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Radiation-reaction forces originating from the emission of gravitational waves (GWs) bring binaries to
close proximity and are, thus, responsible for virtually all the mergers that we can observe in GW
interferometers. We show that there exists a supplementary radiation-reaction force between two binaries
interacting gravitationally, changing, in particular, the decay rate of the semimajor axis under the emission
of GWs. This new binary-binary force is in some settings of the same order of magnitude as the usual
2.5PN force for an isolated binary and presents some striking features such as a dependence on retarded
time even in the post-Newtonian regime where all velocities are arbitrarily small. Using effective field
theory tools, we provide the expression of the force in generic configurations and show that it interpolates
between several intuitive results in different limits. In particular, our formula generalizes the standard post-
Newtonian estimates for radiation-reaction forces in N-body systems which are valid only in the limit
where the GW wavelength goes to infinity.
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I. INTRODUCTION

The quadrupole formula, derived by Einstein more
than one century ago, is probably one of the most useful
equations for gravitational-wave (GW) physics, since it
models the lowest-order GW radiation for any moving
mass distribution. In a binary system, the loss of energy by
emission of quadrupolar gravitational waves leads to a
progressive reduction of its eccentricity and semimajor axis
following the Peters-Mathews formula [1]; the force
responsible for such a loss of energy has been derived
by Burke and Thorne [2,3]. It is thought that all of the
binary black hole (BBH) and neutron stars (NS) mergers
we see today in LIGO/Virgo interferometers originate from
widely separated binaries brought to proximity via quad-
rupolar emission of gravitational waves during astronomi-
cal times [4].
In this respect, it is crucial to correctly account for any

modification to binary dynamics, as it could influence
the expected merger rate, the parameter distribution (e.g.,
eccentricity), or the waveform of binaries. Perfectly iso-
lated two-body systems do not exist in nature, and
environmental effects such as the presence of dark matter
[5–9], of an accretion disk [10–13], or of other celestial
bodies in the vicinity [14–22] can affect a binary system.
This last possibility, in particular, can considerably modify
the dynamics of a two-body system, e.g., by inducing
Kozai-Lidov oscillations [23–25], resonances [26–28], or
Doppler shifts in the waveform [29–38]. From astronomical

observations, many-body systems are very common in
the Universe [39–41], so that they could constitute a
non-negligible fraction of the mergers observed in GW
observatories [42,43].
All of the many-body effects mentioned above concern

the conservative dynamics of N-body systems, i.e., the
modifications to the binary dynamics that can be computed
with a (conserved) Hamiltonian. However, very little is
known about the dissipative dynamics of many-body
systems, i.e., the way in which they emit gravitational
waves. This lack of understanding is quite surprising given
that it is ultimately this dissipative dynamics which brings
the binaries to close proximity and make them merge.
While post-Newtonian potentials are known to 2.5PN in
N-body systems [44–47], it has also been shown that the
standard quadrupole formula can give incorrect results in
three-body systems if one is not careful about the definition
of the center of mass [48]. This breakdown of the standard
post-Newtonian formulas is linked to the assumption
that all bodies lie within their near zone, a sphere of radius
of the GW wavelength positioned on the center of mass
of the system. Indeed, while in a two-body system this
assumption is always true, in a many-body system one can
easily violate it by placing one body very far from the
center of mass of the system. In this case, no generic
description of the dissipative dynamics in these systems has
ever been derived.
In this article, we will focus on a particular type of many-

body system where this issue is particularly exacerbated,
consisting in two binaries orbiting each other in a hierar-
chical configuration (see Fig. 1). In our Galaxy, this setting*adrien.kuntz@sns.it
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is the most common example of quadruple star systems,
and their occurrence is not much lower than of triple
systems [41], while double-binary systems of BHs have
already been shown to possibly constitute a relevant
fraction of LIGO/Virgo detections [49]. Furthermore, in
globular clusters, hundreds to thousands of BBHs are
packed in a zone smaller than 1 Pc [50], which means that
any binary system will be surrounded by a cloud of BBHs
at relatively short distances.
By using methods borrowed from the effective field

theory (EFT) approach to the two-body problem [51–54],
we will show that a particular kind of quadrupolar inter-
action arises between these two binaries. This new force—
which we will call the binary-binary radiation-reaction
force—can be associated to a common emission of gravi-
tational waves by the two binaries; it is similar in many

aspects to the Burke-Thorne formula which we mentioned
before, with some fundamental differences that we will
highlight in this article. One can have a physical intuition
on the origin of this new force by looking at Fig. 1: While
the standard Burke-Thorne radiation-reaction force ema-
nates from the emission of quadrupolar gravitational waves
by an isolated binary, the new effect discussed in this article
stems from a binary-binary transfer of gravitons.
Let us mention here as a preview two of the most striking

features of the binary-binary force. First, this new force can
be, in principle, of the same order of magnitude as the usual
Burke-Thorne effect responsible for the merging of bina-
ries, which makes it very relevant for GW astronomy. In
extreme cases, the modification is so strong that the whole
system not longer emits the lowest-order quadrupolar
waves, as we will show in Sec. IV B 2. In practice, though,
the binary-binary force probably requires the two binaries
to be in resonance in order to be effective as discussed in
Sec. IV C.
The second remarkable characteristic of the binary-

binary force is that, even in the post-Newtonian regime
where all velocities are arbitrarily small, the force features
a dependence on retarded time so that its value at a time t
cannot be expressed only with values of the system
parameters at the same time. The physical origin of this
effect is quite trivial, since it is related to wave propagation
in flat spacetime, contrary to the tail effect already present
in isolated two-body systems [55–58], where the curvature
of spacetime scatters wave packets. Nonetheless, conven-
tional treatments of post-Newtonian many-body systems as
in Refs. [44–46] were missing this feature of the binary-
binary force, since they were restricted to a particular limit
where the GW wavelength goes to infinity, which we will
discuss in Sec. IV B 2. In a generic setting, the force
inherently mixes different post-Newtonian orders, so that
the naive limit c → ∞ is not under perturbative control.
Let us now present the organization of this article. In

Sec. II, we will introduce our notations for the double
binary considered, and we will comment on some generic
features of the GWemission in N-body systems. In Sec. III,
we will introduce the tools which we will use to derive the
effective action ruling out the dissipative dynamics of the
system and apply them to the well-known case of a binary
system in order to recover the Burke-Thorne formula. We
will then apply this formalism in Sec. IV in order to derive
the radiation-reaction force stemming from a graviton
exchange between the two binaries, which is the main
result of this article. The reader interested only in the
expression of the binary-binary force can jump directly to
Eq. (24) and the subsequent discussion. We will show that
we recover standard results in several different limits and
finally comment on the effect of the new force on long
timescales. We will use the ð−þþþÞ metric convention,
choose units in which c ¼ 1, and denote Newton’s
constant by G.

