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We investigate the linear stability of the two known branches of spherically symmetric black holes in
quadratic gravity. We extend previous work on the long-wavelength (Gregory-Laflamme) instability of the
Schwarzschild branch to a corresponding long-wavelength instability in the non-Schwarzschild branch.
In both cases, the instability sets in below a critical horizon radius at which the two black-hole branches
intersect. This suggests that classical perturbations enforce a lower bound on the horizon radius of
spherically symmetric black holes in quadratic gravity.
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I. INTRODUCTION

The 1960s and 1970s have been referred to as the
“golden age” of general relativity (GR) and have led to
a solid theoretical understanding and mainstream accep-
tance of black holes as astrophysical objects. Now we are
entering another golden age in which we gain direct
observational access to said black holes. Gravitational-
wave interferometers [1,2] and very long baseline inter-
ferometry [3,4] respectively observe gravitational-wave
and electromagnetic-wave signals which originate from
close to the horizon. This provides a novel opportunity to
test whether the astrophysical black holes that we observe
agree with the predictions of GR.
Ideally, we want to test the predictions of GR against the

predictions of theories beyond GR. These theories are
motivated by the cosmological riddles of dark matter [5,6]
and dark energy [7], from the breakdown of classical GR in
the black-hole interior [8,9], as well as by quantum
fluctuations, see e.g. [10]. Focusing on metric theories
governed by local actions, we can broadly classify mod-
ifications of GR into those that involve additional matter
fields and those stemming from higher-order curvature

operators (see, for example, Ref. [11] for a review). In this
work, we focus on the latter and, in particular, on
modifications quadratic in curvature.
Quadratic-curvature operators are generally expected in

gravitational theories beyond GR and are motivated from
two different points of view. From the effective field theory
(EFT) point of view, the quadratic terms serve as the
leading-order corrections to the Einstein-Hilbert term in the
EFT expansion of an infinite tower of higher-dimensional
operators. Such higher-dimensional operators, including
the quadratic ones, capture effects from potential UV
physics, e.g., all the unknown fields with masses above
the EFT cutoff scale. The EFT is valid as long as the higher-
dimensional operators are suppressed by powers of the
cutoff scale, and hence contribute only perturbatively.
Contrary to the EFT point of view, quadratic curvature
operators can also arise as a fundamental modification of
GR—possibly motivated by quantum gravity [12–17]—
leading to the so-called theory of quadratic gravity [18].
It will be important to distinguish these two points of

view: As we will review, the presence of the quadratic
operators leads to additional massive degrees of freedom
[18–20]: In addition to the massless spin-2 degree of
freedom in GR, the quadratic-curvature operators generally
propagate a massive spin-0 and a massive spin-2 degree of
freedom. These additional degrees of freedom can play an
important role in the stability of black holes in quadratic
gravity, i.e., in the fundamental interpretation, but cannot be
excited within the validity of the EFT since their masses are
comparable to or larger than the EFT cutoff scale. Similarly,
(some of) the alternative background solutions (see below)
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may only occur beyond the regime of validity of the EFT.
Here, we focus mostly on quadratic gravity as a funda-
mental theory and comment on the EFT interpretation.
According to Birkhoff’s theorem, the static and spheri-

cally symmetric vacuum solution of GR is uniquely
described by the Schwarzschild metric. While the
Schwarzschild solution is also a vacuum solution of
quadratic gravity, additional branches of vacuum solutions,
both black holes and horizonless objects, have been
found [21–29].
In particular, quadratic gravity admits a second branch of

static, spherically symmetric, and asymptotically flat black-
hole spacetimes in addition to the Schwarzschild branch.
These two spherically symmetric black-hole branches can be
represented in terms of their horizon radius rg and their
asymptotic mass M. While the Schwarzschild branch is
represented by rg ¼ 2GM (cf. line in Fig. 1) and is Ricci-flat,
the other branch (cf. open circles in Fig. 1) has no known
closed analytical form and is no longer Ricci-flat (with the
exception of the branch point). The two branches intersect at
a branch point at which 2GMm2 ¼ rgm2 ≡ p ≈ 0.87, where
m2 is themass of themassive spin-2 degree of freedom and is
determined by the coefficients of the quadratic operators.
Before exploring the phenomenology of such alternative

black-hole branches, it is pertinent to understand their
stability. As for classical stability, it is known that a linear
long-wavelength instability (i.e., long in comparison to 1=m2

in appropriate units) has been found for small-mass black

holes in the Schwarzschild branch [28,32–35]. Specifically,
the Schwarzschild black holes with masses below the branch
point (M < p=2Gm2 or rg < p=m2) are unstable against
spherically symmetric perturbations, which are linearly
equivalent to the well known Gregory-Laflamme instability
[36–38] of higher-dimensional black strings.
In this paper, we review that this linear long-wavelength

instability of the Schwarzschild black hole is associated
with the monopole perturbations of the massive spin-2
degree of freedom of quadratic gravity that is manifest in
the Einstein frame. We then extend the linear-stability
analysis to the non-Schwarzschild branch and find a similar
long-wavelength instability that occurs whenever the hori-
zon radius of the non-Schwarzschild black hole exceeds the
horizon radius of the black hole at the branch point, i.e.,
whenever rg < p=m2 or equivalently M > p=2Gm2. Note
that, in contrast to the Schwarzschild branch, this means
that the instability occurs for black holes with large
asymptotic mass.
The rest of this paper is structured as follows: In Sec. II, we

review the field equations (Sec. II A), the degrees of freedom
(Sec. II B), and the static spherically symmetric black-hole
solutions (Sec. II C) of quadratic gravity. In Sec. III, we
linearize the dynamics (Sec. III A and III B), decompose into
spherical harmonics (Sec. III C), and derive the key technical
result of our work: the master equation for monopole
perturbations on arbitrary static and spherically symmetric
backgrounds. In Sec. IV, we recover the well-known
Gregory-Laflamme instability [36–38] of Schwarzschild
black holes (Sec. IVA) and find a similar long-wavelength
instability in the non-Schwarzschild branch (Sec. IV B). We
endwith a discussion in Sec. Vand delegate several technical
complications to an appendix. We work in mostly plus
signature and in units in which ℏ ¼ c ¼ 1.

II. THE THEORY OF QUADRATIC GRAVITY

There are three possible operators that are quadratic in
Riemann curvature, namely RμνρσRμνρσ, RμνRμν, and R2,
where Rμνρσ, Rμν, and R denote the Riemann tensor, the
Ricci tensor and the Ricci scalar respectively. In four
dimensions, the Gauss-Bonnet invariant G ¼ RμνρσRμνρσ −
4RμνRμν þ R2 is a total derivative and thus topological.
This leaves two independent operators at quadratic order
in curvature. Without loss of generality, the action of
(vacuum) quadratic gravity can be written as

S ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
Rþ 1

12m2
0

R2

−
1

4m2
2

CμναβCμναβ

�
þ Smatter; ð1Þ

whereMPl is the Planck mass, Cμναβ is the Weyl tensor, and
we use the shorthand notation

ffiffiffiffiffiffi−gp ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
. As we will

see below, the parameters m0 and m2 are associated with

FIG. 1. Parametric plot of the Schwarzschild (without circles)
and the non-Schwarzschild (with circles indicating numerical
data points) black-hole branch as a function of horizon radius rg
and asymptotic mass M. The plot axes are rescaled with m2 (and
appropriate powers of MPl) such that the plot applies to any m2.
To the left of the branch point (filled black circle) both black
holes are unstable due to a classical long-wavelength instability
(cf. Sec. IV). To the right of the branch point, Schwarzschild
spacetime is unstable due to Hawking radiation. If the same holds
for the non-Schwarzschild branch, as suggested by thermo-
dynamic arguments (see [28,30,31]), the branch point may be
an attractor, see discussion in Sec. V.
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the masses of a spin-0 and a spin-2 degree of freedom (in
addition to the massless spin-2 degree of freedom of GR).

