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We present a new family of charged C metrics in N ¼ 2 gauged supergravity in four dimensions. The
double Wick rotation of the C metric allows us to bring our solution into a different family of the C metrics
previously found by Lü and Vázquez-Poritz. In the case of zero acceleration limit, our solution with
vanishing charges reduces to the scalar haired black holes in anti–de Sitter space with regular horizons.
Nevertheless, it turns out that each family of neutral solutions fails to veil the curvature singularity by the
event horizon, showing that neither of them represents the accelerated black holes with a scalar hair.
Physical solutions without visible curvature singularities are obtained only in the case of nonvanishing
charges. Causal structures of the solution are spelled out in detail. We also present conditions under which
the solution preserves supersymmetry.
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I. INTRODUCTION

Black hole solutions in anti–de Sitter (AdS) space have
drawn considerable attention from the perspective of holog-
raphy. Because of the admirable nature of duality, classical
AdS black holes have provided an extremely valuable arena
for exploring the strongly coupled dual gauge theories and
the condensed matter physics applications.
In the asymptotically flat spacetimes, stationary black

holes in vacuum are essentially unique and identified entirely
by mass and angular momentum [1–6]. Despite the primary
importance of AdS black holes, similar classification of
black holes in AdS space is a much more difficult task to
implement. There is no known formalism of comparable
power for exhaustive classification of AdS black holes, even
though one centers on the static case. Some progress for
partial classification has been achieved under fairly restric-
tive assumptions [7,8]. The construction of exact solutions is
likewise unfeasible in a straightforward fashion, since the
cosmological constant or the scalar field potential destroys
the symmetry of the reduced target space of the nonlinear
sigma model, which prevents us from generating new
solutions from simpler seed solutions [9].
In the teeth of the above adversity, it turns out that AdS

black holes enjoy substantially rich varieties and are
endowed with physically interesting properties. Of most

prominence is that some black holes admit scalar “hairs.”
Within the framework of supergravity, exact solutions
describing static AdS black holes with a nontrivial
scalar configuration have been constructed in [10,11] (see
also [12–16]).1 These solutions embody the manifestation of
nonuniqueness, since the theory under study obviously
possesses the Schwarzschild-AdS black hole for which
the scalar field is frozen to a constant. A more unanticipated
and tantalizing facet is that these scalar haired black holes
themselves are not unique. Reference [21] has presented
a new scalar haired black hole in the same theory as
in [10,11]. These works prompt the questions with regard
to the diversity of AdS black holes.
In the present paper, we undertake this problem by

focusing on the accelerating black holes broadly termed
the C metrics. The vacuum C metric [22–24] describes a
pair of black holes undergoing uniform acceleration in
opposite directions [25]. The acceleration of black holes is
provided by a conical deficit angle corresponding to the
cosmic string extending out to infinity or a strut with a
negative tension that stretches between two black holes.
Specifically, the C metric can be realized as a perturbation
of the Schwarzschild black hole with a distributional stringy
source [26]. The vacuum Cmetric falls into the Petrov type-
D and Weyl class of solutions [27]. Causal structures and
physical properties of the vacuum C metric have been fully
investigated in [28–31]. The C metric in AdS has been also
studied intensively from various points of view: causal
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1Many authors have explored scalar haired AdS black holes
with diverse potentials. A nonexhaustive list of references for a
canonical scalar field in Einstein’s gravity includes [17–20].
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structures [32–34], thermodynamics [35–39], minimal sur-
faces [40], and quasinormal modes [41–43]. Here we
consider the supergravity generalization of the AdS C
metric, for which the AdS vacuum is realized by the scalar
field potential rather than a pure cosmological constant.
A charged C metric in N ¼ 2 supergravity has been

discovered in [44,45]. The bosonic Lagrangian studied
in [44,45] consists of Einstein-Maxwell-dilaton theory with
an arbitrary coupling constant and is identical to the cases
considered in [10,11]. The C metric solution in [44,45]
reduces in the zero acceleration limit to the spherical
solution in [10,11]. It is worth mentioning that the spheri-
cally symmetric solution in [10,11] describes a naked
singularity instead of a black hole in the neutral case,
whereas the spherical solution in [21] allows a parameter
range in which the event horizon exists. It is then pertinent
to deduce that the neutral C metric in [44,45] would
represent a pair of accelerated naked particles and there
should exist another family of “hairy C metrics” that
incorporates the spherical solution in [21]. This is a prime
motivation of the present paper.
Bearing these prospects in mind, we present a new

charged C metric in N ¼ 2 supergravity. We demonstrate
that our solution is converted to the one in [44,45] via
double Wick rotation. This transformation is missing in
the zero acceleration limit and properly accounts for the
existence of two distinct hairy solutions within the same
theory. The emphasis of the present article is placed on the
causal structure of theCmetric solution. In the neutral limit,
our solution displays some peculiarities, most notably the
event horizon disappears in any range of parameters. This
comes as a surprise since the neutral solution reduces in the
vanishing acceleration case to the hairy black hole solution
in [21]. This proclaims that the zero acceleration limit of the
solution is discontinuous. Nevertheless, the charged solu-
tion can have a parameter range in which the horizon exists.
We organize the present article as follows. In the next

section, we give a quick review ofN ¼ 2 supergravity with
Abelian Fayet-Iliopoulos gaugings. Upon truncation, we
will see that the bosonic theory reduces to the Einstein-
Maxwell-dilaton gravity with a potential that is expressed
in terms of a real superpotential. Section III provides our
new C metric and discusses various limits of the solution.
Causal structures and physical properties of the solution are
examined in Sec. IV. Section V concludes our paper with
short summary and future outlooks. Supersymmetry of the
C metric will be investigated in the Appendix. We employ
the units c ¼ 8πG ¼ 1 throughout the paper.

II. FAYET-ILIOPOULOS GAUGED
SUPERGRAVITY

Let us consider the N ¼ 2 gauged supergravity coupled
to nV number of Abelian vector multiplets in four dimen-
sions [46] (see, e.g., [47–49] for recent reviews). We follow
the conventions of [50]. The bosonic field contents consist

of the vectors AI
μ (I ¼ 0; 1;…; nV) and the complex scalars

zα (α ¼ 1;…; nV). These scalars parametrize the special
Kähler manifold corresponding to the nV-dimensional
Hodge-Kähler manifold endowed with a symplectic bun-
dle. The symplectic bundle is characterized by a covariantly
holomorphic section

V ¼
�
XI

FI

�
; DᾱV ¼ ∂ᾱV −

1

2
ð∂ᾱKÞV ¼ 0; ð2:1Þ

whereK ¼ Kðzα; z̄αÞ is the Kähler potential andDα denotes
the Kähler covariant derivative. The covariantly holomor-
phic section obeys the following symplectic constraint:

hV; V̄i≡ XIF̄I − FIX̄I ¼ i; hV; ∂αVi ¼ 0; ð2:2Þ

where h; i stands for the symplectic inner product induced
by the symplectic metric Ω ¼ iσ2 ⊗ InV . Writing

V ¼ eK=2v; v ¼
�
ZI

YI

�
; ð2:3Þ

v denotes the symplectic section ∂ᾱv ¼ 0. Assuming the
invertibility of the matrix ðXI

∂αXIÞ, the symplectic con-
straint implies the existence of a prepotential F satisfying

YI ¼
∂

∂ZI FðZÞ; FðλZÞ ¼ λ2FðZÞ: ð2:4Þ

Throughout the paper, we assume the existence of the
prepotential.
The coupling between the scalars zα and the vectors AI

μ

is controlled by the complex matrix N IJ which is defined
by the relations

FI ¼ N IJXJ; DᾱF̄I ¼ N IJDᾱX̄J: ð2:5Þ

Then, the bosonic Lagrangian reads

L ¼ 1

2
ðR − 2VÞ⋆1 − gαβ̄dz

α ∧ ⋆dz̄β̄ þ 1

2
IIJFI ∧ ⋆FJ

þ 1

2
RIJFI ∧ FJ; ð2:6Þ

where we have written IIJ ¼ ImN IJ, RIJ ¼ ReN IJ, and
FI ¼ dAI is the electromagnetic field strength. The scalar
potential is

V ¼ −2gIgJðIIJ þ 8X̄IXJÞ; ð2:7Þ

where IIJ is the inverse of IIJ and gI denote the Fayet-
Iliopoulos coupling constants. In what follows, we
assume gI > 0.
Einstein’s equations derived from the Lagrangian

(2.6) read
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Rμν −
1

2
Rgμν ¼ Tμν; ð2:8Þ

where

Tμν¼−IIJ
�
FI
μρF

Jρ
ν −

1

4
gμνFI

ρσFJρσ

�

þ2gαβ̄

�
∇ðμzα∇νÞz̄β̄−

1

2
gμν∇ρzα∇ρz̄β̄

�
−Vgμν: ð2:9Þ

The gauge fields obey

dðIIJ⋆FJ þ RIJFJÞ ¼ 0: ð2:10Þ

Finally, the scalar field equations boil down to

∇2zα þ TΓα
βγ∇μzβ∇μzγ − gαβ̄∂β̄V þ 1

4
gαβ̄
�
ð∂β̄IIJÞFI

ρσFJρσ

− ð∂β̄RIJÞFI
ρσ⋆FJρσ

�
¼ 0; ð2:11Þ

where TΓα
βγ is the affine connection of the target space.