FIG. 1. Illustration of the physical effect which we are going to
study in this article. A binary in isolation emits quadrupolar
gravitational waves at lowest order; when a second binary system
is in the vicinity, a new interaction between the two quadrupoles
of the binaries builds up, thus modifying gravitational-wave
emission.
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II. GENERIC FEATURES OF THE DISSIPATIVE
DYNAMICS IN AN N-BODY SYSTEM

A. Action and parameters

We consider a system of four pointlike particles inter-
acting through gravity in general relativity, representing
BHs or NSs (see Fig. 1). We place ourselves in the
physically relevant situation where the objects are organ-
ized into two well-separated binaries, which we call the
hierarchical assumption; our choice of indices N ¼
1A; 1B; 2A; 2B for the point particles reflects this particular
setting. We call the two binary orbits the inner orbits, while
the much slower motion of the two binaries as they orbit
each other is referred to as the outer orbit. The spatial
positions of the point particles are denoted by yN and their
spatial velocities by vN ; the four positional variables can be
split into two center-of-mass positions and two relative
coordinates as follows:

Y1 ¼
m1Ay1A þm1By1B

m1A þm1B
;

Y2 ¼
m2Ay2A þm2By2B

m2A þm2B
;

r1 ¼ y1A − y1B;

r2 ¼ y2A − y2B;

R ¼ Y1 − Y2: ð1Þ

The Newtonian definition of the center of mass used in
Eq. (1) will be sufficient for our present purposes.
Velocities are similarly defined, e.g., v1 ¼ v1A − v1B. We
will take the parameters of the two binaries to be similar
so that we will use the order-of-magnitude estimates r1 ∼
r2 ∼ r and v1 ∼ v2 ∼ v throughout the article. The wave-
length of the GW radiation emitted by any binary is, thus,
λ ∼ r=v. The complete action governing the dynamics of
the system is

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R ð2Þ

−
X
N

mN

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνv

μ
Nv

ν
N

q
; ð3Þ

where the first term is the usual Einstein-Hilbert action built
out of the Ricci scalar R of the metric gμν and the second is
the action for the point particles labeled with index N and
with four-velocity vμN ¼ ð1; vNÞ, the metric being evaluated
at the point-particle positions. From this action, we want to
integrate out the gravitational field in order to obtain a
Lagrangian depending on the positions of the point
particles only, from which it will be easy to derive the
dynamics of the system; this can be done using the path-
integral formalism known as nonrelativistic general rela-
tivity (NRGR) [51–54]. While referring the reader to these

references for further details, we will just state here that the
path integral for an isolated binary is usually done in two
steps, first by integrating out potential gravitons on the
length scale of the binary r and then radiative ones on the
length scale of GW radiation λ ∼ r=v. Using a multipole
expansion of the gravitational field around the center of
mass of any binary, the first step reduces the matter action at
lowest nontrivial order to

−
X
N

mN

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνv

μ
Nv

ν
N

q

→ −
1

2

Z
dtQij

1 R0i0j þ ð1 ↔ 2Þ; ð4Þ

where Rμνρσ is the Riemann tensor evaluated at the center of

mass of the binary, Qij
1 is the quadrupole moment of the

first binary,

Qij
1 ¼ μ1

�
ri1r

j
1 −

1

3
r21δ

ij

�
; ð5Þ

andm1 ¼ m1A þm1B, μ1 ¼ m1Am1B=m1. Similar formulas
hold true for ð1 ↔ 2Þ. Note that in Eq. (4) we have neglected
the monopolar and dipolar couplings of the worldline to the
gravitational field. This is because it turns out that, to obtain
the dissipative dynamics of binary systems in which we
are ultimately interested, one needs only the coupling of
gravitons to a time-dependent quantity [54]. Thus, monop-
olar and dipolar couplings of a binary system to gravity do
not contribute to the dissipative dynamics, since they
involve, respectively, the mass and angular momentum of
the binary.1 Note, finally, that in Eq. (4) we have integrated
out potential gravitons at the level of each inner binary only;
there remain potential modes contributing to the energy of
the system on the scale of the outer binary R—see the next
section for a more detailed discussion on this point.
We split the metric between a flat background and a

perturbation, gμν ¼ ημν þ hμν, and expand the action (2)–(4)
in powers of velocities and of the gravitational field. The
expansion of the Einstein-Hilbert action to quadratic order
will define the propagator mentioned in Sec. III A, while the
quadrupolar couplings (4)will define thevertex in Sec. III B.
However, before moving on to the actual computation of the
radiation-reaction force, let us make some comments on the
qualitative differences of dissipative effects in an N-body
system with respect to the case of an isolated binary.

B. Breakdown of the post-Newtonian method

In this section, we will qualitatively describe the issues
that one encounter when one wants to describe GW

1Actually, in our four-body system, the angular momentum of
any binary could vary because of many-body effects. However,
this happens on a very long timescale compared to the time of
variation of the quadrupole, so we will neglect their contribution
to the dissipative dynamics.
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radiation in a system with N pointlike masses when N > 2
(another, related, viewpoint on the same problem can be
found in Ref. [48]). Let us begin by reviewing the case of a
two-body system and the assumptions at the heart of post-
Newtonian expansions which allow one to perturbatively
solve for the dynamics of the system. The key point is that
only two well-separated length scales appear in the two-
body problem: the typical size of the objects (say, L) and
their relative separation r. On top of this, the dynamics
depends on only one small parameter v2 ∼Gm=r, where m
is a typical mass of the objects. This allows one to build a
tower of EFTs by integrating out one length scale at a time,
from the shortest to the longest [53]. Thus, beginningwith an
extended object as a neutron star or a black hole, one “zooms
out” from it to represent it as a point particle; one next
describes the potential gravitational modes on a length scale
r responsible for the conservative dynamics; and, finally,
one zooms out once more to describe the whole binary
system as a point particle endowed with multipole moments
coupled to the radiation field modes varying on a length
scale λ ∼ r=v, responsible for the loss of energy of the
system. We will recall in Sec. III C how this last step can be
used to compute the Burke-Thorne radiation-reaction force
acting on the binary.
Let us now move on to the kind of four-body systems

which we described in Sec. II A. We stress that most of the
features which we will describe here are generic to the
N-body problem as long as N > 2 and are not particularly
tied to our choice of system. Taking the parameters of the
two binaries to be similar, one sees from Sec. II A that the
system can be described using only one supplementary
length scale: the separation between the two binaries,
which we denote as R. One can build several new small
parameters out of this length scale, e.g., ε ∼ r=R (para-
metrizing our hierarchical assumption) or V2 ∼Gðm1 þ
m2Þ=R (parametrizing post-Newtonian effects on the outer
orbit). The presence of new small parameters can be used to
introduce additional expansions in order to describe the
system in an analytic way, such as in Refs. [21,22].
One interesting question that one can ask at this point is:

