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The gravitational spin connection appears in gravity as a non-Abelian gauge field for the Lorentz group
SOð3; 1Þ, which is noncompact. The action for general relativity is linear in the field strength associated to
the spin connection, and its equation of motion corresponds to the standard metricity constraint.
Consequently, the zero-torsion spin connection is never realized as an independent degree of freedom
and is determined by the vierbein field. In this work, we take a different perspective and consider a pure
Yang-Mills theory for the spin connection coupled to Dirac fermions, resulting in the former being a
dynamical field. After discussing various approaches towards managing the pathologies associated with
noncompact gauge theories, we compute the tree-level amplitude for fermion scattering via a spin
connection exchange. In contrast to integrating out torsion in the presence of fermions, the model induces a
chiral four-Fermi like term that involves a right-right current interaction, which is not present in the
Standard Model.
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I. INTRODUCTION

Shortly after Dirac published his groundbreaking work
on the quantum theory of the electron [1], efforts were
immediately directed towards coupling spin-1=2 particles
to general relativity [2]. It is now well known that the most
natural setting in which to embed spin-1=2 interactions in
general relativity is Einstein-Cartan theory [3], which was
in fact written down before the discovery of spin [4].
The modern viewpoint can be considered in a close
analogy with the Standard Model gauge theories. That
is, we begin with the free Dirac Lagrangian LDirac ¼
Ψ̄ði=∂ −mÞΨ and define a local Lorentz symmetry
ΨðxÞ → Ψ0ðx0Þ ¼ SðxÞΨðxÞ, where SðxÞ has the exponen-
tial representation

SðxÞ ¼ exp

�
−
i
2
JabαabðxÞ

�
: ð1Þ

Here, Jab ¼ i
4
½γa; γb� is the generator of the SOð3; 1Þ algebra

whose commutator satisfies ½Jab; Jcd� ¼ 2ifabcdefJef and γa

are the Dirac matrices. The structure constants fabcdef ¼
f½ab�½cd�½ef� can be expanded in terms of the Minkowski
metric. Invariance of the theory is enforced by promoting the
derivative in the Dirac Lagrangian to

Dμ ¼ ∂μ −
ig
2
JabAab

μ ; ð2Þ

where Aab
μ is the spin connection whose transformation

JabAab
μ → SðJabAab

μ ÞS−1 − 1
2g Jab∂μα

abðxÞ preserves the
Lorentz symmetry (1). A field strength for the spin con-
nection is defined in the standard way as
½Dμ; Dν� ¼ − ig

2
JabFab

μν , from which we obtain

Fab
μν ¼ ∂½μAab

ν� þ gfabcdefAcd
μ Aef

ν : ð3Þ
In order to make contact with gravity, we introduce the

spacetime vierbein eaμ, which relates to the metric as
gμν ¼ eaμebνηab, where ηab ¼ diagð−1; 1; 1; 1Þ.1 As usual,
the vierbeins connect frame fields to spacetime fields,
i.e. Vμ ¼ Vaeaμ for a spacetime vector Vμ. We therefore
arrive at the following Lagrangian for a Dirac spinor over
curved space:

LDirac ¼ Ψ̄
�
ieμaγa

�
∂μ −

ig
2
JbcAbc

μ

�
−m

�
Ψ: ð4Þ

Next consider the action

S ¼
Z

d4xeeμaeνbFab
μνðA; ∂AÞ; ð5Þ

where e ¼ detðeaμÞ and Fab
μν is given by (3). The equa-

tion of motion associated to the spin connection Aab
μ is

proportional to the covariant derivative of the vierbein,
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1We follow notation where the internal SOð3; 1Þ (or frame)
indices are fa; b;…g while the spacetime indices are fμ; ν;…g,
and our antisymmetrization convention includes no factor of 2,
i.e. X½aYb� ¼ XaYb − XbYa.
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∇μeaν ¼ ∂μeaν − Γλ
μνeaλ þ gAa

bμe
b
ν; ð6Þ

where Γλ
μν are the metric compatible Christoffel symbols.

