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We consider the structure and physical properties of specific classes of neutron, quark, and Bose-
Einstein condensate stars in the conformally invariant Weyl geometric gravity theory. The basic theory is
derived from the simplest conformally invariant action, constructed, in Weyl geometry, from the square of
the Weyl scalar, the strength of the Weyl vector, and a matter term, respectively. The action is linearized in
the Weyl scalar by introducing an auxiliary scalar field. To keep the theory conformally invariant the trace
condition is imposed on the matter energy-momentum tensor. The field equations are derived by varying
the action with respect to the metric tensor, Weyl vector field and scalar field. By adopting a static
spherically symmetric interior geometry, we obtain the field equations, describing the structure and
properties of stellar objects in Weyl geometric gravity. The solutions of the field equations are obtained
numerically, for different equations of state of the neutron and quark matter. More specifically, constant
density stellar models, and models described by the stiff fluid, radiation fluid, quark bag model, and Bose-
Einstein condensate equations of state are explicitly constructed numerically in both general relativity
and Weyl geometric gravity, thus allowing an in depth comparison between the predictions of these two
gravitational theories. As a general result it turns out that for all the considered equations of state,
Weyl geometric gravity stars are more massive than their general relativistic counterparts. As a possible
astrophysical application of the obtained results we suggest that the recently observed neutron stars, with
masses in the range of 2M⊙ and 3M⊙, respectively, could be in fact conformally invariant Weyl geometric
neutron or quark stars.
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I. INTRODUCTION

The structure and the properties of the compact astro-
physical objects is a central problem in general relativity.
This field of study was initiated already in 1916 by
Schwarzschild [1], who obtained the interior solution for
a sphere of constant density, with vanishing pressure on
its vacuum boundary. Despite its theoretical simplicity,
and limited interest for realistic stellar objects, the
Schwarzschild interior solution did attract a lot of interest,
and its properties and extensions have been intensively
studied [2–7]. An important moment in the development
of relativistic astrophysics is related to the work by
Tolman [8,9] and of Oppenheimer and Volkoff [10],
who obtained the equations of structure of compact general
relativistic objects for a static, spherically symmetric
geometry. In particular, the equation describing the hydro-
static equilibrium of compact stars was also obtained in

these early studies, and it is presently called the Tolman-
Oppenheimer-Volkoff (TOV) equation.
The theoretical, as well as the numerical investigations of

the TOV equation led to the limiting maximum mass of
neutron stars, which was found to be of the order of 3.2M⊙
[11]. This result was obtained by using the principle of
causality, the maximally stiff equation of state p ¼ ρc2, and
Le Chatelier’s principle, and it is valid even if the equation
of state of matter is unknown in a limited range of densities.
On the other hand, Chandrasekhar [12] obtained for the
limiting mass of white dwarfs the value MCh ≈ 1.4M⊙.
Theoretical arguments, as well as observational evidence
thus led to the assumption, generally accepted for a long
time, that neutron stars must have a mass distribution
centered on a value of the order of 1.4M⊙ [13]. This mass
value follows from the result that neutron stars must be
supported by the neutron degenerate pressure that becomes
dominant after the collapse of the white dwarf. The
corresponding radius of a 1.4M⊙ mass neutron star should
be of the order of 10–15 km, and its average density is of
the order of 6 × 1014 g=cm3.
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However, the standard view on the neutron star masses
has changed drastically recently, once more and more
exact determinations of the neutron star masses became
available [14]. A large number of accurate astronomical
observations, as well as the detection of the gravitational
waves, has clearly indicated that the masses of neutron
stars vary in a much larger range than expected from
the simple application of the Chandrasekhar limit. Hence,
in [15], by using combined electromagnetic and gravita-
tional wave information on the binary neutron star merger
GW170817, an upper limit of Mmax ≤ 2.17M⊙ for the
maximum mass of a neutron star was found. This limit is
tighter and less model-dependent than other constraints.
From the analysis of the same event in [16] it was pointed
out that the neutron matter equation of state has to be
sufficiently stiff, implying that the maximum mass of
neutron stars has to be much higher than 2M⊙. This mass
value is required so that a long-lived massive neutron star
can be formed as the merger remnant for the binary
systems of GW170817, for which the initial total mass
is greater than 2.73M⊙. Moreover, since no relativistic
optical counterpart was detected, a value of Mmax ≈
2.15–2.25M⊙ can be inferred for the maximum value
of the mass of the neutron star. Similar values for the
maximum mass of the neutron star have been obtained
in [17,18], respectively. Other determinations of the
masses of neutron stars, by using the Shapiro delay, gave
a mass of the order of 1.928� 0.017M⊙ for the pulsar
PSR J1614-2230 [19], and a mass 2.14þ0.10

−0.09M⊙ for the
Millisecond Pulsar MSP J0740þ 6620 [20].
Interestingly enough, more intriguing determinations of

neutron star masses came from the gravitational event
GW190425, which indicated the total mass of the binary
neutron stars to be of the order of 3.4M⊙ [21], and from
GW190408, which did show the possible existence of a
neutron star with mass 2.5–2.65M⊙, merging with a large
black hole with mass 26M⊙ [22]. Hence, these recent
observations opened new perspectives of the mass distri-
bution of the neutron stars, making the old paradigm of the
standard 1.4M⊙ mass value untenable.
A possible explanation for the high mass values of the

observed compact objects could be obtained by assuming
that they contain some exotic components. In [23] it was
suggested that rotating strange quark stars in the color-
flavor-locked (CFL) phase can have masses in the range
3.8–6M⊙, and thus they can mimic even stellar mass black
holes. The low luminosity of the star makes it difficult to
detect. On the other hand, Bose-Einstein condensate stars,
consisting of superfluid condensates with particle masses of
the order of two neutron masses, forming Cooper pairs, and
scattering length of the order of 10–20 fm have maximum
masses of the order of 2M⊙. If the particles composing the
condensate are kaons, then the mass of the neutron star can
be in the range of 2.4–2.6M⊙ [24]. For a detailed
discussion of the astrophysical role of the exotic

components, like, for example, quarks and kaon conden-
sates, in the interior of neutron stars see [25].
Important constraints on the nature of the equation of

state of the dense matter in the interior of the neutron stars
can be obtained by using multimessenger astronomy. The
observations of the binary neutron star merger GW170817,
together with the observation of electromagnetic counter-
parts across the entire spectrum allowed to obtain some
important restrictions on the mass ratio q ≤ 1.38, and the
tidal deformability of the source, Λ̃ ≥ 197 [26]. These
constraints rule out sufficiently soft equations of state of
the nuclear matter. Compact binary mergers that include
neutron stars lead to the creation of the electromagnetic
counterpart, the kilonova, which originate from the neu-
tron-rich outflows from the merger [27]. In [26] the analysis
of the GW170817 event was performed by using standard
general relativity.
Another important avenue for the possible explanation

of the high mass values of the neutron stars is modified
gravity. Modified gravity theories have been proposed
mainly to explain the recent accelerating expansion of
the Universe (for reviews of the accelerating Universe, dark
energy and modified gravity problems see [28–31]).
Modified gravity theories can also open some new

windows on the understanding of the structure of compact
objects. In modified gravity theories some of the basic stellar
structure properties, like the mass-radius relations, maximum
masses, or moments or inertia are different as compared with
standard general relativity [32]. It is important to point out
that even in the case of nonrelativistic stars, like white, red or
brown dwarfs, modified gravity effects may play an impor-
tant role in their internal structure, due to the modification
of the gravitational interaction inside these astrophysical
objects. These modifications are induced through the
modified Poisson equation for the gravitational potential,
which leads to modifications in the mass, radius, central
density, and luminosity of the stars [32]. Moreover, the
Chandrasekhar mass limit for white dwarfs, and the mini-
mum mass for stable hydrogen burning in high-mass brown
dwarfs stars are also influenced. The observational deter-
mination of the masses of several neutron stars having values
of the order of 2M⊙ has led to contradictions between the
predictions of some realistic equations of state of dense
matter, ruling out many of the soft ones (and in particular, the
ones including hyperons) [32]. Modified theories of gravity
that go beyond general relativity could help in alleviating or
solving these contradictions, through the corrections that
appear in the generalized hydrostatic equilibrium equations
of extended stellar models [32].
There are several extensions of general relativity that

could explain the observational properties of the compact
astrophysical objects, like neutron stars, and of their mass
distribution, which include fðRÞ, fðR; TÞ and, fðR;LmÞ
type gravity theories, hybrid-metric Palatini gravity, or
theories in which the standard Hilbert-Einstein Lagrangian
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is extended by a three-form field Aαβγ . For a brief review of
the astrophysical implications of the above mentioned
theories, as well as on the Palatini and metric affine gravity,
see [32], and references therein. In many modified gravity
theories, it is possible to obtain stellar mass values for
static, spherically symmetric objects, that are very difficult
to be obtained in standard General Relativity, even con-
sidering the effects of fast rotation.
One of the important extensions of the Riemann geom-

etry is represented by the Weyl geometry [33,34]. In Weyl
geometry the metric condition is abandoned, and the
covariant divergence of the metric tensor in nonzero,
∇αgμν ¼ Qαμν ≠ 0, where Qαμν is the nonmetricity. In its
initial formulation by Weyl, for the nonmetricity the
particular form Qαμν ¼ ωαgμν was assumed, where ωα is
the Weyl vector. For a presentation of the Weyl geometry,
and its historical aspects, see [35]. Another important
idea introduced by Weyl is the idea of the conformal
invariance of physical laws, and the necessity of reformu-
lating Einstein’s gravity as a conformally invariant theory.
Recently, conformally invariant theories of gravity, and
of elementary particle physics, were proposed and dis-
cussed in [36–42].
A conformally invariant theory of gravity, based on the

action S ¼ −αg
R
CλμνκCλμνκ ffiffiffiffiffiffi−gp

d4x ¼ −2αg
R ðRμνRμν −

R2=3Þ ffiffiffiffiffiffi−gp
d4x, where Cλμνκ is the (conformally invariant)