Are all physical length scales of the system well separated
as in the case of a two-body problem, so that one can build
a new tower of EFTs similar to the previous one? The
answer turns out to be negative, because two of these length
scales do not feature any hierarchy: These are the wave-
length of the radiation emitted by any binary λ ∼ r=v and
the separation R.2 At this point, one can envision three
possibilities (see Fig. 2).

(i) λ ≫ R.—This means that the near zone (as defined
in the introduction) encompasses all objects in the
system or, in other words, gravitational waves are
emitted in a zone larger than the size of the whole
system. In this case, standard post-Newtonian tools
can apply, and one can evaluate the energy flux by
computing the usual quadrupole formula for an
N-body system [44–46] using any convenient def-
inition of the center of mass of the system to define
multipole moments.

(ii) λ ≪ R.—In this case, one can represent the system
by two binaries emitting GWs on a small zone
centered around each of them. These GWs then
propagate in flat space and are scattered by the
other binary. Thus, one can cleanly separate
the emission process (described by a two-body
system in isolation) from the scattering process
(scattering of GWs by binaries are described in,
e.g., Refs. [59–62]).

(iii) λ ∼ R.—To our knowledge, there is currently no
description of the emission of GWs in this case.

FIG. 2. Illustration of the three different limits discussed in
Sec. II B. Case (1): The GW wavelength λ is bigger than the
binary-binary separation R. Case (2): λ is smaller than R. Case
(3): λ is of the same order of magnitude as R.

2Note that there are also, in principle, GWs emitted by the
outer binary motion, of wavelength Λ ∼ R=V. This scale is much
higher than any other length scale of the system, and we will send
it to infinity in this article (i.e., we do not consider the
gravitational waves emitted by the outer binary, which are of
smaller amplitude than the GWs of inner binaries).
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Some of the tools used in the two-body problem do
not apply any more, while others do. For example,
one cannot integrate out first all potential gravita-
tional modes and then radiative ones, since potential
modes of the outer binary have a momentum similar
to radiation modes of the inner binary. This is
responsible for the mixing between conservative
and dissipative dynamics which we will describe
in Sec. IV.

In cases (ii) and (iii), one should also be careful about
retardation effects. Indeed, in the standard post-Newtonian
procedure, when deriving the Lagrangian of the system,
one can systematically treat retardation effects as small
perturbations, because, for any quantity of interest fðtÞ
evolving on the timescale of the binary λ, one can write
fðt − rÞ ≃ fðtÞ − r∂tf þ � � �, and the series converges since
r∂t ∼ r=λ ≪ 1. On the other hand, for R > λ one cannot
expand fðt − RÞ as a series at time t, and one is obliged to
keep any dependence on retarded time. Indeed, the supple-
mentary radiation-reaction force which we will derive in
Sec. IV will contain a dependence on t − R.
This discussion seems quite abstract for the moment but

is, in fact, very relevant to astrophysics. A 50M⊙ equal-
mass BBH able to merge in a Hubble time has an initial
semimajor axis of approximately 0.2 A.U., which corre-
sponds to a GW wavelength λ ∼ 120 A:U:; while, if we
also take into account the Kozai-Lidov mechanism in
globular clusters, binaries can merge even if their semi-
major axis is as high as 10 A.U. [63,64], which corresponds
to λ ∼ 0.2 Pc. On the other hand, the number density of
binary stars in globular clusters can be of the order of
104=Pc3 or even more [65,66]. For instance, the globular
cluster M22 has been suggested to host a population of
5–100 BHs in a radius of approximately 1 Pc [67], while
numerical simulations indicate that hundreds to thousands
of BBHs can live in these crowded environments [50]. It,
thus, seems reasonable to expect that in globular clusters or
galactic nuclei one or several other BBHs or BNSs lie
within a few radiative wavelengths of a binary system,
although a detailed study of the double-binary population is
beyond the scope of this work.
In the rest of this article, wewill study a particular type of

radiative force in this four-body system and check that our
physical intuition is recovered in the limits (i) and (ii). We
will still use relevant tools pertaining to the two-body
problem, and, in particular, we will model each binary
system as a point particle endowed with multipole moments
coupled to the gravitational field as already mentioned in
Sec. II A. This is a valid procedure, since the size of each
binary system is still much smaller than both radiative
length scales and than the size of the outer binary, so that
one can effectively zoom out from each binary. This kind of
treatment has already been leveraged in Refs. [21,22]
concerning the three-body problem—however, only in
the conservative sector of the dynamics. Finally, note that

the new force which we will describe here will be only part
of the numerous new many-body interactions in the
dissipative sector of an N-body problem—interactions
which have not been yet described in full generality in
the literature due to this breakdown of the standard post-
Newtonian tools mentioned above. However, it be seen as a
maximal deviation from a two-body problem, since we will
show that its amplitude is a priori of the same size as the
standard (Burke-Thorne) radiation-reaction force for an
isolated two-body system. A full formalism systematically
describing radiation-reaction effects in the three- and four-
body problems is under preparation by the author.

