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Chern-Simons (CS) gravity is a modified theory of Einstein’s general relativity. The CS theory arises from
the low energy limit of string theorywhich involves anomaly correction to the Einstein-Hilbert action. The CS
term is given by the product of the Pontryagin density with a scalar field. In this study, we derive a charged
slowly rotating black hole (BH) solution. The main incentives of this BH solution are axisymmetric and
stationary and form distortion of the Kerr-Newman BH solution with a dipole scalar field. Additionally, we
investigate the asymptotic correction of the metric with the inverse seventh power of the radial distance to the
BHsolution, This indicates that it will escape anymeaningful constraints fromweak field experiments. To find
this kindofBHbyobservations,we investigate the propagationof the photonnear theBHandwe show that the
difference between the left-rotated polarization and the right-handed one could be observed as stronger than
the case of the Kerr-Newman BH. Finally, we derived the stability condition using the geodesic deviations.
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I. INTRODUCTION

Is Einstein’s theory of general relativity (GR) still
right? The Solar System [1,2] and the binary pulsar
observations [3] have affirmed that GR could be right to
ultraprecision in the weak field domain, where the gravi-
tational field is weak and nondynamical. The new gravi-
tational wave observations detected by the advanced
Laser Interferometer Gravitational Wave Observatory
(LIGO) [4–6] and the advanced Virgo detector [8–10]
have ensured that GR appears to be on a solid base, even in
the rather strong gravity region, where the gravitational
interaction is highly dynamical [11,12].
According to these observations, one might wonder if

additional tests of GR are still urgent. The main motivations
for continuous checking are observational and theoretical.
According to the observation viewpoint, the late-time
acceleration of the Universe as inferred through supernova
[13], the rotation curves of galaxies [14], and different
other observations [15–18] point to anomalies that might
be either solved by mentioning the presence of dark
energy [19] and dark matter [20], otherwise, by amending
GR on large scales [21]. According to a theoretical view-
point, the inherent inconsistency of GR with quantum
mechanics has given rise to the emergence of amendment
theories that try a reconciliation [22,23]. In any case of the

argumentation, additional testing could supply extra hints
that might help in solving some of these oddities.
The gravitational parity violation as evolved in the

dynamicalChern-Simons (dCS) gravity is the specificmodi-
fication of GR that has attracted some interests [24,25]. This
theory amends the Einstein GR by a dynamical (pseudo)
scalar field that couples nonminimally with curvature by the
Pontryagin density. The magnitude of deviation in dCS
theory from GR is ruled by the size of its dimensional
coupling parameter ξ. Nowadays, dCS gravity theory is
understood as an effective model, which is valid in a region
where the energy scale or curvature is small compared with
some cutoff scale, i.e., when the coupling ξ is small. The
reason is the fact that the dCS theory is motivated by
heterotic string theory at four-dimensional compactification
and a low-curvature expansion [26], from effective field
theories of inflation [27], and loop quantum gravity at the
promotion of the Barbero-Immirzi parameter to the field in
the existence of matter [28,29].
The gravitational parity violation in dCS theory appears

in the systems that break parity by the presence of a
preferred axis like the one prescribed by angular momen-
tum in the dynamical system [30–37]. An example is the
isolated spinning BH, whose solutions in the dCS theory
are known up to the fifth order in the slow-rotation
expansion [38–40], and in the near maximum [41,42].
Another example is the spinning planet or star, whose
behaviors in the Solar System have been investigated and
observed for approximate horn. Therefore, we expect that
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any dCS deformation from GR forecasts in the spin
dynamics of the Solar System may be employed to limit
the theory.
The CS theory is classified into the nondynamical type

and the dynamical type. In the dynamical case, the (pseudo)
scalar field evolves in time by following the field equations.
In the nondynamical type, there is no kinetic term for the
scalar field and therefore the variation with respect to the
scalar field gives the constraint that the gravitational
Pontryagin density RR̃ identically vanishes although the
Chern-Simons term gives nontrivial contributions. The two
types present amended equations of motion compared to
general relativity field equations.
In the nondynamical CSmodel, Alexander and Yunes [33]

have shown that the gravitomagnetic sector of the metric is
amended in the Solar System, yielding a new parametrized
post-Newtonian parameter [31]. Similarly, Smith et al. [32]
have calculated the correction for the spin precession using a
uniform distribution of density objects which uniform rota-
tion and compared their result to the observations using the
Gravity Probe B (GPB) experiment [44] and the LAGEOS
satellites to put a constraint on the nondynamical theory.
Recently, Ali-Haïmoud and Chen [45] studied the dynamical
theory and computed the extra correction to the gravitomag-
netic of the metric and put an approximate constraint on the
theory of ξ1=4CS ≲Oð108 kmÞ. Moreover, the possibility of
comparable constraints using quantum/Sagnac interferom-
etry has been investigated in [46–48]. Soon, observing
gravitational waves emitted by the rotating BHs will provide
uswith an eight-degree improvement in such constraints [49],
once these discoveries are made that are powerful enough to
break degeneracies between the spins of the objects and the
dCS deformation. Rotating black hole solutions in the
(3þ 1)-dimensional Chern-Simons modified gravity theory
are investigated by taking account of perturbation around the
Schwarzschild solution [50]. A detailed study of the BH
solutions in the Chern-Simons gravity has revealed that at
least two different limits of the Kerr BH are solutions to the
modified field equations [51]. In the extended Chern-Simons
modified gravity, an investigation of a rotating BH has been
carried out [52]. A study of the null geodesics corresponding
to a slowly rotating BH in Chern Simons gravity with a small
coupling constant revealed that thephotonorbits are separable
as in the Kerr geometry [53]. A study of the null geodesics
corresponding to a slowly rotating BH in Chern Simons
gravity, with a small coupling constant, has shown that the
photon orbits are separable as in theKerrgeometry [54]. Four-
dimensional homogeneous static and rotating black strings,
with and without torsion in the dCS modified gravity, are
presented [55].
Yunes and Pretorius [43] have derived a nontrivial

uncharged black solution in the dCS theory that generates
the parity violation. The purpose of the present study is to
derive a new weakly charged rotating BH solution in the
framework of the dCS gravitational theory.

The construction of this study is as follows: In Sec. II, we
present the main tools of CS-modified gravity. In Sec. III,
we solve the field equations of the dCS gravity for the line
element prescribing a slowly rotating BH which is valid for
small CS coupling constants. In Sec. IV, we consider some
of the related physics to the derived solutions to understand
its physical properties. In Sec. V, we study the motion of the
CS BH presented in this study and derive the conserved
quantities of this BH and its orbital period. In Sec. VI, we
investigate the propagation of the photon near the BH and
we consider the difference of the polarization from that of
the Kerr-Newman BH. In Sec. VII, we conclude the main
results of this study and present possible future work.
The following conventions are used throughout the

present study: We use four-dimensional space-times that
have the following signature ð−;þ;þ;þÞ [56], and square
brackets and parentheses mean antisymmetrization and
symmetrization, respectively, i.e., T ½μν� ¼ 1

2
ðTμν − TνμÞ

and TðμνÞ ¼ 1
2
ðTμν þ TνμÞ. The partial derivatives are ref-

ereed by commas (e.g. ∂φ=∂r ¼ ∂rφ ¼ φ;r). The Einstein
summation AμBμ ¼ P

μ¼0;1;2;3 AμBμ is applied and geom-
etrized units G ¼ c ¼ 1 are used.

II. CS MODIFIED GRAVITATIONAL THEORY

In this section, we will prescribe the subjects which give
a full construction of the CS-modified gravitational theory
and present some notation [25].

A. ABC of CS gravitational theory

The action of the CS gravitational theory is given as

S ¼ S1 þ S2 þ S3 þ S4 þ S5; ð1Þ

where S1 is the Einstein Hilbert action defined by

S1 ¼
1

2κ2

Z
V
d4x

ffiffiffiffiffiffi
−g

p
; ð2Þ

S2 is the Chern-Simon action given by

S2 ¼
σ

4

Z
V
d4x

ffiffiffiffiffiffi
−g

p
φRR̃; ð3Þ

S3 is the action of the (pseudo)scalar field φ with the
potential UðφÞ defined by

S3 ¼ −
σ1
2

Z
V
d4x

ffiffiffiffiffiffi
−g

p ½gμνð∇μφÞð∇νφÞ þ 2UðφÞ�; ð4Þ

S4 is the action of the electromagnetic field given by

S4 ¼
σ1
4

Z
V
d4x

ffiffiffiffiffiffi
−g

p
F2 where F2 ¼ FμνFμν; and

Fμν ¼ Aμ;ν − Aν;μ; ð5Þ
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and S5 is the action of the matters defined by

S5 ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p
Lmat: ð6Þ

Here V is the bulk region in the space-time manifold.
The following notations are used throughout the whole

of the present study: σ and σ1 are dimensional constants,
κ2 ¼ 8πG, ∇ρ is the covariant derivative, R is the Ricci
scalar, and g is the determinant of the metric. The term RR̃
is the Pontryagin density defined by

RR̃ ¼ Rν
μρσR̃μ

ν
ρσ; ð7Þ

where R̃μ
ν
ρσ is the dual Riemann tensor which is defined by

R̃μ
ν
ρσ ¼ 1

2
ϵρστηRμ

ντη; ð8Þ

where ϵρστη is the four-dimensional Levi-Civita tensor
which is a totally skew-symmetric tensor with ϵ0123 ¼ −1.
In this study, the CS scalar field φ is a function of the

space-time coordinates that parametrize the deviation from
the Einstein GR. If φ ¼ constant, the CS gravitational
theory will be equivalent to the Einstein GR theory because
the Pontryagin density is the total divergence of the CS
topological current Kμ which is given by

∇μKμ ¼ 1

2
RR̃; ð9Þ

where

Kμ ¼ ϵμνρσΓτ
νη

�
∂ρΓ

η
στ þ 2

3
Γη
ρξΓ

ξ
στ

�
; ð10Þ

with Γμ
νρ being the Christoffel connection. Equation (9) tells

us that S2 can be rewritten in the form [43]

S2 ¼
σ

2

Z
∂V

dSμφKμ −
σ

2

Z
V
d4x

ffiffiffiffiffiffi
−g

p ð∇μφÞKμ: ð11Þ

Here ∂V is the boundary hypersurface of the space-time
manifold and dSμ is the infinitesimal area of the hyper-
surface ∂V. We often neglect the first term in Eq. (11)
because it is irrelevant to the variation in the bulk space-
time manifold when we derive the field equations.
The variations of the action (1) with respect to the metric,

the scalar field, and the electromagnetic field give the
following field equations:

Rμν þ 2κ2σ1Cμν ¼ κ2
�
Tμν −

1

2
gμνT

�
; ð12Þ

σ1□φ ¼ σ1
dV
dφ

−
σ

4
RR̃; ð13Þ

0 ¼ ∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ; ð14Þ

where Rμν is the Ricci tensor and □ ¼ ∇μ∇μ is the
D’Alembertian operator. The term Cμν is the C-tensor
which is defined by