By setting (6) equal to zero, we can trivially solve for the
spin connection in terms of the vierbein, Aab

μ ¼ Aab
μ ðeÞ.

Inserting back into the action (5), we recover standard
general relativity with the Ricci scalar given by

R ¼ eμaeμbFab
μνðeÞ: ð7Þ

We will call the vanishing of (6) the metricity constraint,
which is often imposed a priori such that the spin
connection is never realized as an independent degree of
freedom. This is a feature of the theory being linear in the
field strength in the absence of other matter fields.
Recently, in [5], Donoghue offered an argument for

abandoning the metricity constraint and treating the spin
connection as an independent degree of freedom. Consider
now the theory

L ¼ −
1

4
Fab
μνF

μν
ab þ LDirac; ð8Þ

where the Dirac Lagrangian is given by (4). In essence, this
is just Yang-Mills coupled to fermions, albeit for the
noncompact gauge group SOð3; 1Þ. It was shown in [5]
that for the theory (8), the one-loop β function for the spin
connection coupling g is negative,

βðgÞ ¼ −
22

3

g3

16π2
; ð9Þ

suggesting that the spin connection is confined or con-
densed in the infrared. It is therefore interesting to consider
the form of interactions mediated by the spin connection,
which is the purpose of this note.
There have been numerous attempts to cast gravity as a

gauge theory [6–9] (see also [10] and references therein).
Indeed, general relativity can be derived by considering a
global spacetime translation xμ → xμ þ aμ and gauging
such that aμ → aμðxÞ, analogous to promoting the Lorentz
symmetry to a local operator (1). The crucial difference
between Yang-Mills theory and the treatment of general
relativity as a gauge theory is the curvature being quadratic
in the former case and linear in the latter case. Moreover,
unifying the weak force with gravity provides additional
motivation to write general relativity as a gauge theory
[11–13]. It would be fascinating if the construction outlined
above serves as a road map towards a new unification
approach. We will comment further on both of these points
in the discussion.
We will now proceed under the assumption that the spin

connection is indeed confined or condensed and explore
the properties of the theory described by (8), but before

studying the interactions, let us briefly comment on the
issue of noncompactness of SOð3; 1Þ.

II. ON THE NONCOMPACTNESS OF SOð3;1Þ
It is useful to take capital Roman letters A; B;… as

fundamental indices in order to discuss an arbitrary, non-
Abelian Lie group G. For SOð3; 1Þ, the fA; B;…g indices
are composed of pairs of internal indices fa; b;…g. We
denote the Killing form asKAB, which is the internal metric
for the gauge group. A simple way to examine compactness
is to write out the Yang-Mills Lagrangian,

L ¼ −
1

4
KABFA

μνFB
αβg

μαgνβ; ð10Þ

and consider the quadratic form

Q ¼ KABuAuB ð11Þ

for arbitrary u ≠ 0 ∈ G. A gauge group is compact ifQ > 0
for all nonzero group elements. For example in SUðNÞ,
KAB ¼ δAB, which is clearly positive definite. This is
analogous to the Hamiltonian density being bounded from
below. For the Lorentz group SOð3; 1Þ, the Killing form is
KAB → Kabcd ¼ ηacηbd. Since the Minkowski metric is not
positive definite, the quadratic form Q ¼ Kabcduabucd can
be negative or zero even when u ≠ 0. This implies that
certain quantum states of the spin connection will have a
negative norm and are thus unhealthy. However, there are a
few ways to handle the potential pathology.
In [14], the authors showed that in noncompact sigma

models based on SLð2;CÞ, there is an inherent super-
selection rule that results in a zero overlap between the
healthy and unhealthy (negative norm) states. Then in [15],
the same authors extended the analysis to arbitrary non-
compact gauge groups. The argument leans heavily on
Becchi, Rouet, Stora, Tyutin (BRST) symmetry [16], where
in addition to (10), the theory includes ghost and antighost
fields cA; c̄B, as well as the Nakanishi-Lautrup field BA

[17], the latter serving the purpose of a generalized gauge
fixing procedure. The authors exploit a Cartan involutionD
on G defined as DðXAÞ ¼ −KA