Weyl tensor, was introduced, and extensively investigated,
in [43–48]. In particular, the conformally invariant
vacuum field equations do admit an exact solution of the
form ds2 ¼ eνdt2 − e−νdr2 − r2dΩ, where eν¼1–2m=rþ
γr−Λr2, where m, γ, Λ are constants [43].
Weyl geometry, and the corresponding gravitational

theory, have found a large number of applications in
theoretical physics, astrophysics, and cosmology. Dirac
[49,50] has proposed an extension of Weyl’s theory,
which is based on three geometric quantities, the symmetric
metric tensor gμν, the Weyl connection vector ωμ, and the
Dirac gauge function β. The Weyl-Dirac theory was
extensively discussed, and applied to cosmology [51,52],
and can give a systematic description of the matter creation
in the Universe, as well as for its late acceleration. Weyl
geometry is the theoretical foundation of the fðQÞ type
modified gravity theories [53–55], and of its generaliza-
tions [56–60]. In the fðQÞ theory, the basic quantity
describing the gravitational field is the (metric dependent)
nonmetricity Q. The action of this theory is given by
S ¼ R

fðQÞ ffiffiffiffiffiffi−gp
d4x, where fðQÞ is an arbitrary function

of the nonmetricity. An observational investigation of
several modified fðQÞ models using the redshift approach
was performed in [61], by using a variety of observational
probes (type Ia supernovae, quasars, gamma ray bursts,
baryon acoustic oscillations and cosmic microwave back-
ground data). It turns out that fðQÞ gravity provides a
credible alternative model for the explanation of the late

time acceleration of the Universe. fðQÞ type theories have
been extended to include the effects of the coupling
between nonmetricity and matter, described by the matter
Lagrangian Lm in [62]. This approach was extended to
theories with action described by an arbitrary function of
the nonmetricity and the trace of the energy-momentum
tensor T, in [63–65], leading to the so-called fðQ; TÞ
theory of gravity. The role of the torsion in the couplings
between matter and the basic geometric quantities was
investigated in [66]. A cosmological model based on fðRÞ
gravity, with fðRÞ ¼ αR − βR2=2 − γ=3R was investi-
gated in [67], by using the Palatini approach. The model
was interpreted in a Weylian geometric framework, and the
definitions of the luminosity distance, proper distance, and
redshift were extended to Weyl type geometries.
An interesting approach to Weyl gravity, and its appli-

cations, was initiated, and extensively developed, by using
a perspective suggested by elementary particle physics,
in [68–75]. The basic idea is to linearize in the action of the
Weyl quadratic gravity the (geometric) term R̃2 with the
help of an auxiliary scalar field. The linearized Weyl
quadratic gravity undergoes a spontaneous breaking of
Dð1Þ by a geometric, Stueckelberg type, mechanism, with
the Weyl gauge field acquiring mass from the spin-zero
mode of the R̃2 term in the action. The Stueckelberg
mechanism is implemented by setting the scalar field ϕ to a
constant value, taken as its vacuum expectation value, so
that ϕ → hϕi. Then, the Weyl vector field becomes
massive, and it absorbs the dynamical scalar field ϕ, which
disappears from the initial scalar-vector-tensor theory.
In this way the Einstein-Proca action is recovered from
the Weyl action, by eliminating the auxiliary scalar field ϕ,
and thus returning to a vector-tensor theory, as the initial
Weyl theory is.
This mode also generates the Planck scale, and the

cosmological constant, with the Einstein-Proca action
emerging in the broken phase. Moreover, all mass scales,
including the Planck scale, and the cosmological constant,
have a geometric origin [75]. Moreover, the Higgs field of
the standard model of elementary particle physics has a
similar origin, generated by Weyl boson fusion in the early
Universe. The coupling of matter and geometry in Weyl
gravity was considered in [76–79], with the Palatini
formulation of the theory in the presence of geometry-
matter coupling was investigated in [77]. The quadratic
Weyl gravity R̃2 þ R2

μν in the Palatini formalism was
studied in [72], by assuming that the Weyl connection
and the metric are independent. The theory has a sponta-
neous breaking of gauged scale symmetry, and mass is
generated as a purely geometric effect. The theory leads to a
successful inflationary scenario, by predicting a tensor-to-
scalar ratio 0.007 ≤ r ≤ 0.01 for the spectral index ns (at
95% C.L.) and N ¼ 60 efolds. A comparative study of
inflation in the Weyl quadratic gravity and in the theory
obtained in the Palatini approach to the considered action
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was performed in [73]. These theories have different
vectorial nonmetricities, induced by the gauge field, and
thus lead to different physical predictions. Both theories
have a small tensor-to-scalar ratio, r ∼ 10−3, which is
somewhat larger in the Palatini case. The metric Weyl
theory gives a dependence rðnsÞ similar to that in the
Starobinsky inflation.
It is the goal of the present paper to consider static,

spherically symmetric stellar models in the simplest model
of Weyl geometric gravity. Our starting point is a gravi-
tational action consisting of the sum of the square R̃2 of the
Weyl scalar, and of the field strength F2

μν of the Weyl
vector. The action can be linearized in the Weyl scalar by
introducing an auxiliary scalar field, and then can be
reformulated as an effective scalar-vector-tensor theory
in Riemann geometry, with the action containing effective
couplings between the scalar field and the Ricci scalar,
and the Weyl vector field. These terms are conformally
invariant by construction. Moreover, a matter term is also
added to the total action. The field equations correspond-
ing to this action are obtained in the metric formalism, by
varying the action respect to the metric tensor, Weyl vector
and the scalar field.
An important question in conformally invariant gravita-

tional actions is how to implement the conformal invariance
of the matter terms. In this work we implement the
requirement of the conformal invariance of the matter
action by imposing trace condition on the effective matter
action Lm, constructed with the help of the ordinary matter
action Lm, and the square of the Weyl vector ω2, so that
Lm ¼ LmðLm;ω2Þ. Once this condition is satisfied, the
corresponding gravitational field equations, and their sol-
utions, are conformally invariant.
After obtaining the gravitational field equations of the

Weyl geometric gravity and the consistency condition in
static spherical symmetry, we consider a number of specific
stellar models, whose general relativistic counterparts have
been intensively investigated. Thus, we investigate constant
density, stiff fluid, radiation fluid, quark and Bose-Einstein
condensate stars, by numerically solving the Weyl geo-
metric gravity field equations. In each case a detailed
analysis of the astrophysical properties of the stars (mass
and density profiles, mass-radius relation, Weyl vector and
scalar field behavior) is performed, and the dependence of
the stellar structures on the Weyl geometric gravity theory
parameters is presented. As a general conclusion of our
study it turns out that a larger variety of stellar type objects
can be constructed in Weyl geometric gravity as compared
to standard general relativity.
The present paper is organized as follows. In Sec. II

we review the basic of Weyl geometry, we introduce the
quadratic Weyl geometric gravitational action, and we
discuss its linearization in theWeyl scalar. The gravitational
field equations are obtained by varying the action with
respect to the metric tensor, to the Weyl vector and to the

scalar field, together with the consistency condition on
the Weyl current. A specific form of the effective matter
Lagrangian L is also adopted, and the corresponding field
equations are written down. In static spherical symmetry
the field equations of the Weyl geometric theory are
obtained in Sec. III, where a dimensionless representation
of the geometric and physical variables is also introduced.
Several stellar models are constructed, by numerical
solving the gravitational field equations, in Sec. IV.
Finally, we discuss and conclude our results in Sec. V.

II. WEYL GEOMETRIC GRAVITY
IN A NUTSHELL

In the present section we first briefly review the
geometrical foundations of the conformally invariant
Weyl geometric gravity. The action of the theory is also
written down, and linearized in the Weyl, and Ricci
curvatures by introducing an auxiliary scalar field. The
gravitational field equations are obtained in a general form
by varying the action with respect to the metric, and the
scalar and Weyl vector field.

A. Geometry, gravitational action, and matter, in
conformally invariant Weyl spacetimes

We begin our presentation of the Weyl geometric gravity
theory with a brief review of the Weyl geometry, and of
its basic geometrical, and physical quantities. Then the
action of Weyl geometric gravity, and the gravitational field
equations are presented.