Cμν ¼ vρϵρστðμ∇τRνÞ
σ þ vρσR̃σðμνÞρ; ð15Þ

with

vμ ¼ ∇μφ and vμν ¼ ∇μ∇νφ: ð16Þ

As a final point, the total stress-energy tensor is written as

Tμν ¼ Tmat
μν þ Tφ

μν þ TEM
μν ; ð17Þ

with Tmat
μν being the matter stress-energy tensor (which we

will neglect in the present study), and TEM
μν and Tφ

μν, are the
stress-energy tensors of the electromagnetic and scalar
fields figured as

TEM
μν ¼ σ1

4π

�
gρσFν

ρFμ
σ −

1

4
gμνF2

�
;

Tφ
μν ¼ σ1

�
ð∇μφÞð∇νφÞ −

1

2
gμνð∇ρφÞð∇ρφÞ − gμνUðφÞ

�
:

ð18Þ

In the realm of the CS gravitational theory, the strong
equivalence principle, i.e., ð∇νTmat

μν ¼ 0Þ, is verified pro-
vided that the equation of motions of the scalar field φ,
Eq. (13) is satisfied. This is because if we consider the
derivative of Eq. (12), the first term on the left-hand side
vanishes due to the Bianchi identities, while the second
term is proportional to the Pontryagin density through the
form

∇μCμν ¼ −
1

8
vνRR̃: ð19Þ

The verification of Eq. (19) yields Eq. (13).
To finish this section, we are going to discuss the

dimensions of the coupling constants used in this study
and the scalar field φ and the electromagnetic field Aμ. By
fixing the dimensions of ðσ; σ1;φ; AμÞ, the units of the
other constants are also fixed. For example, if the CS
scalar field and the electromagnetic field have the dimen-
sions ½φ� ¼ ½Aμ� ¼ ls, then ½σ� ¼ l2−s and ½σ1� ¼ l−2s,
where l expresses the dimension of length. The CS scalar
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φ and the electromagnetic field Aμ is often dimensionless,
which requires ½σ� ¼ ½Aμ� ¼ l2 and σ1 be dimensionless.1

Another selection is to put σ ¼ σ1, thus putting S2, S3,
and S4 on equal footing and we have ½φ�½Aμ� ¼ l−2.
We will leave this arbitrariness because the results of
the previous studies are based on the different choices of
the unit.

III. ROTATING CHARGED BH SOLUTION IN
DYNAMICAL CS GRAVITY

Now, we are going to study rotating charged BHs
in the dynamical construction of the modified CS
theory. The study of stationary axisymmetric line ele-
ments in the frame of the CS gravitational theory without
doing any approximation in the calculation will be a
tedious task. Therefore, we will use a pair of approx-
imations. Then, we will proceed to solve the modified CS
equations of motion to second order in perturbation
expansion. In the following, we only consider the case
that the potential UðφÞ for the scalar field φ van-
ishes, UðφÞ ¼ 0.

A. The process of approximation

Now we will use two approximation processes: a slow-
rotation and small-coupling approximations. The small-
coupling process deals with the modified CS term as a
small distortion of GR, which allows expanding the
metric and the gauge potential Aμ (up to second order)
as follows:

gμν ¼ gð0Þμν þ ξgð1Þμν ðφÞ þ ξ2gð2Þμν ðφÞ;
Aa ¼ Að0Þ

μ þ ξAð1Þ
μ þ ξ2Að2Þ

μ ð20Þ

where gð0Þμν and Að0Þ
μ are the background metric and charge

which satisfy the Einstein GR field equations, such as the

Kerr-Newmann metric, while gð1Þμν ðφÞ, Að1Þ
μ , gð2Þμν ðφÞ, and

Að2Þ
μ are the first- and the second-order perturbation coming

from the CS corrections. The parameter ξ refers to the order
of the small-coupling approximation, which we will
define soon.
On the other hand, the slow-rotation approximation

allows one to reexpand the background and the ξ pertur-
bations in powers of the Kerr-Newmann rotation parameter
aKN. Therefore, the background metric and the metric
perturbation yield the following form:

gð0Þμν ¼ ηð0;0Þμν þ ϵhð1;0Þμν þ ϵ2hð2;0Þμν ;

ξgð1Þμν ¼ ξhð0;1Þμν þ ξϵhð1;1Þμν þ ξϵ2hð2;1Þμν ;

ξ2gð2Þμν ¼ ξ2hð0;2Þμν þ ξ2ϵhð1;2Þμν þ ξ2ϵ2hð2;2Þμν ;

Að0Þ
μ ¼ ηð0;0Þμ þ ϵAð1;0Þ

μ þ ϵ2Að2;0Þ
μ ;

ξAð1Þ
μ ¼ ξAð0;1Þ

μ þ ξϵAð1;1Þ
μ þ ξϵ2Að2;1Þ

μ ;

ξ2Að2Þ
μ ¼ ξ2Að0;2Þ

μ þ ξ2ϵAð1;2Þ
μ þ ξ2ϵ2Að2;2Þ

μ ; ð21Þ

where the parameter ϵ stands for the order of the slow-
rotation expansion, which we will also define soon. We

must remind ourselves that the notation hðn;mÞ
μν labels for

terms of Oðn;mÞ, which stands for a term of OðϵnÞ and

OðξmÞ. As an example, in Eq. (21), ηð0;0Þμν and ηð0;0Þμ are the
background metric when the rotation parameter vanishes,

i.e., aKN ¼ 0, while hð1;0Þμν , hð2;0Þμν , Að1;0Þ
μ , and Að2;0Þ

μ are first-
and second-order perturbations of the background metric
and charge in the spin parameter.
Combining both approximation processes, we obtain a

bivariate expansion in terms of two independent parameters
ξ and ϵ, which yields the second perturbation order of the
metric and the electromagnetic field in the following forms:

gμν¼ηð0;0Þμν þϵhð1;0Þμν þξhð0;1Þμν þϵξhð1;1Þμν þϵ2hð2;0Þμν þξ2hð0;2Þμν ;

Aμ¼Að0;0Þ
μ þϵAð1;0Þ

μ þξAð0;1Þ
μ þϵξAð1;1Þ

μ þϵ2Að2;0Þ
μ þξ2Að0;2Þ

μ :

ð22Þ

The first-order expressions refer to expressions of Oð1; 0Þ
or Oð0; 1Þ, while second-order terms refers to Oð2; 0Þ,
Oð0; 2Þ, or Oð1; 1Þ.
In this study, the slow-rotation process is the expansion of

the Kerr-Newmann parameter, aKN, and therefore its dimen-
sionless expansion parameter ϵ should be ϵ ¼ aKN=M.

B. The slowly rotating charged BH solution

The slowly rotating expansionof the backgroundmetric can
be formulated using theHartle-Thorne approximation [62,63],
where the line element can be parametrized as follows:

ds2 ¼ −h½1þ h1ðr; θÞ�dt2 þ
1

h
½1þ h2ðr; θÞ�dr2

þ r2½1þ h3ðr; θÞ�dθ2
þ r2 sin2 θ½1þ h4ðr; θÞ�½dϕ − ωðr; θÞdt�2; ð23Þ

where h is defined as h ¼ 1 − 2M
r þ q2

r2 , which is given by the
Reissner-Nordström solution, with M being the mass
of the charged BH and q being the electric charge in
the absence of the CS expression. In Eq. (23), we use the
Boyer-Lindquist coordinates, i.e., ðt; r; θ;ϕÞ and the pertur-
bations of the metric are h1ðr; θÞ, h2ðr; θÞ, h3ðr; θÞ, h4ðr; θÞ,
and ωðr; θÞ.

1In this study, we use the geometrical units with G ¼ c ¼ 1,
and thus, the action has the units of l2. Therefore, if natural units
are used where ℏ ¼ c ¼ 1, then the action will be dimensionless
and therefore if ½φ� ¼ ½Aμ� ¼ ls then ½σ� ¼¼ ½Aμ�l−s and
½σ1� ¼ l−2s−2.
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The metric (23) is rewritten similar to the one presented
in [62,63]; however, the metric perturbations should be
expanded in a series in both ξ and ϵ. By the second order
expansion, we have

h1ðr; θÞ ¼ ϵhð1;0Þ1 þ ϵξhð1;1Þ1 þ ϵ2hð2;0Þ1 ;

h2ðr; θÞ ¼ ϵhð1;0Þ2 þ ϵξhð1;1Þ2 þ ϵ2hð2;0Þ2 ;

h3ðr; θÞ ¼ ϵhð1;0Þ3 þ ϵξhð1;1Þ3 þ ϵ2hð2;0Þ3 ;

h4ðr; θÞ ¼ ϵhð1;0Þ4 þ ϵξhð1;1Þ4 þ ϵ2hð2;0Þ4 ;

ωðr; θÞ ¼ ϵωð1;0Þ þ ϵξωð1;1Þ þ ϵ2ωð2;0Þ: ð24Þ

Equations (24) have no expressions ofOð0; 0Þ because those
terms are already involved in the Reissner-Nordström

structure of Eq. (23). Also, we assume that when the rotation
parameter of Kerr-Newman vanishes, i.e., aKN → 0, we get
Reissner-Nordström space-time as a solution, which ensures
that all terms of Oð0; mÞ vanish. Therefore, the CS expres-
sion should be linear in the Kerr-Newmann spin parameter
aKN. Using the slow-rotation limit of the Kerr-Newman
metric in GR, the metric and charge perturbations propor-
tional to ξ0 in the first order are given by

hð1;0Þ1 ¼ hð1;0Þ2 ¼ hð1;0Þ3 ¼ hð1;0Þ4 ¼ 0;

ωð1;0Þ ¼ ½2Mr − q2�aKN
r4

; Að1;0Þ
t ¼ q sin2 θaKN

r
; ð25Þ

and in the second order,

hð2;0Þ1 ¼ aKN2ð2Mr − q2Þ
hr4

�
cos2 θ þ 2Mr − q2

r2
sin2 θ

�
; hð2;0Þ2 ¼ aKN2

r2

�
cos2 θ −

1

h

�
;

hð2;0Þ3 ¼ aKN2

r2
cos2 θ; hð2;0Þ4 ¼ aKN2

r2

�
1þ 2Mr − q2

r2
sin2 θ

�
; Að2;0Þ

t ¼ −
qaKN2

r3
; ωð2;0Þ ¼ 0; ð26Þ

whose expressions coincide with those in the Kerr
solution when q ¼ 0 [43]. All the fields are expanded
by small-coupling and slow-rotation approximation
parameters, including the CS field. To derive the lead-
ing-order corrections for φ, we must yield to the evolution
equation (13). From Eq. (13), we obtain ∂

2φ ∼ ðσ1=σÞRR̃,
where the Pontryagin density is equal to zero up to order
in aKN=M. Thus, the first order behavior of the CS scalar
field must be φ ∼ ðσ1=σÞðaKN=MÞ, which is proportional
to ϵ. Additionally, the assumption that the Reissner-
Nordström metric is the unique charged solution with
vanishing angular momentum, we should have φð0;sÞ ¼ 0
for all s. The analysis given in [43] to derive a detorsion to
the Kerr solution in the dCS construction did not take into
account the effect of the charge. On the other hand, in
the present study, we expand the analysis presented
in [43] to take into account the effect of the charge. By
employing Eq. (13) to Eq. (23) and by using Eq. (24), we
obtain

