g mwC, + g% py(pyC, — p,Cp) + ¢ O m(mC, - p,C,),  (89)

0= gV’ Cy — g0 (mCy — pyCy) — " mawCy + g p,(p,Cy = poC,) + gV m(mCy — pyCy),  (90)

0=g"0?Cy - g maC, + ¢ p,(p,Cyp — mC,) + g% py(peCy — mCo). (o1

By defining
P2 = gOitg? _ 20 gy 4 GO, 2 | (0000, 2 L (02 (92)

we find

0=w(g"wCy— g p,C, — g% pyCy — O mcC,), (93)
0= p*C,+ p,(9VwCy - g0 p,C, — gO% pyCy — g mC,), (94)
0= p*Co+ po(g"?@Cy = g p,C, = g% pyCy — ¢V mC,), (95)
0=p>Cy+ py(gV%wCy — g p,C, — g pyCy — g mC,). (96)
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Equation (93) gives the Gauss-law constraint,

0=g9aCy— g0 p,C, — g% pyCy — g"mC,, (97)

and Eqgs. (94)—(96) give the following dispersion relation:

0= p? = gOe2 — 26O g 1 g0 p 2 1 6000 2 1 ((O)hyy2 (98)

which can be solved with respect to

0 0N 2
w:wifmmi (W) m2—
g g

For the spherically symmetric case where ¢V = 0, w is
invariant under the change of the signature of m, m — —m.
Because Eq. (97) tells us

1
GO

Cy= (9V%0Cy — g0 p,C, — g% p,C,),

(100)

the signature of m expresses the difference between the left
rotating helicity and the right rotating helicity. Although in
any axially symmetric and rotating solution of space-time
like the Kerr solution, g<0>"/’ does not vanish, there are
several characteristic structures in our model. Equation (46)
tells us the explicit form of g,4. The first term of g, is
common in rotating black hole solutions like the Kerr
solution or the Kerr-Newman solution but the second term
is characteristic of our model. The first term vanishes when
6 = 0 or @ = &, which corresponds to the north pole or the
south pole. This tells us that the difference between the
dispersion relations for the left and right rotations vanishes
at the poles if there is no second term, which does not have
the 6 dependence. Furthermore, the second term increases
when H = M? — ¢? goes to vanish, that is, in the extremal
limit. Of course, the second term appears as a correction
coming from the Chern-Simons term and therefore the
expression is valid only when the Chern-Simons coupling
is small but the term can dominate more than the first term
near the limit. The above characteristic structures will give
some effects on the photon which goes through the region
near the black hole although it could be an interesting
subject to investigate how the effects on the photon can be
observed.

VII. CONCLUSION AND DISCUSSIONS

A new nontrivial natural slowly rotating BH solution
using the dCS gravitational theory has been derived [43].
The charge in the study of BH solutions is important
because BH generated in a collider could have an electric
field. Therefore, we included the effect of electric charge in

(0)et

1 (O p,2 4 g000 2 4 GO0 2). (99)

|

the dCS field equations by including the effect of
Maxwell’s electromagnetic field. We are interested in the
effects of the dCS term and therefore we did not study the
nondynamical case because the result of this theory is not
changed from the result of the Reissner-Nordstrém black
hole solution.

If we include the electric charge and the electromagnetic
field, the scalar of the SC field in (13) is modified, and
therefore, the expression of the scalar field (%) and ¢(-!)
are not equivalent to the forms given in [43]. Moreover,
when we apply the expression of the CS scalar field (%) in
the field equation (12), we obtain the rectification of the
metric up to order e. This rectification (') gives an
asymptotic form of order O(r%) for large r, which is much
weaker than the expression given in [43] where the leading
order behavior is (9(%6) Moreover, we found that the
leading form of the Pontryagin density RI,W,}R/"’“/} has
the form (’)(}7) when r is large, which agrees with the
results given in the literature; however, the next-to-leading
term is of order (9(%), which depends on the charge and is
stronger than the one given in [39]. Moreover, we studied
the stability of the charged BH solution using the geodesic
deviations. We obtain the condition of the stability and
discuss its behavior graphically.

We also investigate the possibility that the BH in this
paper could be found by any observation. We focused on the
polarization of the photon which propagates near the black
hole. In the case of the Kerr solution or the Kerr-Newman
solution, the difference between the dispersion relations for
the left and right rotations vanishes at the north and south
poles but in the BH solution in this paper, the difference does
not vanish there. Furthermore, in the extremal limit. where
H = M? — g¢? goes to vanish, the correction coming from the
Chern-Simons term becomes dominant. Therefore it could
be an interesting subject to investigate how these effects on
the photon can be observed.

Finally, we close our study with the following: In the
present paper, we derive the charged electric BH solution in
dCS by using a linear Maxwell field. Other forms of the
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Maxwell field, i.e., nonlinear forms of the Maxwell field
are not beneficial because the asymptotic form of the
nonlinear Maxwell field will be O(e?). Another case that
could be interesting to study is to assume the magnetic field
in addition to the electric field. This study will be carried
out elsewhere. Also, another interesting case is to take into
account the effect of the electric charge and the potential
V(¢) for the scalar field ¢ because we only considered the

case V(@) =0 in this paper. Also, this case will be our
future work.
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