1. Recap of Weyl geometry

Weyl geometry is constructed as the classes of equivalence
fgμνðxÞ;ωαðxÞg of the metric gμνðxÞ and of the Weyl vector
gauge field ωαðxÞ, respectively. These geometric quantities
are related by the Weyl gauge transformations [74],

g̃μν ¼ ΩnðxÞgμν; ω̃α ¼ ωα −
n
α

∂αΩðxÞ
ΩðxÞ ; ð1Þ

wheren is theWeyl charge. TheWeyl gaugevector fieldωμ is
defined via the Weyl connection Γ̃, which can be obtained
from the nonmetricity equations,

e∇λgμν ¼ −nαωλgμν; ð2Þ

where by α we have denoted the Weyl gauge coupling, and

e∇λgμν ¼ ∂λgμν − Γ̃ρ
νλgρμ − Γ̃ρ

μλgνρ: ð3Þ

Note that the Weyl geometry is nonmetric. Equation (2)
can be rewritten in an equivalent form as

ðe∇λ þ nαωλÞgμν ¼ 0: ð4Þ
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In the following we will denote by a tilde the geometric
and physical quantities defined in Weyl geometry, while
the bare quantities represent their Riemannian counterparts.
One can construct gauge invariant expressions in a way
similar to gauge theory in elementary particle physics,
by replacing the partial derivative by the Weyl covariant
derivative, according to the rule,

∂λ → ∂λ þ nαωλ: ð5Þ

From Eq. (2), by permuting the indices, and combining
the resulting relations, we obtain

Γ̃λ
μν ¼ Γλ

μν þ α
n
2
ðδλμων þ δλνωμ − ωλgμνÞ; ð6Þ

where by

Γλ;μν ¼
1

2
ð∂νgλμ þ ∂μgλν − ∂λgμνÞ; ð7Þ

we have denoted the standard Levi-Civita metric connec-
tion of Riemannian geometry, and

Γ̃λ
μν ¼ gλσΓ̃λ;μν: ð8Þ

The trace of Eq. (6) gives

Γ̃μ ¼ Γμ þ 2nαωμ: ð9Þ

An important physical and geometrical quantity, the field
strength F̃μν of the Weyl vector field ωμ, is defined as,

F̃μν ¼ e∇μων − e∇νωμ ¼ ∇μων −∇νων

¼ ∂μων − ∂νωμ ¼ Fμν: ð10Þ

The curvatures in Weyl geometry are calculated, by
using the Weyl connection, according to,

R̃λ
μνσ ¼ ∂νΓ̃λ

μσ − ∂σΓ̃λ
μν þ Γ̃λ

ρνΓ̃
ρ
μσ − Γ̃λ

ρσΓ̃
ρ
μν; ð11Þ

and

R̃μν ¼ R̃λ
μλν; R̃ ¼ gμσR̃μσ; ð12Þ

respectively. However, the Weyl curvature does not have
the symmetry properties of the Riemannian curvature
tensor, but instead it satisfies the condition

R̃μνλσ ¼ −R̃νμλσ − F̃λσgμν; ð13Þ

giving,

R̃μν − R̃νμ ¼ 2F̃νμ; ð14Þ

a relation that gives the geometrical interpretation of the
strength of the Weyl vector.
The Weyl scalar can be expressed in terms of

Riemannian geometric quantities as

R̃ ¼ R − 3nα∇μω
μ −

3

2
ðnαÞ2ωμω

μ: ð15Þ

The Weyl scalar R̃ transforms covariantly, while
ffiffiffiffiffiffi−gp

R̃2

is invariant with respect to the conformal transformations.
In the following we will restrict our investigations to the

case in which the Weyl charge n takes the value n ¼ 2 only.
Moreover, we would like to point out that in the present
approach to Weyl gravity we adopt a purely geometric, that
is, we do not consider the basic quantities inWeyl geometry
as having a direct physical meaning. This also refers to the
field strength F, which we interpret as a purely geometric
quantity, defined by Eq. (14). The physical role of Fμν is
indirect, as a geometric contribution to the total energy-
momentum balance of a gravitational system. Hence,
the possible physical role or interpretation of Fμν must
be considered on a case by case basis, in the given
cosmological/astrophysical context. On the other hand,
we assume that Fμν is “physical” in the sense that it is
geometry acting on matter.

2. Action of the Weyl geometric gravity

Subsequently, we will consider the simplest Weyl geo-
metric type, conformally invariant gravity theory. To
describe the properties of the gravitational field, by using
only the two basic scalars of the Weyl geometry ðR̃; F̃2

μνÞ,
the following action was initially proposed by Weyl [33,34],
and recently reconsidered in [74],

S ¼
Z �

1

4!ξ2
R̃2 −

1

4
F̃2
μν

� ffiffiffiffiffiffi
−g

p
d4xþ Sm; ð16Þ

where ξ is a coupling constant. In the action (16) we have
also introduced the effective matter action Sm,

Sm ¼ β

Z
Lm

ffiffiffiffiffiffi
−g

p
d4x; ð17Þ

where β is a constant, and the effective matter
Lagrangian Lm,

Lm ¼ LmðLm;ω2;ψÞ ð18Þ

in general can depend on the ordinary matter Lagrangian Lm,
on the Weyl vector through ω2 ¼ ωμωμ, and on the matter
fields ψ . In fact, Lm may also contain different couplings
between ordinary baryonic matter, the Weyl vector, and the
fields ψ .
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We introduce at this moment an auxiliary scalar field ϕ,
according to the definition [74],

R̃2 ≡ 2ϕ2R̃ − ϕ4: ð19Þ

We then substitute R̃2 → 2ϕ2R̃ − ϕ4 into the geometric part
of the action in Eq. (16). The variation of the action (16)
with respect to ϕ0 leads to the equation

ϕðR̃ − ϕ2Þ ¼ 0; ð20Þ

which fixes ϕ2 as

ϕ2 ¼ R̃: ð21Þ

Thus, through this identification, we recover the original
form of the Lagrangian, as defined in the initial Weyl
geometric action. Hence, the R̃2 type Weyl geometric
gravitational models have the remarkable property of
allowing their linearization in the Ricci scalar via the
introduction of the scalar degree of freedom.
It should be mentioned that the geometrical part of the

action (16) is invariant under the transformations,

ĝμν¼Ω2gμν; ω̂μ¼ωμ−
1

α
∂μ lnðΩ2Þ; ϕ̂¼ ϕ

Ω
: ð22Þ

The matter part of the action (16), Eq. (17), should
not be necessarily gauge invariant, but its variation must be
[80–83]. By taking the variation of the matter action (17),
we obtain

δSm ¼ −
1

2

Z
TðtotÞ
μν δgμν

ffiffiffiffiffiffi
−g

p
d4xþ

Z
Gμδωμ

ffiffiffiffiffiffi
−g

p
d4x

þ
Z

δLm

δψ
δψ ; ð23Þ

where TðtotÞ
μν is the effective total energy-momentum tensor,

defined as

TðtotÞ
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmðLm;ω2;ψÞÞ
δgμν

; ð24Þ

and

Gμ ¼ δLmðLm;ω2;ψÞ
δωμ

; ð25Þ

is the Weyl current [80–83]. In the following we assume
that δLm=δψ ¼ 0.
By taking into account that [80–83]

δgμν ¼ 2δΩ
Ω3

g̃μν ¼ 2
δΩ
Ω

gμν; ð26Þ

δωμ ¼
2

α
δ
∂μΩ
Ω

¼ 2

α
δð∂μ lnΩÞ ¼

2

α
∂μðδ lnΩÞ

¼ 2

α
∂μ

�
δΩ
Ω

�
¼ 2

α
∇μ

�
δΩ
Ω

�
; ð27Þ

for the variation of the matter action we obtain the
condition,

δSm ¼ −
Z

TðtotÞ
μν gμν

δΩ
Ω

ffiffiffiffiffiffi
−g

p
d4x

þ 2

α

Z
Gμ∇μ

�
δΩ
Ω

� ffiffiffiffiffiffi
−g

p
d4x ¼ 0: ð28Þ

After a partial integration in the above equation, and
by using the Gauss theorem, from Eq. (28) we obtain the
consistency (trace) condition

TðtotÞ ¼ −
4

α
∇μ

�
ωμ ∂LmðLm;ω2;ψÞ

∂ω2

�
; ð29Þ

where TðtotÞ ¼ gμνTðtotÞ
μν is the trace of the effective energy-

momentum tensor, constructed with the help of the effec-
tive matter Lagrangian Lm.
Equation (29) shows that when Lm ¼ Lm, this constraint

leads to the familiar form TðmÞ ¼ 0, where TðmÞ is the trace
of the ordinary matter energy-momentum tensor, which
means that the only conformally invariant matter has a
traceless energy-momentum tensor.
By substituting Eqs. (15) and (19) into the action (16),

we obtain

S ¼ β

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2κ2
ðR − 6α2ωμω

μ − 12ξ2ϕ̄2Þϕ̄2

−
1

4
F2
μν þ Lm

�
; ð30Þ

where ϕ̄ ¼ ϕ=ξ and κ2 ¼ 6β. Note that with these redefi-
nitions, the scalar field ϕ̄ is dimensionless in the unites
c ¼ 1 and κ2 ¼ 1. To have a canonical kinetic term for the
Weyl vector, we have used the redefinitions ωμ →

ffiffiffi
β

p
ωμ

and α → α=
ffiffiffi
β

p
. It also should be mentioned that we have

imposed the gauge condition∇μω
μ ¼ 0. With the use of the

gauge condition, the trace condition (29) becomes

TðtotÞ ¼ −
4

α
ωμ∇μ

�
∂LmðLm;ω2;ψÞ

∂ω2

�
: ð31Þ

When Lm ¼ Lm, with Lm independent of ω2, and on
the other matter fields ψ , it follows that ∂Lm=∂ω2 ≡ 0,
and therefore in this case we also recover the condition
TðtotÞ ¼ TðmÞ ¼ 0, that is, in Weyl geometric gravity
only radiative type matter sources give conformally

ZAHRA HAGHANI and TIBERIU HARKO PHYS. REV. D 107, 064068 (2023)

064068-6



invariant field equations without imposing any supple-
mentary conditions.