BX
B, where XA is any field

(including the field strength). Using the BRST transforma-
tions for fAA

μ ; cA; c̄A; BAg [18], it is straightforward to show
that D commutes with the BRST charge Qbrst, which
defines the space of physical asymptotic states Vphys in
the standard way, Vphys ¼ fjvi ∈ V∶Qbrstjvi ¼ 0g,2 where
V is the total space of asymptotic states. Then consider the
subspace H ⊂ V generated by the transverse modes of the
gauge fields, which can be decomposed asH ¼ Hþ ⊕ H−,

2An explicit expression for the BRST charge is Qbrst ¼
iKAB

R
d3k½b̂A;†ðkÞĉBðkÞ − ĉA;†ðkÞb̂BðkÞ�, where ĉ†; b̂†; ĉ; b̂ are

the creation and annihilation operators for the fields cA and BA.

STEPHON ALEXANDER and TUCKER MANTON PHYS. REV. D 107, 064065 (2023)

064065-2



where Hþ is characterized by the asymptotic operators
with KAA ¼ þ1 whileH− is characterized by the operators
with KAA ¼ −1. The subspaces H� satisfy DðH�Þ ¼ �1.
Defining the physical S matrix as Sphys ¼ P†

HSP
†
H by

projecting into H from the full S-matrix S, we have
that ½D; Sphys� ¼ 0. Therefore D defines the superselection
rule between the states jαi ∈ Hþ and jβi ∈ H− such that
hαjβi ¼ 0, implying there is no negative probabilities.
Thus, even though there are unhealthy states in the
spectrum, there is a consistent procedure to project out
the Hilbert space for the physical states and construct a well
defined, physical S matrix.
A slightly different approach was studied in [19–21],

where the author considers the noncompact gauge groups
GLðN;RÞ and GLðN;CÞ. The Killing form is promoted
to a dynamical field and is given a gauge covariant
derivative (see also [22] for a similar idea implemented
in collider phenomenology). It then has a contribution to
the Hamiltonian (density) that conspires to bound the
system from below. The field equation for the Killing
form is not present when the gauge group is compact. The
field content of the theory is a set of massless vector mesons
associated with the subgroup UðNÞ ⊂ GLðN;CÞ and mas-
sive vector mesons associated with the noncompact part
of GLðN;CÞ. For the latter, the longitudinal modes are
supplied by real scalar fields that make up the components
of the Killing metric [see [20] for an explicit illustration of
these features for the example of GLð1;CÞ].
On the other hand, one can consider making a gauge

choice reminiscent of the temporal gauge in QED, by
setting Aa¼0;b

μ ¼ 0. This removes half of the components of
the spin connection and has the effect of forcing the
quadratic form associated to KAB to be positive definite.
To see this, note that the components of the spin connection
can be imagined as a 4 × 4, antisymmetric matrix of four-
vectors with free index μ. The gauge fixing condition
Aa¼0;b
μ ¼ 0 deletes the first row of the matrix, and the

Killing form only acts nontrivially on “spatial” SOð3; 1Þ
internal indices. In essence, this implies Kabcd → δilδjm,
where i; j;… take on values f1; 2; 3g.
Each of these—the BRST approaches in [14,15], the

dynamical approach in [19–21], and the gauge fixing
approach—all share the common thread of projecting the
healthy states into a maximal compact subgroup H ⊂ G.
Explicitly, “temporal” gauge fixing has the effect of
gauging away the boosts J0i and we are left with the
rotations of Oð3Þ ⊂ SOð3; 1Þ. It should not be a surprise
that the remaining components of the spin connection
correspond to healthy states, as the rotation matrices Jij are
unitary, Jij† ¼ Jij, while the boosts are not, J0i† ¼ −J0i.
Importantly, the issue of negative norm states is only

critical when considering the spin connection being on an
external leg of a given process. This arises in, for example,
fermion annihilation into two spin connections, ΨΨ → AA,
or in a fermion scattering process involving any number of

spin connection loops, where a unitarity cut will produce a
diagram analogous to the ΨΨ → AA. However, we can
consider the possibility that instead of the asymptotic
vacuum being devoid of any particle states, it is occupied
by some sort of condensate, such as the ghost condensate
of [23]. In fact, the ghost condensate is known to break
Lorentz transformations down to just spatial rotations,
which is precisely the setting in which the S matrix for
the asymptotic spin connection states is unitary.
In the next section, we focus solely on the tree-level spin

connection exchange, and leave the delicate treatment of
the external spin connection to future explorations.