A. Field equations

The field equations following from the action in (1) (see
e.g. [28]) read

Tμν

M2
Pl

¼ Gμν −
1

3

�
1

m2
0

−
1

m2
2

�
ðDμDν − gμν□ÞR

−
1

m2
2

□Gμν −
2

m2
2

�
Rμρνσ −

1

4
gμνRρσ

�
Rρσ

þ 1

3

�
1

m2
0

þ 2

m2
2

��
Rμν −

1

4
gμνR

�
R; ð2Þ

where Tμν is the energy-momentum tensor associated to
Smatter in (1).
In the present work, we specify to vacuum solutions with

Tμν ¼ 0. In this case, taking the trace of (2) gives

1

m2
0

□R − R ¼ 0: ð3Þ

This relation has been used to prove thatR ¼ 0must hold for
any static, spherically symmetric, and asymptotically flat
vacuum solution of quadratic gravity [24,39]. Put differently,
static, spherically symmetric, and asymptotically flat vac-
uum solutions of quadratic gravity are “Ricci-scalar flat”: A
special subclass of the former are the Ricci-flat (Rμν ¼ 0)
vacuum solutions of GR.

B. Dynamical degrees of freedom

The field equations (2) are fourth order in derivatives.
However, they can be reduced to second order by intro-
ducing auxiliary fields. We follow Ref. [20] (see also
[19,40]) and introduce the auxiliary fields at the level of the
action.
First, we can remove the R2 term by introducing a scalar

field φ̃ and write (1) as

S ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2

�
1þ φ̃

3m2
0

�
R −

1

12m2
0

φ̃2

−
1

4m2

CμναβCμναβ

�
: ð4Þ

Varying (4) with respect to φ̃ yields the equation of motion
φ̃ ¼ R for the auxiliary field, by which one recovers (1).
Second, we can perform a conformal transformation, which
(by definition) leaves the Weyl-squared term invariant, i.e.,

gμν →
3m2

0

φ̃þ 3m2
0

gμν: ð5Þ

In addition, we redefine φ̃ ¼ 3m2
0ðeφ − 1Þ, so that the

scalar field φ takes a canonical form in the Einstein
frame, i.e.,

S ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
Rþ 3

4
φ□φ −

3

4
m2

0e
−2φðeφ − 1Þ2

−
1

4m2
2

CμναβCμναβ

�
: ð6Þ

In the Einstein frame, the scalar φ appears as a minimally
coupled matter field with a nontrivial potential. Finally, we
can remove the Weyl-squared term by introducing an
auxiliary tensor field fμν, for which (6) can be rewritten as

S ¼ M2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
Rþ 3

4
φ□φ −

3

4
m2

0e
−2φðeφ − 1Þ2

þ fμνGμν þ 1

2
m2

2ðfμνfμν − f2Þ
�
: ð7Þ

Again, (7) and (6) are equivalent upon using the equation of
motion for the auxiliary field fμν (obtained by varying (7)
with respect to fμν—see below). Thereby, we have recast the
theory into manifestly second-order form. The decoupling
limit confirms that the theory contains amassless spin-2 field
gμν (as does GR), a spin-0 field ψ with massm0, and a spin-2
field fμν with mass m2 [18,20]. The massive spin-2 field
comes with an opposite-sign kinetic term (compared to the
other fields) and is thus an Ostrogradski ghost.
The equations of motion for φ (obtained by variation

with respect to φ itself) and gμν (obtained by variation with
respect to fμν) respectively read

□φþm2
0e

−2φðeφ − 1Þ ¼ 0; ð8Þ

Hμν ≡Gμν þm2
2ðfμν − fgμνÞ ¼ 0: ð9Þ

As mentioned above,Hμν ¼ 0 can be used to reexpress the
Ricci tensor and Ricci scalar in terms of fμν and f,
respectively, i.e.,

Rμν ¼ −m2
2

�
fμν þ

1

2
fgμν

�
; R ¼ −3m2

2f: ð10Þ

Moreover, DνHμν ¼ 0 implies (by use of the contracted
Bianchi identity DνGμν ¼ 0) that

Dνfμν ¼ Dμf: ð11Þ

Using (10) and (11), as well as partial integration and
commutation of covariant derivatives, the equation of
motion for fμν (obtained by variation with respect to
gμν) can be written as
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0 ¼ F μν ≡□fμν −DμDνf þ 2Rμρνσfρσ

−m2
2

�
fμνðf − 1Þ þ gμν

�
f þ 1

2
fρσfρσ

��

−
3

4
φ̃ð□ − 2DμDνÞφ̃þ 3

4
m2

0e
−2φðeφ − 1Þ2: ð12Þ

The trace of (12) is not a dynamical equation but rather
(after using (8) to remove □φ) a constraint, i.e.,

f ¼ m2
0

m2
2

e−2φðeφ − 1Þ
�
eφ − 1þ 1

2
φ

�
: ð13Þ

Up to here, the equations of motion are fully general. In the
special case of φ ¼ 0, the constraint (13) reduces to f ¼ 0.

C. Spherically symmetric black-hole branches

In this section, we review the black-hole solutions that
are discussed in Refs. [23,24,29]. Following Ref. [24], we
start with the general metric for static, spherically sym-
metric spacetime

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð14Þ

Assuming that the horizon is located at rg, we can expand
the metric near the horizon, i.e.,

AðrÞ ¼ ac
X∞
n¼1

an

�
r
rg

− 1

�
n
;

BðrÞ ¼
X∞
n¼1

bn

�
r
rg

− 1

�
n
; ð15Þ

where a1 ≡ 1 such that ac is a free parameter which can be
chosen to ensure that A → 1 as r → ∞. Substituting the
ansatz (15) into the field equations (2), we can solve for the
ai and bi with i ≥ 2 in terms of b1 and rg. For example, for
the lowest-order coefficients, we find

a2 ¼ −
8δ2 − δðm2

2r
2
g − 12Þ þ 4

4ðδþ 1Þ2 ;

b2 ¼ −
8δ2 þ 3δðm2

2r
2
g þ 4Þ þ 4

4ðδþ 1Þ ; ð16Þ

where we have defined b1 ¼ 1þ δ. In other words, the
black-hole solution is fully determined by δ and rg. Since
the ansatz (15) is expanded near the horizon, it is not
guaranteed that the black hole solution described by ai and
bi is asymptotically flat for any δ given a certain rg. When
δ ¼ 0, we obtain the Schwarzschild solution, which is
obviously a solution to the field equation due to its Ricci-
flatness. When δ ≠ 0, there also exists an asymptomatically
flat solution, which we refer to as the non-Schwarzschild

black hole. As far as we know, the non-Schwarzschild
solution does not have a closed analytical form. In practice,
it is obtained numerically, for example by tuning δ or rg
with the shooting method.
In contrast to Schwarzschild spacetime, the non-

Schwarzschild black hole is not Ricci-flat. Moreover, the
asymptotic behavior is expected to be

AðrÞ ¼ 1 −
C2;0

r
− C2−

e−m2r

r
þ � � � ð17Þ

where � � � represents the sub-leading terms [23]. In order to
compare with the Schwarzschild solution, we define an
effective ADM mass