III. AN EFT DERIVATION OF THE
BURKE-THORNE

RADIATION-REACTION FORCE

In this section, we will review how one can compute the
well-known dissipative force acting on a binary system
originating from the emission of gravitational waves at
lowest order. In the case of the two-body problem, the
equations governing radiation-reaction decay can easily be
found by computing the flow of energy and angular
momentum carried by GWs at infinity and using a balance
equation. Since ultimately a two-body system is described
by two variables (semimajor axis and eccentricity), one can
use the equations for the loss of energy and angular
momentum to solve for the time evolution of these two
variables. However, this property does not extend to
N-body systems with N > 2. Said differently, the total
flow of energy and angular momentum does not provide
enough equations to solve for the time evolution of all the
planetary elements of the system. We, thus, need to use a
formalism allowing one to compute directly the radiation-
reaction force acting on each object rather than evaluating
fluxes at infinity. This is provided, e.g., by the Schwinger-
Keldysh formalism [68,69] (see Ref. [54] for a pedagogical
introduction in the context of the NRGR formalism);
another possibility which we will not follow here is to
use the Arnowitt-Deser-Misner Hamiltonian formalism of
general relativity as in Refs. [44–46]. We will now briefly
review the basics constituents of this formalism while
referring the reader to Ref. [54] for more details and
physical explanations. We will then give the vertex coming
from the expansion of the action (4) needed to build
Feynman diagrams, and we will finally compute the
Burke-Thorne radiation-reaction force in this formalism.

A. Setup: The Keldysh formalism

In the Keldysh or “in-in” formalism, one needs to double
each degree of freedom according to yN → ðyIN; yIIN Þ (yN
being the physical coordinates of theNth body) and similarly
for the metric perturbation hμν → ðhIμν; hIIμνÞ. The action is
defined as S ¼ SI − SII (SI depending only on variables I)
and the inversion of its part quadratic in perturbations gives
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rise to the following matrix of propagators:

hha;μνhb;αβi ¼ Pμν;αβDabðx − yÞ; ð6Þ

where the indices a; b ¼ � are expressed in the Keldysh
basis ðþ;−Þ, obtained by a linear combination of the ðI; IIÞ
elements:

fþ ¼ 1

2
ðfI þ fIIÞ; f− ¼ fI − fII; ð7Þ

where f is any quantity (possibly vectorial) built out of the
particle’s trajectories yNðtÞ and the metric hμν, entering the
vertex in Feynman diagrams. Note that the Keldysh indices
a; b ¼ � are raised and lowered using the “metric”

fa ¼ cabfb; cab ¼
�
0 1

1 0

�
¼ cab; ð8Þ

i.e., f� ¼ f∓. Indeed, one can note from Eq. (7) that fIgI −
fIIgII ¼ cabfagb for any quantities f and g labeled with
Keldysh indices.
In Eq. (6), the tensor Pμν;αβ and the matrix of propagators

are defined as, respectively,

Pμν;αβ ¼ 16πGðημαηνβ þ ημβηνα − ημνηαβÞ; ð9Þ

Dabðx − yÞ ¼
�

0 −iDadvðx − yÞ
−iDretðx − yÞ 0

�
: ð10Þ

Finally, Dret and Dadv are the retarded and advanced
propagators, respectively, given by

Dretðx − yÞ ¼
Z

d4k
ð2πÞ4

e−ik·ðx−yÞ

k2 − ðk0 þ iεÞ2

¼ 1

2π
Θðx0 − y0Þδððx − yÞ2Þ;

Dadvðx − yÞ ¼
Z

d4k
ð2πÞ4

e−ik·ðx−yÞ

k2 − ðk0 − iεÞ2

¼ 1

2π
Θðy0 − x0Þδððx − yÞ2Þ; ð11Þ

where ðx − yÞ2 ¼ ημνðx − yÞμðx − yÞν. After integrating
out the gravitational field, the effective action will be of
the form

Seff ¼
Z

dt½L½yIN � − L½yIIN � þ LD½yIN; yIIN ��; ð12Þ

where L½yN � is the conservative Lagrangian of the system.
Accordingly, any term of the form L̃½yIN � − L̃½yIIN � in the
remaining function LD can be absorbed in the conservative
dynamics of the system. We will use this property to ensure
that LD contains only terms related to dissipative dynamics
(this is why we label it with a D subscript). For our

purposes, it will be sufficient to take L to be the lowest-
order Newtonian Lagrangian of the four-body system, so
that all post-Newtonian terms will be contained in the
dissipative part LD. The equations of motion can be found
by varying the effective action with respect to y−N and taking
the physical limit (PL) where y−N ¼ 0 and yþN ¼ yN , thus
giving

d
dt

∂L
∂vN

−
∂L
∂yN

¼
�
∂LD

∂y−N
−

d
dt
∂LD

∂v−N

�
PL
: ð13Þ

In this article, we will be interested in only dissipative
processes involving the inner orbit of both binaries (stem-
ming from the emission of gravitons at a wavelength
λ ∼ r=v); accordingly, there will be no need to label
quantities of the outer orbit with Keldysh indices, since
their evolution will be dictated by a conservative
Lagrangian entering the left-hand side of the equations
of motion (13). Thus, we will set Y−

1 ¼ Y−
2 ¼ 0 and

Yþ
1 ¼ Y1, Yþ

2 ¼ Y2 from the very beginning. As an
application, one can derive the radiation-reaction force in
the case where the dissipative perturbation LD is due to the
usual two-body quadrupole dissipation:

SBT ¼
Z

dtLD

¼ −
G
5

Z
dt
�
Qij;−

1

d5

dt5
Qþ

1;ij þQij;−
2

d5

dt5
Qþ

2;ij

�
; ð14Þ

where Qij
1=2 are the quadrupole moments of binary systems

1 and 2, defined in Eq. (5). This formula has been derived in
Ref. [54] in the NRGR formalism, and we will recover it in
Sec. III C. Using now the equations of motion (13), we get
to the well-known Burke-Thorne radiation-reaction force
[2,3] acting, e.g., on object 1A:

Fi
1A ¼ −

2μ1G
5

d5Qij
1

dt5
r1;j: ð15Þ

We will now proceed and show how one can obtain the
Burke-Thorne potential (14) in the Keldysh formalism.