A. Model

We focus on a one-parameter family of N ¼ 2 super-
gravity models in which the prepotential is given by [21]

FðXÞ ¼ −
i
4
ðX0ÞnðX1Þ2−n; ð2:12Þ

corresponding to nV ¼ 1 involving a single complex scalar.
For the special choice of the parameters n ¼ 1; 1=2, and
3=2, the theory is obtained by the truncation of what is
called the STU model and is embedded into the 11-
dimensional supergravity [51,52]. The prepotential of the
STU model is

FSTUðXÞ ¼ −
i
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X0X1X2X3

p
; ð2:13Þ

for which the three complex scalars zi ¼ Xi=X0 parametrize
the coset ½SLð2;RÞ=SOð2Þ�3. The n ¼ 1 is obtained when
a single scalar field is turned on z2 ¼ z3 ¼ 0, while the
n ¼ 1=2; 3=2 cases correspond to the diagonal truncation
z1 ¼ z2 ¼ z3 ¼ z [53].
Setting Z0 ¼ 1 and Z1 ¼ z, the symplectic vector reads

v ¼

0
BBBBB@

1

z

− i
4
nz2−n

− i
4
ð2 − nÞz1−n

1
CCCCCA; ð2:14Þ

and the Kähler potential is given by

e−K¼ 1

4

�
nðz2−nþ z̄2−nÞþð2−nÞðz1−nz̄þzz̄1−nÞ

�
: ð2:15Þ

When n ¼ 1, 1=2, and 3=2, the scalar manifold corre-
sponds to the coset SUð1; 1Þ=Uð1Þ.
To proceed, we would like to further truncate the theory

to the real scalar z ¼ z̄. This is possible if Imz ¼ 0 is
consistent with the equations of motion (2.11). After some
computations, one can ascertain that this is indeed the case,
as far as we concentrate on the purely electrically or
magnetically charged solutions,

FI ∧ FJ ¼ 0: ð2:16Þ

In this truncated case, the condition ImN IJ < 0 requires
0 < n < 2 and the bosonic Lagrangian is simplified to

L¼ 1

2
ðR− 2VÞ⋆1− 1

2
dΦ ∧ ⋆dΦ−

1

8
ne�

ffiffiffiffiffiffiffiffi
2ð2−nÞ

n

p
ΦF0 ∧ ⋆F0

−
1

8
ð2− nÞe∓

ffiffiffiffiffi
2n
2−n

p
ΦF1 ∧ ⋆F1; ð2:17Þ

where we have set z ¼ expð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=½nð2 − nÞ�p

ΦÞ. The
scalar potential V is expressed in terms of the real super-
potential W as

V ¼ 4

�
2ð∂ΦWÞ2 − 3W2

�
; ð2:18Þ

where

WðΦÞ ¼ gIXI ¼ g0e
∓ ffiffiffiffiffi

2−n
2n

p
Φ þ g1e

� ffiffiffiffiffiffiffiffi
n

2ð2−nÞ
p

Φ: ð2:19Þ

The present theory (2.17) has the following symmetry:

n↔ 2−n; Φ↔−Φ; g0 ↔ g1; F0 ↔F1; ð2:20Þ

corresponding to the interchange of X0 and X1.
The scalar potential (2.18) admits at most two critical

points,

Φ0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2 − nÞ

2

r
log

�
g0ð2 − nÞ

g1n

�
;

Φ1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2 − nÞ

2

r
log

�
g0ð2 − nÞð1 − 2nÞ

g1nð3 − 2nÞ
�
: ð2:21Þ

Under the present proviso gI > 0, the critical point Φ0

exists for all values of 0 < n < 2, while the critical point
Φ1 is absent for 1=2 ≤ n ≤ 3=2. Both of these critical
points correspond to the AdS vacua. The former critical
point Φ0 also extremizes the superpotential (2.19), i.e., this
is a supersymmetric AdS vacuum. At Φ ¼ Φ0, we have

V ¼ −3g2; ∂
2
ΦV ¼ −2g2; ð2:22Þ
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where g denotes the reciprocal of the AdS radius given by

g≡ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g0
n

�
n
�

g1
2 − n

�
2−n

s
: ð2:23Þ

Notably, the mass square m2 ¼ ∂
2
ΦV lies in the unitary

range m2
BF < m2 < m2

BF þ g2, where m2
BF ¼ −9g2=4 is the

Breitenlohner-Freedman bound [54]. When the mass
parameter of the AdS extremum lies in this characteristic
range, the scalar field may be subjected to the “mixed”
boundary conditions. In this case, the slower fall-off mode
of the scalar field also survives and backreacts nontrivially
on the metric.2 Despite the apparent divergence of conven-
tional charges, one can still find generators of asymptotic
symmetries and the corresponding charges of finite value.
To simplify the system further, let us relabel

ϕ ¼
ffiffiffi
2

p
ðΦ −Φ0Þ; α ¼∓

ffiffiffiffiffiffiffiffiffiffiffi
2 − n
n

r
∈ R;

ðF0; F1Þ →
�
g0α2

g1

� 1

1þα2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

α

�
g1
g0α

F0; F1

�
; ð2:24Þ

for which

VðϕÞ ¼ 4½4ð∂ϕWÞ2 − 3W2�;

WðϕÞ ¼ g
2ð1þ α2Þ

�
e
α
2
ϕ þ α2e−

ϕ
2α

�
: ð2:25Þ

The Lagrangian is then reduced to

L ¼ 1

2
ðR − 2VðϕÞÞ⋆1 − 1

4
dϕ ∧ ⋆dϕ

− e−αϕF0 ∧ ⋆F0 − e
1
αϕF1 ∧ ⋆F1: ð2:26Þ

The symmetry (2.20) now amounts to

α ↔ −
1

α
; F0 ↔ F1: ð2:27Þ

On top of this, the above Lagrangian (2.26) admits a trivial
symmetry

α ↔ −α; ϕ ↔ −ϕ: ð2:28Þ

This enables us to focus on the domain α > 0, which we
assume hereafter.
The values α ¼ 1,

ffiffiffi
3

p
, and 1=

ffiffiffi
3

p
are special since

theories with these special parameters can be embedded
into the maximal N ¼ 8 gauged supergravity.

III. NEW C METRIC SOLUTION

A new gravitational solution for the system (2.26)
with (2.25) is

ds2 ¼ 1

A2ðx − yÞ2
"
hðxÞ 2α2

1þα2

 
−hðyÞ1−α

2

1þα2ΔyðyÞdt2

þ dy2

hðyÞ1−α
2

1þα2ΔyðyÞ

!
þ hðyÞ 2α2

1þα2

 
dx2

hðxÞ1−α
2

1þα2ΔxðxÞ

þ hðxÞ1−α
2

1þα2ΔxðxÞdφ2

!#
; ð3:1Þ

ϕ ¼ −
2α

1þ α2
log

�
hðyÞ
hðxÞ

�
; A0 ¼ q0xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p dφ;

A1 ¼ αq1xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
hðxÞ dφ; ð3:2Þ

where

hðxÞ ¼ 1þ Ar0x; ð3:3Þ

and

ΔyðyÞ ¼ −a0 − 2a1y − a2y2 þ
Aq20y

3

r0
−
Aq21y

3

r0hðyÞ
; ð3:4aÞ

ΔxðxÞ ¼ a0 þ 2a1xþ a2x2 −
Aq20x

3

r0
þ Aq21x

3

r0hðxÞ

þ g2

A2
hðxÞ3α

2−1
1þα2 : ð3:4bÞ

Here, A, r0, q0;1, a0;1;2 are arbitrary constants. Since both of
the gauge fields are magnetic, the condition (2.16) for the
consistent truncation is indeed fulfilled.
Inasmuch as the hypersurface orthogonality of Killing

vectors ∂=∂t and ∂=∂φ, the metric (3.1) is static and axially
symmetric. The scalar field and the gauge fields are also
invariant under these symmetries. An elementary compu-
tation verifies that the solution (3.1) belongs to the Petrov
type-D class. These properties are shared by the conven-
tional C metric in the Einstein-Maxwell-Λ system.