B. Gravitational field equations

In the following, we will assume for the effective matter
Lagrangian Lm the simple form,

Lm ¼ Lm þ γω2; ð32Þ

where γ is a constant. The supplementary term added to the
matter action is necessary to assure the conformal invari-
ance of the theory, and to satisfy the trace condition.
By varying the gravitational action (30) with respect

to the Weyl vector ωμ, it follows that ωμ satisfies the
generalized system of Maxwell-Proca type equations,

∇νFμν þ 3α2

2κ2
ϕ̄ωμ − 2γωμ ¼ 0; ð33Þ

Due to its antisymmetry, the Weyl field strength F̃μν

satisfies automatically, in Riemann geometry, the equations

∇σFμν þ∇μFνσ þ∇νFσμ ¼ 0: ð34Þ

By varying the action (30) with respect to the metric
tensor, and by introducing the Einstein tensor, the gravi-
tational field equations of the Weyl geometric gravity can
be written as

ϕ̄2Gμν − κ2
�
Tμν þ Fμ

αFνα −
1

4
FμνFμν

�
þ 6ξ2ϕ̄4gμν

þ
�
γκ2 −

3

4
α2ϕ̄2

�
ð2ωμων − gμνω2Þ þ gμν□ϕ̄2

−∇ν∇μϕ̄
2 ¼ 0: ð35Þ

The field equation of the scalar field becomes

ϕ̄2 ¼ 1

48ξ2
ð2R − 3α2ω2Þ: ð36Þ

For the choice (32) of the effective matter Lagrangian,
the constraint equation (29) takes the form,

TðmÞ ¼ −2γω2: ð37Þ

III. STATIC SPHERICALLY SYMMETRIC
FIELD EQUATIONS

In the present section we present the static, spherically
symmetric gravitational field equations, describing the
interior structure of compact Weyl geometric type stars.
We assume that the interior line element in coordinates
ðt; r; θ;ϕÞ is given by the standard expression,

ds2 ¼ −e−2fðrÞdt2 þ 1

gðrÞ dr
2 þ r2dΩ2; ð38Þ

where fðrÞ and gðrÞ are arbitrary functions of the radial
coordinate r, and dΩ2 ¼ dθ2 þ sin2 θdϕ2. Moreover, we
represent gðrÞ as,

gðrÞ ¼ 1 −
2mðrÞ

r
; ð39Þ

where mðrÞ has the physical interpretation as the total
(effective) mass of the star. For the Weyl vector we assume
the form,

ωμ ¼ efðrÞhðrÞδμt ; ð40Þ

where hðrÞ is a function to be determined from the field
equations. With be above assumptions for the metric and
the vector field ωμ, the gauge condition, ∇μω

μ ¼ 0, is
automatically satisfied.
For the Lagrangian of the ordinary matter we adopt the

expression

Lm ¼ −ρ; ð41Þ

where ρ is the energy density of the baryonic matter.
The energy momentum tensor of the ordinary matter is
given by

Tm
μν ¼ ðpþ ρÞuμuν þ pgμν; ð42Þ

where by p we have denoted the thermodynamic pressure
of the matter, while uμ is the matter four-velocity.
The nonzero component of the Weyl vector field

equation is obtained as

h00 þ h0
�
2

r
þ g0

2g
− f0

�
þ h

�
−f00 −

2f0

r
þ 2γ

g
−
f0g0

2g

�

−
3α2

2κ2g
ϕ̄2h ¼ 0: ð43Þ

The (00) component of the metric field equation (35)
is given by,

1

r2
ð1 − rg0 − gÞϕ̄2

¼ 3ϕ̄2

�
2ξ2ϕ̄2 þ 1

4
α2h2

�

þ 2g

�
ϕ̄

�
2ϕ̄0

r
þ ϕ̄00

�
þ ϕ̄02

�
þ g0ϕ̄ϕ̄0 þ κ2ρ

þ κ2
�
1

2
h2ðgf02 − 2γÞ − 1

2
gh0ð2hf0 − h0Þ

�
: ð44Þ
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The spatial components of the metric field equation (35)
are obtained as,

1

r2
ð1 − gþ 2rgf0Þϕ̄2

¼ −
2

r
gðrf0 − 2Þϕ̄ϕ̄0 − κ2pþ 3

�
2ξ2ϕ̄2 −

1

4
α2h2

�
ϕ̄2

þ κ2
�
1

2
gðh0 − hf0Þ2 þ γh2

�
; ð45Þ

and

gϕ̄2f00 þ 1

2r
ðrf0 − 1Þðg0 − 2gf0Þϕ̄2

¼ 3ϕ̄2

�
2ξ2ϕ̄2 −

1

4
α2h2

�

þ 2g

�
ϕ̄ϕ̄0

�
1

r
− f0

�
þ ϕ̄02 þ ϕ̄ϕ̄00

�
þ g0ϕ̄ϕ̄0 − κ2p

þ κ2
�
γh2 −

1

2
gðh0 − hf0Þ2

�
; ð46Þ

respectively. The nonconservation (balance) equation of the
energy momentum tensor is given by

κ2p0 þ 3α2

2
hϕ̄2ðh0 − hf0Þ þ ϕ̄ϕ̄0

�
g0
�
f0 −

2

r

�
− 24ξ2ϕ̄2

�

þ ϕ̄ϕ̄0
�
g

�
2f00 −

2ðrf0 − 1Þ2
r2

�
þ 3α2h2

2
þ 2

r2

�

−
1

2
κ2½2f0ð−2γh2 þ pþ ρÞ þ g0ðh0 − hf0Þ2 þ 4γhh0�

−
κ2

r
gðhf0 − h0Þ½hrf00 þ f0ðrh0 þ 2hÞ − rh00 − 2h0� ¼ 0:

ð47Þ

The scalar field equation (36), and the trace constraint
equation (37) can be written as,

24ξ2ϕ̄2 þ g0
�
2

r
− f0

�
−

2

r2
þ 2g

r2
ðrf0 − 1Þ2

− 2gf00 −
3

2
α2h2 ¼ 0; ð48Þ

and

3p − ρ ¼ 2γh2; ð49Þ

respectively. The trace condition allows us to obtain
immediately the initial conditions at the center of the star
for the Weyl vector h, which are given by

h2ð0Þ ¼ 1

2γ
ð3pð0Þ − ρð0ÞÞ: ð50Þ

In the next sections, in order to obtain the numerical
solutions of the field equations, we use a set of dimension-
less parameters and variables for the geometrical and
physical quantities, which are defined as

p̄ ¼ p
ρc

; ρ̄ ¼ ρ

ρc
; m̄ ¼ ffiffiffiffiffi

ρc
p

m; η ¼ ffiffiffiffiffi
ρc

p
r;

γ̄ ¼ γ

ρc
; ᾱ ¼ αffiffiffiffiffi

ρc
p ; ξ̄ ¼ ξffiffiffiffiffi

ρc
p : ð51Þ

In the calculations we set ρc ¼ 2.45 × 1015 g=cm3.

IV. STELLAR MODELS IN WEYL
GEOMETRIC GRAVITY

In the present section we will consider several specific
stellar models in conformally invariant Weyl geometric
gravity. In particular, we will consider constant density
stars, stiff fluid stars, described by the Zeldovich equation
of state, photon stars, quark stars, and Bose-Einstein
condensate stars, respectively. In all cases the static spheri-
cally symmetric field equations of the Weyl geometric
gravity are integrated numerically, with the consistency
condition of the Weyl current fully satisfied.

A. Constant density stars

The first interior solution for a static fluid sphere in
general relativity was obtained by Schwarzschild [1], who
considered the simple case of a static, spherically symmetric
fluid sphere having a uniform density ρ. Even thoughmodels
of constant density stars are considered unphysical, since, for
example, they have a finite density, and a boundary, and an
infinite speed of sound, they are very useful theoretical tools
as a limiting case for the understanding of the structure of
compact objects. Moreover, they can also be used for an
approximate description of neutron stars. We consider now
constant density stars in Weyl geometric gravity, with the
matter density satisfying the condition

ρ ¼ ρ0 ¼ constant: ð52Þ

In this case, by using the condition of the constant density of
the star in the consistency condition Eq. (49), we obtain the
constraint,

h2 ¼ 1

2γ
ð3p − ρ0Þ: ð53Þ

Equation (53) determines the initial conditions at the
center of the star as h2ð0Þ ¼ ð1=2γÞð3pð0Þ − ρ0Þ. The mass
and pressure profiles of the constant density stars in Weyl
geometric gravity are represented, for different values of
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the coupling constants, in Fig. 1. For the numerical
solution we have considered pressures in the range
4.6 × 1012 g=cm3 and 1.2 × 1015 g=cm3, respectively.
The density inside the star is ρ0 ¼ 3.9 × 1015 g=cm3.
The pressure is a monotonically decreasing function

of the radial coordinate, and it vanishes for a given r ¼ R,
which allows to uniquely define a stellar radius, and a
stellar surface. The radius of the star depends significantly
on the coupling constants of the model, both larger and
smaller radii being allowed. The constant density star
becomes more massive in Weyl geometric gravity, as
compared to the general relativistic case. Since the pressure
is a decreasing function inside the star, and finally becomes
zero at the surface star, from Eq. (53) it follows that in order
to have positive values of h2 inside the star, we should have
3pc < ρ0, where pc is the central pressure, and γ̄ < 0,
respectively.