φ ¼ ϵφð1;0Þðr; θÞ þ ϵξφð1;1Þðr; θÞ þ ϵ2φð2;0Þðr; θÞ: ð27Þ

Now we are going to apply the process described above to
solve the above-modified field equations, by stressing the
evolution equation of the dCS scalar. Up to the orderOð1; 0Þ,
we obtain the evolution equation in the following form:

hφð1;0Þ
;rr þ 2

r
φð1;0Þ
;r

�
1 −

M
r

�
þ 1

r2
φð1;0Þ
;θθ þ cot θ

r2
φð1;0Þ
;θ

¼ −
24σMðMr − q2Þð3Mr − 2q2Þ cos θ

σ1r9
aKN
M

: ð28Þ

The solution of partial differential equation (28) is a linear
composition of the homogeneous and the particular solution:

φð1;0Þ ¼ φð1;0Þ
Hom þ φð1;0Þ

Part . The variables of the homogeneous
solution for the equation can be separated,

φð1;0Þ
Homðr; θÞ ¼ φðrÞφðθÞ: ð29Þ

Equation (29) shows that the partial differential equation
becomes a set of ordinary differential equations for φðrÞ and
φðθÞ, whose solutions take the following forms:

φðrÞ ¼ c1H
��

s
2
;
s
2

�
; s;

2
ffiffiffiffi
H

p

r−Mþ ffiffiffiffi
H

p
�
ðr−Mþ

ffiffiffiffi
H

p
Þ−s

2 þ c2H
��

s1
2
;
s1
2

�
; s1;

2
ffiffiffiffi
H

p

r−Mþ ffiffiffiffi
H

p
�
ðM − rþ

ffiffiffiffi
H

p
Þ−s1

2 ; M > q;

φðθÞ ¼ c3L

�
−
s
2
; cosθ

�
þ c4L1

�
−
s
2
; cosθ

�
; ð30Þ
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where H ¼ M2 − q2, and Hð� � �Þ are generalized hyper-
geometric functions,2 Lð·Þ is the Legendre polynomial of
the first kind,3 L1ð·Þ is the Legendre polynomial of the
second kind4 ci, i ¼ 1;…; 4 are constants of integration,
and the constants s and s1 are defined by

s ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c5

p
; s1 ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c5

p
; ð31Þ

where c5 is the constant of integration that arises through
the separation of variables.
We study the solution of φð1;0Þ in detail to understand the

physics in the constants of integration that appear in it. For
this purpose, we will consider the behavior of the solution
when r ≫ M and obtain

φðrÞ ∼ c1

�
1þMr − q2

2r2
s

�
r−

s
2 þ c2

�
1þMr − q2

2r2
s1

�
r−

s1
2 :

ð32Þ

Moreover, we require the scalar field φ to have a real value,
then the constants s and s1 must be real, s; s1 ∈ ℜ, which
requires c5 < 1=4 as we find in (31). Moreover, if we also
require the scalar field φ to have finite total energy, then φ
must decrease to a constant asymptotically faster than 1=r,

which tells us that s > 2 and s1 > 2. The first constraint
cannot be satisfied when c5 < 1=4; therefore we find
c1 ¼ 0, and the second constraint yields c5 < 0. Thus,
the constraints coming from the requirement of the finite
total energy tell us that φ cannot be proportional to lnðhÞ.
By summarizing the above discussion, we obtain

φð1;0Þ
Hom ¼ const: ð33Þ

We should note that the expression in (30) diverges at the
horizon, where r −M þ ffiffiffiffi

H
p

vanishes. The above argu-
ments about the boundary conditions, however, tell us that
the homogeneous solution must be a constant as shown in
Eq. (33), and therefore the homogeneous solution does not
show the singularity anywhere. As we will see soon in (34)
and (42), the expressions of the particular part of the
solutions do not include the factor r −M þ ffiffiffiffi

H
p

even in the
integrands and therefore the scalar field φ is also regular at
the horizon.
Although we have the homogenous solution of Eq. (28),

we need a particular solution φð1;0Þ
Part to find the full inhomo-

geneous solution. The particular solution is given by

φð1;0Þ
Part ðr; θÞ ¼

48ϵσaKN
σ1H

� ffiffiffiffi
H

p
ðr −MÞ

Z ðMr − q2Þð3Mr − 2q2Þ½ðr −MÞtanh−1ðM−rffiffiffi
H

p Þ þ ffiffiffiffi
H

p �
r7

dr

þ
� ffiffiffiffi

H
p

ðr −MÞtanh−1
�
M − rffiffiffiffi

H
p

�
−H

�Z ð3r2M2 − 5q2Mrþ 2q4ÞðM − rÞ
r7

dr

�
: ð34Þ

Equation (34) which describes the particular solution gives the following form when the charge q vanishes,:

φð1;0Þ
Part ðr;θÞjq¼0 ¼

144ϵσaKN
Mσ1

�
½M − r�

�Z
tanh−1ðM−r

M Þ½M − r�−M

r5
dr−

�
tanh−1

�
M − r
M

�
−

M
M − r

�Z
M − r
r5

dr

��
: ð35Þ

2The generalized hypergeometric function Hð½n1; n2;…; np�; ½d1; d2;…; dq�; zÞ is generally defined by

Hðn; d; zÞ ¼
X∞
k¼0

Qp
i¼1 PSðni; kÞQq
j¼1 PSðdj; kÞ

zk

k!
;

where n ¼ ½n1; n2;…; np�, d ¼ ½d1; d2;…; dq� and PSðn; kÞ is the Pochhammer symbol, PSðn; kÞ≡Q
k−1
j¼0 ðnþ jÞ. Hð� � �Þ’s in (30)

correspond to p ¼ 2 and q ¼ 1.
3The Legendre polynomial of the first kind is defined by

Lðb; zÞ ¼ H
�
½−b; bþ 1�; ½1�; 1

2
ð1 − zÞ

�
:

4The Legendre polynomial of the second kind is defined by

L1ðb; zÞ ¼
ffiffiffi
π

p
Γð1þ bÞHð½1þ b

2
; 1
2
þ b

2
�; ½3

2
þ b�; 1

z2Þ
2z1þbΓð3

2
þ bÞ2b :
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The asymptotic form of Eq. (35) gives Eq. (35) in [43],
which is derived for slowly uncharged rotating solution in
dCS theory.
Because we have succeeded to the present the solution of

the dCS scalar field, we try to derive dCS corrections for the
metric perturbations. We stress that the stress-energy tensor
(18) of the dCS scalar field appears in the modified
field equations (12) up to Oð2; 1Þ, and thus we neglect
the contributions in the metric perturbation. In such a case,
the modified Einstein equations are divided into two types:
The first one constitutes a closed system of the differential

equations involving h1ð1;1Þ, h2ð1;1Þ, h3ð1;1Þ, and h4ð1;1Þ,
which comes from the components ðt; tÞ, ðr; rÞ, ðr; θÞ,
ðθ; θÞ, and ðϕ;ϕÞ components. The second set which comes
from the modified Einstein equations yields one differential
equation for ωð1;1Þ, which is the ðt;ϕÞ component of the
modified Einstein equations.
The first type does not depend on the dCS field, φ, and

therefore they are not changed from the equations in GR.
Therefore, we only consider the second set, ðt;ϕÞ compo-
nent, which gives

576κ2σ2aKN
r7H3σ1

�
H1hr2

Z ðMr − q2Þð3Mr − 2q2Þ½ ffiffiffiffi
H

p
− ðM − rÞtanh−1ðM−rffiffiffi

H
p Þ�

r7
drþ

�
H1hr2tanh−1

�
M − rffiffiffiffi

H
p

�

−ð½q2 þ 2M2�r2 − 6Mq2rþ 3q4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q �Z ðMr − q2Þð3Mr − 2q2ÞðM − rÞ
r7

dr

�
¼ r2hωrrðr; θÞ þ ωθθðr; θÞ þ 4rhωrðr; θÞ þ 3ωθðr; θÞ cot θ; ð36Þ

where H1 ¼ ðq2 þ 2M2Þr − 3Mq2. When q ¼ 0, Eq. (36) gives the following form:

ωð1;1Þ
;θθ þ 3 cot θωð1;1Þ

;θ þ 4rhωð1;1Þ
;r þ r2hωð1;1Þ

;rr ≈
15κ2μ2aKNh

νr8
sin2 θð3r2 þ 8Mrþ 18M2Þ; ð37Þ

which coincides with the form derived in [43] in the case of the uncharged BH. Again, the general solution is a linear
combination of a homogeneous solution and a particular solution. The particular solution is given by

ωð1;1Þ ¼ −
576κ2aKNσ2

r5H3=2hσ1

Z
1

r4

�Z �
r2hH1

Z ðMr − q2Þ½ðM − rÞtanh−1ðM−rffiffiffi
H

p Þ − ffiffiffiffi
H

p �ð3Mr − 2q2Þ
r7

dr

− r2hH1

�
tanh−1

�
M − rffiffiffiffi

H
p

�
−
ððq2 þ 2M2Þr2 − 3q2½Mr − q2�Þ ffiffiffiffi

H
p

r2hH

�

×
Z ðMr − q2ÞðM − rÞð3Mr − 2q2Þ

r7
dr

�
dr

�
dr: ð38Þ

The asymptotic form of Eq. (38) has the following form:

ωð1;1Þ ≈ −
9κ2σ2aKNMð42M4 þ 175M2q2 þ 35q4 − 80M3r − 40q2MrÞ

35σ1H3=2r8
¼ 9κ2σ2aKNM

35σ1H3=2r7

�
H2 −

H3

r

�
; ð39Þ

where H2 ¼ 40Mð2M2 − q2Þ and H3 ¼ 42M4 þ 175M2q2 þ 35q4. Equation (39) is different from the one derived in [43]
when q ¼ 0. The reason why Eq. (39) is different from the one derived in [43] when q ¼ 0 comes from the terms including
tanh−1ðM−rffiffiffi

H
p Þ. The homogeneous solution of Eq. (38) is a sum of generalized hypergeometric functions, whose argument is

r=ð2MÞ and has some separation constant c6. Although certain values of such constant make the solution purely real, the
solution diverges at the spatial infinity. The other values of constant c6 make the solution infinite or complex. The
aforementioned discussion forces us to choose the integration constants, which are the coefficients of the hypergeometric
functions, to vanish. Therefore, Eq. (38) gives the full solution.
The full gravitomagnetic metric perturbation in the linear order with respect to ε and ξ yields