2Denoting the conformal dimensions of the scalar field as
Δ� ¼ ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2g−2 þ 9

p
Þ=2, the scalar field behaves as Φ ∼

Φ−=rΔ− þΦþ=rΔþ around the AdS boundary (r → ∞). When
m2 ≥ m2

BF þ g2, we must impose the Dirichlet boundary con-
dition Φ− ¼ 0 since the slower fall-off mode Φ− is not normal-
izable. Whenm2

BF ≤ m2 ≤ m2
BF þ g2, which occurs in the present

case, both modes are normalizable and the slower fall-off mode
Φ− might be nonvanishing. See [55–57] for details.
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The solution (3.1) is not manifestly symmetric
under (2.27). In order to illustrate this symmetry, we
adopt new variables

x ¼ −
x0

1þ Ar0x0
; y ¼ −

y0

1þ Ar0y0
; ð3:5Þ

with the property hðxÞ ¼ 1=hðx0Þ. In terms of these
“primed” coordinates, the metric, scalar field, and gauge
fields are indeed form invariant, provided

q00 ¼ q1; q01 ¼ −q0; a00 ¼ a0;

a01 ¼ −a1 þAr0a0; a02 ¼ a2 − 2Ar0a1 þA2r20a0: ð3:6Þ

This is no more than the relabeling of parameters, i.e., the
transformation (2.27) maps a solution into another one
within the same family of solutions.
We remark that some of the seven parameters (A, r0, q0;1,

a0;1;2) of the solution are unphysical and gauged away. This
becomes evident by noting that the solution (3.1) admits the
following shift and scaling symmetry:

x ¼ b0x00 þ b1; y ¼ b0y00 þ b1;

t ¼ b2t00; φ ¼ b2φ00; ð3:7Þ

together with

A00 ¼ δ1

ffiffiffiffiffi
b0
b2

s
hðb1Þ

−α2

1þα2A; r000 ¼ δ1
ffiffiffiffiffiffiffiffiffiffi
b0b2

p
hðb1Þ−

1

1þα2r0;

q000 ¼ δ2b0b2q0; q001 ¼ δ3
b0b2
hðb1Þ2

q1;

a002 ¼
�
a2 −

3Ab1q20
r0

þ q21
r20

ð1 − hðb1Þ−3Þ
�
b0b2hðb1Þ

1−α2

1þα2 ;

a001 ¼
�
a1 þ a2b1 −

3Ab21q
2
0

2r0
þ Ab21q

2
1ð1þ 2hðb1ÞÞ
2r0hðb1Þ2

�
b2hðb1Þ

1−α2

1þα2 ;

a000 ¼ −Δyðb1Þ
b2
b0

hðb1Þ
1−α2

1þα2 : ð3:8Þ

Here, b0, b1, and b2 are constants and δ1;2;3 ¼ �1. Suppos-
ing a2 ≠ 0, this three-parameter family of coordinate free-
dom permits us to scale a0 and a2, and take a1 as any value
we wish. Moreover, the appropriate sign choice of δ1 ¼ �1
allows us to choose A > 0 without loss of generality.
In the following, we would like to view the constant A

as an acceleration parameter. Unfortunately, the present
metric (3.1) fails to admit the A → 0 limit in the present
form, due to the overall factor A−2. To overcome this
difficulty, let us introduce rescaled coordinates

r ¼ −
1

Ay
; τ ¼ 1

A
t; ð3:9Þ

in terms of which one can recast the metric and the scalar
field into

ds2 ¼ 1

ð1þ ArxÞ2
"
hðxÞ 2α2

1þα2

 
−fðrÞ1−α

2

1þα2ΔrðrÞdτ2

þ dr2

fðrÞ1−α
2

1þα2ΔrðrÞ

!
þ r2fðrÞ 2α2

1þα2

 
dx2

hðxÞ1−α
2

1þα2ΔxðxÞ

þ hðxÞ1−α
2

1þα2ΔxðxÞdφ2

!#
; ð3:10Þ

ϕ ¼ −
2α

1þ α2
log

�
fðrÞ
hðxÞ

�
: ð3:11Þ

The gauge fields are still given by (3.2). Here, we have
defined

ΔrðrÞ ¼ −a2 þ 2a1Ar − a0A2r2 −
q20
r0r

þ q21
r0rfðrÞ

;

fðrÞ ¼ 1 −
r0
r
: ð3:12Þ

We are now in a position to discuss the A → 0 limit
of (3.10). Nontrivial relations arise only from the structure
function ΔxðxÞ around A ¼ 0 as

a2 ¼ OðA0Þ; a1 ¼ −
ð3α2 − 1Þg2r0
2Að1þ α2Þ þOðA0Þ;

a0 ¼ −
g2

A2
þOðA0Þ: ð3:13Þ

Defining

k ¼ −a2 −
ðα2 − 1Þð3α2 − 1Þ

ð1þ α2Þ2 g2r20; ð3:14Þ
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the coordinate freedom (3.7) allows us to normalize k to be
�1 or 0 and the OðA0Þ term in a1 to vanish. The last
freedom is to scale the OðA0Þ term in a0. Requiring the
metric keeps the Lorentzian signature in the g ¼ q0;1 ¼ 0

case for any value of k, one finds that the OðA0Þ term in a0
should be scaled to be þ1, i.e.,

ΔrðrÞ ¼ k − A2r2 −
q20
r0r

þ q21
r0rfðrÞ

þ g2
�
r2 −

3α2 − 1

1þ α2
r0r

þ ðα2 − 1Þð3α2 − 1Þ
ð1þ α2Þ2 r20

�
; ð3:15aÞ

ΔxðxÞ ¼ 1 − kx2 −
Aq20
r0

x3 þ Aq21x
3

r0hðxÞ
þ g2

�
hðxÞ3α

2−1
1þα2 − 1

A2

−
3α2 − 1

ð1þ α2ÞA r0x −
ðα2 − 1Þð3α2 − 1Þ

ð1þ α2Þ2 r20x
2

�
:

ð3:15bÞ

Bringing back to the original coordinate y, the structure
function ΔyðyÞ reads

ΔyðyÞ ¼ −1þ ky2 þ Aq20
r0

y3 −
Aq21y

3

r0hðyÞ

þ g2
�
1

A2
þ 3α2 − 1

ð1þ α2ÞA r0y

þ ðα2 − 1Þð3α2 − 1Þ
ð1þ α2Þ2 r20y

2

�
: ð3:16Þ

Quite surprisingly, the terms proportional to g2 in ΔxðxÞ
vanish when α ¼ 1,

ffiffiffi
3

p
, and 1=

ffiffiffi
3

p
.

It turns out that the solution is characterized by five
parameters k, A, r0, q0;1, while g and α parametrize the
theory (2.26). In the following subsections, we elucidate
the physical meaning of the above parameters by taking
various limits of the solution (3.1). We will see that k
controls the topology, A is the acceleration, r0 encodes the
mass, and q0;1 denote magnetic charges.

A. r0 = q0;1 = 0 case: AdS

If we set r0 ¼ q0;1 ¼ 0, the scalar field and the gauge
fields become trivial. The metric is now simplified to

ds2 ¼ 1

A2ðx − yÞ2
�
−ΔyðyÞdt2 þ

dy2

ΔyðyÞ
þ dΣ2

kðx;φÞ
�
;

ð3:17Þ

where ΔyðyÞ ¼ g2A−2 − 1þ ky2 and

dΣ2
kðx;φÞ≡ dx2

1 − kx2
þ ð1 − kx2Þdφ2: ð3:18Þ

The two-dimensional metric dΣ2
k stands for the maximally

symmetric space with a constant scalar curvature 2R ¼ 2k.
The angular coordinate φ has a canonical periodicity 2π
for k ¼ �1. Indeed, the above metric satisfies Rμνρσ ¼
−2g2gμ½ρgσ�ν and recovers AdS written in the unusual
coordinates. The above coordinate patch is the analog of
the Rindler coordinate in Minkowski spacetime. To
illustrate this, let us consider a static observer sitting at
jyj → ∞ with constant x;φ. We see that this observer
undergoes an acceleration aμ ¼ uν∇νuμ with constant
magnitude jaμj ¼ A.
To demonstrate the explicit coordinate transformation to

more familiar AdS patches, we tentatively suppose g2 > A2

and define new coordinates as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðx; yÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − A2

p
gAðx − yÞ

; w ¼ g2x − A2ðx − yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðx; yÞ

p ;

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − A2

p
Ag

t; ð3:19Þ

where F0ðx; yÞ ≡ g2½g2 − A2ð1 − ky2Þ� − A2kðg2 − A2Þ
ðx − yÞ2. For simplicity of the argument, we shall restrict
ourselves to the F0 > 0 case. In terms of these coordinates,
the metric (3.17) reduces to the standard coordinates of
AdS as

ds2 ¼−ðkþ g2R2ÞdT2þ dR2

kþ g2R2
þR2dΣ2

kðw;φÞ: ð3:20Þ

In the case of g2 < A2 with k ¼ 0;−1, and F0 > 0, the
metric fails to be Lorentzian, which we shall not pursue
any further. For g2 < A2 with k ¼ 1 and F0 > 0, we set
R → −iR and T → iT in (3.19), yielding the static AdS
metric in the hyperbolic chart,

ds2 ¼ −ð−1þ g2R2ÞdT2 þ dR2

−1þ g2R2

þ R2

�
dw2

w2 − 1
þ ðw2 − 1Þdφ2

�
: ð3:21Þ

For A2 ¼ g2, it turns out that only the k ≠ 0 case
provides the nondegenerate metric. Under this condition,
we perform the following coordinate transformation:

z ¼ x − y
y

; ρ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p

y
; ð3:22Þ

yielding

ds2 ¼ 1

g2z2

�
−kdt2 þ dz2 þ k−1dρ2 þ ρ2dφ2

�
: ð3:23Þ
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Since the metric in the parentheses corresponds to the
Minkowski spacetime, the spacetime (3.23) reduces to AdS
written in the Poincarè coordinates.