The variations of the temporal component of the Weyl
vector, and of the scalar field, are represented in Fig. 2.
Both h and ϕ̄ are increasing functions of η, and they reach
their maximum values on the surface of the star.
The mass-radius relation for constant density stars

in Weyl geometric gravity is represented in Fig. 3, for
different values of the model parameters. Similarly to the
Newtonian case, there is no limiting maximum mass for
constant density configurations. However, the existence of
more massive stellar structures in Weyl geometric gravity
are possible, with significant increases in the mass and
radius of the constant density star.

B. Stiff fluid stars

The stiff fluid (Zeldovich) causal equation of state plays
an important role in stellar astrophysics. It was used in [11],
together with Le Chatelier’s principle, to obtain the basic

FIG. 1. Variation of the interior mass (left panel), and pressure (right panel) profiles of constant density stars in Weyl geometric gravity
as a function of the radial distance from the center of the star η for three different values of the constants ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.4, ξ̄ ¼ 0.19 and
γ̄ ¼ −0.2 (dashed curve), ᾱ ¼ 0.0, ξ̄ ¼ 0.07 and γ̄ ¼ −0.2 (dotted curve), and ᾱ ¼ 0.2, ξ̄ ¼ 0.59 and γ̄ ¼ −0.1 (dot-dashed curve). The
solid curve represents the standard general relativistic mass and density profile for the constant density stars. The central pressure for all
cases is 1.2 × 1015 g=cm3.

FIG. 2. Variation of the scaled temporal component of Weyl vector field h (left panel) and the scalar field ϕ̄ (right panel) inside the
constant density star in Weyl geometric gravity as a function of the radial distance from the center of the star η for three different values
of the constants ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.4, ξ̄ ¼ 0.19 and γ̄ ¼ −0.2 (dashed curve), ᾱ ¼ 0.0, ξ̄ ¼ 0.07 and γ̄ ¼ −0.2 (dotted curve), and ᾱ ¼ 0.2,
ξ̄ ¼ 0.59 and γ̄ ¼ −0.1 (dot-dashed curve). The central pressure for all cases is 1.2 × 1015 g=cm3.
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astrophysical result that the maximum mass of a stable
neutron star cannot exceed 3.2M⊙. This extremal value of
the mass is valid even if the equation of state of the dense
matter is unknown in a limited range of densities. The
existence of an absolute maximum mass of a neutron star
provides a powerful method for observationally distin-
guishing neutron stars from black holes.
We investigate now stiff fluid stars in Weyl geometric

gravity, with the equation of state given by,

p ¼ ρ: ð54Þ

We can obtain the temporal component of the Weyl
vector inside the star using Eq. (49), and the stiff fluid
equation of state, which together give,

h2 ¼ 1

γ
ρ: ð55Þ

Hence, in order to satisfy the Weyl consistency condition
we must choose positive values for the constant model
parameter γ. The initial condition for the Weyl vector
component is h2ð0Þ ¼ ρc=γ. In our numerical investigations
the stop point in the integration is ρ ¼ 2.7 × 1014 g=cm3.
The range of the central densities in the numerical solution is
between 3.2 × 1014 g=cm3, and 1.1 × 1016 g=cm3. In this
case, the maximum mass of the standard general relativistic
stars is M ¼ 2M⊙, with radius R ¼ 11.28 km, and the
central density ρc ¼ 3.27 × 1015 g=cm3.
The variations of the mass and density profiles of the stiff

fluid stars in Weyl geometric gravity are represented, for
different values of the model parameters, in Fig. 4. The
density vanishes on the vacuum boundary of the star, which
allows us to define a unique radius of the star. The mass
profile indicates the possibility of the important increase in
the mass of then star, due to the presence of the Weyl
geometric effects.
The variations of the temporal component of the Weyl

vector, and of the scalar field inside the stiff fluid star are
depicted in Fig. 5. Both h and ϕ̄ reach their maximum
values at the center of the star, and they decrease rapidly
toward the surface of the star. The scalar field generally
tending toward a constant value near the vacuum boundary.
The mass-radius relation for stiff fluid stars in Weyl

geometric gravity is plotted, for various values of the model
parameters, in Fig. 6. Compact stellar configurations, with
maximum masses of the order of 3.5M⊙ are possible even
for central densities of the order of ρc ¼ 5 × 1015 g=cm3,
when the corresponding maximum mass of the general
relativistic star is only 2M⊙. Hence, Weyl geometric effects
can lead to a significant increase in the mass of the
equilibrium configurations of massive neutron stars.

FIG. 3. The mass-radius relation for constant density stars in
Weyl geometric gravity for three different values of the constants
ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.4, ξ̄ ¼ 0.19 and γ̄ ¼ −0.2 (dashed curve),
ᾱ ¼ 0.0, ξ̄ ¼ 0.07 and γ̄ ¼ −0.2 (dotted curve), and ᾱ ¼ 0.2,
ξ̄ ¼ 0.59 and γ̄ ¼ −0.1 (dot-dashed curve). The solid curve
represents the standard general relativistic mass-radius relation
for constant density stars.

FIG. 4. Variation of the interior mass (left panel) and density (right panel) profiles of stiff fluid stars in Weyl geometric gravity as a
function of the radial distance from the center of the star η for three different values of the constants ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.5, ξ̄ ¼ 0.05 and
γ̄ ¼ 0.76 (dashed curve), ᾱ ¼ 0.55, ξ̄ ¼ 0.59 and γ̄ ¼ 1.1 (dotted curve), and ᾱ ¼ 0.3, ξ̄ ¼ 0.19 and γ̄ ¼ 0.31 (dot-dashed curve). The
solid curve represents the standard general relativistic mass and density profile for stiff stars. For all cases the central density is
4.9 × 1015 g=cm3.
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Finally, in Table I we present a number of selected mass
and radii values for Weyl geometric stars, with central
densities of the order of 1015 g=cm3. The maximummasses
essentially depend on the numerical values of the model
parameters, leading, with an appropriate choice, to mass
values that can exceed the general relativistic limit
of 3.2M⊙.

C. Radiation fluid stars

The radiation fluid equation of state plays a major role in
astrophysics. Such an equation of state can describe the
dense core of neutron stars, assumed to consist of cold
degenerate (noninteracting) fermions [84–86]. Moreover,
self-gravitating high density photon stars, obeying the
radiation fluid equation of state, could also exist [87–90].

Stars made of a radiation fluid could possible exist even in
Newtonian gravity [91].
In the following we will investigate the properties of

radiation fluid stars in Weyl geometric gravity. For the
equation of state of the matter inside the star we adopt the
radiation fluid equation of state,

p ¼ 1

3
ρ: ð56Þ

This equation of state is the high density limit of the
isothermal spheres, obeying the linear barotropic equation
of state p ¼ γρ, with γ ¼ constant. It also follows from
the limiting condition TðmÞ ¼ 0, satisfied by the trace of the
matter energy-momentum tensor once the condition of the
positivity of trace is imposed.
From the consistency condition of the Weyl current,

using Eq. (49) with the radiation fluid equation of state, we
obtain for the temporal component of the Weyl vector and
for the coupling constant γ the following relation,

γh2 ¼ 0: ð57Þ

Hence, in the following, we set γ̄ ¼ 0, so that the Weyl
consistency condition is automatically satisfied. In this
case, we use the vector field equation to obtain its evolution

FIG. 5. Variation of the scaled temporal component of Weyl vector field h (left panel) and of the scalar field ϕ̄ (right panel) inside the
stiff fluid star in Weyl geometric gravity as a function of the radial distance from the center of the star η for three different values of the
constants ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.5, ξ̄ ¼ 0.05 and γ̄ ¼ 0.76 (dashed curve), ᾱ ¼ 0.55, ξ̄ ¼ 0.59 and γ̄ ¼ 1.1 (dotted curve), and ᾱ ¼ 0.3,
ξ̄ ¼ 0.19 and γ̄ ¼ 0.31 (dot-dashed curve). For all cases the central density is 4.9 × 1015 g=cm3.

FIG. 6. The mass-radius relation for stiff fluid stars in Weyl
geometric gravity for three different values of the constants ᾱ, ξ̄
and γ̄: ᾱ ¼ 0.5, ξ̄ ¼ 0.05 and γ̄ ¼ 0.76 (dashed curve), ᾱ ¼ 0.55,
ξ̄ ¼ 0.59 and γ̄ ¼ 1.1 (dotted curve), and ᾱ ¼ 0.3, ξ̄ ¼ 0.19 and
γ̄ ¼ 0.31 (dot-dashed curve). The solid curve represents the
standard general relativistic mass-radius relation for stiff stars.

TABLE I. The maximum masses and the corresponding radii
and central densities for the stiff fluid stars in Weyl geometric
gravity.