M ≡ C2;0

2G
; ð18Þ

where C2;0 can be extracted by fitting AðrÞ with Eq. (17) at
large r (e.g., r ∼ 50rg), once the solution is obtained
numerically. Then the two branches of solutions can be
represented by plotting MðrgÞ, see Fig. 1.
While the Schwarzschild horizon increases linearly with

the ADMmass, the horizon of the non-Schwarzschild black
hole decreases with the ADM mass, and the two branches
cross at the branch point with m2rg ¼ p ≈ 0.87. For
rgm2 ≳ 1.14, a distant observer would even observe a
negative ADM mass for the non-Schwarzschild black hole.
As rg approaches zero, the Ricci curvature of the non-
Schwarzschild solution diverges, leaving a naked singu-
larity (see Appendix A).
Although the non-Schwarzschild black hole does not

have a known closed analytical form, it is still useful to
approximate the numerical solution with an analytic
expansion. Such an expansion has been studied in
Ref. [26], where the two metric functions AðrÞ and BðrÞ
are represented by a continued-fraction expansion [41],
parametrized by a single dimensionless parameter

rgm2 ≲ 1.14: ð19Þ

The details of the approximation are reviewed in
Appendix C. Toward the bound, rgm2 ≲ 1.14, the mass
of the non-Schwarzschild black hole shrinks to zero. While
[26] restricts to rgm2 ≳ 0.87, the non-Schwarzschild sol-
ution persists also for smaller values of rgm2 and the
continued-fraction expansion remains valid.

III. BLACK-HOLE PERTURBATIONS

We are interested in linear perturbations δφ, δgab, and
δfab about a background φ̄, ḡab, and f̄ab, i.e.,
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φ ¼ φ̄þ δφ;

gμν ¼ ḡμν þ δgμν;

fμν ¼ f̄μν þ δfμν; ð20Þ

respectively. Further, we restrict to static, spherically
symmetric black-hole backgrounds.

A. Linear dynamics on “Ricci-scalar-flat” backgrounds

We recall that static, spherically symmetric, and asymp-
totically flat vacuum solutions of quadratic gravity are
Ricci-scalar flat, i.e., R̄ ¼ 0 ⇔ f̄ ¼ 0 ⇔ φ̄ ¼ 0 holds
[24,39]. In this case, the linear dynamics simplifies to

0 ¼ □̄δφþm2
0δφ; ð21Þ

0 ¼ δGμν þm2
2ðδfμν − ḡμνδfÞ; ð22Þ

0 ¼ □̄δfμν − D̄μD̄νδf þ 2R̄μσνρδfσρ þ 2f̄σρδRμσνρ

þm2
2

�
−δfμν þ ḡμνf̄σρδfσρ þ ðf̄μν þ ḡμνÞδf

þ 1

2
f̄σρf̄σρδgμν

�
; ð23Þ

where δGμν and δRμσνρ denote linear perturbations of Gμν

and Rμσνρ with respect to the metric.
Due to φ̄ ¼ 0, the linear perturbations δφ decouple and

are governed by a massive scalar wave equation on the
respective background. These scalar perturbations can
therefore be determined separately. In particular, the
massive scalar mode will not alter any conclusions in
the coupled (massless and massive) spin-2 sector. For the
stability analysis in Sec. IV, we thus only focus on the
spin-2 sector.

B. Linear dynamics on Ricci-flat backgrounds

On Ricci-flat backgrounds, we have R̄μν ¼ 0 ⇔ f̄μν ¼ 0

and thus R̄ ¼ 0 ⇔ f̄ ¼ 0 ⇔ φ̄ ¼ 0. Furthermore, in this
case, the contraction of (23) implies δf ¼ 0. Hence, (22)
and (23) reduce to

0 ¼ δGμν þm2
2δfμν; ð24Þ

0 ¼ □̄δfμν þ 2R̄μσνρδfσρ −m2
2δfμν; ð25Þ

In this special case, also δfμν decouples and evolves
independently of δgμν. When δfμν ¼ 0, the equation of
δgμν and hence its spectrum such as quasinormal frequen-
cies are identical to those in GR. This is a direct conse-
quence of the fact that any GR vacuum solution is also a
solution of quadratic gravity. When δfμν gets excited, the
perturbations also include the spectrum of a massive spin-2
field, cf. [32]. As shown in [28,32], the monopole mode of

the massive spin-2 field suffers from the Gregory-
Laflamme instability [36,37].
We note that (21), (24), and (25) describe the linear

perturbations of quadratic gravity on any Ricci-flat back-
ground, in particular, including Kerr black holes. We will
discuss the potential instabilities of Kerr black holes in
quadratic gravity and respective observational constraints
in a separate publication.

C. Monopole perturbations

We expect that the monopole perturbation of the mass-
less spin-2 field is pure gauge, just as in GR. Indeed, we
will show below that the monopole perturbations can be
reduced to a single dynamical degree of freedom corre-
sponding to the massive spin-2 mode.
Before we proceed to derive the respective master

equation, we algebraically solve the background equations
of motion to reexpress all higher-order (radial) derivatives
of AðrÞ and BðrÞ in terms of 1st- and 0th-order deriva-
tives only.
Linear perturbations as in (20) can be decomposed into

spherical harmonics Ylmðθ;φÞ, a time-dependent part
e−iωt, and a radial mode function. Due to the spherical
symmetry of the background, we can—without loss of
generality—focus on the axisymmetric (i.e., m ¼ 0) per-
turbations. Moreover, the focus of this work lies on long-
wavelength instabilities: These are expected to be excited in
the lowest-lying modes of the decomposed spectrum of
spherical harmonics. Hence, we focus on the monopole
(l ¼ 0 ⇒ m ¼ 0) perturbations.
For monopole perturbations, the most general decom-

position, cf. [42–44], reduces to

δgμν ¼

0
BBB@

−AH0 H1 0 0

H1 H2=B 0 0

0 0 r2K 0

0 0 0 r2sin2θK

1
CCCAe−iωt;

ð26Þ

for the massless spin-2 perturbations and to

δfμν ¼

0
BBB@

−AF0 F1 0 0

F1 F2=B 0 0

0 0 r2M 0

0 0 0 r2sin2θM

1
CCCAe−iωt;

ð27Þ

for the massive spin-2 perturbations. Herein, H0;1;2ðrÞ,
KðrÞ, F0;1;2ðrÞ, and MðrÞ are eight unknown functions of
the radial coordinate r.
The massless and massive spin-2 perturbations, i.e.,

Eqs. (22) and (23), correspond to eight perturbation
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equations for the above eight modes. Moreover, Dμfμν ¼ 0
and f ¼ 0, correspond to three constraints. However, not
all of these equations are independent. Instead, as we will
see below, they can be reduced to a single Regge-Wheeler
type master equation.
We start by choosing a gauge such that

K ¼ H0 ¼ 0: ð28Þ

Further, we can algebraically solve two of the constraints to
express any two of the three modes F0, F2, andM in terms
of the remaining modes. We choose to remove F0 and F2.
Finally, we can use the two lowest-order metric-perturba-
tion equations to remove H1 and H2. This leaves us with
only two massive spin-2 perturbations, i.e., F1 andM, and
one constraint. Once these three equations are fulfilled, all
the other equations are automatically fulfilled too. The
details of this algebraic reduction are given in Appendix B.
Making use of these relations and defining ϕðrÞ ¼