B. A= 0 case: Hairy black hole

Since the parameter A measures the acceleration of
a fiducial observer, let us next focus on the solution
of vanishing acceleration. Setting A ¼ 0 in (3.10), the
solution reads

ds2 ¼ −fðrÞ1−α
2

1þα2ΔrðrÞdτ2 þ
dr2

fðrÞ1−α
2

1þα2ΔrðrÞ
þ r2fðrÞ 2α2

1þα2dΣ2
kðx;φÞ; ð3:24Þ

ϕ ¼ −
2α

1þ α2
log fðrÞ; A0 ¼ q0xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p dφ;

A1 ¼ q1αxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p dφ; ð3:25Þ

where

ΔrðrÞ ¼ k −
q20
r0r

þ q21
r0rfðrÞ

þ g2
�
r2 −

3α2 − 1

1þ α2
r0r

þ ðα2 − 1Þð3α2 − 1Þ
ð1þ α2Þ2 r20

�
: ð3:26Þ

This two charged solution has been derived in [14].3 As
evident from the metric form, the locus of the event horizon
is the largest root rþ of ΔrðrÞ ¼ 0. If the event horizon
conceals both of the curvature singularities at r ¼ 0 and
r ¼ r0, the solution (3.24) is qualified as a static black hole
in AdS.
To start with, it is instructive to see the asymptotic

behavior of the solution (3.24). In terms of the areal radius

SðrÞ ¼ rfðrÞ α2

1þα2 , the metric and the scalar field are
expanded around r → ∞ as

ds2 ≃ −
�
k −

2M
S

þ g2S2
�
dτ2 þ dS2

kþ γ − 2M0=Sþ g2S2

þ S2dΣ2
kðx;φÞ;

ϕ ≃
ϕ1

S
þ ϕ2

S2
; ð3:27Þ

where

M ¼ ð1 − α2Þr0
6ð1þ α2Þ3 ½3kð1þ α2Þ2 þ g2r20ð3α2 − 1Þðα2 − 3Þ�

þ q20 − q21
2r0

; ð3:28Þ

M0 ¼ M þ 2g2r30α
2ðα2 − 1Þ

3ð1þ α2Þ3 ; ð3:29Þ

γ ¼ α2g2r20
ð1þ α2Þ2 ; ð3:30Þ

and

ϕ1 ¼
2r0α
1þ α2

; ϕ2 ¼ −
r20αðα2 − 1Þ
ð1þ α2Þ2 : ð3:31Þ

The unfamiliar term γ originates from the existence of
slower fall-off mode ϕ1 of the scalar field around the AdS
vacuum [56], which is intricately related to the notion of
multitrace deformations of conformal field theory.
According to the prescription given in [56,58], the physical
mass is given by M, rather than M0. This outcome is
convincingly justifiable by the first law of black hole
thermodynamics,

δM ¼ κ

8π
δAreaþΦ0δQ0 þΦ1δQ1; ð3:32Þ

where κ and Area correspond, respectively, to the surface
gravity—associated with the time translation ∂=∂τ—and
the area of the event horizon r ¼ rþ,

κ ¼ 1

2
fðrþÞ

1−α2

1þα2Δ0
rðrþÞ; Area ¼ 4πS2ðrþÞ: ð3:33Þ

Here we have assumed Σk to be compact with area 4π.
The magnetic charges and magnetostatic potentials are
given by

Q0 ¼
q0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ; Q1 ¼
αq1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ; Φ0 ¼
Q0

rþ
;

Φ1 ¼
Q1

rþfðrþÞ
: ð3:34Þ

Thermodynamic aspects of this solutions have been dis-
cussed in [59].
Since ΔrðrÞ allows at most four real roots, the classi-

fication of horizons requires a formidable work, which we
shall not pursue further in this paper. In lieu of this,
let us consider a simpler case in which the solution is
neutral q0 ¼ q1 ¼ 0. In this case, the solution has been

3Set αthere ¼ g, Lthere ¼ 1=g, xthere ¼ fðrÞ1−α
2

1þα2 , and ηthere ¼
ð1þ α2Þ=½gr0ð1 − α2Þ� in Eq. (3.25) of [14].
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already constructed in [21] and rederived via McVittie’s
ansatz in [60]. The solution (3.24) asymptotically r → ∞
approaches to AdS and admits a parameter range in which
the event horizon r ¼ rþ exists at the largest root rþ of
ΔðrÞ ¼ 0 outside the curvature singularities at r ¼ 0 and
r ¼ r0. We summarize the results of [21] in Table I.4 It
therefore follows that the neutral solution describes a hairy
black hole in AdS. This implies the violation of the
uniqueness conjecture of static black holes, since the
present theory (2.26) admits a Schwarzschild-AdS black
hole without a scalar hair.

C. g= 0 case

Because of V ∝ g2, setting g ¼ 0 gives rise to the
massless scalar. In this case, one obtains the dilatonic C
metric in the asymptotically flat space in a broad sense.
Since the term of the noninteger power of hðxÞ drops out of
Δx, the resulting metric is akin to the singly charged
dilatonic C metric in [61].

D. Double Wick rotation and comparison
with the literature

Let us consider the general structure functions (3.4). We
then perform the following double Wick rotation:

x ¼ ŷ; y ¼ x̂; t ¼ iφ̂; φ ¼ it̂;

q0 ¼ −iq̂0; q1 ¼ −iq̂1: ð3:35Þ

This amounts to the simultaneous interchange of the
role of (x, y) and (t;φ). Note that the flip of t and φ
involves the double Wick rotation to keep the Lorentzian
signature. Then, the metric reduces to another family of
C metrics,

ds2 ¼ 1

A2ðx̂ − ŷÞ2
"
hðx̂Þ 2α2

1þα2

 
−hðŷÞ1−α

2

1þα2Δ̂ŷðŷÞdt̂2

þ dŷ2

hðŷÞ1−α
2

1þα2Δ̂ŷðŷÞ

!
þ hðŷÞ 2α2

1þα2

 
dx̂2

hðx̂Þ1−α
2

1þα2Δ̂x̂ðx̂Þ

þ hðx̂Þ1−α
2

1þα2Δ̂x̂ðx̂Þdφ̂2

!#
; ð3:36Þ

ϕ ¼ 2α

1þ α2
log

�
hðŷÞ
hðx̂Þ

�
; A0 ¼ q̂0ŷffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p dt̂;

A1 ¼ αq̂1ŷffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
hðŷÞ dt̂; ð3:37Þ

where the structure functions are written explicitly as

Δ̂ŷðŷÞ≡ a0 þ 2a1ŷþ a2ŷ2 þ
Aq̂20
r0

ŷ3 −
Aq̂21ŷ
r0hðŷÞ

þ g2

A2
hðŷÞ3α

2−1
1þα2 ; ð3:38Þ

Δ̂x̂ðx̂Þ≡ −a0 − 2a1x̂ − a2x̂2 −
Aq̂20
r0

x̂3 þ Aq̂21x̂
r0hðx̂Þ

: ð3:39Þ

As is obvious from the construction, this solution solves the
field equations for the system (2.26) as well. The differences
between the metrics (3.1) and (3.36) are the precise form of
the structure functions, the sign of the scalar field, and the
electric/magnetic configurations of the gauge potentials.
As it turns out, the solution (3.36) incorporates the one
found in [44,45]. To facilitate the comparison with the
notation in [44], it is opportune to introduce the following:

r̂ ¼ −
1

Aŷ
; τ̂ ¼ t̂

A
; Δ̂r̂ðr̂Þ ¼ a2 − 2a1Ar̂

þ a0A2r̂2 −
q̂20
r0r̂

þ q̂21
r0rfðr̂Þ

þ g2r̂2fðr̂Þ3α
2−1

1þα2 : ð3:40Þ

Then, the metric (3.36) reduces to the “hatted” form
of (3.10), for which the A → 0 limit can be taken. Using
the freedom corresponding to (3.7), one can fix the
parameters as

TABLE I. The parameter range under which the solution (3.24) describes a black hole that is regular on and outside the event horizon
rþ > maxð0; r0Þ. f1−3ðαÞ are defined by f1ðαÞ ¼ ð1þ α2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðα2 − 1Þð1 − 3α2Þj

p
, f2ðαÞ ¼ ð1þ α2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðα2 − 1Þð3 − α2Þj

p
,

f3ðαÞ ¼ ð1þ α2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðα2 − 3Þð3α2 − 1Þj

p
. Thanks to the symmetry (2.27), we have tabulated only the range α > 0.