III. INTERACTIONS

The interaction vertices are readily obtained from the
Lagrangian (8). The spin connection self-interactions are of
the form

three point ∼ g∂μAab
ν fabcdefA

μ
cdA

ν
ef;

four point ∼ g2fabcdefAcd
μ Aef

ν fabghijA
μ
ghA

ν
ij; ð12Þ

while the fermion interaction is

three point ∼ gΨ̄γaeaμJcdAcd
μ Ψ: ð13Þ

We will now calculate the tree-level t-channel exchange
of a spin connection between two fermions in helicity
eigenstates, where (13) is the only relevant vertex. Let the
incoming fermions have momenta p1 and p2, with out-
going momenta p3 and p4, with k being the momentum
exchange across the propagator (Fig. 1). Standard appli-
cation of the Feynman rules yields

iMt ¼
�
−
ig
2
Ψ̄ðp3ÞeμfγfJabΨðp1Þ

�
Dμν;abcdðkÞ

×

�
−
ig
2
Ψ̄ðp4ÞeνgγgJcdΨðp2Þ

�
; ð14Þ

where Dabcd
μν is the spin connection propagator and will

be defined shortly. Note that we can pull the vierbein

FIG. 1. t-channel exchange.
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contractions through to the propagator. Using Jab ¼
i
4
½γa; γb�, we can simplify (14) to

iMt ¼
g2

64
ðΨ̄ðp3Þγf½γa; γb�Ψðp1ÞÞeμfDμν;abcdðkÞeνg

× ðΨ̄ðp4Þγg½γc; γd�Ψðp2ÞÞ: ð15Þ

We next look to rewrite the product of Dirac matrices,
which is accomplished utilizing the relation

γfγ½aγb� ¼ iϵfabhγhγ5 þ 2ηf½aγb�: ð16Þ

We have

iMt

¼ g2

64
ðΨ̄ðp3Þðiϵfabhγhγ5 þ 2ηf½aγb�ÞΨðp1ÞÞeμfDμν;abcdðkÞeνg

× ðΨ̄ðp4Þðiϵgcdiγiγ5 þ 2ηg½cγd�ÞΨðp2ÞÞ: ð17Þ

At this step, recall that the vector and axial currents are
given by

JaV ¼ Ψ̄γaΨ; JaA ¼ Ψ̄γaγ5Ψ: ð18Þ

We can thus rewrite (17) as

iMt ¼
g2

64

�
iϵfabhJA;h þ 2ηf½aJb�V

�
eμfDμν;abcdðkÞeνg

×

�
iϵgcdiJA;i þ 2ηg½cJd�V

�
: ð19Þ

This result shows that the particular form of the four-Fermi
interaction is contingent on the index structure of the
propagator Dμν;abcd. To obtain the tree-level propagator,
we consider the derivative terms in the spin connection
Lagrangian including a gauge fixing piece,

L ⊃ ηacηbdgμαgνβ
�
−
1

4
∂½μAab

ν� ∂½αA
cd
β� −

1

2ξ
ð∂αAab

μ Þð∂βAcd
ν Þ

�
:

ð20Þ

The inverse of the full derivative operator is the propagator

iDabcd
μν ðkÞ ¼

−i
�
gμν − ð1 − ξÞ kμkνk2

�
k2 þ iϵ

1

2
14ðηacηbd − ηadηbcÞ:

ð21Þ

Taking the Feynman gauge ξ ¼ 1, (19) simplifies to

iMt

¼ −
g2

64

�
iϵfabhJA;h þ 2ηf½aJb�V

� ηfg
1
2
14ðηacηbd − ηadηbcÞ

k2 þ iϵ

×
�
iϵgcdiJA;i þ 2ηg½cJd�V

�
: ð22Þ

Note the interesting observation that by virtue of the
vierbeins appearing in the interaction, the full spacetime
metric gμν is projected to the frame metric as eμfe

ν
ggμν ¼ ηfg.