B. Vertex

The quadrupolar coupling to a radiation graviton shown
in Eq. (4) can be written in the Keldysh formalism as

Squad ¼ −
1

2

Z
dtQij;aRi0j0;a: ð16Þ

In this equation, Qij can refer to any of the two quadrupole
moments Qij

1 or Qij
2 , and Rμνρσ is the Riemann tensor

evaluated at the center of mass of the corresponding binary.
The vertex (16) will be the only one that we will need
in this article.
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C. Effective action for an isolated binary system

We will now compute the lowest-order diagram for an
isolated binary system contributing to the dissipative
Lagrangian LD; it stems from the insertion of two quad-
rupolar vertices shown in Eq. (16), and it is shown in Fig. 3.
The end result will, of course, be given by the celebrated
quadrupole formula or, more precisely, the Burke-Thorne
radiation-reaction potential [2,3], which has been computed
in the NRGR formalism in Ref. [54] and which we have
already displayed in Eq. (14). For simplicity, in this section
we will suppress the indices referring to the first or second
binary (e.g., Y1 → Y), since our formulas will be valid for
both of them. Including the symmetry factor of the
diagram, one finds using the NRGR rules

Fig:3 ¼ 1

2

i2

4

Z
dt1dt2Qij;aðt1ÞQkl;bðt2Þ

× hRi0j0;aðt1;Yðt1ÞÞRk0l0;bðt2;Yðt2ÞÞi; ð17Þ

where Qij is the quadrupole moment of the isolated binary.
Note that the Riemann tensor is evaluated at the center of
mass of the binary Y. The derivative structure of the
Riemann tensor gives rise to a vertex that we denote as

hRi0j0;aðt1;Yðt1ÞÞRk0l0;bðt2;Yðt2ÞÞi

¼Vijkl

�
∂

∂t1
;
∂

∂yA

�
·Dabðt1− t2;yA−yBÞjyA¼Yðt1Þ;yB¼Yðt2Þ;

ð18Þ

where the definite expression of Vijkl can be found by
contracting the gravitons appearing in the Riemann tensor
and is given by

Vijklðk0;kÞ ¼ 4πG½kikjkkkl
− ðk0Þ2ðkikkδjl þ kiklδjkþ kjkkδil þ kjklδikÞ
þ ðk0Þ4ðδikδjl þ δilδjkÞ�; ð19Þ

where to derive this expression we have used the fact
that the quadrupole moment is traceless to remove any
term proportional to δij or δkl. To lowest order in the
velocity of the center of mass V, one can set Yðt1Þ ¼ Yðt2Þ.
Then, performing the Keldysh contraction with the matrix

of propagators given in Eq. (6) and using the properties
Dadvðy − xÞ ¼ Dretðx − yÞ and Vijkl ¼ Vklij, we are left
with

Fig: 3 ¼ i
4

Z
dt1dt2Q−

ijðt1ÞQþ
klðt2ÞVijkl

·Dretðt1 − t2; yA − yBÞjyA¼yB¼Yðt1Þ: ð20Þ

The integral on t2 can be solved by noting that one can
define a master integral whose value within dimensional
regularization is (see Ref. [54])

Z
dt2ðt2− t1ÞnPV

Z
d4k
ð2πÞ4

e−ik
0ðt2−t1Þ

k2− ðk0Þ2 ðk
0Þpki1…kiq

¼
(
ð−1Þnin−1 n!

4πðqþ1Þ!!δi1…iq if pþqþ1¼ n;

0 otherwise;
ð21Þ

where δi1…iq ¼ δi1i2δi3i4…δiq−1iq þ�� �. Expanding Qþ
klðt2Þ ¼P∞

n¼0ðt2 − t1ÞnðQþ
klÞðnÞ=n!, one finds that only the n ¼ 5

term contributes and, thus,

Fig: 3≡ iSBT ¼ −
iG
5

Z
dtQ−

ij
d5

dt5
Qij;þ; ð22Þ

which recovers the Burke-Thorne formula which we
already used in Sec. III A.

IV. THE BINARY-BINARY
RADIATION-REACTION FORCE

Now that we have introduced our notations and formal-
ism, we will move on to the derivation of the main result of
this article. As mentioned in the introduction, in a four-
body system one has not only the usual Burke-Thorne
dissipative force coming from the self-graviton exchange
shown in the Feynman diagram 3, but there is on top of this
a graviton exchange between the two binaries shown in
Fig. 4. This diagram seems a priori of the same perturbative
order as the Burke-Thorne one; however, we will see that it
mixes different post-Newtonian orders, and, furthermore,
its actual order-of-magnitude value depends on the ratio

FIG. 3. Feynman diagram for an isolated binary system
obtained by integrating out the radiation gravitons at lowest
order. The double line represents the inner binary system and the
wavy line a graviton, and the vertex can be read from Eq. (16).

FIG. 4. Feynman diagram giving the binary-binary quadrupolar
force. As in the last diagram, the double lines represent the two
binary systems and the wavy line a graviton.

SUPPLEMENTARY RADIATION-REACTION FORCE BETWEEN … PHYS. REV. D 107, 064066 (2023)

064066-7



R=λ of the distance between the two binaries and the
wavelength of GW radiation. These features emerge
because, as stated previously, in a generic setting the
momentums of potential gravitons of the outer orbit
(k ∼ 1=R) and radiative gravitons of the inner orbit
(k ∼ 1=λ) do not feature any hierarchy, so that, to obtain
the effective action, one is obliged to integrate them out both
at the same time. Since radiative and potential gravitons have
different post-Newtonian power-counting rules in the

NRGR formalism [51], this explains the mixing of post-
Newtonian orders in the expression for the new force that we
will obtain.

A. Derivation of the force

Let us compute the value of the effective action corre-
sponding to the diagram 4, which is now quite straightfor-
ward to obtain using all the previous ingredients:

iSBB ¼ i
4

Z
dt1dt2Q

ij;−
1 ðt1ÞQkl;þ

2 ðt2ÞVijkl

�
∂

∂t1
;
∂

∂Y1

�
·Dretðt1 − t2;Y1ðt1Þ − Y2ðt2ÞÞ þ ð1 ↔ 2Þ; ð23Þ

where BB stands for binary-binary interaction, which is how
wewill refer to this new term in the following to distinguish
it from the Burke-Thorne one. Using the expression for the
derivative vertex Vijkl given in Eq. (19) and the retarded
propagator in Eq. (11), it is easy to evaluate this expression.