0 < α < 1=
ffiffiffi
3

p
α ¼ 1=

ffiffiffi
3

p
1=

ffiffiffi
3

p
< α < 1 α ¼ 1 1 < α <

ffiffiffi
3

p
α ¼ ffiffiffi

3
p

α >
ffiffiffi
3

p

k ¼ 1 � � � � � � gr0 < −f1ðαÞ � � � gr0 > f2ðαÞ � � � � � �
k ¼ 0 � � � � � � r0 < 0 � � � r0 > 0 � � � � � �
k ¼ −1 −2f3ðαÞ ≤ gr0 < f2ðαÞ gr0 < f2ðαÞ r0 ∈ R gr0 > −f1ðαÞ −f1ðαÞ < gr0 ≤ 2f3ðαÞ

4Since the scalar field contributes nontrivially to the gravita-
tional Hamiltonian, the positivity of the mass M is far from clear
to date, when the scalar field displays the slow falloff at infinity.
Nevertheless, it deserves a remark that the massM given in (3.28)
is indeed positive for the solution (3.24), whenever the horizon
exists for k ¼ 1.
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a0 ¼ −1; a1 ¼ 0; a2 ¼ k: ð3:41Þ

Thus, one ends up with

Δ̂r̂ðr̂Þ ¼ k − A2r̂2 −
q̂20
r0r̂

þ q̂21
r0r̂fðr̂Þ

þ g2r̂2fðr̂Þ3α
2−1

1þα2 ;

Δ̂x̂ðx̂Þ ¼ 1 − kx̂2 −
Aq̂20
r0

x̂3 þ Aq̂21x̂
2

r0hðx̂Þ
: ð3:42Þ

We see that the solution (3.36) with k ¼ 1 reduces, after
some shift and scaling transformations (3.7), to the one
found in [44,45]. It is worthy of remark that the choice of
parameters a0;1;2 required by the existence of the A → 0

limit (3.41) differs from the previous one (3.13).
Setting r0 ¼ q̂0;1 ¼ 0, the metric (3.36) with (3.41)

reduces to AdS, while the solution in the A → 0 limit
leads to [10,11]

ds2 ¼ −fðr̂Þ1−α
2

1þα2Δ̂r̂ðr̂Þdτ̂2 þ
dr̂2

fðr̂Þ1−α
2

1þα2Δ̂r̂ðr̂Þ
þ r̂2fðr̂Þ 2α2

1þα2dΣ2
kðx̂; φ̂Þ; ð3:43Þ

ϕ ¼ þ 2α

1þ α2
log fðr̂Þ; A0 ¼ −

q̂0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
r̂
dτ̂;

A1 ¼ −
αq̂1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p

r̂fðr̂Þ dτ̂; ð3:44Þ

where

Δ̂r̂ðr̂Þ ¼ k −
q̂20
r0r̂

þ q̂21
r0r̂fðr̂Þ

þ g2r̂2fðr̂Þ3α
2−1

1þα2 : ð3:45Þ

By the parallel argument laid out in previous subsections,
r0 corresponds to the mass parameter and k governs the
topology of the horizon. The solution (3.43) asymptotically
tends to AdS as r̂ → ∞ with the mass

M ¼ r0kð1 − α2Þ
2ð1þ α2Þ þ q̂20 − q̂21

2r0
: ð3:46Þ

It is obvious to see that the neutral solution (3.43) does
not allow an event horizon of a black hole for k ≥ 0, by

virtue of Δ̂r̂ðr̂Þ ¼ kþ g2r̂2fðr̂Þ3α
2−1

1þα2 > 0. This is in sharp
contrast to the solution (3.24) (see Table I). It follows that
the solutions (3.24) and (3.43) describe a genuinely distinct
family of physical spacetimes, even though they are related
by (3.35). This is reminiscent of the fact [62] that the Wick
rotation of the near-horizon geometry of a dipole black
ring [63] gives rise to the Kaluza-Klein black hole [64] in
five-dimensional Einstein-Maxwell theory.
Since the discovery of the solution (3.24), it has

remained open why the same theory admits two discrete

families of static solutions (3.24) and (3.43) of black hole
type. These two solutions are not related to the ordinary
electromagnetic duality.5 We have clarified above that these
seemingly different solutions are indeed related by (3.35),
which cannot be captured unless one introduces the
acceleration parameter A.

E. Hairless case

Since the origin of the potential is an extremum, one can
truncate the theory to ϕ ¼ 0 provided FI ¼ 0. The potential
reads V ¼ −3g2, corresponding to the negative cosmologi-
cal constant with AdS radius g−1. It follows that the present
theory (2.26) also possesses the ordinary hairless C metric

ds2 ¼ 1

A2ðx − yÞ2
�
−Δ̌yðyÞdt2 þ

dy2

Δ̌yðyÞ

þ dx2

Δ̌xðxÞ
þ Δ̌xðxÞdφ2

�
; ð3:47Þ

where

Δ̌yðyÞ ¼
g2

A2
− 1þ ky2 þ 2Amy3;

Δ̌xðxÞ ¼ 1 − kx2 − 2Amx3: ð3:48Þ

Here k ¼ 0;�1. The causal structure of this solution
with k ¼ 1 and m > 0 has been discussed in [32,33]. In
this Λ-vacuum case, both of the structure functions Δ̌y and
Δ̌x are cubic in each variable. This means that the double
Wick rotation (3.35) is trivial.
It is worthy of mention that the hairless solution (3.47) is

not derived from (3.1) or (3.36), since the only scheme to set
the scalar field to be constant for the latter two solutions is
r0 ¼ 0, eventuating in AdS. This implies that a more general
solution encompassing all of these three distinct solutions
should exist. Actually, families of numerical solutions were
found in the double well potential case, and it was reported
that such solutions exist generally around the top of the

5This is because the metrics (3.24) and (3.43) are solutions for
the same Lagrangian (2.26). The electromagnetic duality
ðF0; F1Þ → ð⋆F00;⋆F10Þ ¼ ðe−αϕF0; e

1
αϕF1Þ is not a symmetry

for the Lagrangian but for equations of motion of gauge fields. If
the potential of the scalar field vanishes, the transformation
ðF0; F1Þ → ð⋆F00;⋆F10Þ ¼ ðe−αϕF0; e

1
αϕF1Þ can be compensated

by the sign flip of the scalar field and the new solution falls into
the same theory. Obviously, this is not the case since the potential
is not an even function. Thus, although an electrically charged
solution is obtained by performing the electromagnetic duality to
the solution (3.24), it is a solution to a different theory. In
Ref. [65], the authors clarified the existence of two solutions in
terms of the generalized electromagnetic duality, at the price of
introducing magnetic gaugings gM ¼ ðgI; gIÞ and FM ¼ ðFI; FIÞ.
This formulation restores the symplectic covariance and is related
to the ω deformation of N ¼ 8 gauged supergravity.
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upwardly convex potential [17]. The relation between these
solutions and our hairy black hole solutions is still unclear,
but it may be possible to understand the black hole solutions
in a unified manner. We defer the extensive search of the
solution of this sort to a future work.

IV. PHYSICAL PROPERTIES OF THE SOLUTION

The discussion in the previous section shows that the
present theory (2.26) with FI ¼ 0 enjoys three families of
C metrics (3.1), (3.36), and (3.47). It follows that the rich
variety of black hole solutions in this theory is not only
limited to ordinary static black holes, but also persists to the
accelerating solutions. This encourages further motivation
for investigating their physical properties.
As demonstrated, our C metric (3.1) recovers the hairy

black hole, while the solution (3.36) does not have horizons
for q0;1 ¼ 0 and k ¼ 1. It is then reasonable to infer that the
solution (3.1) describes a C metric supported solely by a
scalar hair. To demonstrate this prospect rigorously, we
need to clarify the global causal structure. This is the prime
purpose of the current section.