It is straightforward to contract out the remaining frame
indices, and dropping the iϵ, we find the simple result:

iMt ¼ g2
3

32k2
ðJ13A · J24A þ J13V · J24V Þ; ð23Þ

where the f1234g superscripts denote the momenta
dependence. If we suppose that this expression is valid
solely below some momentum scale kc, then we may write
the four-Fermi interaction

iMt ¼ G̃FðJ13A · J24A þ J13V · J24V Þ; ð24Þ

defining a “Fermi constant” G̃F ¼ 3g2

32k2c
. Finally, recall that

the axial and vector currents are related to the helicity
eigenstate currents JaL ¼ ψ̄Lγ

aψL and JaR ¼ ψ̄Rγ
aψR by

JaA ¼ JaR − JaL; JaV ¼ JaR þ JaL: ð25Þ

This allows us to recast (24) as

iMt ¼ 2G̃FðJ13R · J24R þ J13L · J24L Þ: ð26Þ

There is a similar contribution to the full amplitude from a
u-channel diagram, which simply exchanges the final state
momenta, p3 ↔ p4. The result (26) shows that there is no
mixing between the helicity eigenstates in this theory, and
there is a pure right-right interaction.

IV. DISCUSSION

In this work, we have embraced the possibility that the
gravitational spin connection is condensed or confined at
low energy, and considered the tree-level fermion scattering
process mediated by the spin connection. We believe that
the theory (8) is well motivated following the conclusions
met in [10].
The theory admits a four-Fermi interaction where there is

no mixing between the helicity eigenstates. This is in con-
trast to very similar calculations performed in [13,24–28].
In [26,27], the spin connection is decomposed as A ¼
Ãþ C, where Ã is metric compatible and C is related to
torsion. The torsion piece is integrated out of the theory and
results in a purely axial current interaction, which mixes
left- and right-handed currents. A slightly more general
approach was taken in [28], where the fermion Lagrangian
contains a “nonminimal coupling parameter” α,
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L ∼ ð1 − iαÞΨ̄γaeμa∇μΨ − ð1þ iαÞ∇μΨγae
μ
aΨ; ð27Þ

which, after arguing that consistency with the no-torsion
constraint demands α ∈ R, they obtain

Lint ∼
γ2

γ2 þ 1

�
JA · JA þ 2α

γ
JA · JV − α2JV · JV

�
: ð28Þ

(The result from [26,27] is simply the minimal coupling
α ¼ 0.) In (28), γ is the Immirzi parameter of loop
quantum gravity which appears, for example, in the
Holst action [29]. Our result (24) is nicely consistent with
the discussion surrounding Eq. (11) of [28]; (24) is
obtained from (28) in the limit fα; γg → f�i;∞g. In our
approach, we explicitly relax the no-torsion constraint,
which in the language of [28], relaxes the reality condition
on α, such that α ¼ �i is indeed sensible. The γ → ∞ kills
off the parity violating cross term, which would moreover
leave one with an imaginary Lagrangian in (28) if α ¼ �i.
So in one sense, our result appears to emerge from a theory
equivalent to that studied in [28] allowing torsion along
with the “nonminimally coupled” fermions (27) in the limit
fα; γg → f�i;∞g.
On the other hand, the authors of [24] consider the so-

called Fairchild theory [30], which is similar to (8) except
with an Einstein-Hilbert term linear in Fab