Note the remarkable feature that the retarded propagatorwill
be evaluated at R ¼ Y1 − Y2 which is nonzero, so that this
diagram is finite and does not need the use of dimensional
regularization as was the case for the Burke-Thorne diagram
computed in Sec. III C. We obtain

SBB ¼ G
2

Z
dt
Qij;−

1

R

�
d4

dt4
Qþ

2;ij þ
2

R
d3

dt3
Qþ

2;ij þ
3

R2

d2

dt2
Qþ

2;ij þ
3

R3

d
dt
Qþ

2;ij þ
3

R4
Qþ

2;ij

�				
t−R

−Qij;−
1

RiRk

R3

�
2
d4

dt4
Qþ

2;kj þ
8

R
d3

dt3
Qþ

2;kj þ
18

R2

d2

dt2
Qþ

2;kj þ
30

R3

d
dt
Qþ

2;kj þ
30

R4
Qþ

2;kj

�				
t−R

þQij;−
1

RiRjRkRl

2R5

�
d4

dt4
Qþ

2;kl þ
10

R
d3

dt3
Qþ

2;kl þ
45

R2

d2

dt2
Qþ

2;kl þ
105

R3

d
dt
Qþ

2;kl þ
105

R4
Qþ

2;kl

�				
t−R

þ ð1 ↔ 2Þ: ð24Þ

This is the main result of this article. From this effective
action, one can easily derive the radiation reaction acting on
each point-particle force by varying it with respect to
coordinates y−N present only in the minus component of
the quadrupoles Qij;−

1=2 and taking the physical limit as in
Eq. (13). For the time being, the multiple numerical
coefficients present in Eq. (24) seem completely arbitrary,
but we will see in the next section that they are indeed
precisely fine-tuned to yield physically sensible results in the
different limits in which we will evaluate this expression.
Let us comment on several features of the binary-

binary force. First, as advertised, we see that it indeed
contains different post-Newtonian orders: This feature can
be seen by, e.g., reinstantiating powers of c with dimen-
sional analysis following the rules d=dt → d=cdt and
t − R → t − R=c. As already stated at the beginning of
Sec. IV, because of the presence of retarded times the
perturbative expansion for c → ∞ is not under control in
the generic case, so that one cannot separate the different
post-Newtonian orders in Eq. (24) as is usually done in
post-Newtonian theory. Second, we see that this expression
is not invariant under time reversal, which means that it
indeed corresponds to a dissipation of energy leaving the

system in the form of gravitational waves. However, it is
also not odd under time reversal as was the case for the
Burke-Thorne potential (14), which means that it should
contain both a conservative and a dissipative piece, given
by the time-symmetric and time-antisymmetric parts of this
expression, respectively. Third, it appears that the order of
magnitude of the force will ultimately depend on the ratio
R=λ of the distance between the two binaries and the
wavelength of GW radiation, since d=dt ∼ 1=λ (we recall
that for order-of-magnitude estimates we take the param-
eters of the two binaries to be approximately equal). Thus,
we will have to split three cases as mentioned in Sec. II B
depending on the value of this ratio, which is the subject of
the next section.

B. Physically relevant limits

In this section, we will consider different limits of the
expression (24) and check that the physical intuition
developed in Sec. II B is recovered.

1. Newtonian limit

The Newtonian limit can be recovered by reinstantiating
powers of c with dimensional analysis and then taking the
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limit c → ∞. Replacing time derivatives d=dt → d=cdt and
retardation times t − R → t − R=c, it turns out that the
effective action (24) contains a Newtonian [i.e., Oðc0Þ]
piece given by

SBB;c→∞ ¼ G
2

Z
dt

�
3

R5
Qij;−

1 Qþ
2;ij −

30RiRk

R7
Qij;−

1 Qþ
2;kj

þ 105RiRjRkRl

2R9
Qij;−

1 Qþ
2;kl

�
þ ð1 ↔ 2Þ: ð25Þ

On the other hand, it is quite easy to write the complete
effective action of a four-body system in the Newtonian
limit: It is given by

SNewt ¼
G
2

Z
dt
X
N;M

mNmM

jyN − yMj
: ð26Þ

To recover Eq. (25) from Eq. (26), one has to perform a
multipolar expansion of Eq. (26) up to quadrupole order in
the center-of-mass frame of each binary (as explained in
Sec. II A) and keep terms involving interactions between
the two quadrupole moments, which gives exactly Eq. (25).
We, thus, see that the Newtonian limit of our binary-binary
action is correct. Furthermore, in this limit the action is
obviously time symmetric, which means there is no energy
loss from the system as there is no gravitational-wave
emission.
What is the order of magnitude of the force in this limit?

Of course, the Burke-Thorne radiation-reaction force is
parametrically smaller than the binary-binary force for
c → ∞, since it is a purely relativistic effect of the order
ofOðc−5Þ. On the other hand, let us compare the amplitude
of the binary-binary force with respect to the Kozai-Lidov
interaction SKL also present in the expansion of the
Newtonian action (26) in the center-of-mass frame of the
binaries (see, e.g., Refs. [22,70] for definite expressions)
and responsible for many interesting astrophysical phe-
nomena [18,19,25,64,71–79]:

SBB
SKL

∼
�
r
R

�
2

: ð27Þ

Thus, the binary-binary force is actually a subdominant
many-body conservative interaction in the Newtonian limit
and can affect the system only on timescales much longer
than the Kozai-Lidov time. Still, it can lead to interesting
dynamical evolution for the system, as shown in, e.g.,
Refs. [80,81]. As a side remark, note that, while most
Newtonian interactions between the two binaries can be
modeled by replacing one binary with a point particle,
the binary-binary force is the lowest-order effect
where this approximation breaks down and one has to
take into account the finite size of both binaries, as shown
in Ref. [82].

2. λ ≫ R

This corresponds to case (i) in Sec. II B: The near
zone is much bigger than the size of the four-body system,
so that one should recover the standard post-Newtonian
formulas for the radiation-reaction forces; see, e.g.,
Refs. [44–46]. In the small-R limit, one can expand all
retarded times t − R in powers of R, schematically
Qij

2 ðt − RÞ ¼ Qij
2 ðtÞ − R∂tQ

ij
2 þ � � �. This series expansion

is indeed valid as long as R∂t ∼ R=λ ≪ 1 and produces as a
result a lowest-order radiation-reaction force which
depends on only the current time t and not on the past
history of the system.
Plugging this expansion in the binary-binary action (24),

we obtain a series of terms proportional to time derivatives
of Qij

2 ðtÞ, some of which are even under time reversal (i.e.,
they conserve energy) while others are odd (i.e., they
dissipate energy). The conservative terms are not so much
interesting, since, as in the previous Sec. IV B 1, they are
smaller in magnitude than the Kozai-Lidov terms which are
the dominant conservative contribution to the dynamics of
the binaries. On the other hand, the terms dissipating
energy can sensibly alter the dynamics of the system
(for example, they can induce a nontrivial evolution of
the semimajor axis of the binaries, while conservative terms
will keep it constant over long timescales when the system
is far from resonances [21,22,70]). Thus, we will keep only
the lowest-order dissipative term when looking at the small-
R expansion of the action while throwing out conservative
contributions. As a result, the expanded action is