ω¼−
2MraKN−q2

r4
þ576aKNκ2σ2

r5H3=2hσ1

Z
1

r4

�Z �
r2hH1

Z ðMr−q2Þ½ðM−rÞtanh−1ðM−rffiffiffi
H

p Þ− ffiffiffiffi
H

p �ð3Mr−2q2Þ
r7

dr

−r2hH1

�
tanh−1

�
M−rffiffiffiffi

H
p

�
−
ððq2þ2M2Þr2−3q2½Mr−q2�Þ ffiffiffiffi

H
p

r2hH

�Z ðMr−q2ÞðM−rÞð3Mr−2q2Þ
r7

dr

�
dr

�
dr; ð40Þ
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whose asymptotic form is given by

ω ≈ −
2MraKN − q2

r4
þ 9κ2σ2aKNM

35σ1H3=2r7

�
H2 −

H3

r

�
: ð41Þ

Equation (40) constitutes the first charged slow-rotating BH
solution in dCS modified gravity. Note that the perturbation
is highly suppressed in the far field limit and decreases as
r−7, which suggests that its significance can only be
observed in the strong field regime. Now let us discuss

the solution (40) with/without the charge q. When q ¼ 0 the
solution decreases as r−6 [43] and when q ≠ 0 the solution
decreases asymptotically as r−7. Thismeans that the solution
with q decreases faster than the one without q.
We can verify that the approximated solution given by

(40) is self-consistent by calculating the next order cor-
rection to φ. Such correction consists of φð2;0Þ and φð1;1Þ,
which can be calculated by solving the evolution
equation to the next order. Carrying out such calculations,
we find

φð1;1Þ ¼ 13824aKNκ2α3

β2H4

�
HH4ðr−MÞ

Z ðMr−q2ÞH4

r6

�Z
1

r5h

�
H1r2h

ffiffiffiffi
H

p Z ðq2−MrÞH4ð3Mr−2q2Þ
r7

dr

−
Z ðM− rÞðMr−q2Þð3Mr−2q2Þ

r7
dr
�
H1r2h

ffiffiffiffi
H

p
tanh−1

�
M− rffiffiffiffi

H
p

�
þHð½2M2þq2�r2−6Mrq2þ3q4Þ

��
dr
�
dr

þ
Z ðM− rÞðMr−q2Þ

r6

�Z
1

r5h

�
H1r2h

ffiffiffiffi
H

p Z ðq2−MrÞH5ð3Mr−2q2Þ
r7

drþ
Z ðr−MÞðMr−q2Þð3Mr−2q2Þ

r7
dr

×

�
H1r2h

ffiffiffiffi
H

p
tanh−1

�
M− rffiffiffiffi

H
p

�
þHð½2M2þq2�r2−6Mrq2þ3q4Þ

��
dr

�
dr

�
; ð42Þ

where H4 ¼ ½ðr −MÞ tanh−1ðM−rffiffiffi
H

p Þ þ ffiffiffiffi
H

p � and H5 ¼ ½ðr −MÞ tanh−1ðM−rffiffiffi
H

p Þ − ffiffiffiffi
H

p �. Equation (42) yields the following
asymptotic form:

φð1;1Þ ≈ −
12σξaKNM cos θ

7σ1H3r9

�
tanh−1

�
M − rffiffiffiffi

H
p

�
½r −M� −

ffiffiffiffi
H

p �
ð2M2 þ q2Þð63r½M2 þ q2� − 8M½7q2 þ 9r2�Þ: ð43Þ

Equation (43) yields the general behavior of φð1;1Þ pre-
sented in [43] when q ¼ 0. Equation (43) is ξ times
smaller than φð1;0Þ, therefore presenting the small-cou-
pling approximation self-consistent. To use this improved
φ solution in the modified field equation, we then find a
correction to the metric proportional of order ξ2ϵ, which
we neglect in this study. It is important to stress that to
obtain the Reissner-Nordström BH in the static limit, it is
enough to have a constant CS scalar. Indeed, a constant
CS scalar is less restrictive and would allow the topo-
logical Pontryagin density in the action which, in turn, is
necessary to set (anti-)self-dual configurations as a ground
state [64].

IV. PROPERTIES OF THE DERIVED BH
SOLUTION

In the following subsections, we will discuss some
physical properties of the solution derived in the previous
section.

A. Line element

Gathering the above data, the line element of the slowly
rotating BH can be written up to OðaKN2Þ as

ds2 ¼ −gttdt2 þ grrdr2 þ gθθdθ2 þ gϕϕdϕ2 − 2gtϕdtdϕ;

ð44Þ

φð1;0Þ ¼ 48ϵσaKN
σ1H

� ffiffiffiffi
H

p
ðr −MÞ

Z ðMr − q2Þð3Mr − 2q2Þ½ðr −MÞtanh−1ðM−rffiffiffi
H

p Þ þ ffiffiffiffi
H

p �
r7

dr

þ
� ffiffiffiffi

H
p

ðr −MÞtanh−1
�
M − rffiffiffiffi

H
p

�
−H

�Z ð3r2M2 − 5q2Mrþ 2q4ÞðM − rÞ
r7

dr

�
; ð45Þ

with
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gtt ¼ −h−
aKN2ð2Mr− q2Þ

r4
cos2θ;

gtϕ ¼ −
ð2Mr− q2ÞaKN

r2
sin2θ−

576aKNκ2σ2

r5H3=2hσ1

Z
1

r4

�Z �
r2hH1

Z ðMr− q2Þ½ðM − rÞtanh−1ðM−rffiffiffi
H

p Þ− ffiffiffiffi
H

p �ð3Mr− 2q2Þ
r7

dr

− r2hH1

�
tanh−1

�
M − rffiffiffiffi

H
p

�
−
ððq2 þ 2M2Þr2 − 3q2½Mr− q2�Þ ffiffiffiffi

H
p

r2hH

�Z ðMr− q2ÞðM − rÞð3Mr− 2q2Þ
r7

dr

�
dr

�
dr;

grr ¼
1

h
þ aKN2

hr2

�
cos2θ−

1

h

�
;

gθθ ¼ r2 þ aKN2cos2θ;

gϕϕ ¼ r2sin2θþ aKN2sin2θ

�
1þ 2Mr− q2

r2
sin2θ

�
;

At ¼ −
q
r
þ qsin2θaKN

r
: ð46Þ

Equation (46) is correct in the orders of Oð2; 0Þ, Oð1; 1Þ, and Oð0; 2Þ. We stress that the terms including σ and σ1 in gtϕ of
Eq. (46) cannot be removed by any coordinate transformation. We also note that the perturbed parts of the metric are regular
at the horizon, where r −M þ ffiffiffiffi

H
p

vanishes. Therefore as long as we treat the model perturbatively, the scalar invariants are
regular at the horizon.
When r is large i.e., r → ∞, the Pontryagin density RνμαβR̃μναβ behaves as

RνμαβR̃μναβ ≈ −
576ϵaKNM2 cos θ

r7
þ 960ϵaKNMq2 cos θ

r8
−
384ϵaKNq4 cos θ

r9
þ 432ϵσ2aKNM3ð2M2 þ q2Þ cos θ

σ1ðM2 − q2Þ3=2r11 þO
�

1

r12

�
:

ð47Þ

Equation (47) shows the corrections coming from the CS
term to the order under consideration in the present study.
The Pontryagin density RR̃, which is proportional to □φ,
and its deviation from that in the Kerr-Newman can be
calculated by using (42). Also, Eq. (47) shows the correction
of the CS scalar field starts in the invariant RνμαβR̃μναβ from
Oð 1

r11Þ and the lower orders appearing in this invariant are
due to the contribution coming from the slowly rotating
Kerr-Newman BH. Also, Eq. (47) tells us that the cross term
of the line element (44) cannot vanish or be gauged away by
any coordinate transformation. This is because if the cross
term in (44) vanishes,aKN ¼ 0 and in that case, theCS scalar
field given by Eq. (35) also vanishes and the CS theory
reduces to GR of the Einstein theory.
The metric in Eq. (46) involves a true singularity at

r ¼ 0. This can be investigated by calculating the
Kretchmann invariant RμνρσRμνρσ , the squared of Ricci
tensor RμνRμν, and the Ricci scalar R, which ensures the
divergence at r ¼ 0. Moreover, Eq. (47) shows also that the
Pontryagin density and the CS scalar field diverge at r ¼ 0.
The location of the event horizon can be found by

solving the equation gttgϕϕ − g2tϕ ¼ 0, which yields

rH;KN ¼ rKN ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − aKN2 − q2

q
: ð48Þ

Moreover, the location of the ergosphere can also be
derived by solving the equation gtt ¼ 0 for r,

rergo ¼ rergo;KN; ð49Þ

with the ergosphere of the Kerr-Newmann solution given by
rergo;KN ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − aKN2 cos2 θ − q2

p
. Equation (49)

tells us that the radius of the ergosphere is not changed
from that in the Kerr-Newmann solution.
The choice of the homogeneous integration constants

depends on how to choose the definition of the massM and
the reduced spin angular momentum aKN. Therefore, a
natural choice is to define such quantities so that they
coincide with those measured by an observer at r → ∞ and
we obtain the metric displayed in (46). With these defi-
nitions, the angular velocity and area of the event horizon
are changed from those in the Kerr-Newmann solution as
follows. The new solution given by Eq. (46) amended the
dragging of the inertial frame of the rotation of the BH. This
can be calculated by the angular velocity ωZ for the zero-
angular-momentum observer, which is defined by

ωZ ¼ −
gtϕ
gϕϕ

; ð50Þ

which yields
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ωZ ¼ −
2MaKN

r3
þ 576κ2aKNσ2

r5H3=2hσ1

Z
1

r4

�Z �
r2hH1

Z ðMr − q2Þ½ðM − rÞtanh−1ðM−rffiffiffi
H

p Þ − ffiffiffiffi
H

p �ð3Mr − 2q2Þ
r7

dr

− r2hH1

�
tanh−1

�
M − rffiffiffiffi

H
p

�
−
ððq2 þ 2M2Þr2 − 3q2½Mr − q2�Þ ffiffiffiffi

H
p

r2hH

�Z ðMr − q2ÞðM − rÞð3Mr − 2q2Þ
r7

dr
�
dr
�
dr:

ð51Þ

Now we are in a position to discuss the conserved charges
of the above solution. We use the following transformation
to transform the metric (46) to the Cartesian coordinates via
the following standard transformation [38]:

x ¼ r

�
1þ a2KN

2r2

�
cosϕ sin θ;

y ¼ r

�
1þ a2KN

2r2

�
sinϕ sin θ;

z ¼ r cos θ: ð52Þ
We also define h̄μν by the difference between gμν in (46) and
the flat metric ημν,

h̄μν ≡ gμν − ημν: ð53Þ
We should note that h̄μν needs not to be small everywhere
but we require that at infinity, away from the black hole, it
goes to vanish because we are considering the asymptoti-
cally flat space-time as a solution. A detailed discussion on
how one can use Eq. (53) to derive the mass formula for the
CS-modified GR in the asymptotically flat space-time can
be found in [57]. Here we list the mass formula of Chern-
Simons-modified GR as in [57]:

E ¼ 1

16πG

I
S2
dSi

�
Q0i

E ðξ̄Þ þ
1

2
Q0i

E ðΞ̄Þ −
1

2
Q0i

C ðξ̄Þ
�
; ð54Þ

where

Qμi
E ðξ̄Þ≡

ffiffiffiffiffiffi
−ḡ

p ðξ̄ν∇μh̄iν− ξ̄ν∇ih̄μνþ ξ̄μ∇ih̄− ξ̄i∇μh̄

þhμν∇iξ̄ν− h̄iν∇μξ̄νþ ξ̄i∇νh̄μν− ξ̄μ∇νh̄iνþ h̄∇μξ̄iÞ;
Qμi

C ðξ̄Þ≡vσξ̄ρϵσμiβGL
ρβþvσξ̄νϵσνiβGLμ

βþvσξ̄νϵσμνβGLi
β;

ð55Þ

and the integration is performed on a two-dimensional
spacial sphere S2 with a large enough radius. In Eq. (55), h̄
is the trace of h̄μν, i.e., h̄ ¼ gμνh̄μν, GL

μν is the linearized
form of the Einstein tensor,

GL
μν ¼

1

2
ð−□h̄μν −∇μ∇νh̄þ∇σ∇νh̄σμ þ∇σ∇μh̄σνÞ

−
1

2
ḡμνð□ h̄þ∇ρ∇σh̄ρσÞ; ð56Þ

and ∇μ is the covariant derivative with respect to the
background. Because we are considering the flat back-
ground (53), we find that the covariant derivatives reduce to
the partial derivatives,∇μ ¼ ∂

μ. In Eq. (55), vσ is defined in
Eq. (16). Now let us apply the formula of energy given by
Eq. (54) to the BH (46). For the energy, ξ̄μ is the timelike
Killing vector defined as ξ̄μ ¼ ð−1; 0; 0; 0Þ. An explicit
computation of the mass of this metric using the for-
mula (54) is straightforward. Ξ̄μ vanishes5 so the QEðΞ̄Þ
term does not contribute. Moreover, the QCðξ̄Þ term
vanishes for various reasons (such as symmetry and
because GLμ

β vanishes for this Einstein space at infinity).
From the first part, we obtain E ¼ M at infinity up to order
aKN. Therefore there are no corrections from the CS term.
Now we are ready to write down the formula that enables

us to calculate the angular momentum of the Chern-
Simons-modified GR for asymptotically flat space and
generalizes Eq. (54). This formula takes the following form
(for more details, see [57]):

Q0ðξμÞ¼
1

16πG

I
S2
dSi

�
ξ̄0ð∂jh̄ij−∂

ih̄jjÞþ ξ̄i∂jh̄0j− ξ̄j∂
ih̄0j

þσ1
2
ϵijkξ̄jGL0

k

�
: ð57Þ

Equation (57) for ξ̄0 ¼ ð1; 0; 0; 0Þ gives Q0ðξ0Þ ¼ E and
the formula (57) coincides with the usual ADM one. As
Eq. (57) shows, the effect of the CS term, which appears in
the last term, does not contribute.
In the case of the angular momentum, we consider the

case of ξ̄i ¼ ð0; 0; 0; 1Þ andQ0ðξ̄iÞ ¼ J. The first three terms
in the integrand of (57) are identical to those in the Einstein
gravity. Because Eq. (46) tells us that the corrections coming
from the CS term decrease rapidly compared with the terms
appearing in the Kerr geometry in the Einstein gravity, they
do not contribute to the angularmomentum. For the last term
ϵijkξ̄jGL0

k, which appears due to the existence of the CS
term, the i direction is perpendicular to the two-dimensional
surface S2 and therefore the i direction corresponds to the

5Here Ξ̄μ is defined as

Ξ̄μ ≡ 1ffiffiffiffiffiffi−gp vσϵσναμ∇αξ̄ν:
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radial (r) direction. On the other hand, ξ̄j is a unit vector
corresponding to the z direction. This tells us that the k
direction corresponds to the ϕ direction and therefore only
GL

tϕ contributes toQ0ðξ̄iÞ. Because Eq. (46) tells us that the
metric does not depend on the time t nor angular ϕ, all the
terms except the first term − 1

2
□h̄μν in the expression (56)

corresponding to GL
tϕ vanish trivially. Equation (46) also

tells us that h̄tϕ is Oðr−1Þ and therefore □h̄tϕ ∼Oðr−3Þ.
Because the area of the two-dimensional surfaceS2 isOðr2Þ,
the last term in (57) for Q0ðξ̄iÞ ¼ J does not contribute to J
in the limit that the radius of S2 goes to infinity. Therefore
there is no correction from the CS term to the angular
momentum and we obtain

J ¼ aKNM; ð58Þ

which is identical to the angular momentum in the standard
Kerr(-Newman) black hole. Equation (58) shows that the
effect of the CS scalar field on the calculation of the angular
momentum vanishes up to aKN.
Now we are going to discuss the Hawking temperature of

the BH solution given by Eq. (46). The Hawking temper-
ature T is generally defined by the surface gravity κ so that
T ¼ κ=ð2πÞ and we now obtain [76–79],

TH;KN ¼ h0ðrH;KNÞ
4π

: ð59Þ

Using Eq. (46) in Eq. (59), we obtain the Hawking
temperature as

TH;KN ¼ rH;KN
2 − q2

4πrH;KN
3

; up to OðaKNÞ: ð60Þ

Equation (60) does not differ from the Reissner-Nordström
solution up to OðaKNÞ.

V. GEODESIC PRECESSION IN THE SLOWLY
ROTATING CHARGED BLACK HOLE IN
DYNAMICAL CHERN-SIMONS MODIFIED

GRAVITY

In [74,75], the timelike geodesics of the slowly rotating
black hole in dynamical Chern-Simons modified gravity
were considered. Sopuerta et al. [75] investigated the
timelike geodesic equations for the massive particles and
discovered that in Chern-Simons modified gravity, the
location of the innermost stable circular orbit and the three
physical fundamental frequencies associated with the
particle’s time τ are modified. However, the geodesic
precession of orbits around Chern-Simons black holes is
only shown numerically for a few examples in Ref. [75],
with no analytic expression for this physical quantity. Now
let us start using the condition θ ¼ π=2, which puts the
orbits on the equatorial plane. In such cases, timelike
geodesics can be found to take the form

ut ¼ dt
dτ

¼ Egϕϕ − Lgtϕ
g2tϕ þ gttgϕϕ

; ð61Þ

uϕ ¼ dϕ
dτ

¼ Egtϕ þ Lgtt
g2tϕ þ gttgϕϕ

; ð62Þ

�
dr
dτ

�
2

þ VeffðrÞ ¼ E2; ð63Þ

with the effective potential

VeffðrÞ ¼
1

grr

�
1þ E2½grrðg2tϕ þ gttgϕϕÞ − gϕϕ� þ 2ELgtϕ þ L2gtt

g2tϕ þ gttgϕϕ

�
; ð64Þ

with E and L being the specific energy and angular momentum of particles moving in the orbits, respectively. The effective
potential VðrÞ must obey for a stable circular orbit in the equatorial plane the following equation:

VeffðrÞ ¼ E2;
dVeffðrÞ

dr
¼ 0: ð65Þ

By solving the above equations, one obtains

E ¼ gtt þ gtϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt þ 2gtϕΩ − gϕϕΩ2

q ¼ −
27aKN

5ξκβr3ðr2 − 2Mrþ q2 − r4Ω2Þ3=2ðM2 − q2Þ3=2

×

�
5

27
κξðq2 −M2Þβr2ð2MΩ3ϵr5 −Ω3ϵq2r4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q
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þϵMΩ3α2
�
r

�
40

21
M3 þ 20

21
Mq2

�
þM4 þ 5

6
q4 þ 25

6
M2q2

��

þ ½ð1 − Ω2q2Þr4 − r6Ω2 þ 2MΩ2r5 þ 2ð2M2 þ q2Þr2 − 4q2rM þ q4 − 4Mr3�
ðr2 − 2Mrþ q2 − r4Ω2Þ3=2r ;

L ¼ −gtϕ þ gϕϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt þ 2gtϕΩ − gϕϕΩ2

q ¼ 54

5r7ðr2 −Mrþ q2 − r4Ω2Þ3=2ðM2 − q2Þ3=2βκξ

×

�
10

27
κξðq2 −M2Þβ

�
MϵΩ2r5 −

ϵΩ2q2r4

2
−
Mr3ϵ
þ

�
q2

4
þM2

�
ϵr2 −Mrϵq2 þ ϵq4

4

�
r6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q

þMα2ϵ

�
Mrþ r4Ω2 −

q2

2
−
r2

2

���
40

21
M3 þ 20

21
Mq2

�
rþM4 þ 5q4

6
þ 25

6
M2q2

��
aKN

−
ðr6Ω − r8Ω3 − 2MΩr5 þΩq2r4Þ
ðr2 − 2Mrþ q2 − r4Ω2Þ3=2r ;

Ω ¼ dϕ
dt

¼
gtϕ;r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtϕ;rÞ2 þ gtt;rgϕϕ;r

q
gϕϕ;r

¼ ϵaKN
ðM2 − q2Þ3=2βκξr10

�
ððM2 − q2Þ3=2βκξr7 − 18α2q4ÞM

−
108

5
M5α2 − 36M4α2r − 90M3α2q2 − 18M2α2q2r − q2ð−q2 þM2Þ3=2βκξr6

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr − q2

p
r2

; ð66Þ

with Ω being the angular velocity of the particle moving in the orbits.
Using Eq. (66), one obtains Kepler’s third law in the slowly rotating black-hole spacetime in the dynamical Chern-

Simons modified gravity

T2 ¼ 4π2
�

R8

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þMR5 − R4q2

p
þ q2Þ2

þ R4MaKN
35ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þMr5 − R4q2

p
þ q2Þ3σ1H3=2ðq4 þMR5 − R4q2Þ

× ð70R5σ1H3=2q4 − 54H3σ
2κ2q4 − 54H3σ

2κ2MR5 þ 54H3σ
2κ2R4q2 þ 70R10σ1H3=2M

− 70R9σ1H3=2q2 þ 45κ2σ2H2Rq4 þ 45κ2σ2H2R6M − 45κ2σ2H2R5q2 − 54

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þMR5 − R4q2

q
q2H3σ

2κ2

þ45R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þMR5 − R4q2

q
q2κ2σ2H2 þ 70R5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þMR5 − R4q2

q
q2σ1H3=2Þ þOðaKN2Þ

�
; ð67Þ

where R represents the orbital radius and T ¼ 1
Ω represents

the orbital period. The subsequent term in the right-hand
side of Eq. (67) is the correction by the aKN and the Chern-
Simons term. The correction term disappears as a ap-
proaches zero. This is sensible because as aKN approaches
zero the metric (44) coincides with one of the Schwarzs-
child black holes in general relativity. Since the black hole
rotates slowly, the first-order terms in aKN dominate the
correction. As a result, when the black hole rotates in the
same direction as the particle, i.e., aKN > 0, the orbital
period T decreases with the Chern-Simons coupling
parameter ξ. However, when the black hole rotates in the
opposite direction as the particle, i.e., aKN < 0, the orbital
period T tends to increase with the Chern-Simons coupling
parameter ξ.