ᾱ 0.3 0.5 0.55
ξ̄ 0.19 0.05 0.59
γ̄ 0.31 0.76 1.1
Mmax=M⊙ 2.28 2.01 3.4
RðkmÞ 11.26 10.77 10.18
ρc × 10−15 ðg=cm3Þ 2.10 2.46 1.04
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of the Weyl vector inside the star. The initial condition
used in the numerical calculations to solve the evolution
equation of theWeyl vector are hð0Þ ¼ hc ¼ 0.89 and h0c ¼
−0.6 × 10−3. For simplicity, we also set ᾱ ¼ 0, and con-
sider the different values of ξ̄. The stop point in integration
is ρ ¼ 2.7 × 1014 g=cm3. The range of central density in
the numerical integration is between 3.0 × 1014 g=cm3 and
1.1 × 1016 g=cm3. For this set of initial values, the maxi-
mum mass of the standard general relativistic stars is
M ¼ 1.75M⊙, with radius R ¼ 10.94 km, corresponding
to a central density ρc ¼ 2.52 × 1015 g=cm3.
The variations inside the star of the mass and density

profiles is shown in Fig. 7. The Weyl geometric effects do
not have a significant influence on the density profile, as
compared to the general relativistic case. The density
monotonically decreases toward the vacuum boundary of
the star, thus allowing the definition of the radius of the star.
However, Weyl geometric effects can be seen on the mass

of the radiation fluid star, leading to a significant increase of
the total mass.
The variations of the Weyl vector and of the scalar field

are presented in Fig. 8. The Weyl vector reaches its
maximum value at the center of the star, and it decreases
rapidly toward the star’s surface. Its evolution is basically
independent on the numerical values of the parameter ξ̄. On
the other hand, the scalar field is an increasing function of
the radial coordinate, reaching its maximum value near the
surface of the star. The variation of the scalar field is
strongly influenced by the numerical values of ξ̄.
The mass-radius relation of the radiation fluid stars in

Weyl geometric gravity is presented in Fig. 9. Equilibrium
structures having maximum masses higher than in standard
general relativity can be achieved in Weyl geometric
gravity for stars obeying the radiation fluid equation of
state. The increase in mass is significant, if for general
relativistic stars the maximum mass is around 1.7M⊙,

FIG. 7. Variation of the interior mass (left panel) and density (right panel) profiles of the radiation fluid star in Weyl geometric gravity
as a function of the radial distance from the center of the star η for three different values of the constant ξ̄: ξ̄ ¼ 0.29 (dashed curve),
ξ̄ ¼ 0.49 (dotted curve), and ξ̄ ¼ 0.15 (dot-dashed curve). The solid curve represents the standard general relativistic mass and density
profile for radiation fluid stars. For all cases, the central density is ρc ¼ 4.9 × 1015 g=cm3.

FIG. 8. Variation of the scaled temporal component of Weyl vector field h (left panel) and of the scalar field ϕ̄ (right panel) inside
the radiation fluid star in Weyl geometric gravity as a function of the radial distance from the center of the star η for three different
values of the constant ξ̄: ξ̄ ¼ 0.29 (dashed curve), ξ̄ ¼ 0.49 (dotted curve), and ξ̄ ¼ 0.15 (dot-dashed curve). For all cases the central
density is ρc ¼ 4.9 × 1015 g=cm3.
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the maximum mass of a radiation fluid star can reach in
Weyl gravity values of the order of 2.5M⊙.
A selected set of mass and radius values of radiation fluid

stars in Weyl geometric gravity are presented in Table II.

D. Quark stars with MIT bag model equation of state

A hadron-quark phase transition, taking place in the
dense cores of the neutron star, is considered as a realistic
possibility for the formation of quark matter [86]. Moreover,
as shown by many theoretical studies, strange quark matter,
consisting of the u (up), d (down) and s (strange) quarks is
the most energetically favorable state of baryon matter [92].
The possibility of the existence of stars made of quarks
was initially proposed in [93,94], respectively, and further
developed from an astrophysical perspective in [95,96],
respectively. There are two possible ways for the formation
of strange matter. The first is the cosmological quark-hadron
phase transition taking place in the early Universe, while the
second is the conversion of neutron matter into strange
matter at ultrahigh densities in neutron stars, thus leading to
the formation of quark stars [86].
By assuming that the interactions of quarks and gluons are

small, the energy density ρ and the pressure p of a quark-
gluon plasma can be calculated by using finite temperature
quantum field theoretical methods. By neglecting quark
masses, the equation of state of the quark-gluon plasma is [97]

ρ ¼
�
1 −

15

4π
αs

�
8π2

15
T4 þ Nf

�
1 −

50

21π
αs

�
7π2

10
T4

þ
X
f

3

�
1 − 2

αs
π

��
π2T2 þ μ2f

2

�
μ2f
π2

þ B; ð58Þ

or, equivalently,

ρ ¼
X

i¼u;d;s

ρi þ B; ð59Þ

where αs is the strong interaction coupling constant, T is the
temperature, μf is the chemical potential, while B, the bag
constant, is the difference between the energy density of the
perturbative and nonperturbative QCD vacuum. The thermo-
dynamic parameters of the quark-gluon plasma are related by
the equation of state of the quark matter, given by

pþ B ¼
X

i¼u;d;s

pi; ð60Þ

or

3p ¼ ρ − 4B: ð61Þ
The entropy density s of the quark-gluon plasma is given

by s ¼ ð∂p=∂TÞμ. From a physical point of view, Eq. (61)
gives the equation of state of a system of massless particles,
in the presence of corrections originating in the QCD trace
anomaly, and the perturbative interactions. These correc-
tions are always negative. For example, for αs ¼ 0.5,
the energy density of the quark gluon plasma at a given
temperature is about two times smaller than the energy
density of the gas of massless particles [97].
In the following, we will investigate the astrophysical

properties of strange quark stars, described by the MIT bag
model equation of state (61) in the framework of Weyl
geometric gravity. In this case, by using the equation of
state (61) in the consistency condition (49), it turns out that
the function h2 ¼ −2B=γ is constant. Moreover, to have
positive values of h2, the coupling parameter γ must be
negative. In the following we set B ¼ 1.03 × 1015 g=cm3.
In standard general relativity, the maximummass of a quark
star is 2M⊙, with a radius of 10.92 km, corresponding to a
central density ρc ¼ 1.98 × 1015 g=cm3.
The variations of the interior mass and density profiles of

the quark stars are plotted in Fig. 10. The pressure exactly
vanishes on the vacuum boundary of the star, thus leading
to a unique radius of the quark star. The mass and the
density distributions strongly depend on the parameters of
the Weyl geometric gravity model, leading to the presence
of a large variety of internal structures of the stars.
The behavior of the scalar field inside the star is depicted

in Fig. 11. The scalar field is a monotonically decreasing
function of η, having its maximum value at the center of the
star. The variation of the field is significantly influenced

TABLE II. The maximum masses and the corresponding radii
and central densities for the radiation fluid stars in Weyl geo-
metric gravity.

ξ̄ 0.15 0.29 0.49
Mmax=M⊙ 1.80 1.97 2.48
RðkmÞ 11.04 11.35 12.28
ρc × 10−15 ðg=cm3Þ 2.37 1.98 1.19

FIG. 9. The mass-radius relation for radiation fluid stars in
Weyl geometric gravity, for three different values of the constant
ξ̄: ξ̄ ¼ 0.29 (dashed curve), ξ̄ ¼ 0.49 (dotted curve), and ξ̄ ¼ 0.15
(dot-dashed curve). The solid curve represents the standard
general relativistic mass-radius relation for radiation fluid stars.
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by the adopted range of model parameters ᾱ, ξ̄ and γ̄,
respectively.
The mass-radius relation for quark stars in the Weyl

geometric gravity theory is represented in Fig. 12. As one
can see from Fig. 12, the presence of the Weyl vector and of
the scalar field lead to significant increases of the maximum
of the equilibrium configurations of quark stars.
A selected sample of maximummasses of the quark stars

in the Weyl geometric gravity theory is shown, for different
values of the model parameters, in Table III.

E. Bose-Einstein condensate stars

When in a bosonic system the temperature drops below a
certain critical value, a phase transition does occur, with
the particles occupying the same quantum ground state.

The corresponding system of particles is called a Bose-
Einstein condensate (BEC). From a physical point of view,
a BEC corresponds to the presence of a sharp peak in the
phase space [98]. The critical temperature of the BEC
transition is given by Tcr ¼ ð2πℏ2=mkBÞn2=3, where m is
the mass of the particle in the condensate, ℏ is Planck’s
constant, kB is Boltzmann’s constant, and n is the number
density of the particles. The possibility of the existence of
Bose-Einstein condensation processes has also been inves-
tigated in nuclear physics. For example, at very high
densities matter exists in a form of a degenerate Fermi
gas of quarks. If the attractive interaction is enough strong,
at some critical temperature the fermions may condense
into the bosonic zero mode, forming a Bose-Einstein quark
condensate [98]. Hence, the possibility of the existence of
some forms of Bose-Einstein condensates in high density

FIG. 10. Variation of the interior mass (left panel) and density (right panel) profiles of MIT quark star in Weyl geometric gravity as a
function of the radial distance from the center of the star η for three different values of the constants ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.1, ξ̄ ¼ 0.15 and
γ̄ ¼ −0.06 (dashed curve), ᾱ ¼ 0.15, ξ̄ ¼ 0.39 and γ̄ ¼ −0.2 (dotted curve), and ᾱ ¼ 0.2, ξ̄ ¼ 0.98 and γ̄ ¼ −0.4 (dot-dashed curve).
The solid curve represents the standard general relativistic mass and density profile for MIT quark stars. For all cases the central density
is 4.9 × 1015 g=cm3.