−2ωMðrÞ and χðrÞ ¼ F1ðrÞ, we end up with two coupled
2nd-order equations

ϕ00 þ ϕ0
�
4

r
þ 3A0

2A
−

B0

2B

�
þ ω2ϕ

AB
þ Vϕϕϕþ Vϕχχ ¼ 0;

ð29Þ

χ00 þ χ0
�
2

r
þ 3A0

2A
þ 3B0

2B

�
þ ω2χ

AB
þ Vχχχ þ Vχϕϕ ¼ 0;

ð30Þ

and one constraint

ϕ0 þ χ0
2iB
r

þ Vϕϕþ Vχχ ¼ 0; ð31Þ

where primes denote derivatives with respect to r. The
functions V�≡V�ðm2

2;A;B;A
0;B0Þ (with � ¼ ϕ; χ;ϕϕ; χχ)

denote potentials which are independent of ω. Their
explicit form is given in Appendix B. In Eqs. (29) and
(30), we have used the constraint (31) in order to remove
mixed 1st-order terms in which both ϕ0 and χ0 appear.
To explicitly solve for the constraint, we can make a

general ansatz for a new master variable ψ̃ , i.e.,

ϕðrÞ ¼ aðrÞψ̃ðrÞ þ bðrÞψ̃ 0ðrÞ; ð32Þ

χðrÞ ¼ cðrÞψ̃ðrÞ þ dðrÞψ̃ 0ðrÞ: ð33Þ

We fix the coefficients aðrÞ, cðrÞ, and dðrÞ by demanding
that the constraint equation (31) is fulfilled. Further, we
choose bðrÞ ¼ 0, for simplicity. We can then add (29) and
(30) such that the resulting linear combination does not
contain derivatives beyond 2nd-order. To be explicit, this
requires a relative coefficient of ð−2iB=rÞ. One final field
redefinition, i.e.,

ψ̃ðrÞ ¼ 1

r
ψðrÞ; ð34Þ

allows us to write the master equation in Regge-Wheeler
form, i.e., results in

d2

dr2�
ψðrÞ þ ðω2 þ VðrÞÞψðrÞ ¼ 0; ð35Þ

with a radial potential

VðrÞ ¼ −m2
2A −

ðAB0 þ BA0Þ
2r

−m2
2

24A2Bð2A − rA0Þð2Bþ rB0Þ
ð−4m2

2rA
2ð3B − 1Þ þ ðAB0 þ BA0Þð3rðAB0 þ BA0Þ − 4AÞÞr

−m4
2

288A3B3ð2A − rA0Þ2
ð−4m2

2rA
2ð3B − 1Þ þ ðAB0 þ BA0Þð3rðAB0 þ BA0Þ − 4AÞÞ2 : ð36Þ

In the Schwarzschild-limit, i.e., for A ¼ B ¼ 1 − rg=r, this
master equation reduces to the one previously found in
[[32], Eq. (30)].
This master equation is the key analytical result of this

work. It allows us to analyze monopole perturbations and
thus long-wavelength instabilities not just on the
Schwarzschild but also on the non-Schwarzschild back-
ground. We will do so in the next section.
Here, we focus on black-hole solutions in quadratic

gravity and do not investigate horizonless objects, see e.g.
[22,29]. However, the master equation (35) is fully general

and allows us to also study monopole perturbations of such
backgrounds without horizon.

IV. INSTABILITY OF SMALL BLACK HOLES

With the different black-hole branches, cf. Sec. II C, and
the master equation for monopole perturbations on general
backgrounds, cf. Sec. III C, at hand, we are ready to
investigate long-wavelength instabilities. We recall that a
linear instability is signaled by an eigenfrequency ω with a
positive imaginary part.
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The eigenfrequencies can be obtained by solving the
master equation (35) with suitable boundary conditions at
the horizon rg and at spatial infinity. Both boundary
conditions can be obtained by an asymptotic analysis.
The horizon is a regular singular point of the master

equation (35) and the Frobenius method can be used to
extract the leading behavior. Frobenius theory tells us to
expand the first-order and zeroth-order term to keep only
the leading behavior, i.e., to truncate to ðr − rgÞ−1 and
ðr − rgÞ−2, respectively, i.e.,

ðr − rgÞ2ψ 00 þ ðr − rgÞψ 0 þ ω2r2g
b1

ψ ¼ 0: ð37Þ

The general solution of this frozen-coefficient equation is

ψðr → rgÞ ∼ cinðr − rgÞ
−iωrgffiffiffi

b1
p þ coutðr − rgÞ

iωrgffiffiffi
b1

p
: ð38Þ

As a black hole only admits ingoing modes at the horizon,
the physical solution is given by cout ¼ 0.
At spatial infinity, the master equation has an irregular

singular point. Nevertheless, the leading (and subleading)
behavior can be found by expanding both the first-order
and zeroth-order terms, neglecting Oð1=rÞ [or Oð1=r2Þ],
and solving the respective frozen-coefficient equation. The
general leading-order asymptotic solution is

ψðr� → þ∞Þ ∼ cþe
ffiffiffiffiffiffiffiffiffiffi
m2

2
−ω2

p
r� þ c−e

−
ffiffiffiffiffiffiffiffiffiffi
m2

2
−ω2

p
r� : ð39Þ

Solutions with cþ ¼ 0, i.e., outgoing behavior at asymp-
totic infinity, describe quasinormal modes, while solutions
with c− ¼ 0, i.e., ingoing behavior at asymptotic infinity,
describe bound states. Since we are searching for solutions
with ImðωrgÞ < 0, the physical solution is given by the
bound state, i.e., the one with c− ¼ 0.
Having fixed the appropriate boundary conditions, we

can compute the spectrum of bound-state perturbations. We
obtain the bound-state frequencies both by a numerical
forward-integration method, and by spectral methods,
cf. App.endix D.

A. Gregory-Laflamme instability
of Schwarzschild spacetime

The Schwarzschild black-hole background is a one-
parameter family of solutions AðrÞ ¼ BðrÞ ¼ 1 − rg=r
parametrized by rg ¼ 2GM with rg the horizon radius
andM the ADM mass extracted at asymptotic infinity. The
bound-state spectrum of the massive spin-2 monopole
perturbations around Schwarzschild spacetime depends
on the relative size of rg and the mass m2 of the massive
spin-2 mode. Thus we can express results as a function of
the dimensionless quantity m2 × rg.
In agreement with [28,32], we find a tower of modes

with ReðωÞ ¼ 0, cf. Fig. 2 for the lowest-lying mode.

The fundamental mode, i.e., the one with the largest
imaginary part, is unstable (ImðωrgÞ > 0) below the branch
point, i.e., for m2rg < p ≈ 0.87 and stable (ImðωrgÞ < 0)
above the branch point, i.e., for m2rg > p, cf. solid line in
Fig. 2. This mode corresponds to a long-wavelength
instability. In the subsequent tower of higher modes, we
find no indication for further instabilities.
Such a long-wavelength instability—the Gregory-

Laflamme instability—is known from compactification
of 5 (or higher) dimensional black strings to 4 dimensions
[36], cf. [37] for a pedagogical review. Indeed, the
respective master equation is identical to (35), with the
compactification scale k taking on the role of the spin-2
mass m2.
It seems intriguing that these two a priori unrelated

extensions of GR—compactified higher dimensions on the
one hand and quadratic curvature corrections on the other
hand—exhibit the exact same linear instability. Apparently,
both physical scenarios reduce to the same linear degrees of
freedom when the respective nonlinear dynamics is linear-
ized around a Schwarzschild background. It is unknown
whether this correspondence extends to other backgrounds
or to the nonlinear dynamics.
An analytic proof for the Gregory-Laflamme instability

has recently been established for m2rg ∈ ½3=20; 8=20� [38].
Numerical results, such as the one presented here in
Fig. 2, strongly suggest that the instability is present for
all m2rg ∈ ½0; 0.87�.