SBB;λ≫R ¼ −
G
5

Z
dtQ−

1;ij
d5

dt5
Qij;þ

2 þ ð1 ↔ 2Þ: ð28Þ

This formula is quite similar to the Burke-Thorne action
(14) (in particular, it is of the same 2.5PN order), and we
will comment on this later on. Note the remarkable feature
that the numerical coefficients in Eq. (24) all conspire to
give a lowest-order dissipative force proportional to five
time derivatives of Q2, i.e., of 2.5PN order as should be the
case in the standard post-Newtonian formalism. In fact, one
can check that the expansion of the second line in Eq. (24)
gives a lowest-order dissipative term of 3.5PN order, while
the expansion of the third line gives a dissipative term of
4.5PN order.
How should we interpret the result of Eq. (28)? Taking

also into account the Burke-Thorne action (14), one gets
the total dissipative effective action

Seff ¼ −
G
5

Z
dtQ−

1;ij
d5

dt5
½Qij;þ

1 þQij;þ
2 � þ ð1 ↔ 2Þ: ð29Þ

The meaning of this equation is quite clear: The radiation-
reaction force is induced by the (fifth time derivative of the)
total quadrupole moment of the four-body system, which in
the hierarchical approximation at lowest order just splits in
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the sum of the quadrupole moments of the two binaries.
This is indeed the result that one should expect from
already known computations in the post-Newtonian for-
malism [44–46]. The previous expression (29), though,
bears some striking consequences. Let us imagine for a
moment that the two binaries share the exact same orbital
elements, apart from a dephasing ϕ in their mean anomaly
(see also the Appendix for a generalization to a case where
not all planetary elements of the two binaries are equal). It
is quite straightforward to obtain an evolution equation for
the planetary elements from the Lagrangian using standard
techniques (see, e.g., Ref. [21]), and we obtain for the
evolution of the semimajor axis of the first binary a1:

da1
dt

¼ da1
dt

				
Peters

ð1þ cosð2ϕÞÞ; ð30Þ

where da1
dt jPeters is the standard Peters-Mathews formula for

the GW decay of the semimajor axis [1]. Thus, this decay is
modulated by the angle ϕ, and a1 can even stay constant if
one chooses ϕ ¼ π=2: Such a system completely stops
losing energy by gravitational radiation. Indeed, one should
remember that we are talking about gravitational waves:
The wave amplitude at large distance from the four-body
system can be found by summing the waves produced by
the two quadrupoles; if the dephasing between these two
waves is equal to π (corresponding to ϕ ¼ π=2 due to the
quadrupolar nature of the waves), they can actually
interfere destructively to give a zero quadrupolar amplitude.
The radiation emitted by the binary would, thus, be given
by the next-to-leading order (octupole and current quadru-
pole), which would completely change the characteristics
of gravitational-wave emission. A more detailed analysis of
such a kind of synchronization was performed recently in
Refs. [83,84], where it was shown that mass transfer by the
Roche lobe overflow of binary white dwarfs could indeed
capture the whole system in such a resonant state.

3. λ ≪ R

The large-R limit of Eq. (24) is straightforward to obtain,
and we get

SBB;λ≪R ¼ G
2

Z
dt
Qij;−

1

R

�
d4

dt4
Qþ

2;ij

− 2
RiRk

R2

d4

dt4
Qþ

2;kj þ
RiRjRkRl

2R4

d4

dt4
Qþ

2;kl

�				
t−R

þ ð1 ↔ 2Þ: ð31Þ

In this case, one can picture the system as two isolated
binaries emitting GWs on a small zone centered around
each of them. Each binary emits GWs which propagate and
then scatter on the other binary. Intuitively, the amplitude of
the binary-binary force should be quite weak in this setting.

Let us see how we can recover Eq. (31) using this intuitive
reasoning. The quadrupolar waveform at a distance d of an
isolated binary is in the TT gauge [4]

hTTij ¼ 2G
d

Q̈TT
ij ðt − dÞ; ð32Þ

where Qij is the quadrupole moment of the binary and the
TT operator projects spatial indices in the TT gauge as

QTT
ij ¼ Qij − njnkQik − ninkQjk þ

1

2
ninjnknlQkl; ð33Þ

where ni ¼ di=d. Let us plug this formula with Qij ¼ Q2;ij

in the action of the first binary (16), treating hij as an
external gravitational field. In this case, we should take the
physical limit h−ij ¼ 0, hþij ¼ hij in Eq. (16) and set d ¼ R
in Eq. (33). Using RTT

0i0j ¼ −ḧTTij =2, we see that we recover
exactly the term proportional to Q−

1;ij of Eq. (31), while the
second one is obtained by considering the symmetric
situation ð1 ↔ 2Þ.
In the limit that we are considering, the order of

magnitude of the binary-binary action with respect to the
Burke-Thorne one SBT is

SBB;λ≪R

SBT
∼
λ

R
≪ 1; ð34Þ

which means that the binary-binary force is always sub-
dominant in this regime, as expected. Note that it, however,
still contains dissipation of energy, since due to the
presence of retarded time the action (31) is not time-
reversal symmetric.

4. λ ∼ R

In this case, we cannot simplify any further the binary-
binary force (24), as we expect all of its terms to contribute
equally. Furthermore, the order of magnitude of the binary-
binary force is the same as the Burke-Thorne one, so that it
can, in principle, give important contributions to the
dissipative dynamics. However, to evaluate the impact of
the binary-binary force in this situation, one has to solve a
complicated delay-differential equation which we leave to
future work. We will have more to say concerning the
average force in the next section.