μν . After linearizing
about flat space (eaμ ≈ δaμ), decomposing the spin connection
into irreducible components, and neglecting terms quadratic
in the torsion, it is shown that healthy fermionic tree-level
interactions decouple from the ghost mode in the spin
connection; however, the ghost appears in (classical) gravi-
tational backreaction. The term linear in the field strength
plays an important role in that construction; repeating their
calculation verbatim without the linear term results solely in
trivial solutions A ¼ constant. However, working to higher
orders in torsion or relaxing linearization assumption may
illuminate interesting classical features of (8).
There is also a connection between the model con-

sidered in this work and the so-called BF formulation of
general relativity [31–33]. That story begins with an
SLð2;CÞ action written down by Plebánski in [34], which
is a genuine gauge theory without a priori knowledge
of the spacetime metric. The field content includes the
connection’s curvature F (appearing at first order in the
Lagrangian), an additional two-form field B, and Lagrange
multipliers. General relativity is recovered by invoking
appropriate reality conditions before identifying the
spacetime metric as a nontrivial contraction of three copies
of the B field. Yang-Mills theory can be cast in a very
similar manner in the BF formalism; starting with L ∼
BA ∧ FA þ g2BA ∧ �BA and integrating out BA leaves
L ∼ 1

g2 ð�FA ∧ FAÞ. The gravity theory quadratic in the

spin connection’s field strength likely can be obtained by an
analogous procedure.

We have additionally discussed various approaches
towards taming the potential pathologies associated with
a noncompact gauge theory. The essential conclusion from
each approach—BRST, dynamical Killing form, or gauge
fixing—is that the healthy states transform in the maximal
compact subgroup Oð3Þ ⊂ SOð3; 1Þ. A natural setting for
this to be realized without explicitly imposing a gauge
fixing choice is a universe is filled with a ghost conden-
sate [23].
At loop level, the noncompactness of SOð3; 1Þ presents a

subtle difficulty due to the fact that any unitary cut
necessitates the spin connection be well defined as an
asymptotically free field, as we discuss in Sec. II. The mass
dimension of the current-current interaction is d ¼ 6 and
since we considered 3þ 1 dimensional spacetime, the
derived operator is irrelevant in agreement with the expect-
ation that our result is only valid in the IR. This is also in
analogy with the usual four-Fermi interaction in the
electroweak theory.
Throughout this paper, we did not specify the properties

of the fermion field beyond assuming it is a Dirac spinor.
We can therefore consider a few different scenarios that we
will pursue in upcoming work. First, it is possible that the
spin connection interacts universally with all fermions in
the Standard Model, as one may expect from pure general
relativity. This would imply a new right-right interaction
between standard model fermions that has not been
observed. It is interesting to entertain identifying such
right-handed term as a right-handed sterile neutrino.
Alternatively, if the spin connection is blind to the

Standard Model, the fermions considered here could be
from a dark sector. The chiral properties of the dark
fermions would naturally differ from the Standard Model
in that case. Finally, we can consider the exciting possibil-
ity that the right-handed interaction corresponds to the dark
sector, while the left-handed interaction is that of the
Standard Model weak force. This would be an elegant
realization of not only graviweak unification [35], but a
“natural” dark matter candidate as well, with properties
uniquely distinguishable from the Standard Model. There
are various other approaches to relating the Standard
Model to gravity, such as the noncommutative approaches
of [36–41]. The noncommutative geometrical approach has
the virtue of preserving only universal terms in the induced
action following the process of integrating out gravitational
degrees of freedom [36,37], where as our result leaves a
nonuniversal operator. However, as is common in unified
theories, the noncommutative approach necessitates enlarg-
ing the gauge group while we were able to focus solely on
the Lorentz group.
From the perspective of effective field theory, it is

essential for the Yang-Mills theory discussed in this work
to be directly connected to classical gravity. The simplest
way to proceed would be to include the term linear in Fab

μν ,
which corresponds to the Ricci scalar after invoking the
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metricity constraint. A possible route towards preserving the
physics of the fermion-spin connection interaction is to
decompose the connection into a background piece plus a
(quantum) perturbation, A ¼ Āþ AQ. The classical part Ā
would then be determined by the metricity constraint, while
AQ would play a role in the interacting quantum theory.
Inserting the decomposition into the theory L ∼ F − 1

4
F2

results in terms that are beyondwhatwe have analyzed in this
work, with potential consequences for classical observables.
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