A. Conical singularity

We are interested in the case where the metric has a
Lorentzian signature (−;þ;þ;þ). This restricts the domain
of x to the range ΔxðxÞ ≥ 0. The precise form of ΔxðxÞ is
sensitive to the value of all seven parameters g, α and
r0; A; q0;1; k. We focus on the case in whichΔxðxÞ admits at
least two real roots x�,

Δxðx�Þ ¼ 0; ΔxðxÞ > 0ðx− < x < xþÞ: ð4:1Þ

In this case, the two-dimensional surface spanned by (x;φ)
becomes compact. For instance, the special case of α ¼ 1,ffiffiffi
3

p
, 1=

ffiffiffi
3

p
gives ΔxðxÞ ¼ 1 − kx2 for q0;1 ¼ 0, requir-

ing k ¼ 1.
Possible conical singularities at x ¼ x− can be avoided,

provided φ− ¼ 1
2
hðx−Þ

1−α2

1þα2 jΔ0
xðx−Þjφ has a canonical 2π

period. One can determine the periodicity of φ at x ¼ xþ in
an analogous fashion, and it turns out to be 2π − δ, where

δ ¼ 2π

 
1 −

hðxþÞ
1−α2

1þα2 jΔ0
xðxþÞj

hðx−Þ
1−α2

1þα2 jΔ0
xðx−Þj

!
: ð4:2Þ

Generically, there emerges a conical singularity δ ≠ 0 at
x ¼ xþ. The positive δ corresponds to the conical deficit,
while the negative δ corresponds to the conical excess.
An exceptional case is α ¼ 1 with q0;1 ¼ 0, for which

the two-dimensional surface ds22 ¼ dx2=ðhðxÞ1−α
2

1þα2ΔxðxÞÞ þ
hðxÞ1−α

2

1þα2ΔxðxÞdφ2 with k ¼ 1 is simplified to the standard
metric of the unit two sphere ds22 ¼ dθ2 þ sin2 θdφ2, where
x ¼ cos θ. It follows that the conical singularity at the north

and south poles of S2 can be completely cured. It is the
background scalar field that provides the acceleration.
However, it turns out that this case describes a naked
singularity.

B. Infinity and singularity

The coordinate x might be regarded as a directional
cosine (x ¼ cos θ), but the coordinate r ¼ −1=ðAyÞ may
not be taken too literally as an ordinary radial coordinate.
To see this more concretely, let us consider “radial” null
geodesics obeying

− hðyÞ1−α
2

1þα2ΔyðyÞ_t2 þ
1

hðyÞ1−α
2

1þα2ΔyðyÞ
_y2 ¼ 0;

E ¼ hðxÞ 2α2

1þα2hðyÞ1−α
2

1þα2ΔyðyÞ
A2ðx − yÞ2 _t; ð4:3Þ

where the dot denotes the derivative with respect to the
affine parameter λ and E is a constant corresponding to the
energy of null rays, respectively. Upon integration, we have

�EA2ðλ − λ0Þ ¼
Z

hðxÞ 2α2

1þα2

ðx − yÞ2 dy ¼ hðxÞ 2α2

1þα2

x − y
: ð4:4Þ

It follows that r ¼ þ∞ (y ¼ 0) can be reached within a
finite affine time for these null geodesics. One also
recognizes that the surface x ¼ y corresponds to infinity.
This enforces us to work with coordinate y, instead of r, to
reveal the global causal structure.
The spacetime singularities are characterized by the

blowup of curvature invariants. The scalar curvature and
the Kretschmann invariant diverge at

y ¼ �∞; y ¼ −
1

Ar0
; x ¼ −

1

Ar0
: ð4:5Þ

Since we are now paying attention only to the finite range
of x, other plausible singularities x ¼ �∞ are not our
concern here. A minimal requirement for regularity of the
solution is that x ¼ −1=ðAr0Þ lies outside the range of x− ≤
x ≤ xþ and the Killing horizons cover singularities y ¼
�∞ and y ¼ −1=ðAr0Þ.
To see the structure of y ¼ const surface such as

singularities and infinity for fixed x, it suffices to focus
on the two-dimensional portion of the spacetime,

ds22¼−ΔyðyÞdt2þ
dy2

ΔyðyÞ
¼−Δyðyðy�ÞÞðdt2−dy2�Þ; ð4:6Þ

where y� ¼
R
Δ−1

y dy is the analog of the tortoise coor-
dinate. Since this metric is manifestly conformal to the
two-dimensional Minkowski metric, one can immediately
extract the causal structure of the y ¼ const surface. If y�
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diverges, the corresponding surface is null. If y� is finite,
the corresponding surface is spacelike (timelike) for
Δyðyðy�ÞÞ < 0ð> 0Þ.
Since x − y ¼ 0 corresponds to the asymptotic infinity,

we postulate that the physical region is enclosed by

x− y ≥ 0; hðxÞ> 0; hðyÞ> 0; ΔxðxÞ ≥ 0: ð4:7Þ

We shall not consider the x − y < 0 region, since it is
simply achieved by the simultaneous sign flip of x, y, and
r0. The coordinate domain under consideration is visual-
ized in Fig. 1.

C. Causal structure: Neutral case

Let us first explore the causal structure of the neutral case
q0;1 ¼ 0 with k ¼ 1. The motivation comes from the fact
that the solution (3.1) gives rise to the hairy black hole in the
limit A → 0 (see Sec. III B), in contrast to the case (3.36). It
is then tempting to envisage that the q0;1 ¼ 0 solution (3.1)
would describe the hairy C metric in AdS.
The Killing horizons appear when the Killing vector for

the time translation ∂=∂t becomes null. This occurs at
Δy ¼ 0, which admits at most two distinct roots, which we
denote y− < yþ, since Δy is quadratic in y (3.16).
Hereafter, we focus on the case where these horizons exist
and are nondegenerate.
We now proceed to discuss the global structure. For this

purpose, it is helpful to observe the following relation:

ΔxðxÞ ¼
g2

A2
hðxÞ3α

2−1
1þα2 − ΔyðxÞ: ð4:8Þ

This means that the intersecting points of the functions

ðg2=A2ÞhðxÞ3α
2−1

1þα2 and ΔyðxÞ correspond to the axes x ¼ x�.
By the requirement of Lorentzian signature ΔxðxÞ ≥ 0, the

permitted region is ðg2=A2ÞhðxÞ3α
2−1

1þα2 ≥ ΔyðxÞ. If ΔyðxÞ is
convex upward, the Lorentzian signature is assured for x <
x− or x > xþ. This makes the surface spanned by x − ϕ
coordinates noncompact, which we are not concerned with.
It follows that ΔyðxÞ must be convex downward.
Typical behaviors of functions ΔyðxÞ and ðg2=A2Þ

hðxÞ3α
2−1

1þα2 are plotted on the left side of Fig. 2. These functions
may have three intersections, but this is not essential for the
present discussion. To extract a useful relation, we remark on
the subsequent features:

(i) ðg2=A2ÞhðxÞ3α
2−1

1þα2 is positive semidefinite and mono-
tonically increasing (decreasing) for ð3α2 − 1Þr0 >
0ð< 0Þ.

(ii) ΔyðxÞ is convex downward with Δyðy�Þ ¼ 0.
(iii) x takes values in the bounded domain x− ≤ x ≤ xþ,

satisfying ΔxðxÞ ¼ ðg2=A2ÞhðxÞ3α
2−1

1þα2 − ΔyðxÞ ≥ 0.
(iv) Conditions − 1=ðAr0Þ < x− for r0 > 0 and xþ <

1=ðAjr0jÞ for r0 < 0 must be satisfied to evade
the naked singularity.

Inspecting these aspects, we arrive at the universal relation

x− < y− < yþ < xþ; ð4:9Þ
regardless of the parameters.

Recalling that the allowed coordinate region is x > y
with x ¼ y being conformal infinity, the Penrose diagram is
designed as follows:

(i) yþ < x ≤ xþ. In this case, we have two nondegen-
erate Killing horizons y ¼ y� and infinity is timelike.
The Penrose diagram is the same as the Reissner-
Nordström-AdS black hole [Fig. 3(i)].

(ii) x ¼ yþ. We have a single horizon at y ¼ y− and
infinity corresponds to the null surface [Fig. 3(ii)].

(iii) y− < x < yþ. We have a single horizon at y ¼ y−
and infinity becomes spacelike [Fig. 3(iii)].

(iv) x ¼ y−. We do not have any horizons and infinity is
replaced by a null surface [Fig. 3(iv)].

FIG. 2. Plots of ΔyðxÞ and ðg2=A2ÞhðxÞ3α
2−1

1þα2 (left) and Δ̂x̂ðx̂Þ and ðg2=A2Þhðx̂Þ3α
2−1

1þα2 (right). The parameters are chosen such that
g ¼ k ¼ 1, A ¼ 3=2, r0 ¼ 1=4, α ¼ 1=2, and q0;1 ¼ q̂0;1 ¼ 0. In either case, x− < y− < yþ < xþ.

FIG. 1. Coordinate region for r0 > 0 (left) and r0 < 0 (right).
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(v) x− ≤ x < y−. No horizons are present and infinity
alters to timelike [Fig. 3(v)].