B. Long-wavelength instability
of non-Schwarzschild black holes

The non-Schwarzschild black-hole branch can also be
given as a one-parameter family of solutions, parametrized
by the horizon radius rg but is not known in closed analytic

FIG. 2. We show the imaginary part of the fundamental mode of
massive spin-2 monopole perturbations on the Schwarzschild
background. (The real part vanishes.) The mode is unstable
(ImðωrgÞ > 0) for m2rg ≲ 0.87 and stable (ImðωrgÞ < 0) for
m2rg ≳ 0.87. The open cyan circles indicate results obtained by
spectral methods (with negligibly small error, see Appendix D).
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form. Hence, we use two different methods to make sure
that our conclusions about stability are converged.
The first method is fully numerical. Therein, we use the

numerical black-hole solution, i.e., Aðr=rgÞ and Bðr=rgÞ, as
a background in (35). The bound-state solutions are then
obtained by applying the forward-integration method. We
verify apparent convergence by increasing the numerical
precision of both the black-hole background and the
forward-integration method. We find the results obtained
with different numerical precision differ by at most 1%.
The second method is to use an analytic approximation

of the non-Schwarzschild branch in which the two metric
functions AðrÞ and BðrÞ are represented by a continued-
fraction expansion parametrized by the dimensionless
parameter rgm2. At fixed order in the continued-fraction
expansion, we use a spectral method with Chebyshev
polynomials to approximate the bound-state frequencies.
The details of the continued-fraction expansion are
reviewed in Appendix C and the application of spectral
methods is detailed in Appendix D. As for the fully
numerical solution, convergence properties are determined
by a nontrivial interplay of the order Ncf of the continued-
fraction expansion and the order Nspec of the Chebyshev
polynomials.
The convergence of both methods slows down with

growing distance to the branch point p ≈ 0.87, i.e., with
ϵ ¼ jrgm2 − pj. Close to the branch point, we find agree-
ment between both methods within the respective error
estimates. We are thus confident that the results for the
fundamental monopole mode presented in Fig. 3 are
converged.

We find a similar picture as we found for the
Schwarzschild branch. Both branches are stable for
rgm2 > p. For rgm2 < p, both branches develop a long-
wavelength instability in the fundamental monopole mode
of massive spin-2 perturbations.

V. DISCUSSION

We investigate the linear stability of spherically sym-
metric black-hole solutions that arise in quadratic gravity,
i.e., when (the action of) general relativity is modified to
include operators quadratic in the Riemann curvature.
Quadratic gravity is known to propagate three linear

degrees of freedom: the massless spin-2 graviton, a massive
spin-0 mode (with mass m0), and a massive spin-2 mode
(with mass m2), cf. Sec. II B.
Among other horizonless solutions [21–29], quadratic

gravity exhibits two branches of static, spherically sym-
metric, and asymptotically flat black hole solutions,
cf. Sec. II C and Fig. 1. Each branch represents a one-
parameter family of black holes, parametrized by a dimen-
sionless parameter rgm2. The two branches intersect at a
branch point rgm2 ≡ p ≈ 0.87.

A. Key result: Long-wavelength instability
for small black holes in both branches

We have uncovered a long-wavelength instability in the
non-Schwarzschild branch of spherically symmetric black
holes in quadratic gravity. This instability complements the
Gregory-Laflamme instability [36–38] of the Schwarzschild
branch to form a lower bound for the horizon radius
rg > p=m2 of stable (spherically symmetric) black holes
in quadratic gravity.
To obtain this result, we work in the Einstein frame and

derive the covariant equations of motion for general linear
perturbations. We explicitly show that the massive spin-0
mode decouples on any “Ricci-scalar-flat” (R ¼ 0) back-
ground and can thus be treated separately, cf. Sec. III. The
massless and the massive spin-2 mode remain coupled
unless the background is a vacuum solution to general
relativity, i.e., is Ricci-flat (Rμν ¼ 0). Nevertheless, we can
derive a Regge-Wheeler type master equation (35) for the
monopole perturbation about an arbitrary static spherically
symmetric background. The lowest lying modes in the
respective bound-state spectrum reveal both instabilities.
On the Schwarzschild background, the master equation

reduces to a well-known result [28,32] and we recover the
Gregory-Laflamme instability [36–38] for small black
holes with horizon radius rgm2 < p, cf. Sec. IVA.
On the non-Schwarzschild background, we uncover a

similar long-wavelength instability for small black holes,
the onset of which is, once again, set by the branch point,
i.e., the instability occurs for rgm2 < p, cf. Sec. IV B.

FIG. 3. We show the imaginary part of the fundamental mode of
massive spin-2 monopole perturbations on the non-Schwarzs-
child background. (The real part vanishes.) The mode is unstable
(ImðωrgÞ > 0) for m2rg ≲ 0.87 and stable (ImðωrgÞ < 0) for
m2rg ≳ 0.87. The filled black and open cyan circles indicate
results obtained by forward-integration and the spectral method,
respectively (see Appendix E for details on the cyan error band
given for the spectral-method results).
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B. Effective field theory of general relativity

Quadratic-curvature operators are also present in the
effective field theory (EFT) of general relativity, the action
of which, up to leading EFT corrections (and for negligible
cosmological constant), takes the same form as Eq. (1).
Within this EFT, one has to ensure that both the background
solution and the linear stability analysis do not extrapolate
the EFT beyond its regime of validity.
In a weakly coupled EFT, the masses of the massive

spin-0 and spin-2 degrees of freedom are comparable to or
lie beyond the EFT cutoff scale: Specifically, the cutoff
scale is given by m0 ∼m2 [45], and hence the massive
spin-0 and spin-2 fields cannot be excited within the
validity of the EFT.
In a generic (potentially strongly coupled) UV comple-

tion, we expect m0 ∼m2 ∼MPl, in which case the mass
scales associated with the massive spin-0 and spin-2
degrees of freedom are either above the cutoff scale or
the EFT becomes strongly coupled as the energy scale
approachesMPl. In the latter case, the linear analysis breaks
down and one can potentially no longer neglect terms of yet
higher order (cubic, quartic, and so on) in curvature.
The EFT cutoff scale also has implications for the validity

of the background solutions. In the Schwarzschild branch,
the largest curvature scales (in the black-hole exterior)
occur at the horizon and are uniquely determined by the
Kretschmann scalar RμνρσRμνρσ=m4

2 ¼ 12=ðr4gm4
2Þ: The

smaller the black hole, the larger its horizon curvature
and, in particular, RμνρσRμνρσ=m4

2 ¼ 12=p4 at the branch
point. Large Schwarzschild black holes above the branch
point are thus within the validity of the EFT but for small
black holes close to and below the branch point the EFT
presumably breaks down.
In contrast, we expect that black holes in the non-

Schwarzschild branch are always outside the validity of the
EFT: On the one hand, the EFT is only valid as long as
quadratic-curvature terms contribute perturbatively. On the
other hand, we find that the Kretschmann scalar, evaluated
at the horizon of the non-Schwarzschild branch, increases
with growing horizon size. We thus expect that even large
non-Schwarzschild black holes exhibit curvature scales
beyond the EFT cutoff scale, cf. Fig. 4.