A. Stability of the BH given by Eq. (46) through the use
of geodesic deviation

The trajectory of a test particle in the BH space-time is
prescribed by the geodesic equations of the following form:

0 ¼ d2xα

dτ2
þ
�
α

μν

�
dxμ

dτ
dxν

dτ
; ð68Þ

where τ is the affine parameter along the geodesic. The
equation of geodesic deviation has the form [73]

0 ¼ d2εα

dτ2
þ 2

�
α

μν

�
dxμ

dτ
dεν

dτ
þ
�
α

μν

�
;ρ

dxμ

dτ
dxν

dτ
ερ; ð69Þ
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with ερ being the deviation 4-vector. Applying (68) and
(69) into (46), we obtain the geodesic equations in the
following form:

0¼ d2t
dτ2

þ ϵ

�
MaKN−

aKNq2

2r
þ r3Atω

��
dϕ
dτ

�
2
�
1−

h0

2r

�
;

0¼ 1

2
h0ðrÞ

�
dt
dτ

�
2

− r

�
dϕ
dτ

�
2

¼ 0; 0¼ d2θ
dτ2

; 0¼ d2ϕ
dτ2

:

ð70Þ

Using the circular orbit

θ ¼ π

2
;

dθ
dτ

¼ 0;
dr
dτ

¼ 0; ð71Þ

we obtain the geodesic deviation in the following form:

0 ¼ d2ε0

dτ2
þ h0

h
dt
dτ

dε1

dτ
þ ϵ

�
MaKN −

aKNq2

2r
þ r3Atω

��
2
dϕ
dτ

dε3

dτ
−
h0

r
dt
dτ

dε0

dτ

�
þ
�
ϵ

�
Atr2ð3ωþ rω0Þ þ aKNq2

2
r2
��

dϕ
dτ

�
2

−
ϵ

2r2

�
2r3h0ωþ r4h0ω0 −MaKNh0 þ h00MaKNrþ ξh00r4ωþ aKNq2h0

r
−
aKNq2h00

2

��
dt
dτ

�
2
�
ε1;

0 ¼ 2
d2ε1

dτ2
− 4hr

dϕ
dτ

dε3

dτ
þ 2hh0

dt
dτ

dε0

dτ
−
�
2½hþ rh0�

�
dϕ
dτ

�
2

− ½hh00 þ h02�
�
dt
dτ

�
2
�
ε1;

0 ¼ d2ε2

dτ2
þ
�
dϕ
dτ

�
2

ε2; 0 ¼ d2ε3

dτ2
þ 2

r
dϕ
dτ

dε1

dτ
; ð72Þ

where the functions h ¼ 1 − 2M
r þ q2

r2 and ω is defined by the second term gtϕ of Eq. (46) via (23).
The third equation of (72) represents a simple harmonic motion, which ensures that the motion in the plane θ ¼ π

2
is

stable. Assume the solutions of the remaining equations of (72) to be

ε0 ¼ k1eiω1ϕ; ε1 ¼ k2eiω1ϕ; and ε3 ¼ k3eiω1ϕ; ð73Þ

where k1, k2, and k3 are constants. Substituting (73) into (72), we obtain

0 ¼ h0
�
2ωr3h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0r − 2h

p
−

ffiffiffi
2

p
ϵ

��
ξr4ωþ aKN

�
Mr −

1

2
q2
��

rh00 − ½ðr7ξ − ξr5Þω0 − ξr4ðr2 þ 2Þω

−
aKN
2

ð2q2 − 5r2q2 − 2Mrþ 8r3MÞ�h0 − ð2ξr5ω0 − 2ξr4ω − aKNð8Mr − 5q2ÞÞhr
�
h

�
− ðh00hþ ðr2 − 1Þh02 þ rð5h − ω1

2Þh0 − 6h2 þ 2ω2hÞ

×

�
ϵh0

ffiffiffi
2

p �
ξr4ωþ aKN

�
Mr −

1

2
q2
��

þ r2ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0r − 2h

p �
r: ð74Þ

By solving Eq. (74), we can derive the form of ω1, but it is
rather tedious. By using the condition ω1 > 0, we can
establish the stability condition for the space-times (46)
[56,80,81]. This condition is drawn in Fig. 1 for different
values of the parameters which characterize the space-
time (46).

VI. POLARIZATION OF PHOTON NEAR BH

We like to consider the possibility to find the BH
obtained in this paper by any observation. In this section,
we investigate the propagation of the photon near the BH in

(46) and we focus on the difference in polarization from
that of the Kerr-Newman BH.
In the general background given by gμν¼gð0Þμν and

Aμ¼Að0Þ
μ , we may consider the propagation of photon

aμ which is defined by aμ ≡ Aμ − Að0Þ
μ by solving the field

equation,

0 ¼ 1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂νf
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gð0Þνρgð0Þμσð∂ρaσ − ∂σaρÞg: ð75Þ

As in (46), we assume
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gð0Þtt ¼ −hðrÞ þ ϵ2httðr; θÞ; gð0Þtϕ ¼ ϵhtϕðr; θÞ; gð0Þrr ¼ 1

hðrÞ þ ϵ2hrrðr; θÞ; gð0Þθθ ¼ r2 þ ϵ2hθθðr; θÞ;

gð0Þϕϕ ¼ r2sin2θ þ ϵ2hϕϕðr; θÞ; other components ¼ 0; ð76Þ

which gives

gð0Þtt ¼ −
1

hðrÞ þ ϵ2
−r2sin2θhttðr; θÞ þ htϕðr; θÞ2

hðrÞ2r2sin2θ ;

gð0Þtϕ ¼ ϵ
htϕðr; θÞ

hðrÞr2sin2θ ; gð0Þrr ¼ hðrÞ − ϵ2hðrÞ2hrrðr; θÞ; gð0Þθθ ¼ 1

r2
− ϵ2

hθθðr; θÞ
r4

;

gð0Þϕϕ ¼ 1

r2sin2θ
− ϵ2

hðrÞhϕϕðr; θÞ þ htϕðr; θÞ2
hðrÞðr2sin2θÞ2 ; other components ¼ 0: ð77Þ

Here we have used

gð0Þtt g
ð0Þ
ϕϕ − gð0Þtϕ

2 ¼ −hðrÞr2sin2θ þ ϵ2ðr2sin2θhttðr; θÞ − hðrÞhϕϕðr; θÞ − htϕðr; θÞ2Þ
1

gð0Þtt g
ð0Þ
ϕϕ − gð0Þtϕ

2
¼ −

1

hðrÞr2sin2θ − ϵ2
r2sin2θhttðr; θÞ − hðrÞhϕϕðr; θÞ − htϕðr; θÞ2

ðhðrÞr2sin2θÞ2 : ð78Þ

When we choose the at ¼ 0 gauge condition, Eq. (75) has the following forms:

0¼gð0Þtϕgð0Þtt∂t2aϕþ
1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂r

� ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gð0Þrrgð0Þtt∂tar

�
þ 1ffiffiffiffiffiffiffiffiffiffi

−gð0Þ
p ∂θ

� ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gð0Þθθgð0Þtt∂taθ

�
þgð0Þϕϕgð0Þtt∂ϕ∂taϕ; ð79Þ

0 ¼ gð0Þttgð0Þrr∂t2ar þ gð0Þtϕgð0Þrr∂tð∂ϕar − ∂raϕÞ þ gð0Þϕtgð0Þrr∂ϕ∂tar

þ 1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂θ

� ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gð0Þθθgð0Þrrð∂θar − ∂raθÞ

�
þ gð0Þϕϕgð0Þrr∂ϕð∂ϕar − ∂raϕÞ; ð80Þ

(a) (b) (c)

FIG. 1. Schematic plots of the ω with respect to the radial coordinate r of the BH solutions Eqs. (46) using different values of aKN, ϵ,
and σ1. (a) The plot of ω with respect to the radial coordinate r. Here we assume the numerical values of M, σ, σ1, q, and ϵ as 0.1, 0.1,
0.1, q ¼ 0.001, 0.1. (b) The plot of ω with respect to the radial coordinate r. Here we assume the numerical values of M, σ, σ1, q, and
aKN as 0.1, 0.1, 0.1, q ¼ 0.001, 1. (c) The plot of ωwith respect to the radial coordinate r. Here we assume the numerical values ofM, σ,
ϵ, q, and aKN as 0.1, 0.1, 0.1, q ¼ 0.001, 1.
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0 ¼ gð0Þttgð0Þθθ∂t2aθ þ gð0Þtϕgð0Þθθ∂tð∂ϕaθ − ∂θaϕÞ þ gð0Þϕtgð0Þθθ∂ϕ∂taθ þ
1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂r

� ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gð0Þrrgð0Þθθð∂raθ − ∂θarÞ

�

þ gð0Þϕϕgð0Þθθ∂ϕð∂ϕaθ − ∂θaϕÞ; ð81Þ

0 ¼ gð0Þttgð0Þϕϕ∂t2aϕ þ gð0Þϕtgð0Þϕϕ∂ϕ∂taϕ þ
1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂r

� ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gð0Þrrgð0Þϕϕð∂raϕ − ∂ϕarÞ

�

þ 1ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p ∂θ

� ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
gð0Þθθgð0Þϕϕð∂θaϕ − ∂ϕaθÞ

�
: ð82Þ

We consider a small region and the case where the wavelength is small enough compared with the region.
Then the background metric gμν ¼ gð0Þμν and the background vector field Aμ ¼ Að0Þ

μ can be regarded to be adiabatically
constant in the region. Under the assumptions, Eqs. (79), (80), (81), and (82) in the at ¼ 0 gauge condition have the
following forms:

0 ¼ gð0Þtϕgð0Þtt∂t2aϕ þ gð0Þrrgð0Þtt∂r∂tar þ gð0Þθθgð0Þtt∂θ∂taθ þ gð0Þϕϕgð0Þtt∂ϕ∂taϕ; ð83Þ

0 ¼ gð0Þttgð0Þrr∂t2ar þ gð0Þtϕgð0Þrr∂tð∂ϕar − ∂raϕÞ þ gð0Þϕtgð0Þrr∂ϕ∂tar

þ gð0Þθθgð0Þrr∂θð∂θar − ∂raθÞ þ gð0Þϕϕgð0Þrr∂ϕð∂ϕar − ∂raϕÞ; ð84Þ

0 ¼ gð0Þttgð0Þθθ∂t2aθ þ gð0Þtϕgð0Þθθ∂tð∂ϕaθ − ∂θaϕÞ
þ gð0Þϕtgð0Þθθ∂ϕ∂taθ þ gð0Þrrgð0Þθθ∂rð∂raθ − ∂θarÞ þ gð0Þϕϕgð0Þθθ∂ϕð∂ϕaθ − ∂θaϕÞ; ð85Þ

0 ¼ gð0Þttgð0Þϕϕ∂t2aϕ þ gð0Þϕtgð0Þϕϕ∂ϕ∂taϕ þ gð0Þrrgð0Þϕϕ∂rð∂raϕ − ∂ϕarÞ þ gð0Þθθgð0Þϕϕ∂θð∂θaϕ − ∂ϕaθÞ: ð86Þ