FIG. 11. Variation of the scalar field ϕ̄ in Weyl geometric
gravity inside the MIT quark star as a function of the radial
distance from the center of the star η for three different values
of the constants ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.1, ξ̄ ¼ 0.15 and γ̄ ¼ −0.06
(dashed curve), ᾱ ¼ 0.15, ξ̄ ¼ 0.39 and γ̄ ¼ −0.2 (dotted curve),
and ᾱ ¼ 0.2, ξ̄ ¼ 0.98 and γ̄ ¼ −0.4 (dot-dashed curve). For all
cases the central density is 4.9 × 1015 g=cm3.

FIG. 12. The mass-radius relation for MIT quark stars in Weyl
geometric gravity for three different values of the constants ᾱ, ξ̄
and γ̄: ᾱ ¼ 0.1, ξ̄ ¼ 0.15 and γ̄ ¼ −0.06 (dashed curve),
ᾱ ¼ 0.15, ξ̄ ¼ 0.39 and γ̄ ¼ −0.2 (dotted curve), and ᾱ ¼ 0.2,
ξ̄ ¼ 0.98 and γ̄ ¼ −0.4 (dot-dashed curve). The solid curve
represents the standard general relativistic mass-radius relation
for MIT quark stars.
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neutron stars has a strong support from the results of
nuclear physics (see [86] for a detailed discussion of this
problem). The nonrelativistic theory of the Bose-Einstein
condensate stars is based on the hydrodynamic representa-
tion of the Gross-Pitaevskii equation [98]. The radius of the
BEC star, in which the neutron have formed Cooper pairs,
is given by R ¼ 6.61 × ða=1 fmÞ1=2 × ðm=2mnÞ−3=2 km,
where a is the scattering length, and mn is the neutron
mass [98]. For a ¼ 1 fm, the radius of the star is around
7 km. The mass of the star is obtained as M ¼ 1.84×
ðρc=1016 g=cm3Þ × ða=1 fmÞ3=2 × ðm=2mnÞ−9=2M⊙. For
a ¼ 1 fm, the mass of the star is of the order of
M ¼ 0.92M⊙. The equation of state of a Bose-Einstein
condensate is given by [98],

p ¼ kρ2; ð62Þ
where the constant k is given by k ¼ 0.1856 × 105 ×
ða=1 fmÞ × ðm=2mnÞ−3 cm5=g s2. For a discussion of the
general relativistic effects on the astrophysical parameters
of the BEC stars see [98]. For a Bose-Einstein condensate
the Weyl consistency condition, given by Eq. (49) can be
written as

h2 ¼ 1

2γ
ð3kρ − 1Þρ; ð63Þ

For positive values of γ, the expression in the parenthesis
in the right-hand side of the above equation should be
always greater or equal to zero. The initial value of h is
obtained as h2ð0Þ ¼ ð1=2γÞð3kρc − 1Þ. Hence, we set
the stop point in the numerical integration at ρ ¼ 1=3k.
In following we consider k̄ ¼ ρck ¼ 0.4, and thus the stop
point in the numerical integration is 2.04 × 1015 g=cm3.
The range of central density in the numerical solu-
tion is considered in the range 2.2×1015 g=cm3 and
6.74×1015 g=cm3, respectively. In this case the maximum
mass of the standard general relativistic BEC stars is
M ¼ 2M⊙, with radius R ¼ 11.17 km, with a central
density ρc ¼ 2.58 × 1015 g=cm3.
The mass and density profiles of the BEC stars in Weyl

geometric gravity are presented, for a selected sample of
model parameters, in Fig. 13. The mass profile depends
strongly on the model parameters, whose variation leads to
a large number of possible stellar structures. More impor-
tant differences do appear in the behavior of the matter
density. While in standard general relativity one can
uniquely define a zero density vacuum boundary, the
Weyl consistency condition leads to BEC stars having a
nonzero surface density, and a nonzero pressure.
The variations of the temporal component of the Weyl

vector and of the scalar field inside the star are represented
in Fig. 14. The Weyl vector reaches its maximum value
at the center of the star, decreases toward its surface, and
vanishes for a given value of η. The scalar field is a
monotonically decreasing function of η, having finite
values on the star’s surface.
The mass-radius relations for BEC stars in Weyl geo-

metric gravity are represented, for different values of
the model parameters, in Fig. 15. Weyl geometric effects
do allow for the existence of higher stellar masses for
BEC stars.

TABLE III. The maximum masses, and the corresponding radii
and central densities for the MIT bag model quark stars in Weyl
geometric gravity.

ᾱ 0.15 0.10 0.20
ξ̄ 0.39 0.15 0.98
γ̄ −0.20 −0.06 −0.40
Mmax=M⊙ 2.73 3.61 2.09
RðkmÞ 8.55 12.03 6.38
ρc × 10−15 ðg=cm3Þ 10.2 12.6 7.69

FIG. 13. Variation of the interior mass (left panel) and density (right panel) profiles of Bose-Einstein condensate stars in Weyl
geometric gravity as a function of the radial distance from the center of the star η for three different values of the constants ᾱ, ξ̄ and γ̄:
ᾱ ¼ 0.074, ξ̄ ¼ 0.19 and γ̄ ¼ 0.03 (dashed curve), ᾱ ¼ 0.07, ξ̄ ¼ 0.05 and γ̄ ¼ 0.06 (dotted curve), and ᾱ ¼ 0.12, ξ̄ ¼ 0.34 and
γ̄ ¼ 0.10 (dot-dashed curve). The solid curve represents the standard general relativistic mass and density profile for Bose-Einstein
condensate stars. For all cases the central density is ρc ¼ 3.67 × 1015 g=cm3.
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Finally, some specific astrophysical parameters of BEC
stars in Weyl geometric gravity are presented, for different
values of the model parameters, in Table IV.

V. DISCUSSIONS AND FINAL REMARKS

The study and the analysis of astrophysical properties of
compact objects are of fundamental importance for our
understanding of gravitational theories, since these stellar
type structures provide a very good opportunity for the
investigation of the properties of dense matter in extreme
conditions, and for the study of the strong gravity regime.
Moreover, a self-consistent modified or extended theory of
gravity must also have a significant effect on the properties
of stellar type objects. Thus, a modified theory of gravity
must have important effects not only on galactic and
cosmological scales, but also on the properties of stable
compact stellar objects, such as black holes, neutron stars,
or white dwarfs.
A large number of accurate observations on the masses

and radii obtained from massive pulsars, the gravitational
wave event GW170817, or PSR J0030þ 0451 mass-
radius relation from Neutron Star Interior Composition
Explorer (NICER) data have dramatically changed our
understanding of the mass distribution of neutron stars,
by challenging the paradigm according to which the mass
of the neutron stars peaks at around the Chandrasekhar
limit of 1.4M⊙ [99]. For example, the mass of the pulsar
PSR J0952-0607, the fastest known rotating neutron
star in the disk of the Milky Way, has been determined
recently, giving a maximal mass of the order of 2.52M⊙
(M ¼ 2.35� 0.17M⊙). The mass value of PSR J0952-
0607 definitely represents a challenge for our under-
standing of the equation of state of the dense-matter.
One possible explanation for this, and other similarly
high, mass values may be related to the existence of some
forms of exotic matter in the interior of these stars.
However, an equally reasonable explanation for the mass
distribution of massive neutron stars could be related to
the presence of modified gravity effects, which must show
up in the strong gravity limits of the theory.

FIG. 14. Variation of the scaled temporal component of Weyl vector field h (left panel) and of the scalar field ϕ̄ (right panel) in Weyl
geometric gravity inside the Bose-Einstein condensate stars as a function of the radial distance from the center of the star η for three
different values of the constants ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.074, ξ̄ ¼ 0.19 and γ̄ ¼ 0.03 (dashed curve), ᾱ ¼ 0.07, ξ̄ ¼ 0.05 and γ̄ ¼ 0.06 (dotted
curve), and ᾱ ¼ 0.12, ξ̄ ¼ 0.34 and γ̄ ¼ 0.10 (dot-dashed curve). For all cases the central density is ρc ¼ 3.67 × 1015 g=cm3.

FIG. 15. The mass-radius relation for Bose-Einstein condensate
stars in Weyl geometric gravity for three different values of the
constants ᾱ, ξ̄ and γ̄: ᾱ ¼ 0.074, ξ̄ ¼ 0.19 and γ̄ ¼ 0.03 (dashed
curve), ᾱ ¼ 0.07, ξ̄ ¼ 0.05 and γ̄ ¼ 0.06 (dotted curve), and
ᾱ ¼ 0.12, ξ̄ ¼ 0.34 and γ̄ ¼ 0.10 (dot-dashed curve). The solid
curve represents the standard general relativistic mass-radius
relation for Bose-Einstein condensate stars.

TABLE IV. The maximum masses and the corresponding radii
and central densities for the Bose-Einstein condensate stars in
Weyl geometric gravity.