C. A scenario for remnants

Our results raise an interesting question concerning the
overall fate of black holes in quadratic gravity. Both black-
hole branches develop a linear long-wavelength instability
once the horizon radius drops below rg < p=m2 which
implies a lower bound on the horizon radius of stable black
holes. These uncovered long-wavelength instabilities are
driven purely by classical perturbations. At the same time,
semiclassical matter fluctuations (obtained in quantum field
theory on curved spacetime) lead to Hawking radiation and

thus to a decreasing horizon radius—at least in the
Schwarzschild branch. The competition of both instabilities
could thus lead to a mechanism that stabilizes black holes at
the branch point, cf. Fig. 1, and could thus lead to stable
remnants with a characteristic horizon radius of rg ¼ p=m2.
Semiclassical black-hole perturbations of quantized

matter fields in curved spacetime lead to Hawking evapo-
ration [46]. A large (i.e., m2rg ≫ p) Schwarzschild black
hole will evaporate and is thus driven toward the branch
point. The timescale of Hawking evaporation tev is set by
tev=tPl ∼M3=M3

Pl withM the black hole mass andMPl (tPl)
the Planck mass (Planck time). The underlying semi-
classical approximation neglects backreaction and thus
breaks down as M → MPl. For all observed astrophysical
black holes,M > M⊙ and thus the evaporation timescale is
much longer than the observed age of the universe.
However, there exists an intermediate regime of black-hole
masses M, in which M⊙ ≫ M ≫ MPl: In this regime the
semiclassical approximation is valid and the timescale is
observable. For instance, black holes of mass M ∼ 1011 kg
would have an evaporation timescale of roughly one year.
In summary, Hawking radiation drives Schwarzschild

black holes from larger to smaller horizon radii. In contrast,
we have seen that quadratic-curvature corrections to gen-
eral relativity lead to classical long-wavelength instabilities
that destabilize small black holes below a critical horizon
radius set by the mass scale m2 associated with the
quadratic gravity spin-2 degree of freedom.
Whether or not the classical instability can counteract

semiclassical Hawking evaporation depends on the respec-
tive timescales of both instabilities. On the one hand, the

FIG. 4. We show the Kretschmann scalar RμνρσRμνρσ=m4
2

evaluated at the black hole horizon. The Kretschmann scalar
of the Schwarzschild branch (thin dashed) decreases monoton-
ically as the horizon increases, hence large Schwarzschild black
holes are within the validity of the EFT. In contrast, the
Kretschmann scalar of the non-Schwarzschild branch (thick
cyan) starts to increase as the horizon grows for m2rg > p.
Hence, we expect that large non-Schwarzschild black holes are
not within the validity of the EFT.
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timescale for developing the Gregory-Laflamme instability
can be estimated by tGL ∼ 1=Im½ω�. On the other hand, the
timescale for complete evaporation is tev ≈ 5120G2M3

[47]. Thus, we find that tGL is larger than tev if
m2 ≳ 36MPl. In turn, we expect that the Gregory-
Laflamme instability occurs before complete evaporation
(down to a Planck-sized mass) of the black hole if
m2 ≲ 36MPl. This also implies that black holes at the
branch point have a mass of at least M=MPl ¼
4πpMPl=m2 ≳ 144πp ≫ 1 such that we can in fact trust
the semiclassical calculation throughout the whole
process.
Overall, this implies that Schwarzschild black holes in

quadratic gravity evaporate until they reach a horizon
radius of rg ¼ p=m2, at which point the Gregory-
Laflamme instability occurs. The crucial remaining ques-
tion is the fate of this classical instability. In spherical
symmetry, we see, a priori, four remaining options,
cf. Fig. 1: (i) the black hole continues its decay to smaller
horizon radii in the non-Schwarzschild branch; (ii) the
black hole decays to larger horizon radii in the non-
Schwarzschild branch; (iii) the theory develops a run-
away,1 or finally (iv) the competing instabilities balance
out to form stable remnants with characteristic horizon
radius rg ¼ p=m2.
Due to the uncovered long-wavelength instability in the

non-Schwarzschild branch, we can now exclude option (i).
Thermodynamic arguments [28,30,31], following the Wald
formalism [48,49], suggest that Hawking radiation will also
shrink the horizon size of black holes in the non-
Schwarzschild branch. While an explicit semiclassical
calculation remains outstanding, this suggests that also
option (ii) is excluded. Finally, an understanding of option
(iii) presumably requires the full nonlinear dynamics of
quadratic gravity.

D. Outlook

Regarding the ultimate fate of spherically symmetric
black holes in quadratic gravity, we can thus identify two
key open questions:

(i) Do semiclassical fluctuations drive large black holes
toward the branch point, as suggested by thermo-
dynamic considerations [28,30,31]?.

(ii) Does the full nonlinear dynamics of quadratic
gravity (see [50,51] for an approach to well-posed
numerical evolution) avoid runaways?.

If both of these questions can be answered in the affirma-
tive, we may expect the formation of stable remnants—at
least in spherical symmetry.
Little is known beyond spherical symmetry and alter-

native branches of axisymmetric solutions have not yet

been found.2 Since vacuum solutions to GR are Ricci flat,
Kerr spacetime—just like Schwarzschild spacetime—is
also a solution to quadratic gravity. For slowly spinning
Kerr spacetime the superradiance phenomenon has been
effectively explored in quadratic gravity [32,56]. A full
analysis (akin to the Teukolsky equation [57] in GR)
remains outstanding. We plan to investigate the case of
axisymmetry in future work.
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APPENDIX A: THE HORIZONLESS LIMIT OF
THE NON-SCHWARZSCHILD SOLUTION

In this appendix, we investigate the horizonless limit of
the non-Schwarzschild solution. It is convenient to work
with an alternative metric form [27],

ds2 ¼ Ω2ðr̄Þ½dθ2 þ sin2θdϕ2 − 2dudrþHðrÞdu2�; ðA1Þ

which relates to (14) via the transformation

r ¼ Ωðr̄Þ; t ¼ u −
Z

H−1dr; ðA2Þ

with

1With the term runaway, we refer to a catastrophic growth of
mode solutions that results in the amplitudes of the respective
mode perturbations diverging to �∞.

2Alternative axisymmetric black-hole branches need not be
circular [52,53]. In fact, an application of the Janis-Newman
complexification [54]—generalizing static and spherically sym-
metric solutions to axisymmetric and stationary candidate
solutions—is known to only generate circular (and moreover
algebraically special) spacetimes. While successfully generaliz-
ing Schwarzschild (Reissner-Nordström) spacetime to Kerr
(Kerr-Newman) spacetime, all of which are circular and alge-
braically special [55], the Janis-Newman complexification will
presumably fail in quadratic gravity.
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AðrÞ ¼ −Ω2H; BðrÞ ¼ −ðΩ0=ΩÞ2H: ðA3Þ

The horizon is located at Hðr̄gÞ ¼ 0. To see the curvature
singularity in the horizonless limit of the non-
Schwarzschild solution, we consider the Bach curvature
tensor

Bμν ≡
�
∇ρ∇σ þ 1

2
Rρσ

�
Cμρνσ; ðA4Þ

and evaluate the Bach scalar curvature invariant at the
horizon (for example see Ref. [58]),

BμνBμν ¼ 1

4

�
b

4m2
2

�
2

Ω−4ðr̄gÞ

¼ 1

4

�
b

4m2
2

�
2

r−4g ðA5Þ

where b is the nonzero parameter that parametrizes the
non-Schwarzschild solutions. In the horizonless limit,
i.e., as rg → 0, the Bach scalar curvature diverges, i.e.,
BμνBμν → ∞, and thus the non-Schwarzschild solution
turns into a naked curvature singularity.