Because gμν ¼ gð0Þμν can be regarded as being constant, we may assume

Aμ ¼ Cμe−iωtþiprrþipθθþimϕ; ð87Þ

with constants Cμ, ω, pr, pθ and an integer m. Then Eqs. (83)–(86) become algebraic equations,

0 ¼ gð0Þtϕω2Cϕ − gð0ÞrrprωCr − gð0ÞθθpθωCθ − gð0ÞϕϕmωCϕ; ð88Þ

0 ¼ gð0Þttω2Cr − gð0ÞtϕωðmCr − prCϕÞ − gð0ÞϕtmωCr þ gð0ÞθθpθðpθCr − prCθÞ þ gð0ÞϕϕmðmCr − prCϕÞ; ð89Þ

0 ¼ gð0Þttω2Cθ − gð0ÞtϕωðmCθ − pθCϕÞ − gð0ÞϕtmωCθ þ gð0ÞrrprðprCθ − pθCrÞ þ gð0ÞϕϕmðmCθ − pθCϕÞ; ð90Þ

0 ¼ gð0Þttω2Cϕ − gð0ÞϕtmωCϕ þ gð0ÞrrprðprCϕ −mCrÞ þ gð0ÞθθpθðpθCϕ −mCθÞ: ð91Þ

By defining

p2 ≡ gð0Þttω2 − 2gð0Þtϕωmþ gð0Þrrpr
2 þ gð0Þθθpθ

2 þ gð0Þϕϕm2; ð92Þ

we find

0 ¼ ωðgð0ÞtϕωCϕ − gð0ÞrrprCr − gð0ÞθθpθCθ − gð0ÞϕϕmCϕÞ; ð93Þ

0 ¼ p2Cr þ prðgð0ÞtϕωCϕ − gð0ÞrrprCr − gð0ÞθθpθCθ − gð0ÞϕϕmCϕÞ; ð94Þ

0 ¼ p2Cθ þ pθðgð0ÞtϕωCϕ − gð0ÞrrprCr − gð0ÞθθpθCθ − gð0ÞϕϕmCϕÞ; ð95Þ

0 ¼ p2Cϕ þ pϕðgð0ÞtϕωCϕ − gð0ÞrrprCr − gð0ÞθθpθCθ − gð0ÞϕϕmCϕÞ: ð96Þ
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Equation (93) gives the Gauss-law constraint,

0 ¼ gð0ÞtϕωCϕ − gð0ÞrrprCr − gð0ÞθθpθCθ − gð0ÞϕϕmCϕ; ð97Þ

and Eqs. (94)–(96) give the following dispersion relation:

0 ¼ p2 ¼ gð0Þttω2 − 2gð0Þtϕωmþ gð0Þrrpr
2 þ gð0Þθθpθ

2 þ gð0Þϕϕm2; ð98Þ

which can be solved with respect to ω

ω ¼ ω� ≡ gð0Þtϕ

gð0Þtt
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gð0Þtϕ

gð0Þtt

�
2

m2 −
1

gð0Þtt
ðgð0Þrrpr

2 þ gð0Þθθpθ
2 þ gð0Þϕϕm2Þ

s
: ð99Þ

For the spherically symmetric case where gð0Þtϕ ¼ 0, ω is
invariant under the change of the signature of m, m → −m.
Because Eq. (97) tells us

Cϕ ¼ 1

gð0Þϕϕm
ðgð0ÞtϕωCϕ − gð0ÞrrprCr − gð0ÞθθpθCθÞ;

ð100Þ

the signature of m expresses the difference between the left
rotating helicity and the right rotating helicity. Although in
any axially symmetric and rotating solution of space-time
like the Kerr solution, gð0Þtϕ does not vanish, there are
several characteristic structures in our model. Equation (46)
tells us the explicit form of gtϕ. The first term of gtϕ is
common in rotating black hole solutions like the Kerr
solution or the Kerr-Newman solution but the second term
is characteristic of our model. The first term vanishes when
θ ¼ 0 or θ ¼ π, which corresponds to the north pole or the
south pole. This tells us that the difference between the
dispersion relations for the left and right rotations vanishes
at the poles if there is no second term, which does not have
the θ dependence. Furthermore, the second term increases
when H ≡M2 − q2 goes to vanish, that is, in the extremal
limit. Of course, the second term appears as a correction
coming from the Chern-Simons term and therefore the
expression is valid only when the Chern-Simons coupling
is small but the term can dominate more than the first term
near the limit. The above characteristic structures will give
some effects on the photon which goes through the region
near the black hole although it could be an interesting
subject to investigate how the effects on the photon can be
observed.

VII. CONCLUSION AND DISCUSSIONS

A new nontrivial natural slowly rotating BH solution
using the dCS gravitational theory has been derived [43].
The charge in the study of BH solutions is important
because BH generated in a collider could have an electric
field. Therefore, we included the effect of electric charge in

the dCS field equations by including the effect of
Maxwell’s electromagnetic field. We are interested in the
effects of the dCS term and therefore we did not study the
nondynamical case because the result of this theory is not
changed from the result of the Reissner-Nordström black
hole solution.
If we include the electric charge and the electromagnetic

field, the scalar of the SC field in (13) is modified, and
therefore, the expression of the scalar field φð1;0Þ and φð1;1Þ
are not equivalent to the forms given in [43]. Moreover,
when we apply the expression of the CS scalar field φð1;0Þ in
the field equation (12), we obtain the rectification of the
metric up to order ϵ. This rectification ωð1;1Þ gives an
asymptotic form of order Oð 1r7Þ for large r, which is much
weaker than the expression given in [43] where the leading
order behavior is Oð 1

r6
Þ. Moreover, we found that the

leading form of the Pontryagin density RνμαβR̃μναβ has
the form Oð 1r7Þ when r is large, which agrees with the
results given in the literature; however, the next-to-leading
term is of order Oð 1r8Þ, which depends on the charge and is
stronger than the one given in [39]. Moreover, we studied
the stability of the charged BH solution using the geodesic
deviations. We obtain the condition of the stability and
discuss its behavior graphically.
We also investigate the possibility that the BH in this

paper could be found by any observation.We focused on the
polarization of the photon which propagates near the black
hole. In the case of the Kerr solution or the Kerr-Newman
solution, the difference between the dispersion relations for
the left and right rotations vanishes at the north and south
poles but in the BH solution in this paper, the difference does
not vanish there. Furthermore, in the extremal limit. where
H ≡M2 − q2 goes to vanish, the correction coming from the
Chern-Simons term becomes dominant. Therefore it could
be an interesting subject to investigate how these effects on
the photon can be observed.
Finally, we close our study with the following: In the

present paper, we derive the charged electric BH solution in
dCS by using a linear Maxwell field. Other forms of the
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Maxwell field, i.e., nonlinear forms of the Maxwell field
are not beneficial because the asymptotic form of the
nonlinear Maxwell field will be Oðϵ2Þ. Another case that
could be interesting to study is to assume the magnetic field
in addition to the electric field. This study will be carried
out elsewhere. Also, another interesting case is to take into
account the effect of the electric charge and the potential
VðφÞ for the scalar field φ because we only considered the

case VðφÞ ¼ 0 in this paper. Also, this case will be our
future work.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referee
for their critical comments which put the paper in clear
formalism.

[1] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[2] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425,

374 (2003).
[3] I. H. Stairs, Living Rev. Relativity 6, 5 (2003).
[4] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel,

S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E.
Spero, K. S. Thorne et al., Science 256, 325 (1992).

[5] B. P. Abbott et al. (LIGO Scientific Collaboration), Rep.
Prog. Phys. 72, 076901 (2009).

[6] G. M. Harry (LIGO Scientific Collaboration), Classical
Quantum Gravity 27, 084006 (2010).

[7] F. Acernese et al. (Virgo Collaboration), Classical Quantum
Gravity 25, 225001 (2008).

[8] B. Caron, A. Dominjon, C. Drezen, R. Flaminio, X. Grave,
F. Marion, L. Massonnet, C. Mehmel, R. Morand, B. Mours
et al., Classical Quantum Gravity 14, 1461 (1997).

[9] A. Giazotto, Nucl. Instrum. Methods Phys. Res., Sect. A
289, 518 (1990).

[10] F. Acernese et al. (Virgo Collaboration), Classical Quantum
Gravity 32, 024001 (2015).

[11] E. Berti, K. Yagi, and N. Yunes, Gen. Relativ. Gravit. 50, 46
(2018).

[12] E. Berti, K. Yagi, H. Yang, and N. Yunes, Gen. Relativ.
Gravit. 50, 49 (2018).

[13] A. G. Riess et al. (Supernova Search Team Collaboration),
Astrophys. J. 607, 665 (2004).

[14] V. C. Rubin and W. K. Ford, Jr., Astrophys. J. 159, 379
(1970).

[15] P. Helbig, Astron. Astrophys. 350, 1 (1999).
[16] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch,

S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J. Lett.
648, L109 (2006).

[17] M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 74,
123507 (2006).

[18] N. Aghanim et al. (Planck Collaboration), Astron. As-
trophys. 641, A6 (2020); 652, C4(E) (2021).

[19] D. Huterer and M. S. Turner, Phys. Rev. D 60, 081301
(1999).

[20] B. J. Carr, Annu. Rev. Astron. Astrophys. 32, 531 (1994).
[21] R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004).
[22] A. Ashtekar and J. Lewandowski, Classical Quantum

Gravity 21, R53 (2004).
[23] C. Rovelli, Quantum Gravity (Cambridge University Press,

Cambridge, England, 2004).
[24] R. Jackiw and S. Y. Pi, Phys. Rev. D 68, 104012 (2003).

[25] S. Alexander and N. Yunes, Phys. Rep. 480, 1 (2009).
[26] S. H. S. Alexander and S. J. Gates, Jr., J. Cosmol. Astropart.

Phys. 06 (2006) 018.
[27] S. Weinberg, Phys. Rev. D 77, 123541 (2008).
[28] V. Taveras and N. Yunes, Phys. Rev. D 78, 064070 (2008).
[29] G. Calcagni and S. Mercuri, Phys. Rev. D 79, 084004

(2009).
[30] N. Yunes and D. N. Spergel, Phys. Rev. D 80, 042004

(2009).
[31] S. Alexander and N. Yunes, Phys. Rev. Lett. 99, 241101

(2007).
[32] T. L. Smith, A. L. Erickcek, R. R. Caldwell, and M.

Kamionkowski, Phys. Rev. D 77, 024015 (2008).
[33] S. Alexander and N. Yunes, Phys. Rev. D 75, 124022

(2007).
[34] Y. Nakamura, D. Kikuchi, K. Yamada, H. Asada, and N.

Yunes, Classical Quantum Gravity 36, 105006 (2019).
[35] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Phys. Rev. D

87, 084058 (2013); 93, 089909(E) (2016).
[36] N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E.

Papantonopoulos, Phys. Rev. D 105, 084051 (2022).
[37] N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E.