ᾱ 0.07 0.074 0.12
ξ̄ 0.05 0.19 0.34
γ̄ 0.06 0.03 0.10
Mmax=M⊙ 2.12 1.70 2.47
RðkmÞ 11.36 9.44 10.18
ρc × 10−15 ðg=cm3Þ 5.12 4.35 4.17

ZAHRA HAGHANI and TIBERIU HARKO PHYS. REV. D 107, 064068 (2023)

064068-16



In the present paper we have investigated the implica-
tions of the conformally invariant theories on the stellar
structure. We have adopted the simplest theoretical model,
initially proposed by Weyl [33,34], which has been
reformulated as a scalar-vector-tensor theory in [71–74].
This reformulation has deep physical implications, also
allowing to establish a close relation between gravity and
elementary particle physics, via the Stueckelberg mecha-
nism. We have also added an effective matter term to
the gravitational action, assumed to be a function of the
standard matter Lagrangian of the ordinary matter, and of
the square of the Weyl vector. In order to implement the
conformal invariance of the gravitational field equations,
the trace condition has also been imposed, which relates the
trace of the effective energy-momentum tensor with the
covariant divergence of the Weyl current. For the expres-
sion of the Lagrangian we have adopted the simplest
possible form, by assuming that L is the sum of the
ordinary matter Lagrangian Lm, and the square of the Weyl
vector, ωμω

μ ¼ ω2. Of course, other functional forms of the
effective Lagrangian are possible, and some of these forms
may be obtained by using some input from the elementary
particle physics.
After obtaining the static spherically symmetric field

equations, we have considered several classes of stellar
models, corresponding to specific choices of the equation
of state of the dense matter. We have investigated in detail,
by numerically integrating the field equations, constant
density stars, stiff fluid, radiation fluid, quark and BEC
stars, respectively, by fully taking into account in each case
the trace condition. We have thus constructed classes of
astrophysical objects, showing significant differences with
respect to their general relativistic counterparts. The main
difference is related to the masses of the Weyl geometric
gravity objects, which are significantly higher as compared
to the corresponding general relativistic objects. For the
stiff fluid, radiation fluid, quark and BEC equations of state
masses of the order of 2.5–2.6M⊙ can be easily achieved,
for certain specific combinations of model parameters.
Hence, Weyl geometric gravity can described (at least)
the masses of the pulsars B1957þ 20 (the Black Widow
pulsar) (M ¼ 1.6–2.4M⊙) [100], PSR J2215þ5135 (M¼
2.27þ0.17

−0.15M⊙) [101], PSR J1614-2230 (M¼2.01�0.04M⊙)
[102], PSR J0952-0607 (M ¼ 2.35� 0.17M⊙) [103],
and of the secondary object in the GW190814 event
(M ¼ 2.50–2.67M⊙) [104], respectively. The effects of
the Weyl geometric gravity theory on the global properties
are that the stars become more massive, and with larger radii,
thus leading to larger surface redshifts, and compactness.
Of course, the properties of stellar objects in Weyl

geometric gravity essentially depend on the equation of
state of dense matter. Testing modified theories of gravity
requires a prior knowledge of the equation of state of
the dense matter, and thus, constraints independent of the
gravitational theories could play a crucial role in the

understanding of the properties of the neutron stars.
In [105] it was proposed to use the function we propose
the function LjεðϵHÞÞ ¼ PH½ðεE − εHÞ=ðεEεHÞ�, the indices
E and H refer to the exotic and hadronic phases, respec-
tively, as a diagnostic tool for constraining the equation of
state of dense matter in a first order phase transition. The
existence of a family of latent-heat maxima to constrain the
equation of state of neutron matter, is relevant even in
modified theories of gravity [105]. Moreover, latent heat is
a significant characteristic of the equation of state in cold
QCD. When deriving the equation of state of matter one
uses the standard general relativistic formalism for the
interpretation of the astrophysical data, and thus general
relativity is essentially included in the equation of state.
Hence, such the use of such equations of state may be
problematic in modified gravity [106]. For the astrophysi-
cal applications of modified gravity it is important to
provide equations of state coming from nuclear and particle
physics, which are independent of general relativity. Such a
family of equations of state was provided in [106], and
they can be used to constrain modified gravity theories.
These equations of state, rely only on first principle
approaches, including causality, thermodynamic stability,
and perturbation theory.
The effects of modified gravity on the equation of state

of dense matter have been considered extensively in the
physical literature. In [107], the thermodynamic properties
of an ideal quantum gas in a modified gravity theory
with Lagrangian Lg¼ðR−2ΛÞ=16πGþαR2þβRμνRμνþ
γRμντσRμντσ , with α, β, γ constants, were considered. The
dependence of the Fermi energy and of the chemical
potential on the curvature was also obtained. The surface
of a star in Eddington-inspired Born-Infeld modified
gravity was studied in [108], by assuming a polytropic
equation of state. In order to avoid the presence of
singularities at the surface of the star, the gravitational
backreaction on the particles is considered, which leads
to an extended polytropic equation of state of the form
p ¼ Kργ þ ϵρ3=2, with K, Γ, ϵ constants. Due to the
increase in pressure, the surface of the star is no longer
singular. The role of nonmetricity in quantum fields was
investigated in [109] by considering the 4-fermion contact
interactions. The scale of nonmetricity was constrained
to be greater than 1 TeV, a result that follows from the
analysis of the Bhabha scattering. The analysis was carried
out by considering modified theories of gravity in the
metric-affine approach.
It was pointed out in [110] that the Tolman-

Oppenheimer-Volkoff equations for neutron stars are usu-
ally solved by equations of states that are obtained in the
Minkowski spacetime. On the other hand, the equations
of state that are obtained in a curved spacetime also include
the effects of the gravitational time dilation, which is a
consequence of the radial variation of the interior metric in
the star. This effect leads to much higher mass limits for
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neutron stars. For example, in the σ − ω model of nuclear
matter, the maximum mass increases from 1.61M⊙ to
2.24M⊙, respectively. The effects of the time dilation on
the equation of state inside slowly rotating neutron stars
was investigated in [111], where it was shown that the
equation of state also depends on the frame dragging effect.
However, while the time dilation effect leads to a signifi-
cant increase of the mass of the star, the frame dragging has
a negligible influence on the maximum mass of the star. On
the other hand, the angular momentum of the star increases
in the presence of an equation of state that takes into
account the curvature of the space-time.
The equations of state of a Fermi gas were derived, by

maximizing the Fermi-Dirac entropy, by considering the
Palatini fðRÞ gravity, in the relativistic and nonrelativistic
limits in [112]. As a main result of this investigation it was
found that to obtain a consistent description of the micro-
physical properties one must use the specific theory of
gravity under consideration.
When numerically integrating the gravitational field

equations in static spherical symmetry in fðRÞ type
modified theories of gravity, models containing the R2

term may lead to some unphysical features of the solutions.
For example, in the fðRÞ ¼ Rþ αR2 model, which allows
the presence of heavier stars than in general relativity, it
was found that there are regions where the enclosed
mass decreases with the radius [113]. Similar results were
obtained in [114] for the same model, where it was shown
that the stellar mass bounded by the surface of the star
decreases when the value of α increases, and that the scalar
curvature does not tend to zero at the surface of the star, but
it increases exponentially. The problem of the matching in
the fðRÞ gravity theories was considered in [115], where it
was shown that the calculation of the mass of the neutron
star requires a careful matching between interior and
exterior solutions, firstly at the star’s edge, and secondly
at large radii, where the Newtonian potential is used to
identify the mass of the neutron star. A possible solution to
this problem may be scalarization [116–118], a process
similar to a phase transition, occurring after some physical
parameters characterizing a compact object, like, for
example, the compactness or spin, exceed a critical value.
Hence, as a results of scalarization, massive compact
objects are endowed with a scalar field configuration.
For a detailed discussion of the scalarization see the
recent review [119]. Scalarization may also provide an
explanation for the fact new fundamental fields have not
been detected by the present observations. However, future
high precision astrophysical observations may allow their
detection.

In order to obtain a full consistency check of the interior
solutions obtained in the present work it is necessary to
match them with exterior solutions of the field equations.
The vacuum field equations of the Weyl geometric gravity
have been obtained numerically in [79] for several con-
figurations of the Weyl vector. A physically realistic
solution would require a smooth matching between the
interior and exterior solutions. The requirement for the
exterior solution of passing the Solar System tests would
then impose strong constraints not only on the vacuum
solution, but also on the parameters of the interior stel-
lar model.
In Weyl geometric gravity, the geometric effects and

the contributions of the effective scalar and vector fields
dominate, and their contribution to the total matter-energy
balance is the main cause of the significant increase of the
mass. Many stellar mass black hole candidates, have also
been observed, having masses between 3.8 and 6 Solar
masses. Seven of them have masses bigger than 5M⊙. On
the other hand, the size of the stellar mass black hole
population in our galaxy is estimated to be of the order of
100 millions [120]. Since in Weyl geometric gravity theory
stellar masses of the order of 5 − 6M⊙ are also possible,
some, if not all, stellar black hole candidates may be in fact
Weyl geometric stars.
One possibility to test the possible existence of Weyl

geometric stars is through the study of the astrophysical
properties of the thin accretion disks existing around many
neutron stars and black holes. The radiation properties of
the accretion disks around Weyl geometric stars, and black
holes, and general relativistic black holes and stars may
be different, since the emission from the disk takes place in
the strong gravity regime. Hence, the emissivity properties
of the stars, and of their accretion disk, may provide the
crucial signature to differentiate Weyl geometric gravity
stars from general relativistic stars, and black holes.
Weyl geometric gravity compact objects posses a very

complicated internal structure, which is associated to an
equally complicated stellar dynamics. We will consider in a
future publication several astrophysical signatures of Weyl
geometric gravity stars, which would allow to differentiate
between this type of stars, and their counterparts predicted
by general relativity, or other modified gravity theories.
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