APPENDIX B: ALGEBRAIC REDUCTION OF
THE MONOPOLE PERTURBATIONS

Prior to gauge fixing and any reduction, the monopole
(l ¼ 0) perturbations in spherically symmetric quadratic
gravity are described by 8 polar mode functions, i.e., by
H0;1;2, K, F0;1;2, and M, cf. (27) and (26). The respective
metric [Eq. (22)] and massive spin-2 [Eq. (23)] equations of
motion, i.e., F ¼ 0 and H ¼ 0 reduce to 4 nontrivial
equations each, i.e., to

F tt ¼ 0; F tr ¼ 0; F rr ¼ 0; F θθ ¼ 0; ðB1Þ

Htt ¼ 0; Htr ¼ 0; Hrr ¼ 0; Hθθ ¼ 0: ðB2Þ

In spherical symmetry, the other components are either
trivial or equivalent to one of the above equations.
The constraints, i.e., Dafab ¼ 0 and f ¼ 0, correspond

to three nontrivial equations, i.e.

Ct ≡Dafat ¼ 0; Cr ≡Dafar ¼ 0; f ¼ 0: ðB3Þ

As written in the main text, we choose a gauge in which

K ¼ H1 ¼ 0: ðB4Þ

Further, we algebraically solve Ct ¼ 0 and f ¼ 0 for F0 and
F2. Finally, we algebraically solve two of the metric-
perturbation equations, i.e., F tr ¼ 0 and F rr ¼ 0, for H2

and H0
0ðrÞ. (We can solve for H0

0ðrÞ directly because none
of the equations contains H0ðrÞ.)
Overall, this leaves us with two massive spin-2 pertur-

bations, i.e., F1 and M, and six nontrivial equations, i.e.,
Hθθ ¼ 0, F tt ¼ 0, F tr ¼ 0, F rr ¼ 0, F θθ ¼ 0, and
Cr ¼ 0. Defining,

ϕðrÞ ¼ −2ωMðrÞ; ðB5Þ

χðrÞ ¼ F1ðrÞ; ðB6Þ

these six equations can be algebraically reduced to one 2nd-
order equation for ϕ (0th-order in χ), one 2nd-order
equation for χ (0th-order in ϕ), and one 1st-order con-
straint. The explicit linear combinations which achieve this
reduction read

0 ¼ −
2ω

Br2
F θθ þ

�
A0

A
−
B0

A
þ 2

r

�
ðωCr − iF trÞ

≡ −i
d
dr

ðF trÞ þ ωF rr þ
�
A0

A
−
1

r

�
1þ 1

B

��
ωCr −

1

2

�
−
3A0

A
þ B0

A
−
8

r

�
ðωCr − iF trÞ; ðB7Þ

0 ¼ 1

B
F tr; ðB8Þ

0 ¼ ωCr − iF tr ≡ 2ω

M2r3
Hθθ − iF tr ≡ ωr

AðrB0 þ 2B − 2Þ
�
F tt − ABF rr −

2A
r2

F θθ − BA0Cr
�
− iF tr: ðB9Þ

The resulting equations are given in the main text, cf. Eqs. (29)–(31). The explicit expressions for the potentials read

Vϕϕ ¼ −
Að3B − 1Þm2

2

B2ð2A − rA0Þ −
1

4A2B2r2ðrA0 − 2AÞ
�
A3ðrB0 þ 4BÞð3rB0 þ 4B − 4Þ

þ2B2r3ðA0Þ3 − ABr2ðA0Þ2ð2rB0 þ 17BÞ þ 2A2BrA0ðrB0 þ 12Bþ 2Þ
�
; ðB10Þ
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Vϕχ ¼
2im2

2

B2

�
Að3B − 1ÞB0

rA0 − 2A
þ B

r

�

−
i

2A2B2r3ðrA0 − 2AÞ
h
B3r3ðA0Þ3 þ AB2r2ðA0Þ2ð−7rB0 − 6Bþ 4Þ þ A2Br2A0B0ð3rB0 þ 8BÞ

× A3ð16ðB − 1ÞB2 þ 3r3ðB0Þ3 þ 2ð3B − 2Þr2ðB0Þ2 þ 8Bð3B − 1ÞrB0Þ
i
; ðB11Þ

Vχϕ ¼ iðAB0 − 3BA0Þ
2AB2

; ðB12Þ

Vχχ ¼ −
m2

2

A2

�
3Að3A − 1Þ
2A − rA0 − 2A

�
þ 1

4A2B2r2ðrA0 − 2AÞ
h
A3ðrB0ð12 − 5rB0Þ þ 4Bð4 − 3rB0ÞÞ

þ 4B2r3ðA0Þ3 þ ABr2ðA0Þ2ð2rB0 þ 5BÞ − 2A2rA0ð22B2 þ r2ðB0Þ2 þ Bð8rB0 − 2ÞÞ
i
; ðB13Þ

Vϕ ¼ 3

r
−

A0

2A
; ðB14Þ

Vχ ¼ −
iAð3B − 1Þm2

2

BðrA0 − 2AÞ −
i

4ABr2ðrA0 − 2AÞ
h
A2ð32B2 − 3r2ðB0Þ2 þ 4ð4Bþ 1ÞrB0Þ

þ B2r2ðA0Þ2 − 2ABrA0ð7rB0 þ 12B − 2Þ
i
: ðB15Þ

APPENDIX C: CONTINUED-FRACTION
EXPANSION OF THE NON-SCHWARZSCHILD

BACKGROUND

In this appendix, we collect the relevant details of the
continued-fraction expansion [26] (based on the general
framework in [41]) of the non-GR background solution
[23,24] of quadratic gravity.
Defining a dimensionless compact coordinate x ¼

1 − rg=r, where rg is the horizon of the non-GR black
hole, the two metric functions AðrÞ and BðrÞ in Eq. (14) are
expanded as

AðrÞ ¼ xÃðxÞ; AðrÞ=BðrÞ ¼ B̃ðxÞ2; ðC1Þ

with

ÃðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ÂðxÞð1 − xÞ3;
B̃ðxÞ ¼ 1þ b0ð1 − xÞ þ B̂ðxÞð1 − xÞ2; ðC2Þ

and

ÂðxÞ ¼ a1
1þ a2x

1þ a3 ;x

1þ a4x
1þ…

;

B̂ðxÞ ¼ b1
1þ b2x

1þ b3x

1þ b4x
1þ…

: ðC3Þ

The background equations of motion imply a0 ¼ b0 ¼ 0.

At 2nd order, the other expansion coefficients are
given by

ϵ ≈
1054 − 1203p

326
;

a1 ≈
1054 − 1203p

556
; b1 ≈ −

1054 − 1203p
1881

;

a2 ≈ −
18 − 17p

11
; b2 ≈ −

2þ p
4

; ðC4Þ

setting ai>2 ¼ 0 and bi>2 ¼ 0. At 4th order, the other
expansion coefficients read

ϵ ≈ ð1054 − 1203pÞ
�

3

1271
þ p
1529

�
;

a1 ≈ ð1054 − 1203pÞ
�

7

1746
−

5p
2421

�
;

b1 ≈ ð1054 − 1203pÞ
�

p
1465

−
2

1585

�
; ðC5Þ

a2 ≈
6p2

17
þ 5p

6
−
131

102
;

b2 ≈
81p2

242
−
109p
118

−
16

89
; ðC6Þ
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a3 ≈
9921p2

31
− 385pþ 4857

29

237 − 223p
;

b3 ≈ −
2p
57

þ 29

56
; ðC7Þ

a4 ≈
9p2

14
þ 3149p

42
− 2803

14

237 − 223p
;

b4 ≈
13p
95

−
121

98
; ðC8Þ

again setting ai>4 ¼ 0 and bi>4 ¼ 0.