C. Effects on long timescales

It is a common practice to average either the radiation-
reaction or the many-body forces over the orbital timescale
of the inner binary in order to obtain simplified equations.
This is technically done by parametrizing the coordinates
yN in terms of the osculating orbital elements of the elliptic
orbits [85]: Only one of these elements (the mean anomaly)
then evolves on the timescale of the binary, while others
stay approximately constant during this time due to the
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hierarchical assumption. This allows for a straightforward
evaluation of the time averages, since one needs only to
integrate out the mean anomaly keeping other orbital
elements fixed [21,22]. Doing so at the level of the
Burke-Thorne force yields the Peters-Mathews equations
[1], while the Kozai-Lidov Hamiltonian is usually
obtained by also averaging over the outer orbital timescale

]23–25,70 ]. In our case, we cannot straightforwardly
perform this average directly at the level of the effective
action (24), because it still contains the doubled Keldysh
variables y�N while only the physical coordinates yN are
parametrized in terms of osculating elements. However, it is
definitely possible to perform the average on the force once
it is derived as in Eq. (13).
Let us now make some general remarks concerning the

averaging procedure. The quadrupole moment of each
binary (say, Qij

1 for definiteness) depend on time through
the radius r1, which, in turn, can be expanded for small
eccentricities in a Fourier series containing terms like
cosðpn1tþ ϕ1Þ, where p is an integer, n1 the frequency
of the first binary, and ϕ1 an arbitrary phase. Since the
binary-binary force acting on the first binary consists in a
sum of products of quantities depending only on one binary
[see Eq. (24)], its time dependence will be schematically
contained in terms like

cosðpn1tþ ϕ1Þ cosðqn2½t − RðtÞ� þ ϕ2Þ; ð35Þ

where q is an integer, n2 the frequency of the second
binary, and ϕ2 another arbitrary phase. In the hierarchical
assumption, we can average this term over time by
assuming that any parameter is constant, including the
outer orbital radius RðtÞ, which varies on timescales
much longer than the inner binaries timescales. We, thus,
obtain that the average vanishes apart when one satisfies
the resonance condition pn1 ¼ qn2. Two cases can be
separated.

(i) Binaries are far from resonance, and only the trivial
case p ¼ q ¼ 0 can give a nonzero time average.
This corresponds to performing the average on each
binary separately. However, when independently
averaging terms depending on Qij

2 in the binary-
binary force derived from Eq. (24), one finds that all
time derivatives average out while the retardation
time also drops out (it just corresponds to a shift in
the initial phase of the binary system), so that there
remains only the Newtonian limit discussed in
Sec. IV B 1. This means that the binary-binary force
is subdominant in this regime, as discussed in
Sec. IV B 1.

(ii) Binaries are close to a resonance pn1 ¼ qn2 for
some integers p and q. Then the time average can be
nontrivial, and the binary-binary force will probably
induce order-one changes in the dissipative dynam-
ics of the system if λ ≫ R or λ ∼ R. We will discuss

in more detail the first case in the Appendix, while
precisely evaluating the effect of the binary-binary
force for λ ∼ R requires one to solve a delay-
differential equation, since in this generic setting
the force involves retarded times. Delay-differential
equations often present mathematical and numerical
subtleties [86], so that we will leave the exploration
of this regime to further work.

V. CONCLUSIONS

In this article, we have derived the expression of a new
kind of radiation-reaction force whose physical origin is
related to an exchange of quadrupolar gravitons between
two binary systems. Our expression generalizes the post-
Newtonian formulas obtained in Refs. [44–46] to generic
cases when binaries are separated by distances equal to or
greater than the size of their near zone. However, to
determine if the force can really be at play in the
mechanism leading to the merging of binary systems
requires solving a delay-differential equation which we
leave to future work. It would be ultimately quite interest-
ing to add the binary-binary force in N-body simulations of
globular clusters or galactic nuclei such as Refs. [50,63,64]
and assess its impact on the merging rate of binary systems
or to reexamine the resonant capture in quadruple systems
discussed in Refs. [80,81,83,84] taking into account the full
expression of the binary-binary force. As we have argued,
the new force probably necessitates the two binaries to be in
resonance in order to give a non-negligible contribution on
long timescales, which means that the modification to the
N-body dynamics will occur only when one binary crosses
the frequency of another one. Another interesting possibil-
ity for phenomenological applications is the merger rate
of primordial BH binaries: This rate has been shown to be
quite sensitive to many-body effects [87,88], so it would be
interesting to know how these results could get changed
taking into account the binary-binary force. Nevertheless,
on the theoretical side, the implications of the binary-binary
force remain quite fascinating, as it shows that emission of
gravitational waves from N-body systems presents some
unique features which do not have any equivalent in the
two-body problem.
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APPENDIX: AVERAGED BINARY-BINARY
FORCE FOR λ ≫ R

In order to give a simplified example of the averaging
procedure discussed in Sec. IV C, let us concentrate on the
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case λ ≫ R and derive an averaged radiation-reaction force.
One immediately sees from Eq. (28) that if the two binaries
are not in a resonant state, then one can average separately
each quadrupole moment over time and the effective action
vanishes, since hd5Qij=dt5i ¼ 0. On the other hand, when
the two binaries are in a resonance, we cannot split the total
time average in a product of averages over individual
quadrupoles. Let us assume that the binaries are in a 1∶1
resonance. We denote by a1, e1, ι1, Ω1, ω1, and η1 the
osculating elements of the first binary (respectively, semi-
major axis, eccentricity, inclination, longitude of ascending
node, argument of periapsis, and eccentric anomaly) and
similarly for the second binary. For simplicity, we will
assume circular trajectories e1 ¼ e2 ¼ 0; furthermore, the
1∶1 resonance condition imposes a2 ¼ a1ðm2=m1Þ1=3 as
well as η2 ¼ η1 þ ϕ, where ϕ is a dephasing varying on
secular timescales only. Finally, we will also assume
Ω2 ¼ Ω1, since we will get much simpler expressions in
this case. Using the expression (28) for the binary-binary
effective action, one can use standard techniques as in, e.g.,
Ref. [21] to derive the Lagrange planetary equations
describing the time evolution of all planetary elements.
Averaging over one orbital timescale is then equivalent in
our case to integrating the eccentric anomaly η1 from 0 to
2π. We are mostly interested in the averaged evolution

equation for the semimajor axis, which can be used to
define the merger timescale of the binaries. Including also
the standard radiation-reaction terms for an isolated binary,
it reads

da1
dt

¼ −
64

5

G3m2
1μ1

a31

�
1þ μ2m

2=3
2

μ1m
2=3
1

× cos4
�
ι1 − ι2
2

�
cos 2ðϕþ ω2 − ω1Þ

�
; ðA1Þ

where we recall that m1 is the total mass of the first binary
and μ1 its reduced mass. Of course, one can get the equation
on a2 just by exchanging ð1 ↔ 2Þ. The binary-binary force
manifests itself as the second term inside the square
brackets, while the first one is just the standard Peters-
Mathews formula. We thus see that the merger time can
a priori be greatly reduced with respect to the case of an
isolated binary, especially if one has a hierarchy of mass
m2 ≫ m1. However, one should remember that a resonance
condition has been assumed to derive Eq. (A1); if either of
the two semimajor axes changes substantially, then the
binaries will exit resonance and the radiation-reaction force
will average to zero.
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