Here, the singularity refers to either y ¼ −1=ðAr0Þ (r0 > 0)
or y ¼ −∞ (r0 < 0).
It turns out that the solution (3.1) with k ¼ 1 and

q0;1 ¼ 0 fails to describe the accelerating black holes in
AdS. Rather, it corresponds to the accelerating naked
singularity. The singularity is covered only from a part of
angular directions yþ < x ≤ xþ [case (i)], otherwise the
singularity is globally visible from future infinity. This is a
bit puzzling and an unanticipated result, since the A → 0
limit gives rise to a hairy black hole for some range of
parameters, as shown in Table I. This is because the A → 0
limit of the solution is discontinuous. In the A ≠ 0 case, a
stringent restriction is placed upon the causal structure
because of the relation (4.9). In contrast, the r and x
coordinates for the A → 0 metric (3.24) are free from this
condition. As long asΔyðyÞ is a quadratic function of y, the
constraint (4.9) is inevitable. The Λ-vacuum case, on the
other hand, can circumvent this problem since Δ̌yðyÞ is
cubic [see (3.48)].
The neutral limit of the solution (3.36) with k ¼ 1

does not alleviate this problem. Considering that the

functional relationship Δ̂x̂ðx̂Þ ¼ ðg2=A2Þhðx̂Þ3α
2−1

1þα2 − Δ̂ŷðx̂Þ
remains untouched and Δ̂x̂ðx̂Þ is convex upward with
Δ̂x̂ð�1Þ ¼ 0, we have x̂− ¼ −1 < ŷ− < ŷþ < 1 ¼ x̂þ
(right picture in Fig. 2). This is the relation identical
to (4.9), leading to the same Penrose diagram (Fig. 3) as
above. It follows that none of the neutral solutions (3.1)
and (3.36) correspond to the hairy C metrics.

D. Causal structure: Charged solution

As revealed in the preceding subsection, the scalar field
is not capable of supporting the regular configuration
(modulo the conical singularity) of the C metric. We
therefore examine the effect of charging up, for which
ΔyðyÞ ¼ 0 admits at most four real roots. However, the

exhaustive classification of the horizons and axes becomes
intractable or, at the very best, considerably cumbersome,
in light of the fact that the solution involves seven
parameters andΔxðxÞ contains a noninteger power function
of x. For the discussion to be reasonably focused, we
confine our study to the case α ¼ 1=

ffiffiffi
3

p
with k ¼ 1 and

q1 ¼ 0, in which ΔxðxÞ and ΔyðyÞ are simplified to the
cubic functions as ΔxðxÞ ¼ 1 − x2 − ðAq20=r0Þx3 and
ΔyðyÞ ¼ g2=A2 − ΔxðyÞ. This case is simple but nonethe-
less captures the essential features of the global structure
for other values of parameters.
Since the intractable term hðxÞ3α

2−1
1þα2 has disappeared from

the structure function ΔxðxÞ, it is easier to analyze the
spacetime structure by drawing the function ΔxðxÞ rather
than ΔyðyÞ. For the classification, it is convenient to define
dimensionless quantities normalized by the acceleration
parameter as

Q0 ≡
ffiffiffiffiffiffiffi
A
jr0j

s
q0; G≡ g

A
; R0 ≡ Ar0: ð4:10Þ

For α ¼ 1=
ffiffiffi
3

p
, the last quantity does not appear in

ΔxðxÞ ¼ 1 − x2 − ϵQ2
0x

3, where ϵ is þ1 (−1) for r0 > 0

(r0 < 0). Since ΔxðxÞ is a cubic function, it has at least one
real root x�. It also has two extrema ðx;ΔxðxÞÞ ¼ ð0; 1Þ
and (−2ϵ=ð3Q2

0Þ; 1 − 4=ð27Q4
0Þ). As the domain with

Lorentzian signature, i.e., ΔxðxÞ > 0, should be compact,
there should be other real roots of ΔxðxÞ ¼ 0. This
condition gives rise to the upper bound on the charge as

Q2
0 ≤

2

3
ffiffiffi
3

p ; ðr0 < 0Þ; ð4:11Þ

Q2
0 <

2

3
ffiffiffi
3

p ; ðr0 > 0Þ: ð4:12Þ

FIG. 3. Penrose diagrams of the k ¼ 1 neutral C metric. The thick lines denote the curvature singularities.
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It should be noted that the roots become degenerate and the
Lorentzian domain disappears when Q2

0 ¼ 2=ð3 ffiffiffi
3

p Þ for
r0 > 0.
The other structure function is now ΔyðxÞ ¼

G2 − ΔxðxÞ. Thus, the locus of horizons is determined
by the intersections of G2 and ΔxðxÞ.
When r0 < 0, ΔxðxÞ has two or three real roots,

x− < 0 < xþ ≤ x� under the condition (4.11), where x− <
x < xþ is the Lorentzian domain. It is easy to find that the
intersections take larger values of x than x− as x− < y1 <
y2 < xþ ≤ x� < y3 even if there are three intersections
(G2 < 1). This corresponds to the naked singularity, as we
have learned from the neutral case in the previous sub-
section (see Fig. 3). Thus, we are compelled to assume
r0 > 0 in the following.
Under the condition (4.12), ΔxðxÞ ¼ 0 is satisfied at

three distinct real points, which we label x�; x−; xþ in
ascending order. The structure function Δx is depicted in
Fig. 4. It is easy to appreciate that these roots obey

−
1

Q2
0

< x� < −
2

3Q2
0

< x− < −1; 0 < xþ < 1: ð4:13Þ

Since ΔxðxÞ is a cubic function of x, it admits at least one
intersection with the lineG2. It gives a real root y1 ofΔyðyÞ,
which will be identified as an event horizon, and other roots
of ΔyðyÞ can be real or complex by the value of G2.
The configuration of Killing horizons is thus classified

into three types:
(i) G < 1: three horizons, y1 < x− < y2 < y3 < xþ.
(ii) G ¼ 1: two horizons, y1 < x− < yd < xþ, where y2

and y3 are degenerate y2 ¼ y3 ≡ ydð¼ 0Þ.
(iii) G > 1: single horizon, y1 < x− < xþ, where y2 and

y3 are complex conjugate.
In either case, we have y1 < x−. Hence, the event horizon
y1 exists from any angular directions x ∈ ½x−; xþ�.
Finally, we must demand −1=R0 < y1 to avoid the naked

singularity. Since Δ0
yðyÞ ¼ 0 occurs at y ¼ −2=ð3Q2

0Þ and
y ¼ 0, this condition amounts to Δyð−1=R0Þ < 0 and
−1=R0 < −2=ð3Q2

0Þ, which gives two kinds of lower
bounds on the charge as

2

3
R0 < Q2

0; ð4:14Þ

and

FðR0Þ<Q2
0; where FðR0Þ ¼R0½1−R2

0ð1−G2Þ�: ð4:15Þ

For case (I), the condition (4.14) is included in (4.15)
under the condition (4.12). Hence, FðR0Þ < Q2

0 <
2=ð3 ffiffiffi

3
p Þ should be satisfied. The corresponding

Penrose diagram is drawn in Fig. 5. For case (II),
FðR0Þ ¼ R0 > 2R0=3, i.e., R0 < Q2 < 2=ð3 ffiffiffi

3
p Þ is called

for. The Penrose diagram is shown in Fig. 6. For case (III),
FðR0Þ is monotonic in R0 with F0ðR0Þ ¼ 1 > 2

3
, thereby

we have FðR0Þ < Q2 < 2=ð3 ffiffiffi
3

p Þ. The corresponding
Penrose diagram is the same as the Schwarzschild-AdS
black hole [case (v) of Fig. 5].

FIG. 4. Typical behavior of ΔxðxÞ in the case where ΔxðxÞ has
three distinct real roots x� < x− < xþ. The intersection points of
ΔxðxÞ and G2 correspond to the Killing horizon.

FIG. 5. Penrose diagrams of the k ¼ 1 charged C metric with q1 ¼ 0 and g < A. Case (i) is for y3 < x ≤ xþ, (ii) for x ¼ y3, (iii) for
y2 < x < y3, (iv) for x ¼ y2, and (v) for x− ≤ x < y2. The thick lines denote the curvature singularities.
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Note that the singularity is always spacelike whenever it
is covered by the event horizon, even though the solution is
charged. This is a feature that we have encountered also in a
static black hole with a single charge in the asymptotically
flat case (g ¼ 0) [66].
The cases with the different values α can be analyzed

similarly despite the augmentation of complexity. When
either ΔyðyÞ or hðyÞΔyðyÞ is cubic, some numerical tests
reveal the need of the relation

−
1

R0

< y1 < x− < ðy2 ≤ y3 <Þxþ: ð4:16Þ

We therefore end up with Figs. 5 and 6 and the
Schwarzschild-AdS solution, when the curvature singular-
ity is hidden by an event horizon. It would be intriguing to
extend this analysis for the other values of parameters.