APPENDIX D: SPECTRAL METHODS

In addition to a generic shooting method on a fully
numerical background, we also use spectral methods with
Chebyshev collocation points and an analytical continued-
fraction expansion of the background (cf. Appendix C) to
determine the relevant eigenfrequencies of the master
equation (35) derived in the main text.
For any real-valued function fðxÞ defined on a finite

interval x ∈ ½a; b� and any ϵ ∈ R, there exists a polynomial
p of degree N for which jfðxÞ − pðxÞj < ϵ (Weierstrass
approximation theorem). Hence, there must exist a series of
polynomials that converges to the eigenfunctions (and the
respective frequencies which converge to the eigenfrequen-
cies) of an ordinary differential equation such as Eq. (35).
The crux is to find an appropriate series of collocation
points x1;…; xN , at which pðxNÞ ¼ fðxNÞ to ensure uni-
form convergence: For generic choices of collocation

points, polynomials of growing N rapidly diverge at the
edges of the interval (Runge’s phenomenon). Chebyshev
polynomials are special in that this choice of collocation
points minimizes Runge’s phenomenon.
Before applying spectral methods, we factor out the

desired boundary behavior, both at the horizon and at
asymptotic infinity. The asymptotic analysis, cf. Sec. IV,
results in

ψSchwðrÞ ¼ ðrg − rÞ−irgωρ × rirgωρþ
rgðm2

2
−2ω2Þ
2q δ

× eqr × RðrÞr; ðD1Þ

with the sign of q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 − ω2
p

differentiating between
ingoing (bound-state) and outgoing (quasinormal) modes
at asymptotic infinity. Moreover, ρ ¼ ρðrgm2Þ and δ ¼
δðrgm2Þ are constants which depend on the specified
background.
For Schwarzschild spacetime, ρ≡ δ≡ 1. For the non-

Schwarzschild background, ρ and δ depend on the order of
the continued-fraction expansion (cf. Appendix C). At
second order in p ¼ rgm2, we find

ρðpÞ ¼ 90628ð1203pþ 827Þ
1881ð472779p − 323594Þ ; ðD2Þ

δðpÞ ¼ 3

326
ð460 − 401pÞ: ðD3Þ

At fourth order in p ¼ rgm2, we find

ρðpÞ ¼ −
912745194966ð381351p2 − 1039076pþ 153239Þ

464405ð3704000354214p2 − 2463952425415pþ 228230924900Þ ; ðD4Þ

δðpÞ ¼ 143

41
−
4178527p
1943359

−
1203p2

1529
: ðD5Þ

We recast the radial variable,

ξ ¼ r − 2
ffiffiffiffiffiffiffirrg

p
r

; ðD6Þ

such that ξ⟶
r→rg

− 1 and ξ⟶
r→∞

1. The master equation can
then be written in standard form

�
d2

dξ2
þ C1ðω; ξÞ

d
dξ

þ C2ðω; ξÞ
�
RðξÞ ¼ 0; ðD7Þ

where Ci are functions of the radial variable ξ and the
frequency ω. The Chebyshev polynomials (of order N)
approximating RðξÞ are defined as

RNðξÞ≡
XN
k¼0

RðξkÞpkðξÞ; ðD8Þ

with pkðξnÞ≡ δnk at the Chebyshev nodes

ξn ≡ cos

�
πð2nþ 1Þ
2N þ 2

�
; with n ¼ 0; 1;…; N: ðD9Þ

To be explicit, the polynomials pkðξÞ are defined as

pkðξÞ≡ pðξÞ
ðξ − ξkÞ

qk; ðD10Þ

in terms of the (N þ 1)-order node polynomial

pðξÞ≡YN
k¼0

ðξ − ξkÞ ðD11Þ
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and the weights

qk ≡
�
dpðξÞ
dξ

����
ξ¼ξk

�
−1
: ðD12Þ

At each order N, the ODE is then approximated by an
algebraic system of N equations, i.e.,

XN
k¼0

MnkðωÞRðξkÞ ¼ 0; ðD13Þ

with

MnkðωÞ≡ p00
kðξnÞ þ C1ðω; ξnÞp0

kðξnÞ þ C2ðω; ξnÞδnk:
ðD14Þ

The derivatives p00
kðξnÞ and p0

kðξnÞ are determined by [59]

p0
kðζnÞ ¼

8<
:

qk=qn
ζn−ζk

n ≠ k

−
P
k≠n

p0
kðζnÞ n ¼ k ; ðD15Þ

p00
kðζnÞ ¼

8<
:

2p0
kðξnÞp0

nðξnÞ − 2p0
kðξnÞ

ξn−ξk
n ≠ k

−
P
k≠n

p00
kðζnÞ n ¼ k

: ðD16Þ

At any given order N, the algebraic system is solved in
terms of an initial guess for ω. The exponential rate of
convergence with growing N depends on the location of the
closest poles in the complex plane, cf. e.g. [59,60].

APPENDIX E: CONVERGENCE OF THE
SPECTRAL APPROXIMATION

When solving Eq. (35) with spectral methods on an
analytic (approximation of the) background, there are two
interconnected sources or errors that determine conver-
gence: (i) the error due to the finite order of the analytic
approximation of the background (in our case a continued-
fraction expansion, see Appendix C) and (ii) the error due
to the finite number of Chebyshev nodes (see Appendix D).
For the Schwarzschild background, the background

spacetime, of course, has a closed analytic form and there
is no error due to (i). Regarding (ii), we observe fast
exponential convergence with the number of Chebyshev
nodes, cf. left-hand panel in Fig. 5.
For the non-Schwarzschild background, both sources of

error are relevant, see Fig. 6: apparently the background
approximation is the dominant source of error.Moreover, we
observe very slow (if at all) convergence with growing
number of Chebyshev nodes, cf. right-hand panel in

Fig. 5. We suspect that this occurs due to fiducial poles
in the complex plane which are introduced by the finite
order of the continued-fraction approximation of the non-
Schwarzschild background.

FIG. 5. Exemplary convergence of the fundamental massive
spin-2 monopole mode with growing number N of Chebyshev
nodes. More specifically, we plot the absolute difference between
the current-order N and the highest-order MaxðNÞ ¼ 80 result
normalized by the MaxðNÞ ¼ 80 result. In the left-hand panel,
we show the (fast) convergence for the exact Schwarzschild
background (at a randomly selected point within the domain in
Fig. 2). In the right-hand panel, we show the (slow) convergence
for the 4th-order continued-fraction approximation of the non-
Schwarzschild background (at m2rg ¼ 0.9).

FIG. 6. Imaginary part of the fundamental mode of massive
spin-2 monopole perturbations obtained by spectral methods (see
Appendix D) on the continued-fraction approximation (see
Appendix C) of the non-Schwarzschild background. (The real
part vanishes.) The open circles and dots indicate results obtained
with N ¼ 80 and N ¼ 20 Chebyshev nodes, respectively. In both
cases, the cyan and light orange points indicate results obtained
on a 4th-order and 2nd-order continued-fraction approximation
of the background, respectively.
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