Papantonopoulos, Phys. Rev. D 106, 084002 (2022).
[38] N. Yunes and F. Pretorius, Phys. Rev. D 79, 084043 (2009).
[39] K. Yagi, N. Yunes, and T. Tanaka, Phys. Rev. D 86, 044037

(2012); 89, 049902(E) (2014).
[40] A. Maselli, P. Pani, R. Cotesta, L. Gualtieri, V. Ferrari, and

L. Stella, Astrophys. J. 843, 25 (2017).
[41] R. McNees, L. C. Stein, and N. Yunes, Classical Quantum

Gravity 33, 235013 (2016).
[42] B. Chen and L. C. Stein, Phys. Rev. D 97, 084012 (2018).
[43] N. Yunes and C. F. Sopuerta, Phys. Rev. D 77, 064007

(2008).
[44] C. W. F. Everitt, D. B. DeBra, B. W. Parkinson, J. P.

Turneaure, J. W. Conklin, M. I. Heifetz, G. M. Keiser,
A. S. Silbergleit, T. Holmes, J. Kolodziejczak et al., Phys.
Rev. Lett. 106, 221101 (2011).

[45] Y. Ali-Haimoud and Y. Chen, Phys. Rev. D 84, 124033
(2011).

[46] H. Okawara, K. Yamada, and H. Asada, Phys. Rev. Lett.
109, 231101 (2012).

[47] H. Okawara, K. Yamada, and H. Asada, Phys. Rev. D 87,
084038 (2013).

[48] D. Kikuchi, N. Omoto, K. Yamada, and H. Asada, Phys.
Rev. D 90, 064036 (2014).

SLOW-ROTATING CHARGED BLACK HOLE SOLUTION IN … PHYS. REV. D 107, 064069 (2023)

064069-17

https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1038/nature01997
https://doi.org/10.1038/nature01997
https://doi.org/10.12942/lrr-2003-5
https://doi.org/10.1126/science.256.5055.325
https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.1088/0264-9381/25/22/225001
https://doi.org/10.1088/0264-9381/25/22/225001
https://doi.org/10.1088/0264-9381/14/6/011
https://doi.org/10.1016/0168-9002(90)91525-G
https://doi.org/10.1016/0168-9002(90)91525-G
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1086/383612
https://doi.org/10.1086/150317
https://doi.org/10.1086/150317
https://doi.org/10.1086/508162
https://doi.org/10.1086/508162
https://doi.org/10.1103/PhysRevD.74.123507
https://doi.org/10.1103/PhysRevD.74.123507
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevD.60.081301
https://doi.org/10.1103/PhysRevD.60.081301
https://doi.org/10.1146/annurev.aa.32.090194.002531
https://doi.org/10.1103/PhysRevLett.93.011301
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1088/1475-7516/2006/06/018
https://doi.org/10.1088/1475-7516/2006/06/018
https://doi.org/10.1103/PhysRevD.77.123541
https://doi.org/10.1103/PhysRevD.78.064070
https://doi.org/10.1103/PhysRevD.79.084004
https://doi.org/10.1103/PhysRevD.79.084004
https://doi.org/10.1103/PhysRevD.80.042004
https://doi.org/10.1103/PhysRevD.80.042004
https://doi.org/10.1103/PhysRevLett.99.241101
https://doi.org/10.1103/PhysRevLett.99.241101
https://doi.org/10.1103/PhysRevD.77.024015
https://doi.org/10.1103/PhysRevD.75.124022
https://doi.org/10.1103/PhysRevD.75.124022
https://doi.org/10.1088/1361-6382/ab04c5
https://doi.org/10.1103/PhysRevD.87.084058
https://doi.org/10.1103/PhysRevD.87.084058
https://doi.org/10.1103/PhysRevD.93.089909
https://doi.org/10.1103/PhysRevD.105.084051
https://doi.org/10.1103/PhysRevD.106.084002
https://doi.org/10.1103/PhysRevD.79.084043
https://doi.org/10.1103/PhysRevD.86.044037
https://doi.org/10.1103/PhysRevD.86.044037
https://doi.org/10.3847/1538-4357/aa72e2
https://doi.org/10.1088/0264-9381/33/23/235013
https://doi.org/10.1088/0264-9381/33/23/235013
https://doi.org/10.1103/PhysRevD.97.084012
https://doi.org/10.1103/PhysRevD.77.064007
https://doi.org/10.1103/PhysRevD.77.064007
https://doi.org/10.1103/PhysRevLett.106.221101
https://doi.org/10.1103/PhysRevLett.106.221101
https://doi.org/10.1103/PhysRevD.84.124033
https://doi.org/10.1103/PhysRevD.84.124033
https://doi.org/10.1103/PhysRevLett.109.231101
https://doi.org/10.1103/PhysRevLett.109.231101
https://doi.org/10.1103/PhysRevD.87.084038
https://doi.org/10.1103/PhysRevD.87.084038
https://doi.org/10.1103/PhysRevD.90.064036
https://doi.org/10.1103/PhysRevD.90.064036


[49] N. Loutrel, T. Tanaka, and N. Yunes, Classical Quantum
Gravity 36, 10LT02 (2019).

[50] K. Konno, T. Matsuyama, and S. Tanda, Phys. Rev. D 76,
024009 (2007).

[51] D. Grumiller and N. Yunes, Phys. Rev. D 77, 044015
(2008).

[52] K. Konno, T. Matsuyama, and S. Tanda, Prog. Theor. Phys.
122, 561 (2009).

[53] L. Amarilla, E. F. Eiroa, and G. Giribet, Phys. Rev. D 81,
124045 (2010).

[54] Y. Brihaye and E. Radu, Phys. Lett. B 764, 300 (2017).
[55] A. Cisterna, C. Corral, and S. del Pino, Eur. Phys. J. C 79,

400 (2019).
[56] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(W. H. Freeman, San Francisco, 1973).
[57] B. Tekin, Phys. Rev. D 77, 024005 (2008).
[58] S. Deser and B. Tekin, Phys. Rev. Lett. 89, 101101 (2002).
[59] S. Deser and B. Tekin, Phys. Rev. D 67, 084009 (2003).
[60] S. Deser and B. Tekin, Classical Quantum Gravity 20, L259

(2003).
[61] D. Grumiller, R. B. Mann, and R. McNees, Phys. Rev. D 78,

081502 (2008).
[62] K. S. Thorne and J. B. Hartle, Phys. Rev. D 31, 1815 (1984).
[63] J. B. Hartle and K. S. Thorne, Astrophys. J. 153, 807 (1968).
[64] O. Miskovic and R. Olea, Phys. Rev. D 79, 124020 (2009).
[65] C. Y. Liu, D. S. Lee, and C. Y. Lin, Classical Quantum

Gravity 34, 235008 (2017).

[66] A. M. A. Zahrani, V. P. Frolov, and A. A. Shoom, Phys. Rev.
D 87, 084043 (2013).

[67] J. B. Hartle, Gravity (Cambridge University Press, Cam-
bridge, England, 2021).

[68] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys.
J. 178, 347 (1972).

[69] A. Ori and K. S. Thorne, Phys. Rev. D 62, 124022 (2000).
[70] M. Blaschke andZ. Stuchlík, Phys. Rev. D 94, 086006 (2016).
[71] D. Pugliese, H. Quevedo, and R. Ruffini, Phys. Rev. D 88,

024042 (2013).
[72] A. N. Aliev and A. E. Gumrukcuoglu, Phys. Rev. D 71,

104027 (2005).
[73] R. d’Inverno, Introducing Einstein’s Relativity (Clarendon

Press, Oxford, 1992).
[74] T. Harko, Z. Kovacs, and F. S. N. Lobo, Classical Quantum

Gravity 27, 105010 (2010).
[75] C. F. Sopuerta and N. Yunes, Phys. Rev. D 80, 064006

(2009).
[76] A. Sheykhi, Phys. Rev. D 86, 024013 (2012).
[77] A. Sheykhi, Eur. Phys. J. C 69, 265 (2010).
[78] S. H. Hendi, A. Sheykhi, and M. H. Dehghani, Eur. Phys.

J. C 70, 703 (2010).
[79] A. Sheykhi, M. H. Dehghani, and S. H. Hendi, Phys. Rev. D

81, 084040 (2010).
[80] G. G. L. Nashed and W. El Hanafy, Eur. Phys. J. C 77, 90

(2017).
[81] G. G. L. Nashed, Ann. Phys. (Berlin) 523, 450 (2011).

G. G. L. NASHED and SHIN’ICHI NOJIRI PHYS. REV. D 107, 064069 (2023)

064069-18

https://doi.org/10.1088/1361-6382/ab15fa
https://doi.org/10.1088/1361-6382/ab15fa
https://doi.org/10.1103/PhysRevD.76.024009
https://doi.org/10.1103/PhysRevD.76.024009
https://doi.org/10.1103/PhysRevD.77.044015
https://doi.org/10.1103/PhysRevD.77.044015
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1103/PhysRevD.81.124045
https://doi.org/10.1103/PhysRevD.81.124045
https://doi.org/10.1016/j.physletb.2016.11.055
https://doi.org/10.1140/epjc/s10052-019-6910-5
https://doi.org/10.1140/epjc/s10052-019-6910-5
https://doi.org/10.1103/PhysRevD.77.024005
https://doi.org/10.1103/PhysRevLett.89.101101
https://doi.org/10.1103/PhysRevD.67.084009
https://doi.org/10.1088/0264-9381/20/21/L01
https://doi.org/10.1088/0264-9381/20/21/L01
https://doi.org/10.1103/PhysRevD.78.081502
https://doi.org/10.1103/PhysRevD.78.081502
https://doi.org/10.1103/PhysRevD.31.1815
https://doi.org/10.1086/149707
https://doi.org/10.1103/PhysRevD.79.124020
https://doi.org/10.1088/1361-6382/aa903b
https://doi.org/10.1088/1361-6382/aa903b
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1103/PhysRevD.87.084043
https://doi.org/10.1086/151796
https://doi.org/10.1086/151796
https://doi.org/10.1103/PhysRevD.62.124022
https://doi.org/10.1103/PhysRevD.94.086006
https://doi.org/10.1103/PhysRevD.88.024042
https://doi.org/10.1103/PhysRevD.88.024042
https://doi.org/10.1103/PhysRevD.71.104027
https://doi.org/10.1103/PhysRevD.71.104027
https://doi.org/10.1088/0264-9381/27/10/105010
https://doi.org/10.1088/0264-9381/27/10/105010
https://doi.org/10.1103/PhysRevD.80.064006
https://doi.org/10.1103/PhysRevD.80.064006
https://doi.org/10.1103/PhysRevD.86.024013
https://doi.org/10.1140/epjc/s10052-010-1372-9
https://doi.org/10.1140/epjc/s10052-010-1483-3
https://doi.org/10.1140/epjc/s10052-010-1483-3
https://doi.org/10.1103/PhysRevD.81.084040
https://doi.org/10.1103/PhysRevD.81.084040
https://doi.org/10.1140/epjc/s10052-017-4663-6
https://doi.org/10.1140/epjc/s10052-017-4663-6
https://doi.org/10.1002/andp.201100030