V. SUMMARY

We have constructed a new family of C metric solutions
(3.1) in N ¼ 2 gauged supergravity theory with a prepo-
tential (2.12). Upon truncation, the theory is nothing but the
Einstein-Maxwell-dilaton gravity (2.26), in which a real
scalar field couples to two gauge fields with different
coupling constants and the scalar potential is expressed
in terms of the superpotential. Our solution describes a
family of C metrics distinct from the one obtained in the
literature [44,45]. The nonuniqueness of the solutions of this
sort has been identified in the vanishing acceleration limit
in [21]. However, the relevance of these solutions remained
open to date. We have clarified in this paper that these
solutions are converted to each other via the double Wick
rotation (3.35). Although these solutions are related in a
simple fashion, the physical properties of the solutions are
considerably different. As we have expounded in Secs. III B
and III D, the most comprehensible aspect is the presence of
the horizons in the uncharged and nonaccelerating limit.
Our solution reduces in the spherical case to the hairy black

hole with a regular horizon, while the double Wick rotated
solution brings about the naked singularity.
Inspired from the above property, we have investigated

the global structure of the neutral solution in a clear-cut
fashion by noting the restriction (4.8). Notably, the neutral
solution fails to hide the singularity behind the horizon, as
opposed to the nonaccelerating case. This is the main upshot
achieved in this paper. A technical crux of this obstruction is
that the structure function ΔyðyÞ given by (3.16), which is
responsible for the horizon structure, is quadratic, while
the vacuum structure function Δ̌yðyÞ given by (3.48) is
cubic. The cubic structure can circumvent the thorny
constraint (4.9). The avoidance of naked singularity there-
fore asks for at least one charge. We have verified that this is
indeed the case for α ¼ 1=

ffiffiffi
3

p
. Specifically, the charged C

metric is qualified as a pair of accelerated black holes in
AdS, whose causal structure resembles that for the neutral
Λ-vacuum C metric [32,33].
The present C metric in supergravity has many potential

applications, which we set out to delineate in order. The
Λ-vacuumCmetric isknowntodescribeanexactblackhole in
the AdS braneworlds [67]. Aside from the significance in its
own right, these solutions can be applied to explore the
strongly coupled regime of the boundary conformal field
theory [68] and can represent the dual of plasma balls [69].
Black funnels and black droplet solutions are also intriguing
applications [70].Toexamine theeffect of a scalar fieldwould
offer new insight in the holographic context.
The time-dependent generalization of the C metric is an

important test ground for the description of gravitational
radiation. This issue has been first discussed in [71] within
the Robinson-Trautman class [72], which allows a class of
nontwisting and shear-free null geodesic congruences. The
dynamical generalization of the C metric considered in [44]
falls into this category. The Robinson-Trautman solution
outside the Petrov-D class seems an alluring future direction.
A rotating generalization of the electrovacuum C metric

is dubbed as the Plebanski-Demianski solution [73], which
is the most general Petrov-D solution in the Einstein-
Maxwell-Λ system. Unfortunately, rotating solutions
within the Einstein-Maxwell-dilaton theory are hard to
construct even in the ungauged case, since the target space
is not symmetric. A less complicated task is to seek the
rotating solution in the original theory (2.6) with a non-
vanishing axionic scalar. Some solutions for special values
of α have been found, but the organizing solution for
general α is still missing. A promising route is to seek the
supersymmetric solutions, for which the possible canonical
form of the metric is severely constrained. In the Appendix,
we present the conditions under which the C metric
solutions (3.1) and (3.6) preserve supersymmetry.
The embedding of the Plebanski-Demianski solution

into 11 dimensions seems also interesting, since the
uplifted solution can be made regular and is parametrized
by quantized conical singularities in four dimensions. See,

FIG. 6. Penrose diagrams of the k ¼ 1 charged C metric with
q1 ¼ 0 and g ¼ A. Case (i) is for x− ≤ x < yd ¼ 0, (ii) for
x− ¼ yd ¼ 0, and (iii) for 0 ¼ yd < x ≤ xþ. The thick lines
denote the curvature singularities.
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e.g., [74–76] for details. The obtained D ¼ 11 solution is
holographically interpreted as a membrane wrapped on
spindles. For the α ¼ 1;

ffiffiffi
3

p
; 1=

ffiffiffi
3

p
cases, we expect that the

uplifted solution of our C metric (3.1) can be interpreted in
a similar fashion.
Finally, the Euclidean C metric is a stimulating subject to

be explored as well. The C metric instanton solution
describes a pair production of black holes by the cosmic
string [61,77,78]. Also, the Euclidean dilatonic C metric
plays a key role in the construction of vacuum black
rings [79,80]. Furthermore, the Euclidean Plebanski-
Demianski solution enjoys some mathematically rich frame-
works such as the conformal ambi-Kähler structure [81,82].
Pursuing these issues is left for future investigation.
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APPENDIX: SUPERSYMMETRY

Since the present Einstein-Maxwell-dilaton theory (2.26)
originates from the N ¼ 2 supergravity, it is interesting to
investigate the supersymmetry preserved by the present
solution. The supersymmetry of the C metric in the
Einstein-Maxwell-Λ system has been explored in [83].
The dilaton coupling constant α induces an interesting
effect on the twist of supersymmetric solutions [84].
The Killing spinor equations are given by

∇̂μϵ≡
�
∇μ þ

i

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
�
e−

αϕ
2 F0

νρ þ αe
ϕ
2αF1

νρ

�
γνργμ

þWðϕÞγμ −
igffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ðA0

μ þ αA1
μÞ
�
ϵ ¼ 0; ðA1Þ

Πϵ≡
�
γμ∇μϕ − 8

∂W
∂ϕ

þ iffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

×

�
−αe−

αϕ
2 F0

μν þ e
ϕ
2αF1

νρ

�
γμν
�
ϵ ¼ 0; ðA2Þ

where ϵ is a Dirac spinor. These equations are derived from
the general expressions given in [50] or fixed by requiring
the positive mass theorem [85,86].
For the existence of nontrivial solutions obeying these

first order and algebraic equations, the following integra-
bility conditions must be fulfilled:

det½∇̂μ; ∇̂ν� ¼ 0; detΠ ¼ 0: ðA3Þ

The condition detΠ ¼ 0 for the solution (3.1) boils down to

a0 ¼ −
½ðq0 − q1Þ2 þ a2r20�2

4A2q20r
4
0

;

a1 ¼
½ðq0 − q1Þð3q0 þ q1Þ − a2r20�½ðq0 − q1Þ2 þ a2r20�

8Aq20r
3
0

:

ðA4Þ

Plugging these results into det½∇̂μ; ∇̂ν� ¼ 0, one finds, after
lengthy and tedious computations, all the components of
equations are automatically satisfied. In this case, the
structure function factorizes into

ΔyðyÞ ¼
1

4A2q20r
4
0hðyÞ

½−2q0q1 þ fq21 þ a2r20

þ q20ð1 − 2Ar0yÞghðyÞ�2 ≥ 0: ðA5Þ

Thus, the Killing horizon for this solution is degenerate, as
consistent with supersymmetry.6 In the zero acceleration
limit (3.13), the preservation of supersymmetry requires

q0 ¼ �
�
k
2g

þ gr20α
2ðα2 − 1Þ

ð1þ α2Þ2
�
;

q1 ¼ �
�
k
2g

−
gr20ðα2 − 1Þ
ð1þ α2Þ2

�
: ðA6Þ

This occurs for any value of k.
For the flipped solution (3.36) with (3.38), the super-

symmetric conditions become

a0 ¼
½ðq̂0 − q̂1Þ2 − a2r20�2

4A2q̂20r
4
0

;

a1 ¼ −
½ðq̂0 − q̂1Þð3q̂0 þ q̂1Þ þ a2r20�½ðq̂0 − q̂1Þ2 − a2r20�

8Aq̂20r
3
0

;

ðA7Þ

for which

Δ̂ŷðŷÞ ¼
½−2q̂0q̂1 þ fq̂21 − a2r20 þ q̂20ð1 − 2Ar0ŷÞghðŷÞ�2

4A2q̂20r
4
0hðŷÞ

þ g2

A2
hðŷÞ3α

2−1
1þα2 ≥ 0: ðA8Þ

6Since the supersymmetry requires the bilinear vector Vμ ¼
iϵ̄γμϵ of the Killing spinor is a globally defined timelike or null
Killing vector, the stationary black hole horizon, if exists, must be
degenerate. If it is nondegenerate, the Killing vector Vμ becomes
spacelike inside the black hole.
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On account of the fact that ŷ ¼ −1=ðAr0Þ, where hðŷÞ ¼ 0, is singular, it turns out that the flipped solution fails to
have a degenerate horizon in the supersymmetric case. In the zero acceleration limit (3.43), the supersymmetric condition
becomes

ðq0 − q1Þ2 − kr20 ¼ 0: ðA9Þ

This equation is satisfied only for k ≥ 0.
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